
Provably Efficient CVaR RL in Low-rank MDPs

Yulai Zhao∗

Princeton University
yulaiz@princeton.edu

Wenhao Zhan∗

Princeton University
wenhao.zhan@princeton.edu

Xiaoyan Hu∗

The Chinese University of Hong Kong
xyhu21@cse.cuhk.edu.hk

Ho-fung Leung
Independent Researcher

ho-fung.leung@outlook.com

Farzan Farnia
The Chinese University of Hong Kong

farnia@cse.cuhk.edu.hk

Wen Sun
Cornell University

ws455@cornell.edu

Jason D. Lee
Princeton University

jasonlee@princeton.edu

Abstract

We study risk-sensitive Reinforcement Learning (RL), where we aim to maximize
the Conditional Value at Risk (CVaR) with a fixed risk tolerance τ . Prior theoretical
work studying risk-sensitive RL focuses on the tabular Markov Decision Processes
(MDPs) setting. To extend CVaR RL to settings where state space is large, function
approximation must be deployed. We study CVaR RL in low-rank MDPs with non-
linear function approximation. Low-rank MDPs assume the underlying transition
kernel admits a low-rank decomposition, but unlike prior linear models, low-rank
MDPs do not assume the feature or state-action representation is known. We
propose a novel Upper Confidence Bound (UCB) bonus-driven algorithm to care-
fully balance the interplay between exploration, exploitation, and representation
learning in CVaR RL. We prove that our algorithm achieves a sample complexity
of Õ

(
H7A2d4

τ2ϵ2

)
rate to yield an ϵ-optimal CVaR, where H is the length of each

episode, A is the capacity of action space, and d is the dimension of representations.
Computational-wise, we design a novel discretized Least-Squares Value Iteration
(LSVI) algorithm for the CVaR objective as the planning oracle and show that we
can find the near-optimal policy in a polynomial running time with a Maximum
Likelihood Estimation oracle. To our knowledge, this is the first provably efficient
CVaR RL algorithm in low-rank MDPs.

1 Introduction

Reinforcement Learning (RL)(Sutton and Barto, 2018) is widely employed for tackling complex
sequential decision-making problems, such as popular strategy games(Silver et al., 2016, 2017).
However, classical RL emphasizes maximizing expected cumulative rewards, which may not suit real-
world applications facing safety concerns, e.g., autonomous driving (Isele et al., 2018), finance (Filippi
et al., 2020), and healthcare (Coronato et al., 2020). In such high-stakes contexts, optimizing expected
rewards alone can lead to policies underestimating the risks of rare but catastrophic events.

To address this, risk measures like Conditional Value-at-Risk (CVaR) (Rockafellar et al., 2000) have
been integrated into RL systems as a performance criterion (Hu and Leung, 2023). This approach
offers a more balanced strategy, encouraging policies to avoid high-risk outcomes. CVaR, a popular

∗Equal contribution. Listing order is random.

Mathematics of Modern Machine Learning Workshop at NeurIPS 2023.



risk management tool, quantifies expected returns in worst-case scenarios.2 For a random variable X
with distribution P and a confidence level τ ∈ (0, 1), the CVaR at confidence level τ is defined as

CVaRτ (X) = sup
b∈R

[
b− 1

τ
EX∼P (b−X)+

]
where x+ = max(x, 0). In this paper, we consider the random variable X as the cumulative reward
of a specific policy where randomness comes from the MDP transitions and the policy itself. We aim
to maximize this objective to capture the average worst values of the returns distribution at a certain
risk tolerance level τ .

The most related works to this paper are Bastani et al. (2022) and Wang et al. (2023). Bastani
et al. (2022) established initial regret bounds for risk-sensitive RL using CVaR metric (CVaR RL),
while Wang et al. (2023) improved these results to attain minimax optimal regret. However, their
methods are confined to tabular settings, which proves inefficient for large state spaces. To address
this limitation, our approach incorporates function approximation into the MDP structure and focuses
on low-rank MDPs (Jiang et al., 2017). In this paper, we aim to fill a gap in the existing body of
knowledge by exploring the interplay between risk-averse RL and low-rank MDPs. We summarize
our contributions as follows.

Contributions. First, we design an oracle-efficient representation learning algorithm called ELA
(REprensentation Learning for CVAR), which optimizes the CVaR metric in low-rank MDPs. ELA
leverages an MLE oracle to learn the model dynamics while simultaneously constructing Upper
Confidence Bound (UCB)-type bonuses to encourage exploration of the unknown environment. We
provide a comprehensive theoretical analysis of the algorithm, demonstrating that ELA would provide
an ϵ-optimal CVaR with Õ(1/ϵ2) samples. To the best of our knowledge, ELA is the first provably
sample-efficient algorithm for CVaR RL in low-rank MDPs.

Second, to improve the computational complexity of ELA planning, we introduce a computationally
efficient planning oracle, which, when combined with ELA, leads to the ELLA (REprensentation
Learning with LSVI for CVAR) algorithm. This algorithm leverages least-squares value iteration with
discretized rewards to find near-optimal policies via optimistic simulations within the learned model.
Importantly, the computational cost solely depends on the dimension of representations rather than
the state space size. We show that ELLA requires a polynomial running time in addition to polynomial
calls to the MLE oracle.

2 Preliminaries

Notations Please see Table 1 for a comprehensive list of notations used in this work.

2.1 Low-rank Episodic MDP

We consider an episodic MDPM with episode length H ∈ N , state space S, and a finite action
space A. At each episode k ∈ [K], a trajectory τ = (s1, a1, s2, a2, · · · , sH , aH) is generated by an
agent, where (a) s1 ∈ S is a fixed starting state,3 (b) at step h, the agent chooses action according to a
history-dependent policy ah ∼ π(·|τh−1, sh) where τh−1 := (s1, a1, · · · , ah−1) denotes the history
and (c) the model transits to the next state sh+1 ∼ P ∗

h (·|sh, ah). The agent repeats these steps till the
end of the episode. For each time step, operators P ∗

h : S ×A −→ ∆(S) denote the (non-stationary)
transition dynamics, whereas rh : S × A −→ ∆([0, 1]) is the (immediate) reward distribution the
agent could receive from deploying a certain action at a specific state. We use Π to denote the class
of all history-dependent policies. Below, we proceed to the low-rank MDP definition.
Definition 2.1 (Low-rank episodic MDP). The transition kernel P∗ = {P ∗

h : S ×A 7→ ∆(S)}h∈[H]

admits a low-rank decomposition with rank d if there exist two embedding functions ϕ∗ := {ϕ∗h :
S ×A 7→ Rd}h∈[H] and ψ∗ := {ψ∗

h : S 7→ Rd}h∈[H] such that

P ∗
h (s

′|s, a) = ⟨ψ∗
h(s

′), ϕ∗h(s, a)⟩ (1)
2Standard CVaR definition considers average worst-case loss, thus a lower value is more desirable. However,

in this work, we aim to obtain a higher CVaR in the RL context as we are maximizing rewards.
3Note that any H-length episodic MDP with a stochastic initial state is equivalent to an (H +1)-length MDP

with a dummy initial state s0.

2



where ∥ϕ∗h(s, a)∥2 ≤ 1 for all (h, s, a) ∈ [H]× S × A, and for any g : S 7→ [0, 1] and h ∈ [H], it
holds that ∥

∫
s∈S ψ

∗
h(s)g(s)ds∥2 ≤

√
d.

We study the function approximation setting where the state spaces S can be enormous and even
infinite. To generalize across states, assume access to two embedding classes Ψ ⊂ S × A −→ Rd
and Φ ⊂ S −→ Rd, which are used to identify the true embeddings (ψ∗, ϕ∗). Formally, we need the
following realizability assumption
Assumption 2.2. There exists a model class F = (Ψ,Φ) such that ψ∗

h ∈ Ψ, ϕ∗h ∈ Φ, ∀h ∈ [H].

2.2 Risk-Sensitive RL and Augmented MDP

We study risk-sensitive RL with the CVaR metric. Throughout the paper, let τ ∈ (0, 1] be a fixed
risk tolerance. First, we recall the classical definition: for a random variable X ∈ [0, 1] is from
distribution P , the conditional-value-at-risk (CVaR) corresponding to the risk tolerance τ is defined
as

CVaRτ (X) := sup
u∈[0,1]

{
u− τ−1 · EX∼P (u−X)+

}
(2)

where (x)+ := max(x, 0) for any x ∈ R. Interestingly, the supremum in the expression is achieved
when u is set as the τ -th percentile (unknown before planning), also known as value-at-risk (VaR),
i.e., xτ = inf{x ∈ R : P (X ≤ x) ≥ τ}. In risk-sensitive RL,X represents the stochastic cumulative
reward accumulated over H successive actions and state transitions: X =

∑H
h=1 rh. This multi-step

aspect adds complexity to risk-sensitive RL, introducing dynamic planning. Intuitively, one may think
of u as the agent’s initial budget, influencing action choices and requiring careful management during
planning. After receiving a random reward rh at each time step h ∈ [H], the learner subtracts it from
the current budget: uh+1 = uh − rh, with uh being the remaining budget and u1 = u. Risk-sensitive
RL involves balancing policy planning, exploration, and budget control. Inspired by this, we include
the budget as an additional state variable impacting action decisions, as described below.

Augmented MDP We introduce the well-known augmented MDP framework (Bäuerle and Ott,
2011) to study CVaR RL, which augments the state space S in classic episodic MDP to SAug =
S × [0, H] that includes the budget variable as an additional state. We point out that the transition
kernel of the state and the immediate reward distribution are the same as in M. However, the
budget’s evolution is influenced by the random rewards received. This budget, in turn, influences
the agent’s action choices, leading us to consider policies defined on the augmented state space:
ΠAug := {π : SAug −→ ∆(A)}.
In the augmented MDP, the agent rolls out an augmented policy π ∈ ΠAug with initial budget
c1 ∈ [0, H] as follows. At the beginning of an episode, the agent observes the augmented state (s1, c1),
selects action a1 ∼ π(·|s1, c1), receives reward r1 ∼ r1(s1, a1), and transits to s2 ∼ P ∗

1 (·|s1, a1).
Most importantly, the available budget is also updated: c2 = c1 − r1. The agent then chooses an
action based on the (s2, c2) pair. The procedure repeats for H times until the end of the episode. For
any π ∈ ΠAug, for any (h, s, c, a) ∈ [H]× S × [0, H]×A, the (augmented) Q-function and value
function are defined as

Qπh,P∗(s, c, a) := Eπ,P∗

(ch − H∑
t=h

rt(st, at)

)+
∣∣∣∣∣∣sh = s, ch = c, ah = a

 ,
V πh,P∗(s, c) := Eπ,P∗

(ch − H∑
t=h

rt(st, at)

)+
∣∣∣∣∣∣sh = s, ch = c

 .
The Bellman equation is given by

V πh,P∗(s, c) = E
a∼πh(·|s,c)

Qπh,P∗(s, c, a), Qπh,P∗(s, c, a) = E
s′∼P∗

h (·|s,a),r∼rh(s,a)
V πh+1(s

′, c− r).

Goal metric. In this paper, we aim to find the optimal history-dependent policy to maximize the
CVaR objective, i.e.,

CVaR∗
τ := max

π∈Π
CVaRτ (R(π)) = sup

c∈[0,H]

{
c−min

π∈Π
τ−1 · E[(c−R(π))+]

}
,

3



where R(π) is the random cumulative reward of policy π in M. Nevertheless, it is known that
minπ∈Π τ

−1 ·E[(c−R(π))+] can be attained by an augmented policy π∗ ∈ ΠAug with initial budget
c (Wang et al., 2023). Thus we can indeed focus on searching within π ∈ ΠAug:

CVaR∗
τ = sup

c∈[0,H]

{
c− min

π∈ΠAug
τ−1 · E[(c−R(π, c))+]

}
where we overload R(π, c) to denote the stochastic cumulative reward when the agent rolls out the
augmented policy π with initial budget c in augmented MDP. Furthermore, from the definition of the
augmented value function, we know that this objective is equivalent to

CVaR∗
τ = max

c∈[0,H]

[
c− 1

τ
min
π∈ΠAug

V π1,P∗(s1, c)

]
:= CVaRτ (R(π

∗, c∗)), (3)

where π∗ ∈ ΠAug is the optimal augmented policy and c∗ ∈ [0, H] is the optimal initial budget. Our
goal is to find the optimal pair of augmented policy and initial budget (π∗, c∗).

3 Algorithm

In this section, we present the ELA algorithm for risk-sensitive RL in low-rank MDPs. The pseudo-
code is listed in Algorithm 1. The algorithm is iterative in nature, where the k-th episode proceeds
in three folds: (1) We collect new data by rolling in with the exploration policy πk−1 starting from
the initial budget ck−1. (2) Then, all transitions collected so far are used in two aspects. First, we
pass all transition tuples to the MLE oracle (Line 11). The MLE oracle returns embedding functions
(ψ̂h, ϕ̂h) for each h, which determine the model. Second, we compute the exploration bonus using
the latest learned representation ϕ̂. (3) The algorithm performs VI on the learned model with the
bonus-enhanced reward signal to obtain the exploration policy-budget pair (πk, ck) we use in the
next iteration. After K iterations, we output the current model and all policy-budget pairs. Please
refer to Appendix C for more descriptions of the algorithm.

