Under review as a conference paper at ICLR 2026

CTQWFORMER: A CTQW-BASED TRANSFORMER
FOR GRAPH CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNN) and Transformer-based architectures have
achieved remarkable progress in graph learning, yet they still struggle to capture
both global structural dependencies and model the dynamic information propa-
gation. In this paper, we propose CTQWformer, a hybrid graph learning frame-
work that integrates continuous-time quantum walks (CTQW) with GNN. CTQW-
former employs a trainable Hamiltonian that fuses graph topology and node fea-
tures, enabling physically grounded modeling of quantum walk dynamics that cap-
tures rich and intricate graph structure information.The extracted CTQW-based
representations are incorporated into two complementary modules:(i) a Graph
Transformer module that embeds final-time propagation probabilities as structural
biases in self-attention mechanism, and (ii) a Graph Recurrent Module that cap-
tures temporal evolution patterns with bidirectional recurrent networks. Extensive
experiments on benchmark graph classification datasets demonstrate that CTQW-
former outperforms graph kernel and GNN-based methods, demonstrating the po-
tential of integrating quantum dynamics into trainable deep learning frameworks
for graph representation learning. To the best of our knowledge, CTQWformer is
the first hybrid CTQW-based Transformer, integrating CTQW-derived structural
bias with temporal evolution modeling to advance graph learning.

1 INTRODUCTION

Graph-structure data is ubiquitous, and widely used in various domains including social networks,
bioinformatics, computer vision. Graph Neural Networks (GNNs) have emerged as a powerful tool
for graph learning tasks over graph-structure data, primarily through message passing and neigh-
borhood aggregation mechanisms [Wu et al. (2020). Various GNN models have been developed
to address different node-level or graph-level tasks. Among these, graph classification constitutes
a fundamental graph-level problem that critically depends on accurately modeling the underlying
topological structure and the inter-node relationships within graphs.

Inspired by the successful application of Transformers in various domains, researchers have explored
using Transformers framework for graph learning, owing to their parallel computation efficiency
and strong capability in modeling long-range dependencies. These efforts include directly model-
ing graph structure or incorporating with GNNs to enhance the performance of various tasks. For
instance, Graph Transformer Networks is proposed to learn new graph structures via attention-like
modules and then apply conventional GNNs in node classification task |Yun et al.| (2019). Simi-
larly, Ying et al proposed Graphormer Ying et al.| (2021)), which apply Transformer architectures
to graph data by incorporating different structural encodings into the attention mechanism in graph
classification task.

However, traditional GNNs are often limited by their local receptive fields and suffer from issues
such as over-smoothing problem and inability to capture long-range dependencies among nodes
Corso et al|(2024). Despite the integration of global attention mechanisms and structural biases,
Transformer-based GNN models often struggle to effectively capture the intrinsic topological struc-
ture and global dependencies inherent in graph data.

In parallel, quantum computing provides a novel computational paradigm via its natural capability
for parallel information processing. As the quantum analogue of classical random walks, quantum
walks have emerged as a powerful framework for graph learning, owing to their dynamic evolution

Under review as a conference paper at ICLR 2026

on graphs that captures rich and intricate structural information Bai et al.| (2015)). Specifically, gov-
erned by the Schrodinger equation, continuous-time quantum walks (CTQW) offer a powerful and
physically grounded way to model graph structure through its dynamical evolution. The constructive
and destructive interference effects inherent in CTQW lead to more complex dynamic behaviors in
the diffusion process, reflecting local and global properties of graphs, providing insightful structural
information beyond its classical features|Aharonov et al.|(2001])).

In this paper, we propose a hybrid graph learning framework, CTQWformer, which integrates
CTQW-based physical structural bias and temporal evolution into a unified framework for graph
classification task. Our model consists of three core components: (1)The Quantum Walk Encoder
(QWE) achieves the dynamical evolution of CTQW over graph structures by modeling node-wise
propagation probabilities under different configurations within graph datasets, guided by a trainable
Hamiltonian that integrates both underlying graph topology and node features. (2) The Quantum
Walk-Graph Transformer (QWGT) module incorporates the final-time propagation probabilities as
intrinsic physical structural biases to guide the attention mechanism in graph Transformer. (3) The
Quantum Walk-Graph Recurrent (QWGR) module employs a bidirectional recurrent network to
processes the dynamic temporal evolution of CTQW, capturing the temporal sequence of node-wise
propagation probability among graph. Together, these modules enable CTQWformer to effectively
integrate both static physical structural biases and dynamic temporal evolution patterns of CTQW
on graphs for graph-level representation learning.

As aresult, the contribution of the paper is summarized as follows. First, we design a parameterized
Hamiltonian that incorporates both graph structure and node features, which makes the dynamic
evolution of CTQW not only rely on the static graph structure, but adaptively capture the connec-
tions of node features. The mechanism allows the model to be more suitable for the downstream
tasks such as attributed graph classification. Second, we propose the CTQWformer model, a hybrid
graph learning framework based on CTQW for graph classification. Specifically, the QWE module
implements a trainable CTQW guided by a learnable Hamiltonian that integrates both graph struc-
ture and node features, enabling the extraction of dynamical evolution information under various
configurations on graphs. The QWGT module encodes static physical structure bias generated by
CTQW into attention mechanism in graph Transformer. And the QWGR module utilize bidirectional
recurrent neural network to process the dynamic evolution information of CTQW. Together, the pro-
posed module is capable of capturing both static and dynamic evolution information of CTQW on
graphs, providing richer information of graph structure and more discriminative representation for
graph-level tasks. Third, experiments conducted on several benchmark graph classification datasets
demonstrate the effectiveness of our model, achieving competitive performance compared to state-
of-the-art methods.

