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Abstract

Machine learning models are effective in identifying patterns within independently and iden-
tically distributed (i.i.d.) data. However, this assumption rarely holds in real-world appli-
cations, where violations of i.i.d. can hinder both generalization and explainability. Causal
Machine Learning is an emerging discipline that addresses these limitations by integrating
causal reasoning, an element typically absent from conventional approaches. In this work,
we introduce a novel causal machine learning strategy that emphasizes the role of spurious
variable interactions, a concept grounded in the Independent Causal Mechanisms (ICM)
principle. We argue that recognizing and constraining these spurious interactions is essen-
tial for improving model robustness and interpretability. To that end, we introduce a novel
approach for incorporating interaction restrictions into neural network architectures and
tree-based models such as random forest and gradient boosting. When applied to real-world
scenarios, our method demonstrates that predictive models explicitly constrained to avoid
spurious interactions exhibit enhanced generalization performance across diverse domains,
outperforming their unconstrained counterparts.

1 Introduction

Machine learning techniques have achieved impressive results in pattern recognition and prediction tasks
under the assumption that data are independently and identically distributed (i.i.d.). However, in real-world
applications, this assumption often breaks down, posing significant challenges for model generalization. A
key limitation lies in the fact that conventional machine learning models typically do not incorporate causal
knowledge, restricting their ability to adapt across diverse environments or respond reliably to interventions
(Peters et al.l 2017, |Goyal & Bengio, [2022; |Pearl, 2019; |Ahmed et al. 2020). To bridge this gap, there has
been a growing interest in the field of Causal Machine Learning, which aims to infer causal relationships
from data and enhance conventional machine learning techniques by integrating causal knowledge that is
typically overlooked by standard approaches (Kaddour et al.l 2022} Binkyte et al., [2025)).

Understanding real-world problems requires recognizing that they are shaped by underlying data-generating
processes. These processes can often be captured through hierarchical representations, as highlighted by
Scholkopf et al| (2021) in the context of causal representation. In their work, the authors note that the
gold standard for modeling natural phenomena is typically a system of coupled differential equations, which
describe the physical mechanisms driving a system’s evolution over time. Such models enable the prediction
of future behavior, the assessment of intervention impacts, and the identification of statistical dependencies
among variables.

While differential equations offer a comprehensive description of systems and their causal structures, statis-
tical models often provide a more limited understanding. They generally focus on how certain variables can
predict others under fixed experimental conditions, without referencing the underlying dynamic processes.
Statistical and machine learning models are valuable for learning from i.i.d. data but often fall short when
it comes to predicting the effects of interventions. Causal modeling offers a middle ground between these
approaches, aiming to generate insights and predict intervention outcomes through data-driven methods. It
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thereby substitutes some of the expert knowledge required for differential equations with weaker and more
generic assumptions.

To generalize effectively beyond their training data, machine learning models must capture key properties of
the underlying data-generating process. This is made possible through inductive biases, built-in assumptions
that steer the learning process toward more plausible and generalizable solutions (Baxter} [2000). By narrow-
ing the hypothesis space, inductive biases help prevent overfitting and enhance model robustness. Examples
include regularization methods, model selection strategies, parameter constraints, and architectural choices
in neural networks.

Grounded in causal inference theory, the Independent Causal Mechanisms (ICM) principle (Peters et al.,
2017) states that the generative process of a system’s variables consists of autonomous modules, each respon-
sible for a distinct part of the process. These modules operate independently, meaning that the conditional
distribution of each variable, given its direct causes, remains stable even when other mechanisms in the
system are altered. This principle captures core ideas in causal reasoning, including modularity, subsystem
autonomy, and the independent intervenability of causal variables. When applied to causal factorization,
the ICM principle implies that the different components of a system should be independent in two key ways.
First, if we intervene on one mechanism, changing how a particular variable depends on its direct causes,
it should not affect how any of the other variables are generated. Second, knowing how some parts of the
system work should not give us any information about how other parts work; each mechanism operates
independently of the others.

Machine learning models that do not account for these independences tend to deviate from the true data-
generating process, leading to a lack of robustness against interventions and data shifts (Scholkopf et al.)
2021). While such models may perform well on training data, they frequently fail to generalize to new,
unseen scenarios where parts of the underlying generative mechanisms have changed (Subbaswamy et al.,
2022]).

In this work, we introduce a new approach to improving out-of-distribution robustness by incorporating the
inductive bias implied by the Independent Causal Mechanism (ICM) assumption directly into predictive
modeling. Our first contribution is to show that constraining interactions according to ICM, an idea previ-
ously applied mainly in causal inference (Pros & Vitria, |[2025;2023)), can also play a central role in a different
context: robustness to distributional shift. We provide extensive examples illustrating its implications across
different types of shifts. Second, we propose a new modification of the masking mechanism from [Parafita &
Vitria| (2022)) that allows this bias to be encoded efficiently in neural networks. For completeness, we also
describe how the same inductive bias can be integrated into tree-based models, even though we make no
algorithmic contribution in that setting. At a high level, our method works by enforcing structured interac-
tion constraints that reflect the independencies of the true data-generating process, leading to models that
generalize more reliably, remain stable under interventions, and offer improved interpretability.

In Section 2, we highlight the role of inductive biases in developing robust models and interpret distribution
shifts as interventions within a causal framework. Section 3 introduces our approach to interaction selection,
emphasizing the need to prevent spurious interactions that deviate from the true data-generating process.
Section 4 details our methodology for incorporating causal inductive biases into both tree-based and neural
network models. In Section 5, we present experimental results on synthetic and real-world datasets, demon-
strating the effectiveness of our approach in improving out-of-distribution performance. Finally, Section
6 concludes with a discussion of our findings and their implications for future research in causal machine
learning.

2 Inductive biases for robust models

Our first objective is to prevent predictive models from relying on variable associations that are not robust
under distribution shifts. Such spurious associations may hold in the training data but fail to persist when
the underlying data distribution changes, leading models to make unreliable or misleading predictions. This
vulnerability significantly limits the model’s applicability in real-world settings, where conditions often differ
from those seen during training due to interventions, environmental changes, or domain shifts. Ensuring
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Figure 1: The Markov boundary of a target variable Y (shown in blue) is the minimal set of variables
{X1, X5, X3, X4, X5, X6} (shaded region) that renders all other variables conditionally independent of Y.
This set includes the direct causes, direct effects, and the direct causes of the direct effects of Y. Variables
outside the boundary (shown in gray) do not provide additional information about Y once the Markov
boundary is known. Identifying the Markov boundary is crucial for tasks such as feature selection, causal
discovery, and interpretability in machine learning.

robustness to these shifts is therefore essential for building models that maintain their performance across
diverse contexts. To achieve this, it is important to identify and prioritize stable, causally grounded relation-
ships over purely statistical associations, thereby aligning model behavior more closely with the underlying
data-generating mechanisms.

A data or distribution shift can be interpreted as a form of intervention on the data-generating process
(Subbaswamy et al., 2022)). More broadly, dataset shifts refer to discrepancies between the environment
in which a model is trained and the one in which it is ultimately deployed. These shifts often manifest
as changes in the statistical properties of the data, such as feature distributions, causal mechanisms, or
outcome-generating processes, and can arise from various real-world factors, including changes in population
demographics, sensor noise, policy interventions, or external events.