Below, we present our theoretical guarantees that characterize the regret and sample complexity
bounds. Proofs are deferred to Appendix G

Theorem 3.1. Fix δ ∈ (0, 1). Set the parameters in Algorithm 1 as: λk = O
(
d log

(
|F|Hk
δ

))
,

αk = O
(√

H2(|A|+ d2) log
(

|F|Hk
δ

))
. We have two equivalent interpretations of the theoretical

results. In terms of PAC bound, with probability at least 1− δ, the regret is bounded by

K∑
k=1

CVaR∗
τ − CVaRτ (R(π

k, ck)) = Õ
(
τ−1H3Ad2

√
K ·

√
log (|F|/δ)

)
.

Alternatively, we can interpret in terms of sample complexity: w.p. at least 1 − δ, to present an
ϵ-optimal policy and budget pair s.t. CVaR∗

τ −CVaRτ (R(π̂, ĉ)) ≤ ϵ. The total number of trajectories
required is upper bounded by

Õ

(
H7A2d4 log (|F|/δ)

τ2ϵ2

)
.

In Theorem 3.1, we present the first regret/sample complexity bounds for CVaR RL with function
approximation, in which exploring the unknown action/space spaces posits extra difficulty. We
explicitly characterize the number of samples required to output an ϵ-optimal CVaR in terms of the
length of the episode H , the action space size A, the representation dimension d, and confidence
level τ . The theorem has no explicit dependence on state space S, proving nice guarantees even in
the infinite-state setting. As far as we are concerned, the only existing theoretical guarantees in the
field of risk-averse CVaR RL were provided in the tabular setting (Bastani et al., 2022; Wang et al.,
2023), where representations are known. Moreover, these results explicitly depend on |S|, thus can
not apply to the function approximation setting with enormous state space. Given the above, our work
accomplishes a great leap by incorporating exploration in the comprehensive function approximation
setting, which evidently better aligns with real-world applications than the tabular and/or linear MDP
settings.

4



Algorithm 1 ELA
Require: Risk tolerance τ ∈ (0, 1], number of iterations K, parameters {λk}k∈[K] and {αk}k∈[K],

models F = {Ψ,Φ}, failure probability δ ∈ (0, 1).
1: Set datasets Dh, D̃h ← ∅ for each h ∈ [H − 1].
2: Initialize the exploration policy π0 ← {π0

h(s, c) = U(A), for any (s, c) ∈ S × [0, H]}h∈[H].
3: Initialize the budget c0 ← 1.
4: for iteration k = 1, . . . ,K do
5: Collect a tuple (s̃1, ã1, s

′
2) by taking ã1 ∼ U(A), s′2 ∼ P ∗

1 (·|s̃1, ã1).
6: Update D̃1 ← D̃1 ∪ {(s̃1, ã1, s′2)}.
7: for h = 1, · · · , H − 1 do
8: Collect two transition tuples (sh, ah, s̃h+1) and (s̃h+1, ãh+1, s

′
h+2) by first rolling out

πk−1 starting from (s1, c
k−1) into state sh, taking ah ∼ U(A), and receiving s̃h+1 ∼

P ∗
h (·|sh, ah), then taking ãh+1 ∼ U(A) and receiving s′h+2 ∼ P ∗

h+1(·|s̃h+1, ãh+1).
9: Update Dh ← Dh ∪ {(sh, ah, s̃h+1)}.

10: Update D̃h+1 ← D̃h+1 ∪ {(s̃h+1, ãh+1, s
′
h+2)} if h ≤ H − 2.

11: Learn representations via MLE

P̂h := (ψ̂h, ϕ̂h)← arg max
(ψ,ϕ)∈F

∑
(sh,ah,sh+1)∈{Dh+D̃h}

log ⟨ψ(sh+1), ϕ(sh, ah)⟩

12: Update empirical covariance matrix Σ̂h =
∑

(s,a)∈Dh
ϕ̂h(s, a)ϕ̂h(s, a)

⊤ + λkId.
13: Set the exploration bonus:

b̂h(s, a)←

min

(
αk
√
ϕ̂h(s, a)Σ̂

−1
h ϕ̂h(s, a)⊤, 2

)
h ≤ H − 2

0 h = H − 1

14: end for
15: Run Value-Iteration (VI) and obtain ck ← argmaxc∈[0,H]

{
c− τ−1 minπ V

π
1,P̂ ,̂b

(s1, c)
}

.

16: Set πk ← argminπ V
π
1,P̂ ,̂b

(s1, c
k).

17: end for
Ensure: Uniformly sample k from [K], return (π̂, ĉ) = (πk, ck).

4 Concluding Remarks

The paper proposes ELA, the first provably efficient algorithm for risk-sensitive reinforcement learning
with the CVaR objective in low-rank MDPs. ELA achieves a sample complexity of Õ(1/ϵ2) to find
an ϵ-optimal policy. To improve computational efficiency, we propose the ELLA algorithm, which
leverages least-squares value iteration upon discretized reward as the planning oracle. We prove that
this algorithm only requires a polynomial computational complexity given the MLE oracle.

Acknowledgments and Disclosure of Funding

The work presented in this paper is partially supported by a research grant from the Research Grants
Council, Hong Kong, China (RGC Ref. No. CUHK 14206820).

References
Agarwal, A., Kakade, S., Krishnamurthy, A., and Sun, W. (2020). Flambe: Structural complexity and

representation learning of low rank MDPs. Advances in neural information processing systems,
33:20095–20107.

Bastani, O., Ma, J. Y., Shen, E., and Xu, W. (2022). Regret bounds for risk-sensitive reinforcement
learning. Advances in Neural Information Processing Systems, 35:36259–36269.

5



Bäuerle, N. and Ott, J. (2011). Markov decision processes with average-value-at-risk criteria.
Mathematical Methods of Operations Research, 74:361–379.

Chow, Y. and Ghavamzadeh, M. (2014). Algorithms for CVaR optimization in MDPs. Advances in
neural information processing systems, 27.

Chow, Y., Tamar, A., Mannor, S., and Pavone, M. (2015). Risk-sensitive and robust decision-making:
a CVaR optimization approach. Advances in neural information processing systems, 28.

Coronato, A., Naeem, M., De Pietro, G., and Paragliola, G. (2020). Reinforcement learning for
intelligent healthcare applications: A survey. Artificial Intelligence in Medicine, 109:101964.

Du, S., Kakade, S., Lee, J., Lovett, S., Mahajan, G., Sun, W., and Wang, R. (2021). Bilinear classes:
A structural framework for provable generalization in RL. In International Conference on Machine
Learning, pages 2826–2836. PMLR.

Filippi, C., Guastaroba, G., and Speranza, M. G. (2020). Conditional value-at-risk beyond finance: a
survey. International Transactions in Operational Research, 27(3):1277–1319.

Hu, X. and Leung, H.-F. (2023). A tighter problem-dependent regret bound for risk-sensitive
reinforcement learning. In Ruiz, F., Dy, J., and van de Meent, J.-W., editors, Proceedings of The
26th International Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings
of Machine Learning Research, pages 5411–5437. PMLR.

Huang, A., Chen, J., and Jiang, N. (2023). Reinforcement learning in low-rank MDPs with density
features. arXiv preprint arXiv:2302.02252.

Isele, D., Nakhaei, A., and Fujimura, K. (2018). Safe reinforcement learning on autonomous vehicles.
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1–6.
IEEE.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., and Schapire, R. E. (2017). Contextual
decision processes with low bellman rank are PAC-learnable. In International Conference on
Machine Learning, pages 1704–1713. PMLR.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. (2020). Provably efficient reinforcement learning with
linear function approximation. In Conference on Learning Theory, pages 2137–2143. PMLR.

Rockafellar, R. T., Uryasev, S., et al. (2000). Optimization of conditional value-at-risk. Journal of
risk, 2:21–42.

Sekhari, A., Dann, C., Mohri, M., Mansour, Y., and Sridharan, K. (2021). Agnostic reinforcement
learning with low-rank MDPs and rich observations. Advances in Neural Information Processing
Systems, 34:19033–19045.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of Go with
deep neural networks and tree search. nature, 529(7587):484–489.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L.,
Lai, M., Bolton, A., et al. (2017). Mastering the game of Go without human knowledge. nature,
550(7676):354–359.

Stanko, S. and Macek, K. (2019). Risk-averse distributional reinforcement learning: A CVaR
optimization approach. In IJCCI, pages 412–423.

Sun, W., Jiang, N., Krishnamurthy, A., Agarwal, A., and Langford, J. (2019). Model-based RL
in contextual decision processes: Pac bounds and exponential improvements over model-free
approaches. In Conference on learning theory, pages 2898–2933. PMLR.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Tamar, A., Glassner, Y., and Mannor, S. (2015). Optimizing the CVaR via sampling. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 29.

6



Uehara, M., Zhang, X., and Sun, W. (2022). Representation learning for online and offline RL in
low-rank MDPs. In International Conference on Learning Representations.

Wang, K., Kallus, N., and Sun, W. (2023). Near-minimax-optimal risk-sensitive reinforcement
learning with CVaR. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett,
J., editors, Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 35864–35907. PMLR.

Yu, P., Haskell, W. B., and Xu, H. (2018). Approximate value iteration for risk-aware markov decision
processes. IEEE Transactions on Automatic Control, 63(9):3135–3142.

7



A Notations

Table 1: List of Notations

Basics
A = |A| cardinality of the action space
[H] = {1, · · · , H}
∆(·) probability simplex
ZπP,c1 return distribution of rolling π with initial

budget c1 in an MDP with P
V πh,P,b : S × [0, H] 7→ [0, H] defined in (4)
d
(π,c1)
h,P (s), d

(π,c1)
h,P (s, a) occupancy of s and (s, a) at step h when

rolling π with initial budget c1 in an MDP
with P

d
(π,c1)
h (s) = d

(π,c1)
h,P∗ (s), d

(π,c1)
h (s, a) = d

(π,c1)
h,P∗ (s, a) occupancy of s and (s, a) at step h when

rolling π with initial budget c1 in the (true)
environment

In-Algorithm
Initialization

F = {Ψ,Φ} model class
λk = O(d log(|F|Hk/δ)) regularizer at iteration k
αk =

√
H2(A+ d2) log(|F|Hk/δ) parameter at iteration k

Datasets (at the end of the k-th episode)

Dkh = {(sih, aih, s̃ih+1)}i∈[k] sih ∼ dπ
i−1

h,ci−1 , aih ∼ U(A)
D̃kh = {(s̃ih, ãih, s′ih+1)}i∈[k] s̃ih ∼ dπ

i−1

h−1,ci−1 ×U(A)×P ∗
h , ã

i
h ∼ U(A)

Estimations (at the end of the k-th episode)

{(ψ̂kh, ϕ̂kh)}h∈[H] learned representations
P̂k = {P̂ kh }h∈[H] empirical transition kernel
Σ̂kh =

∑
(s,a)∈Dk

h
ϕ̂kh(ϕ̂

k
h)

⊤ + λkI empirical covariance matrix

b̂k = {b̂kh}h∈[H] bonus term

In-Analysis

ρkh(s) =
1
k

∑k−1
i=0 d

πi

h,ci(s) occupancy of s in dataset Dkh
ρkh(s, a) =

1
k

∑k−1
i=0 d

πi

h,ci(s, a)

ηkh(s) =
∑
s′,a′ ρ

k
h−1(s

′)U(a′)P ∗
h−1(s|s′, a′) occupancy of s in dataset D̃kh

Σρkh×U(A),ϕ = kEs∼ρkh,a∼U(A)[ϕϕ
⊤] + λkI

Σρkh,ϕ = kE(s,a)∼ρkh
[ϕϕ⊤] + λkI

Σ̂kh,ϕ = kE(s,a)∼Dk
h
[ϕϕ⊤] + λkI unbiased estimate of Σρkh×U(A),ϕ

ζk = log(|F|Hk/δ)/k
fkh (s, a) = ∥P̂ kh (·|s, a)− P ∗

h (·|s, a)∥1 estimation error in L1 norm
ω
(π,c1)
h,P (·|s, a) the distribution of the remaining budget at

h for any (s, a) when rolling out (π, c1) in
an MDP with P

ω
(π,c1)
h (·|s, a) = ω

(π,c1)
h,P∗ (·|s, a) the distribution of the remaining budget at

h for any (s, a) when rolling out (π, c1) in
the true MDP

8



B Related Work

Low-rank MDPs Theoretical benefits of low-rank structure in MDPs have been broadly explored
in various works (Jiang et al., 2017; Sun et al., 2019; Du et al., 2021; Sekhari et al., 2021; Huang et al.,
2023). In a contextual decision process (a generic RL model with rich observations and function
approximation) with a low Bellman rank, OLIVE (Jiang et al., 2017) yielded a near-optimal policy
with polynomial samples. Additionally, Sun et al. (2019) introduced provably efficient algorithms
based on a structural parameter called the witness rank, demonstrating that the witness rank is never
larger than the Bellman rank (Jiang et al., 2017). Despite their provable efficiency, these algorithms
lack computational efficiency.