2 RELATED WORKS

2.1 GRAPH LEARNING

Early approaches to graph learning primarily relied on graph kernel methods, which measure the
similarity between graphs by mapping their structure information into a high dimensional Hilbert
space |[Kriege et al.|(2020). A wide range of graph kernels have been proposed, many of which fall
under the R-convolution framework Haussler et al. (1999), graph similarity is computed by com-
paring substructures such as walks, subgraphs, and subtrees. Representative examples include the
Graphlet kernel |Shervashidze et al.[|(2009) and the Weisfeiler-Lehman subtree kernel |Shervashidze
et al.| (2011). In addition, recent works have explored information-theoretic graph kernels, which
measure graph similarity from the perspective of entropy. Several information-theoretic graph ker-
nels have been proposed, such as JTQK|Bai et al.|(2014), QISK|Bai et al.|(2015), HAQJSK Bai et al.
(2024), and AERK |Cui et al.|(2023)), all of which are defined based on CTQW and aim to capture
both structural and dynamical properties of graphs from the perspective of entropy. These kernels
demonstrate the effectiveness of quantum walks as a powerful and efficient tool for graph learning.
Although effective in small-scale datasets, kernel methods often suffer from poor scalability and
limited expressive power. Typically, a graph kernel is a semi-definite function defined as

k(G1,Gz) = (¢ (G1),0(G2)) (1
Where 1 and G are two graphs, ¢(-) denotes the mapping from the input space to a reproducing
kernel Hilbert space, and (-, -) could be the inner product in the space.

Under review as a conference paper at ICLR 2026

In recent years, GNNs have become the dominant paradigm for graph learning |Corso et al.
(2024). GNNs learn node and graph representations via neighborhood aggregation mechanism,
enabling message-passing across the graph. Typically, GNN perform neighborhood aggregation us-
ing spectral-based approaches such as GCN [Kipf & Welling| (2016), or spatial-based approaches
such as GraphSAGE Hamilton et al.| (2017) and GIN |Xu et al.| (2018)). Specifically, GCN updates
node features by linearly combining the normalized features of their neighbors. GraphSAGE sam-
ples a fixed-size set of neighbors and aggregates their features via functions such as mean, LSTM
or pooling, enabling inductive learning on large-scale graphs. GIN is designed to achieve maxi-
mal expressive power among message-passing GNNs, matching the discriminative capacity of the
Weisfeiler-Lehman graph isomorphism test. However, traditional GNNs struggle with long-range
dependencies and often suffer from over-smoothing with the increasing depth of networks. Further,
to address these limitations, inspired by the success of self-attention mechanism in natural language
processing, graph Transformer models have been developed such as Graphormer |Ying et al.|(2021),
GraphGPS Rampasek et al.| (2022)). However, these models still face challenges: their ability to ex-
plicitly model local interactions remains limited, and their interpretability is relatively weak. These
drawbacks motivate our approach, which leverages physically grounded quantum walk dynamics
to provide both richer local structural modeling and improved interpretability. Formally, the self-
attention mechanism in the Transformer framework |Vaswani et al.| (2017) is defined as

T
Attention (Q, K, V) = softmax (Qj%) 174 2)

Where Q, K, V € R™ % are the query, key and value matrices derived from the input features
respectively. In graph Transformers the input features are node features or edge features, and d is
the dimensionality scaling factor.

2.2 CONTINUOUS-TIME QUANTUM WALK

Recently, quantum walks, as a general framework for designing quantum algorithms in quantum
computing, have demonstrated substantial potential in addressing a variety of graph learning tasks
including graph classification Bai et al.[(2015), node classification Yan et al.[(2022) and link predic-
tion |Goldsmith et al.| (2023)).

Unlike classical random walks, quantum walks leverage superposition and interference to gener-
ate fundamentally different propagation behaviors. The dynamical evolution of quantum walks on
graphs offers a distinctive perspective for capturing both structural and dynamical properties of
graphs, such as probability distribution, spectral of density matrix and von Neumann entropy. Gen-
erally, there are two kinds of quantum walks: continuous-time quantum walks and discrete-time
quantum walks (DTQW), both of which have demonstrated substantial potential in various graph
learning algorithms including graph isomorphism, link prediction and graph kernels |[Kadian et al.
(2021)).

Motivated by GQWformer, which pioneers the integration of DTQW and graph Transformers in
graph learning [Yu et al.| (2024). In this paper, we utilize CTQW as it does not require additional
coin operators, resulting in more natural and analytically tractable dynamics. This coin-free and an-
alytically tractable formulation not only reduces the effective Hilbert space, simplifies the evolution
process but also enables a more expressive and physically grounded encoding of graph structures
and node features. By employing a learnable Hamiltonian that fuses graph structure and node fea-
tures, the trainable CTQW provides a more physically grounded and flexible framework for graph
learning.

Specifically, for a graph G = (V, E),n = |V| denotes the number of nodes of the graph. In

CTQW, the state space of the walker is a Hilbert space H = span{|1), |2), ---, |n)}, which is
spanned by the position basis states corresponding to the vertices of the graph. The state of the
walker is described by a complex vector |¢)) = [a1, g, -+, ag], Where o; denotes the probability

amplitude at vertex i. As a result, the quantum state |¢) (¢)) of CTQW at time ¢ is described as a
complex linear combination of these basis states over all vertices.