By viewing such shifts through the lens of causal inference, we gain a principled framework for analyzing
and addressing them. Specifically, understanding distribution shifts as interventions allows us to reason
about how and why the data distribution changes, and to distinguish between stable (invariant) and un-
stable (intervention-sensitive) components of the model. This causal perspective provides a foundation for
developing methods that enhance model robustness by focusing on features and relationships that remain
consistent across environments. Ultimately, incorporating causal reasoning into the treatment of distribution
shifts helps bridge the gap between training conditions and deployment scenarios, leading to models that
generalize more reliably in dynamic, real-world settings.

2.1 Causal Machine Learning

Causal approaches for learning models that are robust and transferable across domains can be broadly cate-
gorized into two main classes (Kaddour et al.|[2022). The first, invariant feature learning (Arjovsky et al.,
2020), focuses on identifying a set of features C' such that the conditional distribution P(Y|C) remains stable
across different environments. The goal is to find representations that preserve the predictive relationship to
the target variable Y regardless of shifts in the input distribution. The second class, invariant mechanism
learning (Scholkopf et all [2021]), seeks to uncover the underlying data-generating mechanisms that define
different interventional distributions. This approach emphasizes modeling the structure of the causal process
itself, enabling the model to adapt to changes that arise from interventions or shifts in the environment.

Invariant feature learning is a type of variable selection. The task is to identify features of the data that are
predictive of the outcome in distinct environments. Variables closer to the target are considered better pre-
dictors, leading to causal feature selection approaches. For example, from a causal mechanisms perspective,
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the causal parents of the outcome are always predictive except for a shift in the distribution of the outcome
itself.

In general, causality-based feature selection methods aim to obtain the Markov boundary of the target
variable (see Figure[l)) for achieving explainable and robust machine learning methods (Yu et al., 2020). The
Markov boundary of the target variable is the minimal feature subset with maximum predictivity since all
other features are probabilistically independent of the target variable conditioning on its Markov boundary
(Pearl, |2014; Koller & Sahami, |1996; Tsamardinos & Aliferis| 2003)). Other approaches include focusing on
learning a sufficient subset of invariant features (Kim et al., 2025) or using causal inference to detect causal
variables unaffected by the environment (Su & Wangj, 2024).

Invariant Mechanism Learning (IML) goes beyond invariant feature learning by aiming to uncover a collection
of data-generating mechanisms that remain stable across different interventional distributions. Grounded
in the principle of Independent Mechanisms, IML seeks to disentangle what is being conveyed from how
it is conveyed. This is similar to how humans can understand spoken content regardless of whether it is
delivered in a loud or quiet voice, we separate the message from the mode of delivery. In the same way, IML
attempts to isolate the underlying causal mechanisms from the varying contexts or environments in which
they operate. IML seeks to model interventions on subsets of these confounders to improve robustness in
predictions. Notably, Yue et al.| (2021) suggest framing unsupervised domain adaptation for classification as
the task of uncovering a set of disentangled causal mechanisms that map the source domain to the target
domain. In a different vein, methods such as those proposed by [Cui & Athey| (2022)) leverage techniques
like reweighting and counterfactual reasoning to introduce causal biases that enhance model robustness and
interpretability. These strategies reflect a broader trend toward integrating causal insights into machine
learning to improve generalization across environments.

In this work, we focus on constraining the functional form of predictive models by explicitly accounting for
interactions between variables. To better encode the set of independencies implied by the ICM assumption,
the model must adhere to specific constraints that reflect the structure of the true data-generating process.
In Section [3] we formalize and illustrate these constraints, both in the general case and in scenarios where the
nature of the interventions is known. This allows us to design models that are not only robust to distribution
shifts but also more interpretable.

2.2 ML and robustness to interventions

In certain settings, the nature of the intervention inducing a distributional shift is known a priori. For
instance, in medical imaging, a predictive model trained on data acquired from one imaging device may be
applied to data from a different device, resulting in systematic discrepancies in resolution, contrast, or noise
characteristics. Such covariate shifts can introduce distributional biases that compromise model performance
if not properly accounted for. When the intervention is identifiable, it is possible to design models that are
intrinsically robust to these shifts by explicitly modeling and incorporating the underlying changes in the
data-generating process.

Kaddour et al.| (2022)) propose an approach that incorporates information from the causal graph as a form
of regularization when interventions affect non-causal features. In contrast, other methods focus on in-
terventions within the causal structure itself. For example, Makar et al.| (2022)) introduce a causally mo-
tivated regularization technique that uses auxiliary labels to discourage models from relying on shortcut
features, thereby enhancing robustness under distribution shifts caused by known interventions. Similarly,
Subbaswamy et al.| (2022) present a unifying causal framework that integrates various strategies for building
robust predictive models in the presence of known interventions. These approaches are founded on the notion
of stable distributions, which serve as target distributions for mitigating the effects of instability induced by
distributional shifts.

This framework introduced by [Subbaswamy et al.| (2022) further introduces a causal hierarchy of stable
distributions, offering theoretical guarantees regarding the stability and generalizability of predictive models
across diverse environments. The first level of their framework (Level 1) focuses on observational con-
ditional distributions, addressing the challenge of feature selection under known interventions. This is
achieved by, given a set of features X, identifying a subset Z C X such that the conditional distribution
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P(Y | Z) remains invariant across environments. The selection process excludes variables associated with
unstable edges in the causal graph, ensuring that P(Y | Z) is robust to changes elsewhere in the system.
While this strategy may omit stable yet predictive pathways, potentially impacting model accuracy, it offers
strong robustness guarantees. Importantly, it operates solely on observational data, making it particularly
valuable in settings where interventional or counterfactual information is not accessible.

The second level uses conditional interventional distributions (Level 2), employing interventional distributions
of the form P(Y | do(W), Z), W € X, where the do-operator removes the influence of unstable mechanisms by
graphically “cutting” edges into intervened variables. Unlike Level 1, this method retains stable dependencies
by intervening on variables W whose mechanisms are subject to shifts. This method is particularly useful
when domain knowledge identifies specific mutable mechanisms (e.g., hospital-specific protocols) but requires
identifiability conditions (e.g., no unmeasured confounding of W).

3 Interaction Selection

To create robust and explainable predictive models, it is necessary to approximate the distribution of the data
generating process, as only associations arising from causal relationships reflect the intrinsic dependencies
between variables (Cui & Athey, 2022)). Other types of associations are spurious and depend on the joint
distribution of features and data collection processes, making them sensitive to changes in these factors and
fail to preserve the independence structure inherent to Independent Causal Mechanisms (ICMs).

In causal inference, the term mechanism describes the underlying processes or relationships that deter-
mine how a certain variable depends on its direct causes. Each mechanism captures a stable, autonomous
relationship, meaning it remains consistent even if other parts of the system change.

Causal graphs provide a simplified visual representation of these relationships. In these graphs, each node
represents a variable, and arrows indicate direct causal influences. However, a single node can represent
multiple distinct mechanisms because the mathematical relationship (or structural equation) between a
variable and its direct causes might encode separate, independent causal pathways.