Leveraging Maximum Likelihood Estimation (MLE) as its computation oracle, Flambe (Agarwal
et al., 2020) proposed the first computationally efficient algorithm that was also provably efficient
in low-rank MDPs. Following a similar setup, Rep-UCB (Uehara et al., 2022) improves the sample
complexity dependencies of Flambe. The key to the improvements is a careful tradeoff between
exploration and exploitation by combining the reward signal and exploration bonus.

CVaR RL There is a long line of works studying static CVaR in RL, which refers to the CVaR of
accumulative reward beyond a certain risk threshold (Chow and Ghavamzadeh, 2014; Chow et al.,
2015; Tamar et al., 2015; Bastani et al., 2022; Wang et al., 2023). For tabular MDPs, much work
has been done on value-based algorithms (Chow et al., 2015; Stanko and Macek, 2019). However,
these results often require the planner to know the model transitions of the MDPs, which is generally
infeasible. Recently, there has been a growing interest in the more general setting where the unknown
model transitions are learned through online interactions (Yu et al., 2018; Bastani et al., 2022; Wang
et al., 2023). However, their results are restricted to the tabular setting and cannot be combined with
function approximation, where the state space is often enormous.

Our work focuses on the static CVaR measure in RL. Specifically, we present the first sample-efficient
algorithm for optimizing the CVaR metric that carefully balances the interplay between risk-averse
RL and low-rank MDP structure. Furthermore, we design a computationally efficient planning oracle
that makes our algorithm only require polynomial running time with an MLE oracle.

C Algorithm Descriptions

C.1 Data Collection

During training, we collect two (disjoint) sets of transition tuples to compute the bonus terms and
estimate the transition kernels. These two datasets are different in their (marginalized) distributions
and facilitate the regret analysis in Section 3. Next, we clarify how data are collected and added to
the two sets.

To collect a new transition tuple for each dataset Dh and D̃h (∀h ∈ [H − 1]), at the k-th iteration, the
algorithm roll outs policy πk−1 with initial budget ck−1 to obtain two trajectories. The difference
occurs at the (h−1)-th timestep. Particularly, to obtain (sh, ah, s̃h+1) forDh, the algorithm keeps on
to execute policy πk−1 for one more step and observes state sh. Then, a uniform action ah ∼ U(A)
is taken to receive the next-state s̃h+1 ∼ P ∗

h (·|sh, ah). However, to obtain (s̃h, ãh, s
′
h+1) for D̃h, the

algorithm takes two consecutive uniform actions at timesteps h− 1 and h, i.e., ah−1 ∼ U(A), s̃h ∼
P ∗
h−1(·|sh−1, ah−1), ãh ∼ U(A), and receives state s′h+1. Intuitively, datasetDh reveals the behavior

of the exploration policy-budget pair (πk, ck) up to the h-th timestep, which facilitates the design
of bonus terms (cf. Lemma G.2). Meanwhile, dataset D̃h enhances the exploration and leads to
improved estimates of transition kernels (cf. Lemma I.3).

At first sight, the data collection procedure requires 2(H − 1) trajectories per iteration (i.e., one
trajectory for Dh and one trajectory for D̃h). To save sample (trajectory) complexity, we collect
transition tuples for Dh and D̃h at the h, (h− 1) steps in one go, respectively (Lines 8-10). Therefore,
the algorithm only requires H trajectories per iteration. For both sets, new transition tuples are
concatenated with the existing data to perform representation learning, i.e., learning a factorization
and a representation by MLE (Line 11).

9



C.2 Representation Learning and Bonus-driven Value Iteration

MLE oracle In the function approximation setting, the agent must estimate the model structure as
accurately as possible. Collected transition tuples are used to compute model transitions through the
MLE oracle. As a general approach used to estimate the parameters of a probability model, MLE is
also gaining more focus in low-rank MDPs (Agarwal et al., 2020; Uehara et al., 2022).

Value Iteration Based on the learned model, the algorithm runs Value-Iteration (VI) with the
exploration bonus term. In risk-sensitive RL, for any π ∈ ΠAug and (h, s, c) ∈ [H]×S × [0, H], we
define value function enhanced with exploration bonus bh : S ×A −→ R as

V πh,P,b(s, c) := Eπ,P

(ch − H∑
h′=h

rh′(sh′ , ah′)

)+

−
H∑

h′=h

bh′(sh′ , ah′)

∣∣∣∣∣∣sh = s, ch = c

 (4)

where we deduct the exploration bonus term because the agent desires to minimize the value func-
tion (3) in risk-sensitive RL. Such a value function is used to perform VI and update policy on the
learned model P̂ , since the learner has no prior knowledge of the real model transitions. Therefore,
obtaining an accurate estimation of the model determines the quality of the output policy.

In Algorithm 1, we assume the learner has access to exact VI (Line 15). However, we remark that this
step is not computationally efficient due to the continuity of c and potentially large state space S . To
overcome such a computational barrier arising from the nature of controlling risk while planning, in
Section E, we provide a computationally efficient planning oracle that performs LSVI with discretized
reward function (with sufficiently high precision). We rigorously prove that we only need polynomial
running time with the MLE oracle to output a near-optimal CVaR.

D Theorem Remarks

As for the sample complexity, the dependencies on A and d match the same rates as the analysis of
risk-neutral RL in low-rank MDP (Uehara et al., 2022), showing our algorithm overcomes the extra
hardness of balancing exploration and budget control even with a large action space. Our sample
complexity matches the dependency on τ with the rates in the CVaR-UCBVI algorithm with the
Hoeffding bonus (Wang et al., 2023) and UCB algorithm (Bastani et al., 2022). On the other hand,
the sample complexity enjoys an Ω

(
1
τϵ2

)
lower bound(Wang et al., 2023, Theorem 3.1). Tightening

the dependency on τ is left as future work.

Our theoretical guarantees have a slightly worse dependency on H7 while Rep-UCB (Uehara et al.,
2022) scales as H5, where we convert results in the infinite discounted MDP setting to the episodic
MDP setting by directly replacing the discounted factor 1

1−γ by H . However, we point out that the
dependency on the horizon is not exactly comparable because, in our episodic setting, the learner
usually needs to explore and exploit under non-stationary transitions (i.e., the dynamic transition
nature is different for every h), consequently calling for necessarily extra dependency on H , while
the transitions are step-invariant in the infinite discounted setting. Therefore, it is natural that theories
studying the episodic setting have heavier dependencies on H . Flambe (Agarwal et al., 2020) studies
risk-neutral RL in episodic low-rank MDPs and shows the sample complexity enjoys a Õ

(
H22A9d7

ϵ10

)
rate. Compared to this rate, our algorithm is significantly superior in all parameters.

We establish Theorem 3.1 through the following steps. Firstly, we break down the suboptimality of
CVaR(R(πk, ck)) into differences in value functions, which can be controlled using transition kernel
estimation errors in the L1-norm, as demonstrated in simulation Lemma G.3. Secondly, we utilize
a purposely designed exploration bonus b̂ to ensure optimism under the initial distribution. Finally,
it’s important to note that b̂ is based on ϕ̂, and we establish a connection between this term and the
elliptical potential function under the true ϕ∗. Please refer to Appendix G for details.

E Planning Oracle: CVaR-LSVI

In Algorithm 1, we need to calculate ck ← argmaxc∈[0,H]

{
c− τ−1 minπ V

π
1,P̂ ,̂b

(s1, c)
}

(Line 15),

which is not naively computationally efficient since the objective c − τ−1 minπ V
π
1,P̂ ,̂b

(s1, c) is

10



not concave. In this section, we introduce a feasible planning oracle for this step and provide the
corresponding theoretical guarantees. For simplicity, we assume the reward distribution r is discrete
and rh(s, a) only takes value in iυ where υ > 0 and 0 ≤ i ≤ ⌈1/υ⌉. For a continuous r, we can
discretize it with sufficiently high precision so that all the analysis still applies. The details are
deferred to Appendix F.

Since the supremum of the CVaR objective (2) is attained at τ -th quantile of the cumulative reward
distribution, which is also discrete when the reward rh is discrete, we can only search ck within the
grid in Line 15 of Algorithm 1:

ck ← υ · argmax
0≤i≤⌈H/υ⌉

{
iυ − τ−1 min

π∈ΠAug

V π
1,P̂ ,̂b(s1, iυ)

}
.

Nevertheless, if we run standard value iteration to calculate minπ∈ΠAug
V π
1,P̂ ,̂b

(s1, iυ), our sample
complexity will scale with the size of the state space |S|, which can be infinite in low-rank MDPs.
To circumvent such dependency on |S|, we introduce a novel LSVI-UCB algorithm for the CVaR
objective in this subsection, called CVaR-LSVI. In the following discussion, we fix i1 where 0 ≤ i1 ≤
⌈H/υ⌉ and aim at calculating minπ∈ΠAug

V π
1,P̂ ,̂b

(s1, i1υ). We will drop the subscript P̂ and b̂ when

it is clear from the context. We use V ∗
h to denote minπ∈ΠAug

V π
h,P̂ ,̂b

and (P̂, r) to denote the MDP

model whose transition is P̂ and reward distribution is r.

First, recall that the discrete reward distribution rh(s, a) only takes values of iυ where 0 ≤ i ≤ ⌈1/υ⌉.
This means that it is always linear with respect to a (⌈1/υ⌉+ 1)-dimension vector:

rh(iυ|s, a) = ⟨ϕh,r(s, a), ψh,r(iυ)⟩,

where (ϕh,r(s, a))i = rh(iυ|s, a) and ψh,r(iυ) = ei for all 0 ≤ i ≤ ⌈1/υ⌉ and s ∈ S, a ∈ A, h ∈
[H]. Since P̂h(s′|s, a) = ⟨ϕ̂h(s, a), ψ̂h(s′)⟩, this implies that for all s, s′ ∈ S, a ∈ A, h ∈ [H], 0 ≤
i ≤ ⌈1/υ⌉, we have

P̂h(s
′|s, a)rh(iυ|s, a) = ⟨ϕh(s, a), ψh(s′, iυ)⟩,

where ϕh(s, a) = ϕ̂h(s, a)⊗ ϕh,r(s, a) and ψh(s
′, iυ) = ψ̂h(s, a)⊗ ψh,r(iυ).

The linearity of transition and reward implies that we can utilize LSVI to compute Qπh(s, c, a). More
specifically, we propose an iterative algorithm consisting of the following steps:

• Step 1: Ridge Regression. In the t-th iteration, denote the trajectories collected before t-th
iteration by {(sjh, a

j
h, r

j
h)
H
h=1}

t−1
j=1. Let V tH+1(s, iυ) = iυ for all s ∈ S and 0 ≤ i ≤ ⌈H/υ⌉.

From h = H to h = 1, for each 0 ≤ i ≤ ⌈H/υ⌉, we first compute:

wth(iυ)← (Λth)
−1

t−1∑
j=1

ϕh(s
j
h, a

j
h) ·

[
V th+1(s

j
h+1, iυ − r

j
h)
]
,

where Λth = λI +
∑t−1
j=1 ϕh(s

j
h, a

j
h)(ϕh(s

j
h, a

j
h))

⊤.
Then for any j ∈ [t − 1], a ∈ A and 0 ≤ i ≤ ⌈H/υ⌉, we can estimate the value function
V th(s

j
h, iυ) as:

Qth(s
j
h, iυ, a) = Clip[−H,H]

(
− b̂h(sjh, a) +

(
ϕh(s

j
h, a)

)⊤
wth(iυ)− β

∥∥ϕh(sjh, a)∥∥(Λt
h)

−1

)
,

V th(s
j
h, iυ) = min

a∈A
Qth(s

j
h, iυ, a).

Note that although we do not compute Qth(s, iυ, a) for all s ∈ S (which will incur com-
putation cost scaling with |S|), they can be implicitly expressed via wth(iυ), i.e., for all
s ∈ S, a ∈ A, 0 ≤ i ≤ ⌈H/υ⌉, we know

Qth(s, iυ, a) = Clip[−H,H]

(
− b̂h(s, a) +

(
ϕh(s, a)

)⊤
wth(iυ)− β

∥∥ϕh(s, a)∥∥(Λt
h)

−1

)
.

(5)

11



• Step 2: Sample Collection. In the t-th iteration, simulate the greedy policy π̃t (w.r.t. the
estimated Q function Qth(s,iυ, a)) with the initial budget c1 = i1υ in the MDP model (P̂, r)
and collect a trajectory (sth, a

t
h, r

t
h)
H
h=1. Then, go back to the first step.