() = ay(t)v) 3)

veV

Under review as a conference paper at ICLR 2026

Input QWGT QWGR
Y Q >
=
— < 23 =
w o) = ps
(—+—>2-8-Pp-5-5—-2 FI—5 —S—3
K = oy 3 = =z = B = z
N < % < c @
g
Graph \ ’
Structure
3
QWE
P! p? PT - mQ
_Time —iHt c O g I
steps [p©®) =e [(0)) T e g)
" Se |3 3
- = 3
HaLne‘\?I;l:)en!i’an Imtmslestmes Temporal evolution Tensor P

Figure 1: Iustration of the proposed CTQWformer model. The model integrates CTQW dynamics
into graph learning via three core components: (1) QWE simulates trainable CTQW to encode
graph structure and features into a time-evolution tensor; (2) QWGT uses final-time propagation
probabilities as structural biases in a Transformer; (3) QWGR employs BiGRU to capture node-
level temporal dynamics. QWGT and QWGR are fused per layer, enabling deep stacked learning.
A global mean pooling and classifier produce the final graph-level prediction.

The equation satisfies), a, (t)a (t) = 1 for all nodes at any time t. «; (t) is the complex
conjugate of «, (t). The time evolution of the quantum walker is governed by unitary operator
U (t) = e~ *H! Where 4 is imaginary unit, H is the Hamiltonian that encodes the graph structure,
usually taken from the adjacency matrix A or Laplacian matrix . = D — A, where D is the de-
gree matrix, in this paper, we adopt the Laplacian matrix. Finally, the dynamics of the system are

described by the Schrodinger equation
.d
i [0 (0) = HIp(?)))]

Given initial state |¢) (0)) and time ¢ , the state of walker is described as follow
[%(2)) = U (0)) = e~ *[4(0)) (5)

After the state evolution, we perform a measurement to get the probability distribution of the walker
over the graph at time ¢, the probability of the walker at node ¢ is given by

pi(t) = [{i[v(t)]? (6)

Our work builds upon this line of research by integrating CTQW-based features into a trainable
graph learning framework, allowing for joint learning of dynamics of CTQW and task-specific graph
learning.

3 METHOD

3.1 THE OVERVIEW OF THE CTQWFORMER MODEL

Formally, given a graph dataset G = {G1,G2, -+ ,G N} where each graph G; is associated with
a graph label 3; € R and node features X; € R"*9, the goal of graph classification is to learn a
function that maps an input graph to its corresponding label.

We propose CTQWformer, a novel architecture for graph classification that integrates both static
and dynamic information derived from CTQW. The model combines a graph Transformer to capture
physically grounded structural bias and a graph recurrent network to model the temporal evolution
patterns embedded in the dynamics of CTQW. The proposed model consists of three main compo-
nents. First, we perform CTQW on graphs to extract encoded information. A learnable Hamilto-
nian is constructed by integrating graph structure and node features making CTQW trainable and
the model to be attribute-aware. Meanwhile, the dynamics evolution of CTQW captures non-local
dependencies and global topological features embedded in the graphs. Finally, we perform mea-
surement at discrete time steps {¢1, %2, ,t7r} to get CTQW evolution tensor P € RT*nxn that

Under review as a conference paper at ICLR 2026

encodes the structural and dynamical information of the graphs. The tensor is used in two ways:
(1) the final time step probability matrix PT serves as a structural bias for the graph Transformer;
(2) the full tensor P is passed to graph recurrent networks for temporal modeling. Second, we
employ a graph Transformer that integrates CTQW-based information to capture structural depen-
dencies. Specifically, extracted from evolution tensor P, the final time step probability matrix PT
is designed as a structural bias matrix within the self-attention mechanism to guide the learning of
pairwise node interactions. Third, we employ graph recurrent networks based on bidirectional gated
recurrent unit (BiGRU) to capture the temporal dynamics of CTQW. The evolution tensor P consists
of a temporal sequence of node-pair probability matrices, from which we extract node-wise tempo-
ral propagation probabilities from the diagonal elements of node-pair probability matrices, enabling
the model to capture dynamic propagation patterns of individual nodes over time.

We integrate the QWGT and QWGR modules into a unified layer, making the architecture suit-
able for deep graph learning through multi-layer stacking. In each layer, the outputs derived from
the QWGT module and the QWGR module are concatenated and passed through a fusion network
that effectively combines the static physical structural bias and dynamic temporal evolution fea-
tures to update node representations. Finally, after multiple stacked layers, a global mean pooling
operation is applied on the resulting node embeddings to derive a graph-level representation. The
representation is subsequently passed through a final classifier to perform graph-level prediction.
The framework of the model is exhibited in Fig.1.

3.2 THE QUANTUM WALK ENCODER

The core of our model lies in encoding CTQW-based static physical structural bias and dynamical
evolution information into the graph representation. To achieve this, we first construct a trainable
Hamiltonian that governs the dynamics of CTQW on the graph. This allows the quantum evolu-
tion process to be optimized jointly with downstream tasks, making the model structure-aware and
feature-aware.