For instance, the mechanical energy of an object is the sum of its kinetic and potential energy, given by
E= %va + mgh, where the mass m influences energy through both velocity v and height i independently.
Although {m, v, h} are all direct causes of F in the causal graph, the structure of the equation reveals two
distinct mechanisms: one involving {E, m,v} and another involving {E, m, g, h}. Both mechanisms operate
independently. Changing the height h does not affect how mass m and velocity v produce kinetic energy, and
similarly, altering velocity v does not impact the way height h, gravity g, and mass m determine potential
energy.

While causal graphs help visualize direct causal relationships clearly, they alone don’t always explicitly rep-
resent these independent mechanisms. To fully and explicitly capture these independent causal mechanisms,
researchers use Structural Causal Models (SCMs) (Pearl, [2009). SCMs extend causal graphs by specifying
the exact mathematical form of the relationships, making explicit the independence between different causal
processes.

In this context, distribution shifts can arise under two primary conditions: (1) when the domain of a
variable changes, for example, due to sampling bias or external interventions that modify its observed range;
or (2) when there is a change in the underlying causal mechanisms themselves, for instance through shifts
in parameters or structural alterations in the data-generating process. The former scenario impacts the
distribution of observed variables without modifying their intrinsic functional relationships, whereas the
latter scenario directly alters the mechanisms that define interactions among variables, resulting in more
substantial and fundamental changes in predictive behavior.

To identify stable distributions that accurately approximate the causal relationships inherent in the data-
generating process, we argue that it is essential to explicitly consider interactions among variables. Formally,
a function F'(x) is said to exhibit an interaction between two variables x; and xy, if the change in the value
of F(x) resulting from modifying the value of z; depends explicitly on the value taken by zy. For numeric
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variables, this interaction is expressed as
0*F

0z 0z, 70 )

or by an analogous expression for categorical variables including finite differences.

As an illustrative example, consider the relationship between physical exercise and weight change. One might
hypothesize that an increase in daily exercise duration leads to a reduction in body weight. However, the
magnitude of this effect may depend on an individual’s daily caloric intake. For individuals with relatively
low caloric intake, increasing exercise from 30 to 60 minutes per day may result in substantial weight loss. In
contrast, for individuals with high caloric intake, the same increase in exercise duration may yield minimal
or negligible weight change, as the additional calories consumed may offset the energy expended through
exercise.

In this context, we aim to develop a predictive model to estimate weight change based on daily exercise and
calorie intake. An interaction between these variables implies that the effect of one predictor (e.g., exercise)
on weight change depends on the level of the other (e.g., caloric intake). Accounting for such interactions is
crucial to enhance both the accuracy and the interpretability of the model.

In the same context, consider the variables that represent exercise duration and age. Suppose we find
that increasing daily exercise, for example, from 30 to 60 minutes, leads to a similar amount of weight
loss regardless of a person’s age. Likewise, any influence that age might have on weight change (such as a
slower metabolism with aging) occurs independently of how much the person exercises. In this case, the two
variables, exercise and age, do not interact, because the effect of one does not depend on the level of the
other. Including this interaction term in a predictive model allows the effect of one variable to depend on the
level of another, capturing more complex relationships in the data. This makes interpretation more nuanced.
It also increases model complexity and can lead to overfitting if the interaction is not truly supported by the
data.

Even a highly accurate predictive model can contain substantial interaction effects that are not supported by
the data generation process. These spurious interactions can occur when there is a high degree of collinearity
among some (or all) of the predictor variables in the training data. Since the data-generating process does
not contain such interactions, predictions based on them will not be robust to interventions and thus to
distribution shifts.

Algorithm 1 Variable Interaction Selection

: Input: Set of variables X, causal knowledge (graph or expert knowledge)
: Initialize empty collection G «+ ()
: for each known stable ICM M do
Initialize empty group G < 0
for each variable x € X do

if x belongs to mechanism M then

Add z to G

end if
end for
Add group G to G
: end for
: Output: Collection G of variable subsets, where interactions are allowed only within each subset

© P NP
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For instance, in Example|l] directly modelling P(Y'|A, B) could include interactions between A and B which
are not present in any mechanism when factorized according to the causal graph assumption P(A,Y, B) =
P(A)P(Y|A)P(B|Y). From a causal perspective, the parents of a target variable ¥ remain predictive of YV
under any interventional distribution, except when Y itself is directly intervened upon. While incorporating
additional variable interactions can enhance model performance, it also makes the model vulnerable to
interventions affecting other parts of the data generating process.
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Causal assumptions, expressed as partial expert knowledge or a complete causal graph, can provide infor-
mation about the nature of the interactions between variables in the data-generating process. For example,
consider the Markov blanket in Figure 1. Variables X; and X, correspond to distinct mechanisms, so using
an interaction between these two variables to predict the target Y would not be robust to domain shift. In
algorithm 1 we detail the interaction selection process.

Alternatively, by carefully selecting interactions based on causal relationships, we can enhance the explain-
ability and robustness of predictive models to distribution shifts, improving the reliability of their predictions
even when the underlying data distribution changes. In Example 1 we use a simple case to illustrate the
impact of using an interaction not present in the real model when the model is used for out-of-distribution
prediction.

Example 1

Description

The dataset simulates the relationship between three variables:

. . ) . Data Generating Process
attending a coding bootcamp (A), programming skills (Y'), and

landing a high-paying tech job (B). Attending a coding boot- B=3

camp (A) directly contributes to developing programming skills A~ N(@©,1)

(Y) through focused and intensive training. These programming ’

skills translate the education and experience gained at the boot- Y =BA+N(0,1)
camp into tangible qualifications, which are critical for competing B =2Y + N(0,4)
in the tech industry. Ultimately, the acquisition of programming Bint ~ N(0,2)

skills enables the outcome of landing a high-paying tech job (B). Yint = BintA + N(0, 1)

This setting implies that the interaction between A and B is spu-
rious. In the absence of intervention, the best predictive model is
an unrestricted one that includes both A and B, capturing their
observed relationship. However, under intervention such as the
change of industry, where the relationship between Y and B is
modified, a restricted model that prevents this interaction per-

Known mechanisms

forms better. However, in such cases, a causal feature selection Y =fr(4,er)
strategy such as the Level 1 methods described in Section [3] which
rely on a model using only A, yields the most accurate results by
isolating the direct effect of the intervention.
T e —
| A ) { Y ) :/B \\
N N4 N
Figure 2: Causal graph for example 1.
Results
Model Test MSE (SD) | Intervention MSE (SD)
Unconstrained 1.111 (0.171) 11.421 (10.204)
Interaction Constraints 1.113 (0.180) 7.675 (6.598)
Stable Features 4.385 (0.689) 3.904 (0.819)

Table 1: Test and intervention MSE results for different models. Unconstrained is a regular predictive
model using both A and B features, Interaction Constraintsuses the approach described in section
Fi;fl to remove the interaction between A and B and Stable Features model uses only A.