• Step 3: Policy Evaluation. After repeating the above two steps for T1 iterations, we
simulate each policy π̃t with initial budget c1 = i1υ in (P̂, r) for T2 episodes. Suppose

the collected trajectories are
{(

st,jh , at,jh , rt,jh

)H
h=1

}T2

j=1

and we estimate the empirical value

function of π̃t as follows:

V̂ π̃
t

1 (s1, i1υ) =
1

T2

T2∑
j=1

(
i1υ −

H∑
h=1

rt,jh (st,jh , at,jh )

)+

−
H∑
h=1

b̂h(s
t,j
h , at,jh ).

Then we simply use maxt∈[T1] V̂
π̃t

1 (s1, i1υ) as a surrogate for V ∗
1 (s1, i1υ).

The details of CVaR-LSVI are stated in Algorithm 2 (cf. Appendix F). Note that in Line 16 of Algo-
rithm 1, we can also use the above CVaR-LSVI algorithm to compute πk. Combining Algorithm 1 and
2, we can derive a computationally efficient algorithm, called ELLA, for CVaR objective in low-rank
MDPs, which is shown in Algorithm 3 (cf. Appendix F). Now, we are ready present the computational
complexity of ELLA. Particularly, the following theorem characterizes the computational cost for
finding an ϵ-optimal policy:
Theorem E.1 (Informal). Let the parameters in Algorithm 1 and 2 take appropriate values, then
we have with probability at least 1 − δ that CVaR∗

τ − CVaRτ (R(π̂, ĉ)) ≤ ϵ where (π̂, ĉ) is the
returned policy and initial budget by Algorithm 3. In total, the sample complexity is upper bounded

by Õ
(
H7A2d4 log

|F|
δ

τ2ϵ2

)
. The MLE oracle is called Õ

(
H7A2d4 log

|F|
δ

τ2ϵ2

)
times and the rest of the

computation cost is Õ
(
H19A3d12 log

|F|
δ

υ10τ6ϵ6

)
.

Theorem E.1 is a special case of the continuous reward setting, whose formal statement is in
Theorem F.3 and the proof is deferred to Appendix H. Theorem E.1 indicates that Algorithm 3 is
able to find a near-optimal policy with polynomial sample complexity and polynomial computational
complexity given an MLE oracle. Note that calling CVaR-LSVI in Line 17 and 20 of Algorithm 3
will not increase the sample complexity because we are only simulating with a known model (P̂, r)
and do not need to interact with the ground-truth environment.

F ELLA for Continuous Reward

Now, we extend the analysis in Section E to continuous reward distribution.

F.1 Discretized Reward

Inspired by Wang et al. (2023), we discretize the reward rh and the budget ch at each step. In this
way, we only need to plan over a finite grid. More specifically, suppose the precision is υ > 0, then
we round up the reward r to U(r) := ⌈r/υ⌉υ. In the following discussion, we useM to denote
the MDP which shares the same transition asM while its reward r is discretized from the original
reward distribution r ofM, i.e., r = U(r). Since the supremum of the CVaR objective (2) is attained
at τ -th quantile of the return distribution, which is also discretized in (P̂, r), we can only search ck

within the grid for (P̂, r) in Line 15 of Algorithm 1:

ck ← υ · argmax
0≤i≤⌈H/υ⌉

{
iυ − τ−1 min

π∈ΠAug

V
π

1,P̂ ,̂b(s1, iυ)

}
, (6)

where ΠAug is the augmented policy class of augmentedM and V
π

h,P,b is the value function of
(P, r) with bonus b:

V
π

h,P,b(s, c) := Eπ,P

(ch − H∑
h′=h

U (rh′)

)+

−
H∑

h′=h

bh′(sh′ , ah′)

∣∣∣∣∣∣sh = s, ch = c

 .
12



Similarly, the Q function of (P, r) with bonus b is defined as:

Q
π

h,P,b(s, c, a) := Eπ,P

(ch − H∑
h′=h

U (rh′)

)+

−
H∑

h′=h

bh′(sh′ , ah′)

∣∣∣∣∣∣sh = s, ch = c, ah = a

 .
To stay consistent with Line 15, we also derive the optimal augmented policy of (P̂, r) with bonus b̂
in Line 16 of Algorithm 1, i.e.,

πk ← arg min
π∈ΠAug

V
π

1,P̂ ,̂b(s1, c
k).

Note that in Line 8 of Algorithm 1 we need to roll out πk inM to collect samples. Since πk ∈ ΠAug
works only within the grid, we discretize the reward we observe when executing πk inM, which is
equivalent to playing the following augmented policy πk ∈ ΠAug inM:

πkh

(
s, ck −

h−1∑
t=1

rt

)
= πkh

(
s, ck −

h−1∑
t=1

U(rt)

)
,∀h ∈ [H]. (7)

Planning within a discretized grid via (6) will inevitably incur errors compared to the original
objective. Nevertheless, we can show that if the precision υ is sufficiently small, the discretized MDP
M will be an excellent approximation toM and thus the induced error of planning via (6) will be
negligible. Formally, let R(π, c) denote the return of executing π ∈ ΠAug with initial budget c = iυ

(0 ≤ i ≤ ⌈H/υ⌉) inM, then we have the following properties from the literature (Wang et al., 2023):

Proposition F.1. For any 0 < τ < 1,υ > 0, policy π ∈ ΠAug and 0 ≤ i ≤ ⌈H/υ⌉, we have

(1) CVaR∗
τ ≤ CVaR

∗
τ := max

π∈ΠAug,0≤i≤⌈H/υ⌉
CVaRτ (R(π, iυ)),

(2) 0 ≤ CVaRτ (R(π, iυ))− CVaRτ (R(π, iυ)) ≤
Hυ

τ
.

F.2 CVaR-LSVI

With discretization, we only need to search within the grid of c in each iteration. For each discrete
value iυ, we apply the CVaR-LSVI algorithm as planning oracle as introduced in Section E. The only
difference is that now we simulate with the discretized reward model r. The full algorithm is shown
in Algorithm 2. In particular, in Line 12 we can express Q

t

h with wth:

Q
t

h(s, iυ, a) = Clip[−H,H]

(
− b̂h(s, a) +

(
ϕh(s, a)

)⊤
wth(iυ)− β

∥∥ϕh(s, a)∥∥(Λt
h)

−1

)
. (8)

Moreover, note that we can bound the norm of the newly-constructed feature vectors as follows:

∥∥ϕh(s, a)∥∥2 ≤ 1,

∥∥∥∥∥∥
∑

0≤i≤⌈1/υ⌉

∫
S
ψh(s

′, iυ)ds

∥∥∥∥∥∥ ≤ (1 + ⌈1/υ⌉)
√
d.

This bound will be useful in our analysis.

Now let V
∗
h,P̂ ,̂b denote minπ∈ΠAug

V
π

h,P̂ ,̂b. Then we have the following theorem indicating that

Algorithm 2 can do planning in (P̂, r) accurately with appropriate T1 and T2:
Theorem F.2. Let

λ = 1, β = Õ

(
H

3
2 dι

1
4

υ

)
, T1 = Õ

(
H5d3ι

υ3ε2

)
, T2 = Õ

(
H2 log T1

δ

ε2

)
,

where ι = log2 HdT1

υδ , we have with probability at least 1− δ that

(1) V̂
∗
1,P̂ ,̂b(s1, i1υ) ≤ V

∗
1,P̂ ,̂b(s1, i1υ) +

3

4
ε,

13



Algorithm 2 CVaR-LSVI

Require: MDP transition model and reward (P̂ = (ϕ̂, ψ̂), r), bonus b̂, initial budget i1υ, number of
iterations T1, parameters λ and β, number of policy evaluation episodes T2.

1: Compute ϕh(s, a) = ϕ̂h(s, a) ⊗ ϕh,r(s, a) for all h ∈ [H], s ∈ S, a ∈ A where ϕh,r(s, a) ∈
R⌈1/υ⌉+1 and (ϕh,r(s, a))i = rh(iυ|s, a) for all 0 ≤ i ≤ ⌈1/υ⌉.

2: for t = 1, · · · , T1 do
3: Initialize V

t

H+1(s, iυ)← iυ for all s ∈ S and 0 ≤ i ≤ ⌈H/υ⌉.
4: for h = H, · · · , 1 do
5: Compute Λth ← λI +

∑t−1
j=1 ϕh(s

j
h, a

j
h)(ϕh(s

j
h, a

j
h))

⊤.

6: Calculate wth(iυ)← (Λth)
−1
∑t−1
j=1 ϕh(s

j
h, a

j
h) ·
[
V
t

h+1(s
j
h+1, iυ−r

j
h)
]
,∀0 ≤ i ≤ ⌈H/υ⌉.

7: for j = 1, · · · , t− 1 do
8: Compute for all a ∈ A, 0 ≤ i ≤ ⌈H/υ⌉:

Q
t

h(s
j
h, iυ, a)← Clip[−H,H]

(
− b̂h(s

j
h, a) +

(
ϕh(s

j
h, a)

)⊤
wt

h(iυ)− β
∥∥ϕh(s

j
h, a)

∥∥
(Λt

h
)−1

)
.

9: V
t

h(s
j
h, iυ)← mina∈AQ

t

h(s
j
h, iυ, a).

10: end for
11: end for
12: Simulate the greedy policy π̃t (w.r.t. Q

t

h(s,iυ, a) defined in (8)) with the initial budget
c1 = i1υ in the MDP (P̂, r) and collect a trajectory (sth, a

t
h, r

t
h)
H
h=1.

13: end for
14: for t = 1, · · · , T1 do
15: Simulate π̃t with initial budget c1 = i1υ in (P̂, r) for T2 episodes and collect trajectories{(

st,jh , at,jh , rt,jh

)H
h=1

}T2

j=1

.

16: Compute V̂
π̃t

1 (s1, i1υ)← 1
T2

∑T2

j=1

(
i1υ −

∑H
h=1 r

t,j
h (st,jh , at,jh )

)+
−
∑H
h=1 b̂h(s

t,j
h , at,jh ).

17: end for

18: Return: value estimate mint∈[T1] V̂
π̃t

1 (s1, i1υ) and policy argminπ̃t V̂
π̃t

1 (s1, i1υ)

(2)

∣∣∣∣V̂ ∗
1,P̂ ,̂b(s1, i1υ)− V

̂̃π
1,P̂ ,̂b(s1, i1υ)

∣∣∣∣ ≤ 1

4
ε.

where ̂̃π = argminπ̃t V̂
π̃t

1 (s1, i1υ) and V̂
∗
1,P̂ ,̂b(s1, i1υ) := minπ̃t V̂

π̃t

1 (s1, i1υ) are the returned
values of CVaR-LSVI.

The proof is deferred to Appendix H.1.

F.3 Computational Complexity

Equipping ELA with CVaR-LSVI, we can derive ELLA, which is shown in Algorithm 3. Based on the
above discussions about discretization and CVaR-LSVI, the computational complexity of ELLA for
finding an ϵ-policy can be characterized as follows:
Theorem F.3. Let

αk = O

(√
H2(|A|+ d2) log

(
|F|Hk
δ

))
, λk = O

(
d log

(
|F|Hk
δ

))
,

K = Õ

(
H6A2d4 log |F|

δ

τ2ϵ2

)
, υ =

ϵτ

3H
,λ = 1, β = Õ

(
H

3
2 dι

1
4

υ

)
,

T1 = Õ

(
H5d3ι

υ3τ2ϵ2

)
, T2 = Õ

(
H2 log T1

δ

τ2ϵ2

)
.

14



Then we have with probability at least 1− δ,

CVaR∗
τ − CVaRτ (R(π̂, ĉ)) ≤ ϵ.

In total, the sample complexity is upper bounded by Õ
(
H7A2d4 log

|F|
δ

τ2ϵ2

)
. The MLE oracle is called

Õ

(
H7A2d4 log

|F|
δ

τ2ϵ2

)
times and the rest of the computation cost is Õ

(
H29A3d12 log

|F|
δ

τ16ϵ16

)
.

The proof is deferred to Appendix H.2. Theorem F.3 indicates that even when the reward is contin-
uous, Algorithm 3 can still achieve polynomial sample complexity and polynomial computational
complexity given an MLE oracle.

Algorithm 3 ELLA
Require: risk tolerance τ ∈ (0, 1], number of iterations K, parameters {λk}k∈[K] and {αk}k∈[K],

models F = {Ψ,Φ}, failure probability δ ∈ (0, 1), discretization precision υ, CVaR-
LSVIparameters λ, β, T1, T2.

1: Set datasets Dh, D̃h ← ∅ for each h ∈ [H − 1].
2: Calculate the discretized reward distribution r.
3: Initialize the exploration policy π0 ← {π0

h(s, iυ) = U(A), for any s ∈ S, 0 ≤ i ≤
⌈H/υ⌉}h∈[H].