Specifically, the Hamiltonian H € R™*"™ is designed to integrate both the graph topology and
node features. Given a graph G = (V, E) with n nodes and node features X € R"*? where
d is the dimension of node features. We define a learnable Hamiltonian to construct a trainable
CTQW, allowing the model to flexibly adjust to varying graph topologies and node features during
the dynamical evolution process. For each edge (i,j) € FE, we concatenate the features of two
incident nodes to form an edge feature vector

€ij = [I’leﬂ € R2d (7)

A two-layer perception with non-linear activation is applied to map the edge features into scalar
edge weights.

wi; = o(Wa - ¢ (Wieij)) (®)
Where ¢(-) is ReLU nonlinear activation function and &(-) denotes the sigmoid function to ensure
the weights are bounded in [0,1]. These learned edge weights form a new weighted adjacency
matrix. To ensure the Hermitian property required by the evolution operator, we get symmetrized
matrix

1
Agym = 3 (A+AT))
The final Hamiltonian is defined as a Laplacian matrix
H=D-Aym (10)

Where D is the degree matrix of Ay, with D;; = 5 ; (Asym)ij- This construction allows CTQW

trainable and to be trained jointly with downstream tasks.

Given the learned Hamiltonian, we consider an initial state set consisting of orthonormal basis states,
represented by the identity matrix [,,, where each column corresponds to an initial state concentrated
on a single node, and a set of time steps 7 = {1,2,...,T}. Subsequently, we can simulate the
state evolution of CTQW under various configurations using Schrodinger equation. By stacking the
probability distribution under n single-node initial states over 1" distinct time steps, we obtain the
temporal evolution tensor P € RT>*"*" which capture the temporal dynamics of the graph. The
tensor provides a rich and physically grounded representation of the graph, and thus can be used in
downstream models such as graph Transformers and recurrent network for graph-level tasks.

Under review as a conference paper at ICLR 2026

3.3 THE QUANTUM WALK-GRAPH TRANSFORMER MODULE

Although graph Transformers offer a global receptive field that enables comprehensive message
passing among all nodes, the self-attention mechanism primarily captures semantic similarity and
often neglects the inherent structure properties. To compensate for this, we design The Quantum
Walk-Graph Transformer to integrate structural prior information derived from CTQW into the at-
tention mechanism, enabling the model to account for both semantic and structural relations between
nodes. Specifically, we utilize the final-time transition probabilities P7 € R™*" from CTQW as
a static structural bias matrix, which is normalized and log-scaled before being added to the self-
attention score matrix.

T

K
Attention (Q, K, V, B) = softmax (Q
Vd

Where Q = XW® K = XWEK V = XWV are the projected query, key and value matrices.
The structural bias B is derived from CTQW probability matrix PT € R"™*" at final time step
T. To ensure stability, P is column-normalized into a stochastic matrix and then transformed as
B = log(1+ PT).Then node representation is updated and aggregated to produce the CTQW-based
graph-level representation Ogw . By integrating the inherent physically grounded structural bias
into the attention mechanism, the model gains a richer understanding of graph topology beyond pure
node feature similarity.

—|—B) 1% (11)

3.4 THE QUANTUM WALK-GRAPH RECURRENT MODULE

In contrast to the convergence behavior of classical random walks, the evolution of quantum walks is
dynamic and oscillatory. These fluctuations encode rich temporal and structural patterns that cannot
be captured by static structural bias alone. To model the dynamic evolution of quantum states, we
design The Quantum Walk-Graph Recurrent Module, which processes the full CTQW probability
sequence over multiple time steps.

We treat the temporal evolution tensor P € RT*"*" generated by evolving each of n single-node

initial states over 1" discrete time steps, as a temporal input tensor. We extract probability matrix
for each single-node initial state |i) over T" discrete time steps P; = [P}, P?, ---, Pl'] € R™*",
Where P! denotes the probability distribution of CTQW under initial state | (0)) = |i) at time .
The sequence is first transformed into a hidden representation via a linear layer and then fed into a
BiGRU to model the temporal evolution and fluctuations of each node, enabling the model to capture
complex temporal dependencies in both forward and backward directions.

Heru = BiGRU(Linear (FP;)) (12)

These resulting node representations are aggregated using mean pooling and followed by a feedfor-
ward network to generate graph-level representation Ogwgr.

Ogwar = FFN(MeanPool (Hgry)) (13)

This module effectively models the dynamic evolution of CTQW, providing a complementary per-
spective to the static structural view offered by the QWGT module.

3.5 FUSION AND PREDICTION

we construct the CTQWformer layer by integrating the QWGT module and the QWGR module.
The QWGT module generates graph-level representations by leveraging CTQW-based structural
biases through attention mechanism in the graph Transformer, while the QWGR module extracts
graph-level embeddings from the temporal evolution tensor using a BiGRU network. The outputs
from these two modules are concatenated and passed through a feed-forward fusion network to
produce a unified representation. By stacking multiple CTQWformer layer, the model progressively
refines graph representations. At each layer, the graph-level embedding is broadcast back to node-
level representations to guide subsequent layers. The final node embeddings from the last layer are
aggregated via global mean pooling operation to obtain the final graph-level representation and then
fed into a multi-layer classifier for prediction.

Under review as a conference paper at ICLR 2026

Dataset MUTAG PTC(MR) PROTEINS DD IMDB-B IMDB-M
Graphs 188 344 1113 1178 1000 1500
Classes 2 2 2 2 2 3
Max # Vertices 28 109 620 5748 136 89
Mean # Vertices 17.93 14.29 39.06 284.32 19.77 13.00
Node Features 7 18 3 89 0 0
Description Bio Bio Bio Bio SN SN

Table 1: Statistics of benchmark graph datasets.