In addition to enhancing out-of-distribution performance, developing a model that more closely aligns with
the true data-generating process can improve explainability, as variable contributions become more strongly
correlated with true causal variable contributions. Figure [3|illustrates the correlation between SHAP values
for models with and without interaction terms and the true causal model as noise levels increase, in the
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Figure 3: Correlation between true Data Generating Process SHAP values and model SHAP values for
ICM-constrained and unconstrained models under varying noise scenarios. The constrained model maintains
higher correlation as noise increases. Results averaged over 100 runs (max standard deviation < 0.01).

scenario described in Example 1. While the unconstrained model accurately captures the causal model
under low noise conditions, its correlation with the true causal model diminishes as noise increases. This
issue can be mitigated by incorporating interaction selection into the model, thereby maintaining closer
alignment with the true causal model even under higher noise levels.

So far, we have treated interventions as unknown distribution shifts that may occur after model training.
However, in practice, certain interventions can be anticipated, such as policy changes, experimental condi-
tions, or domain-specific adjustments. When the nature of an intervention is known in advance, for example
the unstable mechanisms in Example 2 can be identified in the term P(O|S, D), specialized methods can be
employed to explicitly account for its effects during model development.

Interaction selection under known intervention

When the intervention is known, we can leverage the methodological approaches outlined in Section 2.2.
These methods provide a structured framework for incorporating prior knowledge of the intervention into the
model, thereby improving inference and prediction accuracy. By explicitly modeling the known intervention,
we can reduce uncertainty and enhance the interpretability of results.

Additionally, the methods introduced in Section [3] are compatible with the interaction selection approach
described in the previous section. This compatibility allows for a unified modeling framework where both
intervention knowledge and interaction effects are simultaneously accounted for. By integrating these two
approaches, we can refine our analysis to better capture the underlying causal mechanisms and dependencies
within the data.

To illustrate the practical advantages of this combined approach, we consider Example 2, which presents a
case where both known intervention methods and interaction selection play a crucial role. In this example,
the intervention introduces structured changes in the system, and interaction effects further modulate the
outcome. By applying the integrated model, we demonstrate how the combined use of these methods leads
to more precise estimations and improved interpretability compared to using either method in isolation.

For a concise summary of the applicable methods under different conditions of intervention knowledge and
interaction complexity, we refer to Table[d This table provides a structured overview of the methodological
choices available, facilitating the selection of the most appropriate approach based on the specific character-
istics of the problem at hand.
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Example 2

Description Data Generating Process
Example based in the real life case described in|Rhee et al.| (2017));

Subbaswamy et al.[(2022). In this scenario, the prevalence of sep- p=3.

sis (S) is the target variable. Three categories of patient data D ~ N(0,1)

influence sepsis detection: vital signs (V) (e.g., heart rate, respi- S = BD + N(0,2)

ratory rate, temperature), lab test results (L) (e.g., lactate levels), O=(55—D+N(21)>0

and demographics (D) (e.g., age, gender). For patients who de-

velop sepsis, physiologic data collected before the onset of sepsis V =DS+N(0,1)

is used. For non-sepsis patients, all available data until hospital L=S+D+20+N(0,1)
discharge is considered. Time-series features, such as minimum,
maximum, and median values, were derived for each variable. 8~ N(0,1)

)

Unlike vital signs, lab tests are not always ordered (O) at con-
sistent intervals, leading to missing values. To account for this, Oy = (BSD + N(2,1)) > 0

a binary missingness indicator was introduced. However, lab test ~ Lint = S 4+ D + 20in, + N(0,1)
ordering practices (O) vary between hospitals, resulting in shifts

in the conditional distribution P(O | S, D). These variations cause

differences in missingness patterns across datasets, making it chal-  Known mechanisms
lenging to build a model that generalizes across institutions.
Standard feature selection methods fall short here because only S = fs(D,es)

demographics (D) and vital signs (V) remain stable after a change
of institution. To address this, a Level 2 method can help build

a more robust model. However, even Level 2 approaches may _

. N : . V=fv(D,Sev)
include spurious interactions, so refining the model further by ac-

counting for these can lead to better results. L= fL(S,D,0,er)

Figure 4: Causal graph for example 2.

Results
Model Test MSE (SD) | Intervention MSE (SD)
Unconstrained 0.653 (0.005) 3.613 (0.060)
Lvl 1 - Stable Features 2.465 (0.022) 2.484 (0.024)
Tv1 2 - Interventional distribution | 0.660 (0.005) 1.816 (0.035)
Lvl 2 + Interaction Constraints 0.702 (0.005) 1.798 (0.032)

Table 2: Test and intervention MSE results for different models. Unconstrained is a regular predictive
model using all features, Lvl 1 and 2 use the approaches described in [3| and interaction constraints
uses the approach described in section to

prevent interactions between the stable ICM.
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3.1 Mechanism level shifts

While feature selection could address the scenario presented in Example 1, real-world cases often exhibit
more complexity. A single variable can participate in multiple causal mechanisms simultaneously, making

straightforward selection insufficient. This issue frequently arises in practical applications.

Example 3

Description

This scenario represents a causal framework for understanding
how access to education (A), socioeconomic status (B), and
health status (C) collectively influence career success (Y). Ac-
cess to education (A) plays a pivotal role in shaping intermedi-
ate factors such as educational attainment, skills, or qualifica-
tions, which directly affect career success (Y). Socioeconomic
status (B) impacts Y through access to resources like tuition
or mentorship and stress levels, while also interacting with A
by influencing the quality of education accessible and with C
through its effect on health outcomes. Health status (C) deter-
mines the physical and mental ability to succeed in education
or work. Career success (Y) emerges from a complex interplay
of these factors, influenced by intermediary variables such as
realized health, opportunities, and skills.

In the absence of intervention, an unrestricted model incorpo-
rating A, B, and C is optimal as it captures the full range of
interactions. However, when an intervention, such as a country
providing free healthcare, disrupts the natural interplay (e.g.,
mitigating the influence of B on C), the relationship between
variables is modified. In such cases, generating a model that
adjusts for these changes, rather than discarding all variables
involved in the intervention, can outperform both unrestricted
models and those solely reliant on causally robust features. The
effectiveness of this adjusted model depends on the magnitude
and nature of the intervention.

Data Generating Process

e ~N(0,1)

Bint ~ N(=3,1).
Yine = 34; + 2C; + Bint A Bi+
ar 33101 I €y
€ ~ ./\/’(O7 2).

Known mechanisms
Y = fi(A,e1) + f2(C,e2)+

+ f4(B7C7 64)

VI N VI
LA (8 ) (¢
N N _
X
(v )
A4
Figure 5: Causal graph for example 3.
Results
Model Test MSE (SD) | Intervention MSE (SD)
Unconstrained 11.267 (4.501) 30.849 (11.407)

Interaction constraints

22.734 (6.686)

26.411 (3.768)

Stable Features

32.700 (8.050)

35.663 (9.478)

uses only C.

Table 3: Test and intervention MSE results for Decision Tree models with two intervention metrics.
Unconstrained is a regular predictive model using all features, Interaction Constraints uses the ap-
proach described in section [£.1]to remove the interaction between A and B and Stable Features model

10
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Recommended Methods and Explanation

Scenario
No distribution
shift

Traditional machine learning methods suffice. No special causal con-
siderations are needed for model training or evaluation. Standard
supervised learning techniques perform well in this setting.