4: Initialize the budget i0 ← ⌈H/υ⌉.
5: for iteration k = 1, . . . ,K do
6: Collect a tuple (s̃1, ã1, s

′
2) by taking ã1 ∼ U(A), s′2 ∼ P ∗

1 (·|s̃1, ã1).
7: Update D̃1 ← D̃1 ∪ {(s̃1, ã1, s′2)}.
8: for h = 1, · · · , H − 1 do
9: Collect two transition tuples (sh, ah, s̃h+1) and (s̃h+1, ãh+1, s

′
h+2) by first rolling out

πk−1 (defined in (7)) starting from (s1, i
k−1υ) into state sh, taking ah ∼ U(A), and

receiving s̃h+1 ∼ P ∗
h (·|sh, ah), then taking ãh+1 ∼ U(A) and receiving s′h+2 ∼

P ∗
h+1(·|s̃h+1, ãh+1).

10: Update Dh ← Dh ∪ {(sh, ah, s̃h+1)}.
11: Update D̃h+1 ← D̃h+1 ∪ {(s̃h+1, ãh+1, s

′
h+2)} if h ≤ H − 2.

12: Learn representations via MLE

P̂h := (ψ̂h, ϕ̂h)← arg max
(ψ,ϕ)∈F

∑
(sh,ah,sh+1)∈{Dh+D̃h}

log ⟨ψ(sh+1), ϕ(sh, ah)⟩

13: Update empirical covariance matrix Σ̂h =
∑

(s,a)∈Dh
ϕ̂h(s, a)ϕ̂h(s, a)

⊤ + λkId.
14: Set the exploration bonus:

b̂h(s, a)←

min

(
αk
√
ϕ̂h(s, a)Σ̂

−1
h ϕ̂h(s, a)⊤, 2

)
h ≤ H − 2

0 h = H − 1

15: end for
16: for i = 0, 1, · · · , ⌈H/υ⌉ do
17: Run CVaR-LSVI (Algorithm 2) with MDP model (P̂ , r), bonus b̂, initial budget iυ and

parameters (λ, β, T1, T2) and let the returned value estimate and policy be V̂
∗
1(s1, iυ) and̂̃π(i).

18: end for
19: Obtain ik ← argmax0≤i≤⌈H/υ⌉

{
iυ − τ−1V̂

∗
1(s1, iυ)

}
and πk ← ̂̃π(ik).

20: end for
Ensure: Uniformly sample k from [K], return (π̂, ĉ) = (πk, ikυ).

15



G Proofs for Section 3

Proof Sketch Recall that πk and ck are the exploration policy and initial budget output from Line
16 of Algorithm 1 at the end of the kth iteration, respectively. In the proof, we show that, with
probability at least 1− δ, it holds that

Regret(K) ≲ τ−1H3Ad2
√
K

√
log

(
1 +

K

dλ1

)
log

(
|F|Hk
δ

)
(9)

which is formalized in Lemma G.1. Once it is established, the suboptimality of the uniform mixture
of {(ck, πk)} satisfies that

CVaR∗
τ −

1

K

K∑
k=1

CVaRτ (R(π
k, ck)) ≲ τ−1H3Ad2K− 1

2

√
log

(
1 +

K

dλ1

)
log

(
|F|Hk
δ

)
(10)

Let the RHS smaller than ϵ, we have that when

K ≳ O

(
H6A2d4

τ2ϵ2
log

(
1 +

K

dλ1

)
log

(
|F|Hk
δ

))
the uniform mixture of {(πk, ck)} is an ϵ-optimal policy. Finally, noting that H trajectories are
collected per iteration, we conclude the proof of Theorem 3.1. To establish (9), we decompose the
suboptimality of the k-th iteration into

CVaR∗
τ − CVaRτ (R(π

k, ck))

=c∗ − τ−1V π
∗

1,P̂k ,̂bk
(s1, c

∗)− CVaRτ (R(π
k, ck)) + CVaRτ (R(π

∗, c∗))−
(
c∗ − τ−1V π

∗

1,P̂k ,̂bk
(s1, c

∗)
)

≤ck − τ−1V π
k

1,P̂k ,̂bk
(s1, c

k)− CVaRτ (R(π
k, ck)) + c∗ − τ−1V π

∗

1,P∗,0(s1, c
∗)−

(
c∗ − τ−1V π

∗

1,P̂k ,̂bk
(s1, c

∗)
)

≤τ−1
(
V π

k

1,P∗,0(s1, c
k)− V π

k

1,P̂k ,̂bk
(s1, c

k)
)

︸ ︷︷ ︸
(i)

+τ−1
(
V π

∗

1,P̂k ,̂bk
(s1, c

∗)− V π
∗

1,P∗,0(s1, c
∗)
)

︸ ︷︷ ︸
(ii)

where the first inequality holds by the fact that πk is greedy (Line 16 of Algorithm 1) and the last
inequality holds by

CVaRτ (R(π
k, ck)) = sup

t∈R

(
t− τ−1ER∼R(πk,ck)[(t−R)+]

)
≥ ck − τ−1ER∼R(πk,ck)[(c

k −R)+]

Utilizing simulation lemma G.3 for risk-sensitive RL, we further upper bound terms (i) and (ii) by
the error in estimating the transition kernel and the bonus terms, i.e.,

term (i) ≤ E
(s,a)∼d(π

k,ck)
h

[
b̂kh(s, a)

]
+ 3H · E

(s,a)∼d(π
k,ck)

h

[
fkh (s, a)

]
term (ii) ≤ E

(s,a)∼d(π
∗,c∗)

h,P̂k

[
H · fkh (s, a)− b̂kh(s, a)

]
where fkh (s, a) := ∥P̂ kh (·|s, a)− P ∗

h (·|s, a)∥1. By the analysis in Lemma G.1 and G.2, we prove the
inequality (9).

Before proceeding to the detailed proofs, we first introduce the essencial regret decomposition.
Lemma G.1 (Regret). With probability 1− δ, we have that

K∑
k=1

(
CVaR∗

τ − CVaRτ (R(π
k, ck))

)
≲ τ−1H3Ad2

√
K

√
log

(
1 +

K

dλ1

)
log

(
|F|Hk
δ

)
(11)

Proof. Letting fkh (s, a) = ∥P̂ kh (·|s, a)− P ∗
h (·|s, a)∥, we condition on the event that for all (k, h) ∈

[K]× [H], the following inequalities hold

Es∼ρkh,a∼U(A)

[(
fkh (s, a)

)2] ≤ ζk, Es∼ηkh,a∼U(A)

[(
fkh (s, a)

)2] ≤ ζk
16



∥ϕ(s, a)∥(Σ̂k
h,ϕ)

−1 = Θ(∥ϕ(s, a)∥(Σ
ρk
h
×U(A),ϕ

)−1)

By Lemmas I.1 and I.2, this event happens with probability 1− δ. For any iteration k, we have that
For a fixed iteration k, we have that

CVaR∗
τ − CVaRτ (R(π

k, ck))

=c∗ − τ−1V π
∗

1,P̂k ,̂bk
(s1, c

∗)− CVaRτ (R(π
k, ck)) + CVaRτ (R(π

∗, c∗))−
(
c∗ − τ−1V π

∗

1,P̂k ,̂bk
(s1, c

∗)
)

≤ck − τ−1V π
k

1,P̂k ,̂bk
(s1, c

k)− CVaRτ (R(π
k, ck)) + c∗ − τ−1V π

∗

1,P∗,0(s1, c
∗)−

(
c∗ − τ−1V π

∗

1,P̂k ,̂bk
(s1, c

∗)
)

≤τ−1
(
V π

k

1,P∗,0(s1, c
k)− V π

k

1,P̂k ,̂bk
(s1, c

k)
)
+ τ−1

(
V π

∗

1,P̂k ,̂bk
(s1, c

∗)− V π
∗

1,P∗,0(s1, c
∗)
)

︸ ︷︷ ︸
≤

√
H2Aζk by Lemma G.2

(12)

where the first inequality holds by the fact that πk is greedy (Line 15 of Algorithm 1) and the last
inequality holds by

CVaRτ (R(π
k, ck)) = sup

t∈R

(
t− τ−1ER∼R(πk,ck)[(t−R)+]

)
≥ ck − τ−1ER∼R(πk,ck)[(c

k −R)+]

Therefore, it remains to bound the first term, which by simulation lemma G.3, can be further written
as

V π
k

1,P∗,0(s1, c
k)− V π

k

1,P̂k ,̂bk
(s1, c

k)

=Eπk,P∗

(ck − H∑
h=1

rh(sh, ah)

)+
− Eπk,P̂k

(ck − H∑
h=1

rh(sh, ah)

)+

−
H∑
h=1

b̂kh(sh, ah)

∣∣∣∣∣∣c1 = ck


≤

H∑
h=1

Eπk,P̂k

[
b̂kh(sh, ah)

∣∣∣c1 = ck
]
+H ·

H∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
fkh (s, a)

]
≤

H∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
b̂kh(s, a)

]
︸ ︷︷ ︸

(i)

+3H ·
H∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
fkh (s, a)

]
︸ ︷︷ ︸

(ii)

(13)

where the last inequality holds by the simulation Lemma I.5 for risk-neutral RL and the fact that
∥b̂kh∥∞ ≤ 2. where the last inequality holds by ∥V πk

h,P̂k,r+b̂k
∥∞ ≤ 2. We first consider term (i). By

Lemma I.4 and noting that the bonus term b̂kh is O(1), we have

H−1∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
b̂kh(s, a)

]
≲
H−1∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
min

{
αk∥ϕ̂kh(s, a)∥Σ−1

ρk
h
×U(A),ϕ̂k

h

, 2

}]

≤

√√√√A · (αk)2 · Es∼ρk1 ,a∼U(A)

[
∥ϕ̂k1(s, a)∥2Σ−1

ρk1×U(A),ϕ̂k
1

]

+

H−2∑
h=1

E
(s,a)∼d(π

k,ck)
h+1

[
αk∥ϕ̂kh+1(s, a)∥Σ−1

ρk
h+1

×U(A),ϕ̂k
h+1

]

≤
H−2∑
h=1

E
(s,a)∼d(π

k,ck)
h

∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

√√√√k(αk)2A · Es∼ρkh+1,a∼U(A)

[
∥ϕ̂kh+1(s, a)∥2Σ−1

ρk
h+1

×U(A),ϕ̂k
h+1

]
+ 4λkd


+

√√√√A · (αk)2 · Es∼ρk1 ,a∼U(A)

[
∥ϕ̂k1(s, a)∥2Σ−1

ρk1×U(A),ϕ̂k
1

]

17



≤
√
dA(αk)2

k
+
√
dA(αk)2 + 4λkd ·

H−2∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

]
(14)

where the last inequality holds by

k · Es∼ρkh,a∼U(A)

[
∥ϕ̂kh(s, a)∥2Σ−1

ρk
h
×U(A),ϕ̂k

h

]
= kTr

(
Eρkh×U(A)[ϕ̂

k
h(ϕ̂

k
h)

⊤]
{
kEρkh×U(A)[ϕ̂

k
h(ϕ̂

k
h)

⊤] + λk
}−1

)
≤ d

Similarly, for term (ii), we have that

H−1∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
fkh (s, a)

]
≤
√
A · Es∼ρk1 ,a∼U(A)

[(
fk1 (s, a)

)2]
+

H−2∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

√
kA · Es∼ρkh+1,a∼U(A)

[(
fkh+1(s, a)

)2]
+ 4λkd

]

≤
√
Aζk1 + αk ·

H−2∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

]
, (15)

where the last step uses

αk ≲

√
H2Ad2 log

(
|F|Hk
δ

)
.

Combining (12), (13), (14), and (15) we obtain

τ

( K∑
k=1

(
CVaR∗

τ − CVaRτ (R(π
k, ck))

))

≲
K∑
k=1

(√
dA(αk)2

k
+
√
H2Aζk

)
+

K∑
k=1

H−2∑
h=1

(
2H · αk · E

(s,a)∼d(π
k,ck)

h

[
∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

])

+

K∑
k=1

√
dA(αk)2 + 4λkd

H−2∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

]

≲H2Ad
3
2

√
log

(
|F|Hk
δ

) K∑
k=1

H−2∑
h=1

E
(s,a)∼d(π

k,ck)
h

[
∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

]

≲H3Ad2
√
K

√
log

(
1 +

K

dλ1

)
log

(
|F|Hk
δ

)
where the last inequality holds by (Uehara et al., 2022, Lemma 18), i.e.,

K∑
k=1

E
(s,a)∼d(π

k,ck)
h

[
∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

]
≤

√
dK log

(
1 +

K

dλ1

)
Therefore, we conclude the proof.