Model MUTAG PTC(MR) PROTEINS DD IMDB-B IMDB-M
GCGK 81.58+2.11 57.26+1.41 71.67£0.55 78.45+0.26 65.87+£0.98 43.89+0.38
WLSK 82.05+£0.36 57.97+£0.49 74.68+£0.49 79.78+0.36 73.40+4.63 49.331+4.75
JTQK 85.50+0.55 58.50+0.39 - 79.89+0.32 - -
QJSK 82.72+0.44 56.70+£0.49 70.13+4.88 77.68+0.31 62.10 43.24
HAQIJSK 85.83+£0.72 62.35+0.51 - 73.50£0.45 50.08=+0.20

AERK 88.55+0.43 59.38+0.36 - 77.60+0.47 - -
CTQWformer 92.54+5.39 69.16+5.17 78.53+2.34 81.24+3.43 76.40+1.91 47.47+7.84

Table 2: Graph classification results (% + standard deviation) comparing with graph kernel methods.
Best scores are in bold.

4 EXPERIMENTS

We conduct extensive experiments for graph classification on several benchmark datasets from the
TU collection Morris et al.[(2020), covering domains including bioinformatics (Bio) and social net-
works (SN). The detailed statistical information of these datasets is summarized in Table 1. To
ensure that all datasets have meaningful node features, we preprocess the graphs by appending nor-
malized node degree using log-scaled max normalization to existing features if available, or using it
as the sole node feature otherwise. This approach is commonly adopted in GNN literature|You et al.
(2020) to enrich structural information in datasets lacking node features such as IMDB-B, IMDB-M
Yanardag & Vishwanathan| (2015)). To evaluate the performance of our proposed CTQWformer, we
compare it with two major categories of baseline methods: (1) graph kernel methods and (2) graph
neural network approaches.

4.1 COMPARISONS WITH GRAPH KERNEL METHODS

Baseline and Experimental Settings. We compare the proposed CTQWformer with six graph
kernels, including two classical R-convolution graph kernels, (1) the Graphlet Count Graph Ker-
nel (GCGK) |Shervashidze et al. (2009) and (2) the Weisfeiler-Lehman Subtree Kernel (WLSK)
Shervashidze et al.|(2011); four information-theoretic graph kernels, (3) Jensen-Tsallis g-difference
Kernel (JTQK) Bai et al.| (2014), (4) Quantum Jensen-Shannon Kernel (QJSK) Bai et al.|(2015), (5)
Hierarchical-Aligned Quantum Jensen-Shannon Kernels (HAQJSK) Bai et al.| (2024), (6) Aligned
Entropic Reproducing Kernels (AERK) |Cui et al.| (2023). Notably, all four of these information-
theoretic graph kernels are built upon CTQW, demonstrating the potential of CTQW for graph learn-
ing. However, the inherent limitations of kernel-based methods prevent them from fully leveraging
the rich dynamical evolution information generated by CTQW on graphs.

Experimental Results and Analysis. As shown in Table 2, CTQWformer consistently outperforms
existing kernel-based methods, including both R-convolution graph kernels and CTQW-based graph
kernels, demonstrating its superior ability in capturing graph-level representations. In particular,
CTQWformer achieves the best performance on five out of six datasets, except for IMDB-M. This
may result from the lack of sufficiently informative node features. While prior CTQW-based kernels
already demonstrated the potential of CTQW for graph learning, their performance is limited by the
inherent nature of kernel methods. In contrast, CTQWformer integrates the dynamical evolution of
CTQW into a trainable representation learning framework, enabling the model to effectively lever-
age temporal evolution information of CTQW. These results validate the effectiveness of integrating
graph neural networks with the dynamical information derived from CTQW on graphs, enabling the
model to better capture and exploit the dynamics information of CTQW for graph learning.

Under review as a conference paper at ICLR 2026

Model MUTAG PTC(MR) PROTEINS DD IMDB-B IMDB-M

GIN-0 89.40£5.60 64.60£7.00 76.20+2.80 - 75.10£5.10 52.30+2.80
DGCNN 85.83+£1.66 58.59£2.47 75.54+0.94 79.37£0.94 70.03£0.86 47.83£0.85
PSCN 88.95+4.37 62.29£5.68 75.00£2.51 76.27+2.64 71.00£2.29 4523+2.84
GAT 89.40+£6.10 66.70£5.10 74.70+£2.20 - 70.50£2.30 47.80£3.10
GCN 87.20+£5.11 62.10£1.80 75.65+3.24 79.124£3.07 73.30£5.29 51.20%5.13
CAPSGNN 86.67+£6.88 66.01£591 76.40+4.17 77.62£499 71.69£3.40 48.50£4.10

GraphSAGE 79.80£13.9 63.90+7.70 65.90+2.70 65.80+4.90 72.40+3.60 49.9045.00

CTQWformer 92.544+5.39 69.16+5.17 78.53+2.34 81.244+3.43 76.40+£1.91 47.47+7.84

Table 3: Graph classification results (% + standard deviation) comparing with GNN-based methods.
Best scores are in bold.