Known distribution
shift Causal graph
available

A known causal graph allows for precise handling of distribution shifts
by selecting stable features or applying advanced methods such as
those in |Subbaswamy et al.| (2022)), provided the assumptions are
met. Knowledge of the graph structure also enables the detection
and prevention of interactions related to the known shift.

Known distribution
shift Causal graph
unavailable

Even without a causal graph, domain expertise about the shift often
exists. This knowledge can inform the identification of stable mech-
anisms and guide feature selection and interaction constraints.

Unknown distribu-
tion shift Causal
graph available

Methods such as |Cui & Athey| (2022)) offer stability guarantees un-
der certain conditions, even when the nature of the shift is unknown.
Knowledge of the graph structure also enables the detection and pre-
vention of spurious interactions.

Unknown distribu-
tion shift Causal
graph unavailable

In the absence of both graph and shift knowledge, unstructured ex-
pert knowledge can help hypothesize stable variables and mecha-
nisms. These can inform feature selection and assumptions of in-

dependence between mechanisms.

Table 4: Method Selection Guide for Different Causal Learning Scenarios

In Example 3, we illustrate a scenario where variable selection alone fails to provide a reliable solution. In such
cases, simply removing or retaining variables does not adequately capture the underlying causal structure.
Instead, the functional form of the model must be carefully constrained to ensure robustness, particularly in
out-of-distribution settings. This need for structural constraints is not just theoretical, it emerges in many
real-world problems where interventions, dependencies, and latent factors influence observed outcomes.

To further demonstrate the relevance of this issue, we present a real-world case study in Experiment
This experiment highlights how failing to account for overlapping causal mechanisms can lead to poor
generalization, and how imposing appropriate functional constraints results in a more robust model.

3.2 Preventing interactions between variables in nonlinear models

To preserve the independence structure implied by the Independent Causal Mechanisms (ICM) assumption,
models must be appropriately constrained to prevent interactions between variables. These constraints
can be formulated by requiring that the mixed partial derivatives between variables belonging to distinct
mechanisms, and therefore expected not to interact, are equal to zero.

Formally, given a set of K Independent Causal Mechanisms (ICMs) in the data generating process, let G,
denote the subset of variables involved in the k-th ICM. The model f(X) must adhere to the following
constraints:

o
(“)xi a.%'j

or by an analogous expression for categorical variables including finite differences (detailed in appendix C).
Note that two variables may belong to the same ICM without necessarily interacting.

#0 = 3Jke{l,...,K} such that (i,5) € Gi. (2)

In the general case, the data generating process is composed of multiple ICM, each having its own input
variables which can be shared or even be the same. For instance, in agriculture, crop yield is influenced
by multiple independent causal mechanisms, such as rainfall affecting soil moisture, temperature regulating
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metabolic rates, and sunlight driving photosynthesis. While these mechanisms may share inputs, tempera-
ture, for example, impacts both metabolism and photosynthesis, they operate independently. A robust model
should capture this independence, recognizing that the relationship between inputs and outputs is governed
by distinct processes rather than a single unified effect. Robust models must encode is the independence
between ICM, not just between variables, including mechanisms that might share some of their inputs.

4 Adding the inductive bias

In this section, we introduce a comprehensive methodology for constructing more robust and interpretable
predictive models by incorporating a novel inductive bias grounded in the Independent Causal Mechanisms
(ICM) principle. By integrating this principle into model design, we aim to improve generalization, resilience
to distribution shifts, and the interpretability of learned representations.

Although the inductive bias applies to a broader class of models, we implement this methodology specifically
for tree-based and neural network models, as these are among the most widely used predictive modeling
techniques in machine learning. It is important to note, however, that the proposed inductive bias is
not limited to these architectures. In fact, in other cases—such as linear models—the integration of the
bias can be achieved in a straightforward manner, given their simpler structure and analytical properties.
Tree-based methods, such as random forest and gradient boosting frameworks (e.g., XGBoost (Chen &
Guestrin|, 2016), LightGBM (Ke et al., [2017)), and CatBoost (Prokhorenkova et al., [2018))), are extensively
used due to their effectiveness in structured data analysis, interpretability, and strong performance across
various domains. Meanwhile, neural networks, including deep learning architectures, offer powerful feature
extraction capabilities and flexibility in handling complex patterns in high-dimensional data.

Our approach leverages expert knowledge of variable relationships or causal graph structures and can be
seamlessly integrated with existing modeling strategies to enhance robustness and interpretability.

4.1 Tree based models

The implementation of this methodology in tree-based algorithms is similar to the one described in [Pros &
Vitria| (2023)) and is relatively straightforward, due to the inherent structure of decision trees and the specific
way they model interactions between variables.

Decision trees, as utilized in random forests, incorporate stochasticity at two main stages of the tree-building
process: data sampling and feature selection. Formally, for each tree T} in the ensemble {T1,T5,...,Ts}, a
bootstrap sample Dy, is drawn from the original dataset D = {(x;, y;)}_;, where D, C D.

Additionally, at each decision node in the tree, instead of considering the full set of input features F =
{z1,22,...,2p}, a random subset F,, C F with |F,,,| = m < p is selected uniformly without replacement.

In ensemble methods such as gradient boosting, where the final prediction is obtained through a linear
combination of individual trees, the risk of non-causal interactions interactions arises at the level of individual
trees rather than the ensemble as a whole.

To remove the presence of spurious associations within individual trees, we impose a structural constraint
on the splitting process. Specifically, once a variable x; € F is selected for a split, subsequent splits in its
descendant nodes are restricted to variables belonging to the same Independent Causal Mechanism (ICM)
as ;.

Let M = { M, Ma,..., Mk} be a collection of K subsets of the feature space F corresponding to distinct
ICMs, such that Ule M, = F. If a split is made on a variable x; € My, then all subsequent splits along
that branch must be on variables z; € M.

This constraint ensures that the hierarchical decision-making process within each tree aligns with the un-
derlying causal structure.

12
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We implement the proposed methodology using the gradient boosting algorithm provided by the XGBoost
Python library. One of its key advantages is its flexibility in controlling feature interactions, making it
well-suited for incorporating causal inductive biases.

To enforce the ICM-based constraints, we leverage XGBoost’s built-in feature interaction constraints hyper-
parameter (Goyal et al., [2020]). This feature allows the specification of a list of variable sets, where each set
defines groups of features that are permitted to interact during tree construction. Note that this parameter
constrains feature interactions at the node level rather than the tree level, so we followed the same approach
as |Pros & Vitria| (2023)) when handling groups with shared features. By structuring these sets according to
known causal mechanisms, we ensure that each variable can only interact with others within the same causal
group, preventing spurious correlations from being learned across unrelated features.

4.2 Neural networks: masking

In order to apply the methodology on arbitrary neural networks, we build on the Graphical Conditioner
proposed in [Parafita & Vitria| (2022). Consider the original dataset D = {(x;,¥;)},; consider the afore-
mentioned set of distinct ICMs M = {M;, Ms,..., Mg}. The set of input features F = {z1,...,z,} can
encompass both discrete and continuous variables for generality; let us assume that any continuous feature
is standardized.