Lemma G.2 (Almost Optimism at the Initial Distribution). Consider an episode k ∈ [K] and set

αk =

√
H2(A+ d2) log

(
|F|Hk
δ

)
, λk = O

(
d log

(
|F|Hk
δ

))
, ζk = O

(
1

k
log

(
|F|Hk
δ

))
(16)

with probability 1− δ, we have that

V π
∗

1,P̂k ,̂bk
(s1, c

∗)− V π
∗

1,P∗,0(s1, c
∗) ≤

√
H2Aζk (17)

18



Proof. Similar to the proof of Lemma G.1, letting fkh (s, a) = ∥P̂ kh (·|s, a) − P ∗
h (·|s, a)∥1, we

condition on the event that for all (k, h) ∈ [K]× [H], the following inequalities hold

Es∼ρkh,a∼U(A)

[(
fkh (s, a)

)2] ≤ ζk, Es∼ηkh,a∼U(A)

[(
fkh (s, a)

)2] ≤ ζk
∥ϕ(s, a)∥(Σ̂k

h,ϕ)
−1 = Θ(∥ϕ(s, a)∥(Σ

ρk
h
×U(A),ϕ

)−1)

From Lemmas I.1 and I.2, this event happens with probability 1−δ. Note that bkH(s, a) = fkH(s, a) :=
0 for any (s, a) ∈ S ×A. Then, for any policy π, from the simulation Lemma G.3, we have that

V π
∗

1,P̂k ,̂bk
(s1, c

∗)− V π
∗

1,P∗,0(s1, c
∗)

=Eπ∗,P̂k

(c∗ − H∑
h=1

rh(sh, ah)

)+

−
H∑
h=1

b̂kh(sh, ah)

∣∣∣∣∣∣c1 = c∗

− Eπ∗,P∗

(c∗ − H∑
h=1

rh(sh, ah)

)+


≤
H−1∑
h=1

E
(s,a)∼d(π

∗,c∗)

h,P̂k

[
H · fkh (s, a)− b̂kh(s, a)

]
(18)

For any h+ 1 ∈ {2, · · · , H − 1}, by Lemma I.3 and noting that ∥fh+1∥∞ ≤ 2, we have that∣∣∣∣E(s′,a′)∼d(π
∗,c∗)

h+1,P̂k

[fkh+1(s
′, a′)]

∣∣∣∣
≤E

(s,a)∼d(π
∗,c∗)

h,P̂k

[
∥ϕ̂kh(s, a)∥Σ−1

ρk
h
×U(A),ϕ̂k

h

·
√
kA · Es′∼ηkh+1,a

′∼U(A)

[(
fkh+1(s

′, a′)
)2]

+ 4λkd+ 4kζk

]
Hence,

− E
(s′,a′)∼d(π

∗,c∗)

h+1,P̂k

[fkh+1(s
′, a′)] ≥ −

√
βk · E

(s,a)∼d(π
∗,c∗)

h,P̂k

[
∥ϕ̂kh(s, a)∥Σ−1

ρk
h
×U(A),ϕ̂k

h

]
(19)

where
βk := kAζk + λkd+ kζk ≲ (A+ d2) log(|F|Hk/δ)

Combining (18) and (19), we further derive

V π
∗

1,P̂k ,̂bk
(s1, c

∗)− V π
∗

1,P∗,0(s1, c
∗)

≤−
H−1∑
h=1

E
(s,a)∼d(π

∗,c∗)

h,P̂k

[
b̂kh(s, a)

]
+
√
H2Aζk +H ·

H−2∑
i=1

E
(s,a)∼d(π

∗,c∗)

i+1,P̂k

[
fki+1(s, a)

]
≤−

H−1∑
h=1

E
(s,a)∼d(π

∗,c∗)

h,P̂k

[
b̂kh(s, a)

]
+

H−2∑
h=1

E
(s,a)∼d(π

∗,c∗)

h,P̂k

[
min

{
αk∥ϕ̂kh(s, a)∥Σ−1

ρk
h
×U(A),ϕ̂k

h

, 2

}]
+
√
H2Aζk

≲
√
H2Aζk

Therefore, we conclude the proof.

Lemma G.3 (Simulation lemma for risk-sensitive RL). Given two episodic MDPs (H,P =

{Ph}h∈[H], r) and (H, P̂ = {P̂h}h∈[H], r), for any fixed c ∈ [0, 1] and policy π = {πh :
S × [0, H] 7→ ∆(A)}h∈[H], we have that

V π1,P,0(s1, c)− V π1,P̂,0(s1, c) ≤ H ·
H∑
h=1

E
(s,a)∼d(π,c)

h,P
[fh(s, a)] (20)

where fh(s, a) := ∥Ph(·|s, a)− P̂h(·|s, a)∥1 for any (h, s, a) ∈ [H]× S ×A.

Proof. By definition, we derive that

V π1,P,0(s1, c)− V π1,P̂,0(s1, c)

19



=Ea1∼π1(·|s1,c),r1

{
Es′∼P1(·|s1,a1)

[
V π2,P,0(s

′, c− r1)
]
− Es′∼P̂1(·|s1,a1)

[
V π
2,P̂,0(s

′, c− r1)
]}

=Ea1∼π1(·|s1,c),r1

{
Es′∼P̂1(·|s1,a1)

[
V π2,P,0(s

′, c− r1)− V π2,P̂,0(s
′, c− r1)

]
+ Es′∼P1(·|s1,a1)

[
V π2,P,0(s

′, c− r1)
]
− Es′∼P̂1(·|s1,a1)

[
V π2,P,0(s

′, c− r1)
]}

≤Ea1∼π1(·|s1,c),r1Es′∼P̂1(·|s1,a1)

[
V π2,P,0(s

′, c− r1)− V π2,P̂,0(s
′, c− r1)

]
+H · E(s,a)∼dπ1,P [f1(s, a)]

≤ · · · ≤ H ·
H∑
h=1

E
(s,a)∼d(π,c)

h,P
[fh(s, a)]

which concludes the proof.

H Proofs for Appendix F

H.1 Proof of Theorem F.2

In the following discussion we use ϕ
j

h to denote ϕh(s
j
h, a

j
h) and (P̂hV )(s, iυ, a) to denote

Er∼rh(·|s,a),s′∼P̂h(·|s,a)[V (s′, iυ − r)]. We also use Gt,h denote the filtration generated by

{(sjh′ , a
j
h′ , r

j
h′)Hh′=1}

t−1
j=1 ∪ (sth′ , ath′ , rth′)h−1

h′=1 ∪ (sth, a
t
h).

First note that we have the following concentration lemma:
Lemma H.1. For all h ∈ [H], t ∈ [T1], 0 ≤ i ≤ ⌈H/υ⌉, with probability at 1− δ/4, we have∥∥∥∥∥∥

t−1∑
j=1

ϕ
j

h

[
V
t

h+1(s
j
h+1, iυ − r

j
h)− P̂hV

t

h+1(s
j
h, iυ, a

j
h)
]∥∥∥∥∥∥

(Λt
h)

−1

≤ Õ

(
H

3
2 d

υ

√
log

HdT1
υδ

)
.

The proof is deferred to Appendix H.3. Let E1 denote the event in Lemma H.1.

On the other hand, we can further bound the difference between Q
π

h(s, iυ, a) and −b̂h(s, a) +(
ϕh(s, a)

)⊤
wth(iυ) as follows:

Lemma H.2. For any policy π, conditioned on E1, we have for all s ∈ S, 0 ≤ i ≤ ⌈H/υ⌉, a ∈
A, h ∈ [H], t ∈ [T1] that

−b̂h(s, a) +
(
ϕh(s, a)

)⊤
wth(iυ)−Q

π

h(s, iυ, a) =
(
P̂h
(
V
t

h+1 − V
π

h+1

))
(s, iυ, a) + ξth(s, iυ, a),

where |ξth(s, iυ, a)| ≤ β
∥∥ϕh(s, a)∥∥(Λt

h)
−1 .

The proof of Lemma H.2 follows the same arguments in the proof of Jin et al. (2020)[Lemma B.4]
and thus is omitted here.

With Lemma H.2, we can prove that the estimated Q function Q
t

is optimistic:
Lemma H.3. Conditioned on event E1, we have for all s ∈ S, 0 ≤ i ≤ ⌈H/υ⌉, h ∈ [H], t ∈ [T1]

that V
t

h(s, iυ) ≤ V
∗
h(s, iυ) where V

∗
h(s, iυ) = supπ V

π

h(s, iυ).

The proof is deferred to Appendix H.4.

Combining Lemma H.2 and Lemma H.3,we can bound the regret of Algorithm 2 as follows:
Lemma H.4. With probability at least 1− δ/2, we have

T1∑
t=1

V
π̃t

1 (s1, i1υ)− V
∗
1(s1, i1υ) ≤ Õ

(√
H5d3T1ι

υ3

)
,

where ι = log2 HdT1

υδ .

20



The proof is deferred to Appendix H.5. Denote the event in Lemma H.4 by E2.

Lemma H.4 implies that by setting T1 = Õ
(
H5d3ι
υ3ε2

)
, we have conditioned on event E2 that

min
t∈[T1]

V
π̃t

1 (s1, i1υ)− V
∗
1(s1, i1υ) ≤ ε/2.

Let t1 denote argmint∈[T1] V
π̃t

1 (s1, i1υ). Then on the other hand, by setting T2 = Õ

(
H2 log

T1
δ

ε2

)
,

with probability at least 1− δ/2 we have that for all t ∈ [T1],∣∣∣∣V̂ π̃t

1 (s1, i1υ)− V
π̃t

1 (s1, i1υ)

∣∣∣∣ ≤ ε/4.
Denote the above event by E3 and let ̂̃π denote argminπ̃t V̂

π̃t

1 (s1, i1υ). Then conditioned on event
E2 ∩ E3, we have

V̂
̂̃π
1 (s1, i1υ)− V

∗
1(s1, i1υ) ≤ V̂

π̃t1

1 (s1, i1υ)− V
∗
1(s1, i1υ) ≤ V

π̃t1

1 (s1, i1υ)− V
∗
1(s1, i1υ) +

ε

4
≤ 3

4
ε.

H.2 Proof of Theorem F.3

First, we show that Algorithm 3 can achieve sublinear regret in the discretized MDP M. Let
(π∗

dis, i
∗) := argmaxπ∈ΠAug,0≤i≤⌈H/υ⌉ CVaRτ (R(π, iυ)). Note that from (3) we have

CVaR
∗
τ = i∗υ − τ−1V

π∗
dis

1,P∗,0(s1, i
∗υ).

This implies that

CVaR
∗
τ − CVaRτ (R(π

k, ikυ))

=
(
i∗υ − τ−1V

π∗
dis

1,P̂k ,̂bk
(s1, i

∗υ)
)
− CVaRτ (R(π

k, ikυ)) +
(
i∗υ − τ−1V

π∗
dis

1,P∗,0(s1, i
∗υ)
)

−
(
i∗υ − τ−1V

π∗
dis

1,P̂k ,̂bk
(s1, i

∗υ)
)

=
(
i∗υ − τ−1V

π∗
dis

1,P̂k ,̂bk
(s1, i

∗υ)
)
− CVaRτ (R(π

k, ikυ)) + τ−1
(
V
π∗
dis

1,P̂k ,̂bk
(s1, i

∗υ)− V π
∗
dis

1,P∗,0(s1, i
∗υ)
)

(21)

Suppose in k-th iteration, CVaR-LSVI returns V̂
∗
1,P̂k ,̂bk(s1, i

∗υ) for the initial budget i∗υ. Then from
Theorem F.2, we know

V
π∗
dis

1,P̂k ,̂bk
(s1, i

∗υ) ≥ V̂
∗
1,P̂k ,̂bk(s1, i

∗υ)− τ

8
ϵ.

This implies that

i∗υ − τ−1V
π∗
dis

1,P̂k ,̂bk
(s1, i

∗υ) ≤ i∗υ − τ−1V̂
∗
1,P̂k ,̂bk(s1, i

∗υ) +
ϵ

8

≤ ik − τ−1V̂
∗
1,P̂k ,̂bk(s1, i

kυ) +
ϵ

8

≤ ik − τ−1V
πk

1,P̂k ,̂bk(s1, i
kυ) +

ϵ

6
, (22)

where the last step is due to Theorem E.1.

On the other hand, from (2) we know

CVaRτ (R(π
k, ikυ)) ≥ ik − V π

k

1,P∗,0(s1, i
kυ). (23)

Plug Equation (22) and (23) into (21), we have

CVaR
∗
τ − CVaRτ (R(π

k, ikυ)) ≤τ−1

(
V
πk

1,P∗,0(s1, i
kυ)− V π

k

1,P̂k ,̂bk(s1, i
kυ)

)

21



+ τ−1
(
V
π∗
dis

1,P̂k ,̂bk
(s1, i

∗υ)− V π
∗
dis

1,P∗,0(s1, i
∗υ)
)
+
ϵ

6
Then, following the same arguments in the proof of Theorem 3.1, we can obtain

K∑
k=1

CVaR
∗
τ − CVaRτ (R(π

k, ikυ)) ≤ Õ
(
τ−1H3Ad2

√
K ·

√
log (|F|/δ)

)
+
Kϵ

6
. (24)

Next we bridge CVaRτ and CVaRτ via Proposition F.1. Note that from Proposition F.1 we have
K∑
k=1

CVaR∗
τ − CVaRτ (R(π

k, ikυ)) ≤
K∑
k=1

CVaR
∗
τ − CVaRτ (R(π

k, ikυ)) +
KHυ

τ
. (25)

Combining (24) and (25), we have
K∑
k=1

CVaR∗
τ − CVaRτ (R(π

k, ikυ)) ≤ Õ
(
τ−1H3Ad2

√
K ·

√
log (|F|/δ)

)
+
Kϵ

6
+
KHυ

τ
.