4.2 COMPARISONS WITH GNN APPROACHES

Baseline and Experimental Settings. We compare CTQWformer against seven GNN approaches.
The GNN-based baselines consist of (1) Graph Isomorphism Network (GIN-0) Xu et al.| (2018),
(2) Deep Graph Convolutional Neural (DGCNN) |Zhang et al.| (2018a), (3) PATCHY-SAN Con-
volutional Neural Network (PSCN) Niepert et al.| (2016), (4) Graph Attention Network (GAT)
Velickovi€ et al.| (2017), (5) Graph Convolutional Network (GCN) [Kipf & Welling| (2016), (6) Cap-
sule Graph Neural Network (CAPSGNN) |Xiny1 & Chen|(2018), and (7) Graph Sample and Aggre-
gation (GraphSAGE) Hamilton et al.[(2017). These baselines encompass convolutional, attention-
based, sorting-based, and capsule-based GNN models, providing a comprehensive comparison with
our proposed quantum walk-inspired framework. We follow the standard 10-fold cross-validation
setting for all datasets, where accuracy is reported as the mean and standard deviation over 10 folds.
Unless otherwise specified, we set the number of CTQWformer layer to 2, and the time steps to 4,
the hidden dimension is fixed to 64, and dropout is set to 0.3. We use Adam optimizer with a learn-
ing rate of 0.001. And train model for 300 epochs with early stop technique, we slightly adjust the
number of layers and time steps to obtain the best performance, within a small grid search range. For
baseline methods, we adopt the results reported from their original papers or widely used benchmark
studies in published papers|Nguyen et al.| (2022); Zhang et al.|(2018b) for fair comparison.

Experimental Results and Analysis. Table 3 shows that CTQWformer achieves the best or highly
competitive performance across all datasets except IMDB-M. A potential reason is that the dataset
does not provide original node features and consists of relatively small graphs, making it challenging
for models like CTQWformer that rely on meaningful node feature information. Nevertheless, the
results clearly indicate that CTQWformer successfully integrates CTQW into GNN approaches,
providing consistent improvements over conventional GNN baselines. These results demonstrate
the effectiveness of incorporating CTQW-based structural priors and temporal information into a
trainable deep learning architecture. Unlike traditional GNNs that rely on local message passing,
CTQWformer benefits from a global structural perspective via dynamical evolution of CTQW on
graphs, which allows the model to better capture complex topological and effectively incorporate
node features in graphs.

4.3 THE FURTHER ANALYSIS FOR CTQWFORMER

Model MUTAG PTC(MR) PROTEINS
CTQWformer 92.54+5.39 69.16+5.17 78.53+2.34
w/o QWGT 89.39+5.74 59.62+4.87 77.72+2.41
w/o QWGR 74.97+7.17 57.87£3.25 69.004+5.49

Table 4: Ablation study of CTQWformer on three datasets.

Ablation Study. To assess the contribution of each module in CTQWformer, we perform abla-
tion studies by removing the QWGT module and the QWGR module respectively. The results are
reported in Table 4. As shown in the table, we find that removing the QWGR module leads to a
significant performance drop across all three test datasets, with accuracy on MUTAG, for instance,
decreasing from 92.54% to 74.97%. This highlights the critical importance of modeling dynamical
evolution of CTQW to learn graph representations. In contrast, removing the QWGT module results

Under review as a conference paper at ICLR 2026

in a small performance decrease, indicating that while CTQW-based structural bias contributes pos-
itively, it plays a less dominant role compared to temporal evolution modeling. Meanwhile, we also
observe relatively large standard deviations in some cases, which may be attributed to the inherent
dynamics and fluctuation of CTQW evolution, further investigation into these properties remains an
important direction for future work.

Hyperparameter Analysis. We further investigate the sensitivity of key hyperparameters of
CTQWformer, focusing on both the time steps of CTQW and the network depth of the model.

MUTAG 67 —#- PTC(MR) MUTAG 60 ~#- PTC(MR)

©
N
)
@
&
©
S

©
s
(

363 67
e

Accuracy (%)
Accuracy (%)
©
8
Accuracy (%)

®
®

©
S
u

@
©

u

©

®
&
w
N
®
&

63
2 4 6 8 10 2 4 6 8 10 1 2 3 4 1 2 3 4

(a) T on MUTAG (b) T on PTC(MR) (¢) L on MUTAG (d) L on PTC(MR)

Figure 2: Sensitivity analysis of time steps 7" and network depth L.

Time Steps in CTQW. Since the dynamics of CTQW is adaptively guided by the learned Hamil-
tonian, and simulated by traversing all single-node initial states on the graph. We vary the number
of time steps T' € {2,4,6,8,10} to study the model’s sensitivity to the temporal granularity of
CTQW on MUTAG and PTC(MR) datasets. We observe that the classification accuracy on the
MUTAG dataset increases with the number of time steps at first and reaches its peak at time steps
T =4 (92.54%), indicating that moderate evolution time in CTQW captures informative structural
patterns. However, further increasing the time steps leads to a decline in performance, likely due
to quantum interference effects or over-smoothing, suggesting that an overly long CTQW evolution
may dilute discriminative information. While on the PTC(MR) dataset, increasing time steps from 2
to 6 improves accuracy significantly, indicating better temporal evolution feature capture. Beyond 6
steps, accuracy fluctuates and slightly drops, suggesting excessive steps may introduce redundancy.
Thus, 6 time steps offer the best balance between performance and complexity.

Number of Layers in CTQWformer. Besides, We vary the number of stacked CTQWformer
layers L € {1,2,3,4} to study the effect of network depth. As shown in Figure 3, On MUTAG
dataset, the model achieves the highest accuracy with a 2-layer network, outperforming shallower
and deeper configurations. This suggests that moderate depth balances representation power and
training stability, while excessive depth may cause overfitting or optimization difficulties. While on
PTC(MR) dataset, accuracy consistently decreases as the network depth increases from 1 layer to
4 layers, indicating that deeper networks may lead to over-smoothing or overfitting on this smaller
datasets, where node representations become indistinguishable and less informative. Overall, these
findings highlight the critical importance of judiciously configuring model depth in alignment with
the structural complexity and scale of datasets. Empirical evidence from both datasets indicates that
a moderate network depth offers a favorable trade-off between expressiveness and generalization,
while overly deep architectures tend to diminish performance, particularly in scenarios involving
smaller graphs.