Consider an arbitrary neural network architecture f:

fiRP — REX4 (3)

x=(21,...,2p) > 2= (21,...,2K), (4)

where f transforms an input x into K d-dimensional vectors z, one for each component, with d > 1.
Employed directly, there is no restriction to the interaction between features z;, ,x;, € F from distinct
ICMs ({zj,,2j,} € My, Yk = 1..K). Instead of imposing architectural constraints to f (e.g., MADE for
Normalizing Flows (Papamakarios et al., [2017)), we can instead alter f’s application to learn an inductive
bias.

Let us consider an output subset z;. Any time we require computing such a value, we should only employ
the subset of features defined by My, and any other variables must be ignored. Let us define the binary
mask vector my, = (mg,1,- -, Mk,p) Whose entries my,; are 1 whenever x; € My, and 0 otherwise. Then, we
can employ a certain masking strategy « with mask my to the input x (e.g., ap(x,m) := x - m) to "hide"
any input not pertaining to the current ICM M; then, zx = f(a(x, my)). Note that 2z, does not depend on
any input {z; | j € M} since it never sees its values; therefore, no interaction with variables outside of the
corresponding ICM can ever affect zy.

If we replicate this procedure for all ICM My, we can compute the concatenated vector z = (21, , 2k)
with K executions of f. Finally, if we add a single linear layer on top of z, g : RE*4 — R! with [ the
dimensionality of the output y, note that y cannot incorporate any interactions between ICMs, fulfilling our
objective. It is important to mention that this masking must take place both during training, so that f
can learn to use only the appropriate variables for any zx, as well as during inference, to maintain the test
x-values in-distribution w.r.t. the training distribution (masked).

Finally, the choice of masking strategy « may vary. In this work, we use a zero-mask ag(x,m) := x - m,
which ensures zero interaction derivatives between variables in separate ICMs (Eq. @ and keeps masked
inputs in-distribution, assuming that x is normalized.

5 Experiments

To evaluate the out-of-distribution performance of our models, we conduct experiments involving distri-
butional shifts in subsets of the data. We assess this using three scenarios: a synthetic setting with
generated data, and two real-world applications, real estate price prediction across different cities and
rogue wave detection in distinct oceans. All the code for reproducing the experiments is available at
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https://anonymous.4open.science/r/Causal_Interaction_Constraints-4160. All the experiments are run on
a MacBook Pro with an Apple M2 Max chip and 32GB memory. Hyperparameters and evaluation metrics
used to run the experiments can be found in the code or in the section B of the appendix.

5.1 lllustrative example: Planet orbits

Planet Orbits is a synthetic, illustrative dataset generated by simulating planetary motion using the Poliastro
library (Rodriguez & Garridol [2022). The dataset is constructed by retrieving the positions and velocities
of all solar system planets relative to the Sun from the years 2000 to 2024. Each sample includes initial
conditions, planetary positions and velocities, along with target values representing their states after a 30-day
orbital propagation.

To design an out-of-distribution experiment, a subset of the data has the planet Venus removed. Venus is
repositioned at the coordinates of the Sun with zero velocity and is excluded from the model performance
evaluation.

We use two models to solve this experiment. First we use a neural network model with all the positions
and velocities of the planets as inputs and their respective counterparts after 30 days as outputs. Then, we
create a second model identical but adding the masking described in section [£.2] with the knowledge that
planet orbits should not be affected by other planet orbits.

Unconstrained Interactions Constraints

Train 0.6150 (0.01) 0.6402 (0.01)
Test 1.4543 (0.01) 1.4767 (0.01)
Intervention 1.9205 (0.02) 1.5776 (0.02)

Table 5: Comparison of normalized Mean Average Error (MAE) with standard deviation in parentheses
for Unconstrained vs. Interaction-Constrained Models on the Planet orbits Dataset. Lower values indicate
better performance. Test represents data from the same distribution as training, while ‘Intervention’ refers
to out-of-distribution evaluations.

In Table [5] we see that while the unmasked model obtains the best train and test results, the masked model
has less out of distribution error. The error of the unconstrained model increases significantly in the out
of distribution experiment, which suggests that the unconstrained model depended on spurious interactions
with the orbit of the planet venus to obtain the predictions for the other planets. Moreover, the constrained
model performs statistically significantly better in the out-of-distribution setting.

5.2 Real example: Real estate pricing - Known intervention, unknown causal graph.

The real estate pricing dataset is an open-source product featuring real estate listings from 2018 for Spain’s
three largest cities: Madrid (94,815 listings), Barcelona (61,486 listings), and Valencia (33,622 listings).
Originally published in [Rey-Blanco et al.| (2024) , the dataset provides detailed information on asking prices
and a variety of property characteristics, such as indoor features and building quality, enriched with official
data from the Spanish cadastre. In addition to property details, the dataset includes relevant contextual
information, such as proximity to urban points of interest. Offered as a documented R package, it is well-
suited for use in price prediction models and other real estate market analyses.

Knowing that the distribution shift is caused by a change in the city of the real estate, expert information
can be leveraged to reason about the causal mechanisms involved and detect unstable interactions. Since
this is a common scenario, we expect LLMs to encode some relevant causal knowledge (Kiciman et al., 2023)),
which we used illustratively to identify potential unstable interactions. For example, the interaction between
the price of a parking space and proximity to metro stations reflects differing levels of car dependency. In
cities with well-developed public transportation systems, close access to metro infrastructure may reduce the
necessity of a parking space, potentially weakening or reversing the expected positive relationship between
parking space value and overall property price. In contrast, in more car-dependent cities, both variables
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may exhibit a strong and complementary effect. Details about the expert knowledge used can be found
in appendix A. We stress, however, that LLMs are not proposed as a reliable tool for causal discovery.
Our use of LLM outputs serves only as an illustrative example to demonstrate how the ICM principle can
be communicated or explored in broader contexts. Practitioners should not interpret LLM-inferred causal
structures as validated or recommended practice. Rigorous methods for causal discovery remain essential,
and further systematic study would be required before any such applications could be considered trustworthy.

To solve this experiment we use both, neural network and tree based algorithms. We use the unconstrained
versions and the constrained using the procedure defined in sections Additionally, we add a third
model that uses a popular approach, causal feature selection, discarding all features that do not generalize
to a distinct city according to the expert knowledge. The experiment is repeated 500 times.

Unconstrained Interactions Constraints Stable Features

Train 0.121 (0.000) 0.124 (0.000) 0.203 (0.000)
Test 0.143 (0.000) 0.144 (0.000) 0.231 (0.000)
Intervention  0.413 (0.002) 0.392 (0.001) 0.454 (0.001)

Table 6: XGBoost unconstrained, interaction constraints and stable features model normalized mean average
error (MAE) results with standard deviation in parentheses. Lower values indicate better performance.
Test refers to data from the same distribution as training, while ‘Intervention’ refers to out-of-distribution
evaluations.

For tree-based models, the results presented in Table[f]indicate that introducing constraints leads to a modest
trade-off in performance across different evaluation metrics. The unconstrained XGBoost model achieves
the lowest training and testing errors, with a Train MAE of 0.121 and a Test MAE 0.143. However, this
model also exhibits a high intervention error (Intervention MAE = 0.413), suggesting potential overfitting
to spurious patterns that do not hold under distributional shifts.