Substituting the values of the parameters, we will obtain

1

K

K∑
k=1

CVaR∗
τ − CVaRτ (R(π

k, ikυ)) ≤ ϵ.

This implies that the uniformly mixed policy of {(πk, ikυ)}Kk=1 is ϵ-optimal. The total number of

collected trajectories is KH = Õ

(
H7A2d4 log

|F|
δ

τ2ϵ2

)
.

Now, we discuss the computational complexity. The MLE oracle is called KH times. For the
rest of the computation, the cost is dominated by running CVaR-LSVI in Line 17 of Algorithm 3.
In CVaR-LSVI, we compute (Λth)

−1 by the Sherman-Morrison formula, then the computational
complexity of CVaR-LSVI is dominated by Line 6 of Algorithm 2, which requires O(d

2AT1

υ2 ) time

per step and leads to a total computational complexity of O(
d2AH2T 2

1

υ3 ) for each call of CVaR-LSVI.
Note that CVaR-LSVI is called totally KH

υ times in Algorithm 3 and thus the total computation cost
of Algorithm 3 is

O

(
Kd2AH3T 2

1

υ4

)
= Õ

(
H29A3d12 log |F|

δ

τ16ϵ16

)
.

H.3 Proof of Lemma H.1

The proof largely follows the proof of Jin et al. (2020)[Lemma B.3]. We first bound wth(iυ). Note
that we have for any vector v ∈ Rd where d := d(1 + ⌈1/υ⌉) that∣∣v⊤wth(iυ)∣∣ ≤ t−1∑

j=1

∣∣∣v⊤(Λth)−1ϕ
j

h

∣∣∣ ·H
≤

√√√√√
t−1∑
j=1

v⊤(Λth)
−1v

t−1∑
j=1

(
ϕ
j

h

)⊤
(Λth)

−1ϕ
j

h

 ·H
≤ H∥v∥

√
t

λ
·

√√√√t−1∑
j=1

(
ϕ
j

h

)⊤
(Λth)

−1ϕ
j

h.

Note that with Lemma I.6 we have
∑t−1
j=1

(
ϕ
j

h

)⊤
(Λth)

−1ϕ
j

h ≤ d and therefore we can obtain that

for all v ∈ Rd ∣∣v⊤wth(iυ)∣∣ ≤ H∥v∥
√
td

λ
,

22



which implies that ∥wth(iυ)∥ ≤ H
√

td
λ .

To utilize Lemma I.7, we further need to bound the covering number of the class of estimated value
functions. Fix h ∈ [H], it can be observed that all V

t

h(·, ·) where t ∈ [T1] belongs to the following
function class V parametrized by w and A:{

V | V (s, iυ) = min
a

Clip[−H,H]

(
ϕ
⊤
h (s, a)w(iυ)− b̂h(s, a)− ∥ϕh(s, a)∥A

)}
,

where ∥w(iυ)∥ ≤ H

√
td
λ and ∥A∥ ≤ β2/λ. Then for any V1 (parametrized by w1, A1) and V2

(parametrized by w2, A2), we know

sup
s∈S,0≤i≤⌈H/υ⌉

|V1(s, iυ)− V2(s, iυ)|

≤ sup
s∈S,a∈A,0≤i≤⌈H/υ⌉

∣∣∣ϕ⊤h (s, a)(w1(iυ)− w2(iυ))− (∥ϕh(s, a)∥A1 − ∥ϕh(s, a)∥A2)
∣∣∣

≤ sup
∥ϕ∥≤1,0≤i≤⌈H/υ⌉

∣∣∣ϕ⊤(w1(iυ)− w2(iυ))
∣∣∣+ sup

∥ϕ∥≤1

∥ϕ∥A1−A2

≤ sup
0≤i≤⌈H/υ⌉

∥w1(iυ)− w2(iυ)∥+
√
∥A1 −A2∥F .

This indicates that the covering number of V with respect to ℓ∞ norm can be upper bounded by the
covering number of w and A. More specifically, let N (ϵ) denote the covering number of V with
respect to ℓ∞ norm, then we have

logN (ϵ) ≤ O
(
d(d+

H

υ
) log

HT1d

ϵλ

)
≤ O

(
Hd2

υ2
log

HT1d

ϵλυ

)
.

Substituting the above bound into Lemma I.7 concludes the proof.

H.4 Proof of Lemma H.3

We prove via induction. For the base case, when h = H+1, we have V
t

H+1(s, iυ) = V
∗
H+1(s, iυ) =

iυ for all s ∈ S and 0 ≤ i ≤ ⌈H/υ⌉.

Then suppose we have V
t

h+1(s, iυ) ≤ V
∗
H+1(s, iυ) for all s ∈ S and 0 ≤ i ≤ ⌈H/υ⌉. For any

s ∈ S, a ∈ A and 0 ≤ i ≤ ⌈H/υ⌉, if Q
t

h(s, iυ, a) = −H , then Q
t

h(s, iυ, a) ≤ Q
∗
h(s, iυ, a)

naturally holds. Otherwise, from Lemma H.2 we know

Q
t

h(s, iυ, a)−Q
∗
h(s, iυ, a) ≤ −b̂h(s, a) +

(
ϕh(s, a)

)⊤
wth(iυ)− β

∥∥ϕh(s, a)∥∥(Λt
h)

−1 −Q
∗
h(s, iυ, a)

≤
(
P̂h
(
V
t

h+1 − V
π

h+1

))
(s, iυ, a) ≤ 0.

Therefore we have Q
t

h(s, iυ, a) ≤ Q
∗
h(s, iυ, a) for all s ∈ S, a ∈ A and 0 ≤ i ≤ ⌈H/υ⌉, which

leads to V
t

h(s, iυ) ≤ V
∗
h(s, iυ) for all s ∈ S and 0 ≤ i ≤ ⌈H/υ⌉ as well. This concludes our proof.

H.5 Proof of Lemma H.4

First note that from Lemma H.3 we have V
∗
1(s1, i1υ) ≥ V

t

1(s1, i1υ) for all t ∈ [T1]. This indicates
that conditioned on E1,

T1∑
t=1

V
π̃t

1 (s1, i1υ)− V
∗
1(s1, i1υ) ≤

T1∑
t=1

V
π̃t

1 (s1, i1υ)− V
t

1(s1, i1υ). (26)

Fix t ∈ [T1] and then we know

V
π̃t

1 (s1, i1υ)− V
t

1(s1, i1υ) = Q
π̃t

1 (st1, i1υ, a
t
1)−Q

t

1(s1, i1υ, a
t
1).

23



If Q
t

1(s
t
1, i1υ, a

t
1) = H , then we know Q

π̃t

1 (st1, i1υ, a
t
1)−Q

t

1(s1, i1υ, a
t
1) ≤ 0. Otherwise, we have

Q
π̃t

1 (st1, i1υ, a
t
1)−Q

t

1(s1, i1υ, a
t
1) ≤ Q

π̃t

1 (st1, i1υ, a
t
1) + b̂h(s

t
1, a

t
1)−

〈
ϕ
t

1, w
t
h(i1υ)

〉
+ β∥ϕt1∥(Λt

1)
−1 .

Then with Lemma H.2, we know

Q
π̃t

1 (st1, i1υ, a
t
1)−Q

t

1(s1, i1υ, a
t
1) ≤

(
P̂h
(
V
π̃t

2 − V
t

2

))
(st1, i1υ, a

t
1) + 2β∥ϕt1∥(Λt

1)
−1 . (27)

Let ithυ denote i1υ −
∑h−1
h′=1 r

t
h and let {(ζth)Hh=1}

T1
t=1 denote the following random variable:

ζth :=

 0, if there exists some h′ ≤ h s.t. Q
t

h′(sth′ , ith′υ, ath′) = H,(
P̂h
(
V
π̃t

h+1 − V
t

h+1

))
(sth, i

t
hυ, a

t
h)−

(
V
π̃t

h+1(s
t
h+1, i

t
h+1υ)− V

t

2(s
t
h+1, i

t
h+1υ)

)
, otherwise.

It can be easily observed that ζth ∈ Gt,h+1 and E[ζth|Gt,h] = 0, which means that {(ζth)Hh=1}
T1
t=1 is a

martingale with respect to {Gt,h}. Then when Q
t

1(s
t
1, i1υ, a

t
1) ̸= H , Equation (27) is equivalent to

Q
π̃t

1 (st1, i1υ, a
t
1)−Q

t

1(s1, i1υ, a
t
1) ≤ V

π̃t

2 (st2, i
t
2υ)− V

t

2(s
t
2, i

t
2υ) + ζth + 2β∥ϕt1∥(Λt

1)
−1 .

Repeat such expansion till a step ht such that Q
t

ht
(stht

, itht
υ, atht

) = H or ht = H + 1. Then we
have

V
π̃t

1 (s1, i1υ)− V
t

1(s1, i1υ) ≤
H∑
h=1

ζth + 2β

ht−1∑
h=1

∥ϕth∥(Λt
h)

−1 ≤
H∑
h=1

ζth + 2β

H∑
h=1

∥ϕth∥(Λt
h)

−1 .

(28)

Therefore combining (27) and (28), we know
T1∑
t=1

V
π̃t

1 (s1, i1υ)− V
∗
1(s1, i1υ) ≤

T1∑
t=1

H∑
h=1

ζth + 2β

T1∑
t=1

H∑
h=1

∥ϕth∥(Λt
h)

−1 . (29)

For the first term of the RHS of (29), from Azuma-Hoeffding’s inequality, we have with probability
at least 1− δ/2 that

T1∑
t=1

H∑
h=1

ζth ≤ 2H

√
T1Hι

1
2 .

For the second term, we can utilize the elliptical potential lemma (Lemma I.8 in Appendix I), which
yields

T1∑
t=1

H∑
h=1

∥ϕth∥(Λt
h)

−1 ≤
H∑
h=1

√
T1 ·

√√√√ T1∑
t=1

H∑
h=1

(ϕ
t

h)
⊤(Λth)

−1ϕ
t

h ≤ H

√
2dT1ι

1
2

υ
.

Plug the above two inequalities into (29) leads to the result in Lemma H.4.

I Auxiliary Lemmas

Lemma I.1 (MLE guarantees). For any fixed (h, k) ∈ [H]× [K], with probability at least 1− δ, we
have that

Es∼{0.5ρkh+0.5ηkh},a∼U(A)[∥P̂ kh (·|s, a)− P ∗
h (·|s, a)∥21] ≤ ζ, ζ :=

log(|F|/δ)
k

. (30)

Using union bound, a direct corollary is: with probability at least 1− δ the following holds for all
h ∈ [H], k ∈ [K]

Es∼{0.5ρkh+0.5ηkh},a∼U(A)[∥P̂ kh (·|s, a)− P ∗
h (·|s, a)∥21] ≤ 0.5ζk, ζk :=

log(|F|Hk/δ)
k

. (31)

24



Lemma I.2 (Concentration of the bonus term). Set λk = Θ(d log(kH|F|/δ)) at the k-th episode.
Define

Σρkh,ϕ = kEs∼ρkh,a∼U(A)[ϕ(s, a)ϕ
⊤(s, a)] + λkI, Σ̂k,ϕ =

∑
s,a∈Dh

ϕ(s, a)ϕ⊤(s, a) + λkI.

With probability 1− δ, we have for any k ∈ N+, h ∈ [H], ϕ ∈ Φ,

∥ϕ(s, a)∥(Σ̂k
h,ϕ)

−1 = Θ

(
∥ϕ(s, a)∥Σ−1

ρk
h
,ϕ

)
Lemma I.3 (One-step back inequality for the learned model). Let π = {πh : S × [0, H] 7→
∆(A)}h∈[H] denote any policy on the augmented state. Fix an initial budget c1 ∈ [0, 1]. Take any
g : S ×A 7→ R such that ∥g∥∞ ≤ B. We condition on the event where the MLE guarantee (31):

Es∼ρkh,a∼U(A)[f
k
h (s, a)] ≲ ζk

holds for any h ∈ [H]. For h = 1, we have that∣∣∣∣E(s,a)∼d(π,c1)

1,P̂k

[g(s, a)]

∣∣∣∣ ≤√A · Es∼ρk1 ,a∼U(A)[g
2(s, a)]

For any h+ 1 ∈ {2, · · · , H} and policy π, we have that∣∣∣∣E(s′,a′)∼d(π,c1)

h+1,P̂k

[g(s′, a′)]

∣∣∣∣
≤E

(s,a)∼d(π,c1)

h,P̂k

[
∥ϕ̂kh(s, a)∥Σ−1

ρk
h
×U(A),ϕ̂k

h

√
kA · Es′∼ηkh+1,a

′∼U(A)[g
2(s′, a′)] +B2λkd+ kB2ζk

]
(32)

where Σρkh×U(A),ϕ̂k
h
= kEs∼ρkh,a∼U(A)[ϕ̂

k
h(ϕ̂

k
h)

⊤] + λkI .