5 CONCLUSION

In this paper, we have proposed CTQWformer, a novel CTQW-based Transformer model for graph
classification task. Our model realizes trainable CTQW on graphs by integrating both graph struc-
ture and node features into a learnable Hamiltonian, enabling the model to capture rich and intricate
graph structure information. Furthermore, the model incorporates a graph Transformer and a re-
current neural network, which are respectively designed to leverage static physical structural bias
and dynamic temporal evolution patterns derived from CTQW. Extensive experiments on multiple
benchmark datasets demonstrate the effectiveness and superiority of our method, highlighting the
potential of integrating quantum walk dynamics with graph neural networks for graph learning.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results. The full implementation
of CTQWformer, along with data preprocessing scripts and instructions for running the experiments,
is provided in the supplementary materials.

REFERENCES

Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani. Quantum walks on graphs.
In Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 50-59,
2001.

Lu Bai, Luca Rossi, Horst Bunke, and Edwin R Hancock. Attributed graph kernels using the jensen-
tsallis g-differences. In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, pp. 99-114. Springer, 2014.

Lu Bai, Luca Rossi, Andrea Torsello, and Edwin R Hancock. A quantum jensen—shannon graph
kernel for unattributed graphs. Pattern Recognition, 48(2):344-355, 2015.

Lu Bai, Lixin Cui, Yue Wang, Ming Li, Jing Li, Philip S Yu, and Edwin R Hancock. Hagqjsk:
Hierarchical-aligned quantum jensen-shannon kernels for graph classification. IEEE Transactions
on Knowledge and Data Engineering, 36(11):6370-6384, 2024.

Gabriele Corso, Hannes Stark, Stefanie Jegelka, Tommi Jaakkola, and Regina Barzilay. Graph
neural networks. Nature Reviews Methods Primers, 4(1):17, 2024.

Lixin Cui, Ming Li, Yue Wang, Lu Bai, and Edwin R Hancock. Aerk: Aligned entropic reproducing
kernels through continuous-time quantum walks. arXiv preprint arXiv:2303.03396, 2023.

Mark Goldsmith, Harto Saarinen, Guillermo Garcia-Pérez, Joonas Malmi, Matteo AC Rossi, and
Sabrina Maniscalco. Link prediction with continuous-time classical and quantum walks. Entropy,
25(5):730, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

David Haussler et al. Convolution kernels on discrete structures. Technical report, Technical report,
Department of Computer Science, University of California ..., 1999.

Karuna Kadian, Sunita Garhwal, and Ajay Kumar. Quantum walk and its application domains: A
systematic review. Computer Science Review, 41:100419, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5(1):6, 2020.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Dai Quoc Nguyen, Tu Dinh Nguyen, and Dinh Phung. Universal graph transformer self-attention
networks. In Companion Proceedings of the Web Conference 2022, pp. 193-196, 2022.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural net-
works for graphs. In International conference on machine learning, pp. 2014-2023. PMLR, 2016.

Ladislav Rampések, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

10

Under review as a conference paper at ICLR 2026

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt. Ef-
ficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp.
488-495. PMLR, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. [EEE transactions on neural networks and
learning systems, 32(1):4-24, 2020.

Zhang Xinyi and Lihui Chen. Capsule graph neural network. In International conference on learning
representations, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Ge Yan, Yehui Tang, and Junchi Yan. Towards a native quantum paradigm for graph representation
learning: A sampling-based recurrent embedding approach. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2160-2168, 2022.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365-1374,
2015.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877-28888, 2021.

Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances
in Neural Information Processing Systems, 33:17009-17021, 2020.

Lei Yu, Hongyang Chen, Jingsong Lv, and Linyao Yang. Gqwformer: A quantum-based transformer
for graph representation learning. arXiv preprint arXiv:2412.02285, 2024.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph trans-
former networks. Advances in neural information processing systems, 32, 2019.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018a.

Yi Zhang, Lulu Wang, and Liandong Wang. A comprehensive evaluation of graph kernels for
unattributed graphs. Entropy, 20:984, 2018b.

11

Under review as a conference paper at ICLR 2026

A COMPLEXITY ANALYZE OF CTQWFORMER

We analyze the computational and memory costs of the core CTQW computations used in CTQW-
former and summarize practical trade-offs for scaling.

Exact matrix-exponential. Given a graph with n nodes and a Hamiltonian H € R™*", computing
the matrix exponential U (t) = exp~ ¢ by direct dense methods (e.g., scaling-and-squaring + Padé)
requires O(n?) time and O(n?) memory per time step. If we compute U (t) at T distinct time points
independently, the worst-case time complexity is

Timegense = O(T - n?), Space ., = O(n?),

and then we store the full evolution tensor P € RT*"*" the space grows to O(T - n?).

Memory trade-offs and what to store. CTQWformer uses CTQW-derived information in two
ways: (i) the final-time structural bias Pr for the Graph Transformer module, and (ii) temporal
sequences for the Graph recurrent module. Storing the full pairwise evolution tensor P € RT*nxn
is often the dominant memory cost (O(Tn?)).