Applying intervention constraints slightly increases the prediction errors (Train MAE = 0.124, Test MAE =
0.144) but improves robustness, reducing intervention error to 0.392—a statistically significant improvement
over the unconstrained model. The stable feature model, which retains only features transferable across cities,
shows a substantial increase in prediction error (Test MAE = 0.231), and intervention error (Intervention
MAE = 0.454). These results illustrate the trade-off between predictive accuracy and model stability,
particularly in contexts requiring generalization across varying urban environments.

Unconstrained Interactions Constraints Stable Features

Train 0.199 (0.001) 0.204 (0.001) 0.279 (0.001)
Test 0.219 (0.001) 0.212 (0.001) 0.301 (0.001)
Intervention  0.482 (0.005) 0.457 (0.005) 0.470 (0.001)

Table 7: Neural network unconstrained, interaction constraints and stable features model normalized mean
average error (MAE) results with standard deviation in parentheses. Lower values indicate better perfor-
mance. Test represents data from the same distribution as training, while ‘Intervention’ refers to out-of-
distribution evaluations.

The constrained model performance for neural networks, as summarized in Table[7] follows a similar pattern
to the tree-based models, though with generally higher error values. The unconstrained neural network
achieves the lowest training and test errors (Train MAE = 0.199, Test MAE = 0.219), but it also records
the highest intervention error (Intervention MAE = 0.482), indicating reliance on features that may not
generalize well across cities.

Adding intervention constraints has little impact on training and test errors (Train MAE = 0.204, Test
MAE = 0.212), while decreasing the intervention error to 0.457, showing improved stability. The model
trained with only stable features incurs the highest prediction error (Test MAE = 0.301) but obtains a lower
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intervention error than the unconstrained model (Intervention MAE = 0.470). These results emphasize that
while neural networks can achieve strong performance, their robustness to intervention is improved through
constrained modeling and informed feature selection.

5.3 Real example: Wave modelling - Unknown intervention, known causal graph
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Figure 6: Causal information described in [Héfner et al. (2023). The dataset consists of the variables labeled
as observed, while the hidden mechanisms encode the underlying causal structure. In the original work, the
authors describe all direct causes of rogue waves in the graph as independent physical effects. This goes
beyond a standard causal graph by incorporating knowledge about the functional form of the rogue wave
generation process. Based on the reasoning in Section [3] we can interpret this information through the lens
of the Independent Causal Mechanisms (ICM) principle to identify spurious interactions. The scenario can
then be addressed using the methods outlined in Section @

This dataset is introduced in|Hafner et al.| (2021)) and is an open-source collection derived from the Free Ocean
Wave Dataset (FOWD), featuring 1.4 billion wave measurements recorded by 158 CDIP wave buoys across
the Pacific and Atlantic coasts of the US, Hawaii, and overseas US territories. Spanning water depths from
10 m to 4,000 m, it focuses on sea states with significant wave heights of at least 1 m. Each buoy captures sea
surface elevation at 1.28 Hz, yielding over 700 years of cumulative time series data. To manage the full 1 TB
dataset, an aggregated version maps each sea state to the maximum wave height of the following 100 waves,
adjusting rogue wave probabilities accordingly. The final dataset includes 12.9 million data points, featuring
over 100,000 extreme waves exceeding twice the significant wave height. Freely available, it is well-suited
for studies in oceanography, extreme wave prediction, and maritime risk assessment. In the original work,
the data is divided into distinct subsets, each with unique characteristics. These subsets are then used to
assess the models’ out-of-distribution error. Specifically, for each subset, a model is trained on its data and
evaluated on the remaining subsets and averaged to measure generalization performance.

In the original study (Héfner et al., |2023)), out-of-domain generalization is assessed while accounting for
variable interactions. However, in the absence of explicit selection criteria, the authors evaluate 24 distinct
models to empirically identify the one that generalizes most effectively.

In contrast, leveraging the ICM perspective allows us to incorporate expert knowledge encoded in the causal
representation of the problem, as depicted in Figure [6] to systematically define valid variable interactions.
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As outlined in Section [3] the causal information provides a structured framework for identifying permissible
interactions by grouping variables that belong to the same ICM.

In this experiment, we evaluate four models. The first is the Unconstrained model, which uses all available
variables without any restrictions. The second is E18, identified as the best-performing model among the 24
evaluated in [Hafner et al.| (2023)). The third model, Interaction Constraints, incorporates causal information
from Figure [6] to impose interactions constraints. Finally, the Causal Features model uses the same set of
variables as the Interaction Constraints model but without applying the constraints, allowing us to isolate
and assess the impact of the constraints themselves, independent of variable selection.

Metric Unconstrained E18 Causal Features Interaction Constraints
Train 1.04 0.75 0.80 0.77
Test 0.80 0.66 0.68 0.66
Intervention -0.63 0.55 0.44 0.57

Table 8: L score results for the wave modelling experiment (higher is better). All values have been multiplied
by 1000 to improve readability. Unconstrained refers to a neural network trained on all available features
without constraints. E18 is the best-performing model among the 24 models tested in [Hafner et al.| (2023).
Interaction Constraints denotes the proposed model with domain-informed constraints applied. Causal
Features uses the same input features as the constrained model but without applying constraints. Due to
computational time constraints, each model was run once, and standard deviations are not reported.

Table [§] presents the results of this experiment. In the test metric, all models perform comparably well, with
the Unconstrained model obtaining the highest L score. In the intervention metric, both Interaction Con-
straints and E18 exhibit comparable performance achieving higher L score than the other models. This result
is particularly noteworthy given the nature of the problem: strong spurious interactions that can significantly
hinder generalization to out-of-distribution cases if not properly addressed. The lower performance of the
both the unconstrained and the causal features model highlights this issue, demonstrating the necessity of
incorporating constraints to improve robustness. In contrast to the approach of testing 24 distinct models
as detailed in [Hafner et al.|(2023)), our method leverages causal expert information from an ICM perspective
to directly construct a model that achieves in-distribution and out-of-distribution performance comparable
to the best among the 24 models.

6 Discussion and Conclusion

In this work, we have explored the critical role of spurious interactions in predictive models, particularly
in the context of generalization and explainability under distribution shifts. By leveraging the Independent
Causal Mechanisms (ICM) principle, we introduced a novel approach to incorporate causal knowledge into
machine learning models, specifically focusing on preventing spurious interactions that can undermine model
robustness. Our method, which enforces interaction constraints based on causal structures, has been demon-
strated to improve out-of-distribution performance across synthetic and real-world datasets, including real
estate pricing and ocean wave modeling.

Our contributions are twofold: (i) we demonstrated how interaction constraints derived from ICM, previously
used mainly for causal inference, can serve as a powerful bias for predictive modeling under distribution shifts;
and (ii) we developed a modified masking mechanism to integrate this bias into neural networks. Together,
these advances bring machine learning models closer to the true data-generating process, leading to more
reliable generalization in dynamic settings.

Our results underscore the value of integrating causal knowledge into machine learning pipelines, particularly
in domains where distribution shifts are common. While traditional machine learning models excel in i.i.d.
settings, their reliance on spurious correlations often leads to poor performance in real-world applications.
By contrast, our causal approach provides a principled way to build models that are not only accurate but
also robust and interpretable. Beyond robustness, our findings suggest that aligning model interactions
with causal structures may also enhance interpretability. This alignment could help ensure that variable
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contributions reflect their true causal roles, supporting transparency and trust. Investigating this further
represents a promising avenue for future research.