Proof. For h = 1, we have that

E
(s,a)∼d(π,c1)

1,P̂k

[g(s, a)] ≤

√
max
s,a

d1(s)π1(a|s, c1)
ρk1(s)U(a)

Es∼ρk1 ,a∼U(A)[g
2(s, a)]

≤
√
A · Es∼ρk1 ,a∼U(A)[g

2(s, a)]

where we use the fact that d1 = ρk1 . Recall that ρkh(s) =
1
k

∑k−1
i=0 d

πi

h,ci(s) is the (expected) occupancy

of any s ∈ S in datasetDh . Let ω(π,c1)
h,P : S×A 7→ ∆([0, 1]) denote the distribution of the remaining

budget ch at timestep h conditioned on any (s, a) ∈ S ×A when rolling policy π in an MDP with
transition kernel P and the initial budget c1. For any h ∈ {1, · · · , H − 1}, we have that

E
(s′,a′)∼d(π,c1)

h+1,P̂k

[g(s′, a′)]

=E
(s,a)∼d(π,c1)

h,P̂k

Es′∼P̂k
h (·|s,a)Ec∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]

=E
(s,a)∼d(π,c1)

h,P̂k

[
ϕ̂kh(s, a)

⊤
∫
S
ψ̂kh(s

′) · E
c∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

]
≤E

(s,a)∼d(π,c1)

h,P̂k

[
∥ϕ̂kh(s, a)∥Σ−1

ρk
h
×U(A),ϕ̂k

h

·
∥∥∥∥∫

S
ψ̂kh(s

′) · E
c∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

∥∥∥∥
Σ

ρk
h
×U(A),ϕ̂k

h

]
where the last inequality is because of CS inequality. For any (s, a) ∈ S ×A, we have that∥∥∥∥∫

S
ψ̂kh(s

′)E
c∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

∥∥∥∥2
Σ

ρk
h
×U(A),ϕ̂k

h

25



≤
(∫

S
ψ̂kh(s

′)E
c∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

)⊤

·
{
kEs̃∼ρkh,ã∼U(A)[ϕ̂

k
h(ϕ̂

k
h)

⊤] + λkI
}

·
(∫

S
ψ̂kh(s

′)E
c∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

)
≤k · Es̃∼ρkh,ã∼U(A)

[(∫
S
ψ̂kh(s

′)⊤ϕ̂kh(s̃, ã)Ec∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

)2
]
+B2λkd

where we use the assumption ∥
∑
a′ Ec∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]∥ ≤ B and∫

S∥ψ̂
k
h(s

′)y(s′)ds′∥2 ≤
√
d for any y : S 7→ [0, 1]. Note that ψ̂kh(s

′)ϕ̂kh(s̃, ã) = P̂ kh (s
′|s̃, ã).

Further, we derive that

k · Es̃∼ρkh,ã∼U(A)

[(∫
S
P̂ kh (s

′|s̃, ã)E
c∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

)2
]
+B2λkd

≤k · Es̃∼ρkh,ã∼U(A)

[(
Es′∼P∗

h (·|s̃,ã)Ec∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]

)2
]
+B2λkd+ kB2ζk

≤k · Es̃∼ρkh,ã∼U(A),s′∼P∗
h (·|s̃,ã)Ec∼ω(π,c1)

h,P̂k (·|s,a),r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]

2
+B2λkd+ kB2ζk

≤kA · Es̃∼ρkh,ã∼U(A),s′∼P∗
h (·|s̃,ã),a′∼U(A)[g

2(s′, a′)] +B2λkd+ kB2ζk

Note that s̃ ∼ ρkh, ã ∼ U(A), s′ ∼ P ∗
h (·|s̃, ã) is equivalent to s′ ∼ ηkh+1. Therefore,

E
(s′,a′)∼d(π,c1)

h+1,P̂k

[g(s′, a′)]

≤E
(s,a)∼d(π,c1)

h,P̂k

∥ϕ̂kh(s, a)∥Σ−1

ρk
h
×U(A),ϕ̂k

h

∥∥∥∥∥
∫
S

∑
a′

ψ̂kh(s
′)Ec,rh [πh+1(a

′|s′, c− rh)] g(s′, a′)ds′
∥∥∥∥∥
Σ

ρk
h
×U(A),ϕ̂k

h


≤E

(s,a)∼d(π,c1)

h,P̂k

[
∥ϕ̂kh(s, a)∥Σ−1

ρk
h
×U(A),ϕ̂k

h

√
kA · Es′∼ηkh+1,a

′∼U(A)[g
2(s′, a′)] +B2λkd+ kB2ζk

]
which concludes the proof.

Lemma I.4 (One-step back inequality for the true model). Let π = {πh : S× [0, H] 7→ ∆(A)}h∈[H]

denote any policy on the augmented state. Fix an initial budget c1 ∈ [0, 1]. Take any g : S ×A 7→ R
such that ∥g∥∞ ≤ B. Then for h = 1, we have that

E
(s,a)∼d(π,c1)

1

[g(s, a)] ≤
√
A · Es∼ρk1 ,a∼U(A)[g

2(s, a)]

For h+ 1 ∈ {2, · · · , H}, we have that

E
(s′,a′)∼d(π,c1)

h+1

[g(s′, a′)] ≤ E
(s,a)∼d(π,c1)

h

[
∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

√
kA · Es′∼ρkh+1,a

′∼U(A)[g
2(s′, a′)] + λkdB2

]
Proof. For h = 1, we have that

E
(s,a)∼d(π,c1)

1

[g(s, a)] ≤

√
d1(s)π1(a|s, c1)
ρk1(s)U(a)

Es∼ρk1 ,a∼U(A)[g
2(s, a)] ≤

√
A · Es∼ρk1 ,a∼U(A)[g

2(s, a)]

Let ω(π,c1)
h := ω

(π,c1)
h,P∗ denote the distribution of the remaining budget ch at timestep h conditioned

on any (s, a) ∈ S ×A when rolling policy π in the (true) environment and the initial budget c1. For
h+ 1 ∈ {2, · · · , H}, by CS inequality, we derive that

E
(s′,a′)∼d(π,c1)

h+1

[g(s′, a′)]

=E
(s,a)∼d(π,c1)

h ,s′∼P∗
h (·|s,a)Ec∼ω(π,c1)

h ,r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]

26



≤E
(s,a)∼d(π,c1)

h

∥ϕ∗h(s, a)∥Σ−1

ρk
h
,ϕ∗

∥∥∥∥∫
S
ψ∗
h(s

′)E
c∼ω(π,c1)

h ,r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

∥∥∥∥
Σ

ρk
h
,ϕ∗


For any (s, a) ∈ S ×A, we obtain that∥∥∥∥∫

S
ψ∗
h(s

′)E
c∼ω(π,c1)

h ,r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

∥∥∥∥2
Σ

ρk
h
,ϕ∗

≤
{∫

S
ψ∗
h(s

′)E
c∼ω(π,c1)

h ,r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

}⊤ {
kE(s̃,ã)∼ρkh

[ϕ∗h(ϕ
∗
h)

⊤] + λkI
}

·
{∫

S
ψ∗
h(s

′)E
c∼ω(π,c1)

h ,r,a′∼πh+1(·|s′,c−r)
[g(s′, a′)]ds′

}
≤kE(s̃,ã)∼ρkh,s′∼P

∗
h (·|s̃,ã)Ec∼ωπ

h ,r,a
′∼πh+1(a′,s′,c−r)[g

2(s′, a′)] + λkdB2

≤kA · Es′∼ρkh+1,a
′∼U(A)[g

2(s′, a′)] + λkdB2

where the last inequality holds by the fact that (s̃, ã) ∼ ρkh, s′ ∼ P ∗
h (s̃, ã) is equivalent to s′ ∼ ρkh+1

and importance sampling. Therefore, we conclude the proof.

Lemma I.5 (Simulation lemma for risk-neutral RL). Let M̂ andM be to MDPs with the same
state and action spaces, but they have different reward and transition functions, i.e., (r̂h, P̂h)Hh=1 and
(rh, Ph)

H
h=1, respectively. Consider any policy π = {πh : S −→ ∆(A)}h∈[H], denote {V π

h,M̂
}Hh=1

and {V πh }Hh=1 be the value functions. Then we have that

V π
1,M̂(s1)− V π1 (s1) =

H∑
h=1

E(s,a)∼dπ
h,M̂

(
r̂h(s, a)− rh(s, a) +

〈
P̂h(·|s, a)− Ph(·|s, a), V πh+1(·)

〉)
Equivalently, we have that

V π
1,M̂(s1)− V π1 (s1) =

H∑
h=1

E(s,a)∼dπh

(
r̂h(s, a)− rh(s, a) +

〈
P̂h(·|s, a)− Ph(·|s, a), V πh+1,M̂(·)

〉)
where V πH+1 = V̂

H+1,M̂ = 0 (as the episode ends at H).

Proof. Recall that dπh(s, a) and dπ
h,M̂

(s, a) are the occupancy measures of any (s, a) ∈ S × A at

timestep h ∈ [H] when executing policy π inM and M̂, respectively. By definition, we have that

V π
1,M̂(s1)− V π1 (s1)

=
∑
a

π1(s1, a)

(
r̂1(s1, a)− r1(s1, a) +

∑
s′

(
P̂1(s

′|s1, a)V̂ π2,M̂(s′)− P1(s
′|s1, a)V π2 (s′)

))
=E(s,a)∼dπ

1,M̂

[
r̂1(s, a)− r1(s, a) +

〈
P̂1(·|s, a), V̂ π2,M̂(·)− V π2 (·)

〉
+
〈
P̂1(·|s, a)− P1(·|s, a), V π2 (·)

〉]
= · · · =

H∑
h=1

E(s,a)∼dπ
h,M̂

[
r̂h(s, a)− rh(s, a) +

〈
P̂h(·|s, a)− Ph(·|s, a), V πh+1(·)

〉]
Equivalently, we have that

V π
1,M̂(s1)− V π1 (s1)

=E(s,a)∼dπ1

[
r̂1(s, a)− r1(s, a) +

〈
P1(·|s, a), V̂ π2,M̂(·)− V π2 (·)

〉
+
〈
P̂1(·|s, a)− P1(·|s, a), V̂ π2,M̂(·)

〉]
= · · · =

H∑
h=1

E(s,a)∼dπh

[
r̂h(s, a)− rh(s, a) +

〈
P̂h(·|s, a)− Ph(·|s, a), V̂ πh+1,M̂(·)

〉]
which concludes the proof.

27



Lemma I.6. Let Λt = λI +
∑t
j=1 ϕ

j
(ϕ
j
)⊤ where ϕi ∈ Rd, λ > 0, d > 0, then we have∑t

j=1(ϕ
j
)⊤Λ−1

t ϕ
j ≤ d.

Proof. Please refer to (Jin et al., 2020, Lemma D.1).

Lemma I.7. Let {xj}∞j=1 be a stochastic process on the space (S, {iυ}⌈H/υ⌉i=0 ) with corresponding

filtration {Gj}∞j=0. Let {ϕj}∞j=0 be an Rd-valued stochastic process where ϕj ∈ Gj−1, and ∥ϕj∥ ≤ 1.

Let Λt = λI +
∑t−1
j=1 ϕjϕ

⊤
j . Then for any δ > 0, with probability at least 1− δ, for all t ≥ 0, and

any V ∈ V so that supx |V (x)| ≤ H , we have:∥∥∥∥∥∥
t−1∑
j=1

ϕj
{
V (xj)− E[V (xj)|Gj−1]

}∥∥∥∥∥∥
2

Λ−1
t

≤ 4H2

[
d

2
log

(
t+ λ

λ

)
+ log

Nϵ
δ

]
+

8t2ϵ2

λ
,

where Nϵ is the ϵ-covering number of V with respect to the ℓ∞-norm supx |V (x)− V ′(x)|.

Proof. Please refer to (Jin et al., 2020, Lemma D.4).

Lemma I.8. Suppose ϕt ∈ Rd and ∥ϕt∥ ≤ 1 for all t ≥ 0. For any t ≥ 0, we define Λt =

I +
∑t
j=1 ϕ

⊤
j ϕj . Then we have

t∑
j=1

ϕ
⊤
j Λ

−1
j−1ϕj ≤ 2 log

[
det(Λt)

det(Λ0)

]
.

Proof. Please refer to (Jin et al., 2020, Lemma D.2).

28


	Introduction
	Preliminaries
	Low-rank Episodic MDP
	Risk-Sensitive RL and Augmented MDP

	Algorithm
	Concluding Remarks
	Notations
	Related Work
	Algorithm Descriptions
	Data Collection
	Representation Learning and Bonus-driven Value Iteration

	Theorem Remarks
	Planning Oracle: CVaR-LSVI
	ELLA for Continuous Reward
	Discretized Reward
	CVaR-LSVI
	Computational Complexity

	Proofs for Section 3
	Proofs for Appendix F
	Proof of Theorem F.2
	Proof of Theorem F.3
	Proof of Lemma H.1
	Proof of Lemma H.3
	Proof of Lemma H.4

	Auxiliary Lemmas