Structural Bias of CTQW in The QWGT module Specifically, given the raw transition proba-
bility matrix PT with entries piTj, we normalize along the column dimension to obtain a stochastic
matrix

T
5T Dij
T — (14)
ij T
> i Pirj
ensuring that), 155 = 1 for each j. The structural bias is then defined as
B =log (1+15T), (15)

which stabilizes training and smooths the influence of CTQW probabilities when added to the atten-
tion logits.

Temporal Sequence of CTQW in the QWGR module In addition to the final-time distribution,
we also leverage the temporal evolution information of CTQW. The temporal evulution tensor P is
treated as a sequence input, where Pt € RV*N,

For each node i, we extract its temporal sequence from the diagonal entries of P?:

si = {pli Y1, (16)

where p!; denotes the probability that the walker remains at node i at time step ¢. These node-level
time series are projected into a latent space and then fed into a bidirectional GRU (BiGRU) encoder:

hi = BlGRU(Sl), (17)

where h; is the middle representation of hidden layer capturing both forward and backward temporal
dependencies of node i. The resulting node embeddings {h;}¥, are aggregated by mean pooling:

1 N
he = N;hi, (18)

and further transformed by a feed-forward readout network to obtain the final graph-level embed-
ding.

Fusion Strategy. Finally, the two branches operate in parallel and produce graph-level vectors:
Ogwar from the QWGT module and Ogwgr from the QWGR module. They are fused by concate-
nation:

Otused = [Oqwar || Oqwar] s

The fused representation is then passed through a feed-forward projection to form the final graph
embedding used for classification.

12

Under review as a conference paper at ICLR 2026

B NUMERICAL SIMULATION OF CONTINUOUS-TIME QUANTUM WALK

For the numerical simulations of CTQWs, we utilize PyTorch for the matrix exponential computa-
tions, running on an RTX 4090 GPU, with a CPU configuration of 16-core Intel(R) Xeon(R) Gold
6430 and 120GB RAM. Additional implementation and training details can be found in the supple-
mentary materials.

It is worth noting that under the scale of the benchmark datasets used in this work, directly com-
puting the evolution operator U(t) = e~ is feasible with current hardware, and the numeri-
cal stability is well maintained. More importantly, the design of CTQWformer is not restricted to
small graphs. In our implementation, the matrix exponential e~** is computed using PyTorch’s
built-in torch.matrixz_exp , which internally relies on a scaling-and-squaring with Padé approxi-
mation method. This ensures differentiability and compatibility with automatic back-propagation.
For small to medium-scale benchmarks, we adopt the exact matrix exponential to minimize numeri-
cal approximation errors and provide a clean evaluation of the model itself. For larger graphs, these
approximations can be seamlessly integrated without altering the framework. In fact, the model only
requires applying U (¢) to vectors (i.e., computing U (¢)v), which can be efficiently approximated on
large graphs using Krylov subspace or Lanczos methods without explicitly forming the full matrix
exponential. Such approximations scale similarly to sparse matrix—vector multiplications, making
them applicable to graphs with tens of thousands of nodes or more. Therefore, while our exper-
iments focus on small- to medium-scale graphs, CTQWformer is inherently scalable and can be
naturally extended to large-scale graph learning tasks.

C ON THE COMPARISON WITH GRAPH TRANSFORMERS

We note that graph Transformer architectures such as Graphormer |Ying et al.|(2021)) and GraphGPS
Rampasek et al.|(2022). Graphormer enhances Transformer for graphs via integrating structural bi-
ases and centrality encoding, while GraphGPS unifies local, global and relative attention to capture
multi-scale graph structure information. They are primarily designed for large-scale datasets (e.g.,
OGB benchmarks), and their scalability and structural encodings show advantages. However, re-
producing their results on TU collection datasets is non-trivial, as their original implementations are
not tailored for small-scale graph classification tasks and often require heavy hyperparameter tuning
to yield stable results. More importantly, our CTQWformer is not a pure graph Transformer: it is
a hybrid framework that integrates quantum walk dynamics with graph Transformers and recurrent
network, thereby providing complementary modeling of temporal evolution beyond the structural
biases used in Graphormer/GraphGPS. We therefore regard these models as orthogonal to our con-
tribution, and leave extensive large-scale comparisons to future work.

D THE USAGE DISCLOSURE OF LARGE LANGUAGE MODELS

We used large language models (LLMs), specifically ChatGPT and Deepseek, as assistive tools
during the preparation of this paper. The LLM was employed only for language refinement and
improving readability, such as rephrasing sentences, polishing grammar, and adjusting writing style,
and for code debugging support in the experiments. All research ideas, model design, theoretical
analysis, and experimental implementation were conceived and carried out solely by the authors.
The LLM did not contribute to the development of research methodology, experimental setup, or
interpretation of results. The authors take full responsibility for the content of this paper.

13

	Introduction
	Related Works
	Graph learning
	Continuous-Time Quantum Walk

	Method
	The Overview of the CTQWformer Model
	The Quantum Walk Encoder
	The Quantum Walk-Graph Transformer Module
	The Quantum Walk-Graph Recurrent Module
	Fusion and Prediction

	Experiments
	Comparisons with Graph Kernel Methods
	Comparisons with GNN Approaches
	The Further Analysis for CTQWformer

	Conclusion
	Complexity analyze of CTQWformer
	Numerical simulation of continuous-time quantum walk
	On the comparison with graph Transformers
	The Usage Disclosure of large language models