Future work could explore extending this framework to more complex causal structures, integrating it with
other machine learning techniques, and applying it to additional domains where robustness to distribution
shifts is critical. Additionally, further research could investigate the trade-offs between model complexity
and the incorporation of causal constraints, as well as the scalability of these methods to larger and more
diverse datasets.
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Appendix A. Real estate pricing expert knowledge

As described in |[Kiciman et al.| (2023)), we query a LLM model in order to obtain causal knowledge relevant
to the real estate pricing sscenario.

Queries for expert knowledge were made to the ‘gpt-4’ model between 2024-11-06 and 2025-01-16 using
openai.ChatCompletion.create(model="gpt-4, [...]’) with the following prompt:

We need to develop a pricing model for real estate across different cities. Since the data varies by location,
we are unsure which variable interactions to include or exclude. From the list provided, can you identify
the top 5 pairs of variables whose interactions we should avoid adding, because their effect on price is highly
dependent on the city? To clarify: we are not asking which individual variables are more city-dependent ,
we are asking which interactions between two variables are more influenced by the city.

The prompt is completed with the list of variables and their descriptions from Rey-Blanco et al.| (2024) and
is available in the code respository.

The following interactions are obtained as potentially unstable:

« Distance to city center - Constructed area
This interaction term accounts for the varying relationship between property size and distance from
the city center. In cities characterized by high urban density, smaller properties near the center
may command higher prices due to convenience and accessibility. Conversely, in more suburban
or sprawling urban environments, larger properties located farther from the center may be more
desirable. This relationship is expected to fluctuate across cities depending on local preferences and
urban form.

e Parking space price - Distance to metro
The interaction between the price of a parking space and proximity to metro stations reflects dif-
fering levels of car dependency. In cities with well-developed public transportation systems, close
access to metro infrastructure may reduce the necessity of a parking space, potentially weakening or
reversing the expected positive relationship between parking space value and overall property price.
In contrast, in more car-dependent cities, both variables may exhibit a strong and complementary
effect.

e« Has garden - Distance to city center
This term captures how the desirability of a garden varies with proximity to the city center. In
some urban areas, gardens are scarce and therefore highly valued in central locations. In others,
gardens are more prevalent in peripheral areas, and their marginal contribution to property value
may decline with increasing distance from the city core.

o Has south orientation x Latitude
The value of southern exposure, typically associated with increased sunlight, may differ according to
the city’s latitude. In cities located at higher latitudes, where sunlight is more limited, the orientation
of a property becomes more significant. In contrast, in cities near the equator, this feature may play
a less important role in determining property value.

o Has lift x Floor level
The presence of an elevator interacts with the floor level of a property, with the magnitude and
direction of this interaction varying by urban context. In cities with numerous high-rise residential
buildings, elevators are critical and substantially influence property value, particularly for higher-
floor units. However, in cities with predominantly low-rise housing, this interaction may be less
pronounced.

After obtaining the list of unstable interactions, we prompt again the LLM to discover the variables that are
in the same ICM as the ones involved in the interactions. The prompt used is:

Which of the following variables are directly related to the variable [variable name]?
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Again, the prompt is completed with the list of variables and their descriptions from [Rey-Blanco et al.
(2024).

After removing the unstable interactions previously discovered, we obtain the following groups which are
used for the implementation of the methods in Experiment

1. DISTANCE_TO_CITY_CENTER, DISTANCE_TO_MAIN_STREET, FLOORCLEAN
2. CONSTRUCTEDAREA, ROOMNUMBER, BATHNUMBER, HASPARKINGSPACE, HASSWIMMINGPOOL, HASGARDEN

3. PARKINGSPACEPRICE, HASPARKINGSPACE, ISPARKINGSPACEINCLUDEDINPRICE,
DISTANCE_TO_CITY_CENTER, HASLIFT

4. DISTANCE_TO_METRO, DISTANCE_TO_MAIN_STREET, DISTANCE_TO_CITY_CENTER, LATITUDE,
LONGITUDE

5. HASGARDEN, CONSTRUCTEDAREA, HASSWIMMINGPOOL

6. HASSOUTHORIENTATION, ROOMNUMBER, CONSTRUCTEDAREA, HASGARDEN

7. LATITUDE, DISTANCE_TO_CITY_CENTER, CONSTRUCTEDAREA

8. HASLIFT, CONSTRUCTEDAREA, PARKINGSPACEPRICE, DISTANCE_TO_CITY_CENTER

9. FLOORCLEAN, CONSTRUCTEDAREA, DISTANCE_TO_CITY_CENTER

Appendix B. Hyperparameters and evaluation metrics.

In this section, we detail the hyperparameters and evaluation metrics used in the three experiments con-
ducted. Each experiment involved training machine learning models under varying configurations.

Planet orbits
Neural Network:
e Optimizer: Adam
o Learning Rate: 0.0001
e Number of Hidden Layers: 2
o Neurons per Hidden Layer: (32, 12)
e Number of Training Epochs: 100

e Batch size: 16

Evaluation metric

Mean Average Error:

1< X
MAE = ﬁz‘yi — il
i=1
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Real estate pricing

Neural Network:

e Optimizer: Adam

o Learning Rate: 0.0006

e Number of Hidden Layers: 2

o Neurons per Hidden Layer: (80, 20)
e Number of Training Epochs: 50

e batch size: 512
XGBoost:
o Default Python XGBOOST hyperparameters with Number of Boosting Rounds = 100.

Evaluation metric

Mean Average Error:

1< X
MAE = ﬁz‘yi — i
i=1

Wave modelling

Neural Network:

o Optimizer: Adam

e Learning Rate: 0.0001

e Number of Hidden Layers: 3

o Neurons per Hidden Layer: (64, 32, 16)
e Number of Training Epochs: 50

e Batch size: 1024

Evaluation metric

For the rogue wave modeling experiment we use L score as defined in [Hafner et al. (2023), the log of the
likelihood ratio between the predictions of the model and a baseline model that predicts the empirical base

_ 1 n . .
rate 7, = = >, Yk, averaged over all environments k:

L(p,y) = (I(pr) = 1(G))

NE

1
n

;\N
Il
-

I(z) =2z -log(z) + (1 — x) - log(1 — )
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Appendix C. Discrete and Mixed variables constraints expression.

Given a set of K Independent Causal Mechanisms (ICMs) in the data generating process, let Gy denote the
subset of variables involved in the k-th ICM. The model f(X) must adhere to the following constraints: if
the interaction between variables x; and x; is present, then the pair belongs to some mechanism.

Formally, if f is such that

o2 f

92: 0 Z£0 if both z;, z; continuous,
JuFvel,w#zeL;: ANjyoDjw.f#0 if both x;, z; categorical,
0
Jw#zel;: Aj,uuzai #0 if ; continuous, x; categorical,
L

then,
Jke{l1,...,K} such that (,j) € G,

where £; denotes the set of levels for categorical variable x;, and the finite difference operator is defined
as Ay q9(x) = g(xi=p) — 9(x1=¢) with x;=. indicating the vector x with its I-th component set to level ¢
(holding all other variables fixed).
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