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ABSTRACT

An emerging line of research is dedicated to the problem of one-to-one matching
markets with bandits, where the preference of one side is unknown and thus we
need to match while learning the preference through multiple rounds of interaction.
However, in many real-world applications such as online recruitment platform for
short-term workers, one side of the market can select more than one participant from
the other side, which motivates the study of the many-to-one matching problem.
Moreover, the existence of a unique stable matching is crucial to the competitive
equilibrium of the market. In this paper, we first introduce a more general new α̃-
condition to guarantee the uniqueness of stable matching in many-to-one matching
problems, which generalizes some established uniqueness conditions such as SPC
and Serial Dictatorship, and recovers the known α-condition if the problem is
reduced to one-to-one matching. Under this new condition, we design an MO-
UCB-D4 algorithm with O

(
NK log(T )

∆2

)
regret bound, where T is the time horizon,

N is the number of agents, K is the number of arms, and ∆ is the minimum
reward gap. Extensive experiments show that our algorithm achieves uniform good
performances under different uniqueness conditions.

1 INTRODUCTION

The data-driven matching market is faced with the problems of learning customer preference and
matching the demand side with the supply side of the market to maximize the benefits of both sides.
Online platforms, like Lyft, Thumbtack and Taskrabbit, make decisions for customers and service
providers to match, on the basis of their diversified needs, which is abstracted as a matching market
with an agent side and an arm side, and each side has a preference profile over the opposite side. They
choose from the other side according to preference and perform a matching. Specific examples like
pool riding in ride-share system that matches a driver to multiple riders, Slate ranking in recommender
systems that a user is matched to various content at a single request Ie et al. (2019). The stability of
the matching result is a key property of the market Roth & Sotomayor (1992); Abizada (2016); Park
(2017).

This work takes online short-term recruitment as the main example, combine the traditional matching
problem Bade (2020); Bogomolnaia & Moulin (2001); Roth & Sotomayor (1992) with the online
system Gunn et al. (2022); Malgonde et al. (2020); Johari et al. (2021). Companies with short-term
needs accommodate workers who are voluntarily looking for flexible probation periods. The worker
preferences may be unknown in advance, thus matching while learning the preferences is necessary.
The multi-armed bandit (MAB) Thompson (1933); Garivier et al. (2016); Auer et al. (2002) is an
important tool forN independent agents in matching market simultaneously selecting arms adaptively
from received rewards at each round. And the upper confidence bound algorithm (UCB) Auer et al.
(2002) is a typical MAB algorithm, which sets a confidence interval to represent uncertainty. The
idea of applying MAB to one-to-one matching problems, introduced by Liu et al. (2020a), assumes
that there is a central platform to make decisions for all agents. Following this, other works Liu et al.
(2020b); Sankararaman et al. (2021); Basu et al. (2021) consider a more general decentralized setting
without a central platform to arrange matchings, and our work is also based on this setting.

However, it is not enough to just study the one-to-one setting. In online short-term worker employment
problem, employers have numerous similar short-term tasks to be recruited and workers can only
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choose one task according to the company’s needs at a time while one company can accept more
than one employee. Each company makes a fixed ranking for candidates according to its own
requirements but workers have no knowledge of companies’ preferences. The reward for workers is a
comprehensive consideration of salary and job environment. The online matching is in an iterative
way that tasks are short-term, or if an agent do not get an ideal job, he will leave the platform or start
a new competition to select another company. We abstract companies as arms and workers as agents.
Each arm has a capacity q which is the maximum number of agents this arm can accommodate.
When an arm faces multiple choices, it accepts its most q preferred agents. Agents thus competing
for arms and may receive zero reward if losing the conflict. It is worth mentioning that arms with
capacity q in the many-to-one matching can not just be replaced by q independent replicates with
the same preference since there would be implicit competition. In addition, when multiple agents
select one arm at a time, collision is unavoidable, which hinder the communication among different
agents under the decentralized assumption. They cannot distinguish who is more preferred by this
arm in one round as it can accept more than one agent while this can be done in one-to-one case.
Communication here lets each agent learn more about preferences of arms and other agents, so as to
formulate better policies to reduce collisions and learn faster about their stable results.

This work focuses on a many-to-one market under uniqueness conditions. Previous work Clark
(2006); Gutin et al. (2021) emphasize the importance of constructing a unique stable matching for the
equilibrium of matching problems and some existing uniqueness conditions are studied in many-to-
one matching, such as Sequential Preference Condition (SPC) and Acyclicity Niederle & Yariv (2009);
Akahoshi (2014). Our work is motivated by Basu et al. (2021), but the unique one-to-one mapping
between arms and agents in their study which gives a surrogate threshold for arm elimination does
not work in the many-to-one setting. And the uniqueness conditions in many-to-one matching are
not well-studied, which also brings a challenge to identify and leverage the relationship between the
resulting stable matching and preferences of two sides in the design of bandit algorithms. We propose
an α̃-condition that can guarantee a unique stable matching and recover α-condition Karpov (2019)
if reduced to the one-to-one setting. We establish the relationships between our new α̃-condition and
existing uniqueness conditions in many-to-one setting.

For clarity, in this paper, we study the bandit algorithm for a decentralized many-to-one matching
market with uniqueness conditions. Under our newly proposed uniqueness condition, α̃-condition,
we design an MO-UCB-D4 algorithm with arm elimination to construct a stable matching result. The
regret of our algorithm can be upper bounded by O

(
NK log(T )

∆2

)
, where N is the number of agents,

K is the number of arms, and ∆ is the minimum reward gap, and the regret reaches the lower bound
in terms of T and ∆. Finally, we conduct a series of experiments to simulate our algorithm under
various conditions of Serial dictatorship, SPC and α̃-condition to study the stability and regret of the
algorithm.

2 SETTING

This paper considers a many-to-one matching marketM = (K,J ,P), where K = [K], is a finite
arm set and J = [N ] is a finite agent set. Each arm k has a fixed capacity qk ≥ 1. To guarantee that
no agents will be unmatched, we focus on the market with N ≤

∑K
i=1 qi. P is the fixed preference

order of agents and arms, which is ranked by the mean reward. We assume that arm preference is over
individuals Roth & Sotomayor (1992); Sethuraman et al. (2006); Altinok (2019), and arm preferences
for agents are unknown and needed to be learned. If agent j prefers arm k than k′, i.e., µj,k > µj,k′ ,
we denote by k ≻j k

′. And the preference is strict that µj,k ̸= µj,k′ if k ̸= k′. Similarly, each arm
k has preferences ≻k over all agents, and specially, j ≻k j

′ means that arm k prefers agent j over
j′. Throughout, we focus on the market where all agent-arm pairs are mutually acceptable, that is,
j ≻k ∅ and k ≻j ∅ for all k ∈ [K] and j ∈ [N ].

Let a mapping m be the matching result. mt(j) is the matched arm for agent j at time t, and γt(k) is
the agent set matched with arm k1. At each time agent j selects an arm It(j), and we use Mt(j) to
denote whether j is successfully matched with its selected arm. Mt(j) = 1 if agent j is matched with
It(j), and Mt(j) = 0, otherwise. If multiple agents select arm k at the same time, only top qk agents
can successfully match. The agent j matched with arm k can observe the reward Xj,mt(j)(t), where

1The mapping m is not reversible as it is not a injective, thus we do not use m−1
t (k).
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the random reward Xj,k(t) ∈ [0, 1] is independently drawn from a fixed distribution with mean µj,k.
While the unmatched one has collisions and receives zero reward. Generally, the reward obtained by
agent j is Xj,It(j)(t)Mt(j).

We say an agent j and an arm k form a blocking pair for a matching m if they prefer each other
over their current assignments, i.e. k ≻j m(j) and ∃j′ ∈ γ(k), j ≻k j

′. We say a matching satisfies
individually rational (IR), if aj ≻pi ∅ and pi ≻aj ∅ for all i ∈ [N ] and j ∈ [K], that is, every worker
prefers to find a job rather than do nothing, and every company also wants to recruit workers rather
than not recruit anyone. Under the IR condition, a matching in the many-to-one setting is stable if
there does not exist a blocking pair Salonen & Salonen (2018); Sethuraman et al. (2006).

This paper considers the matching markets under the uniqueness condition. Thus the overall goal is
to find the unique stable matching between the agent side and arm side through iterations. Let m∗(j)
be the stable matched arm for agent j under the stable matching m∗. The reward obtained by agent j
is compared against the reward received by matching with m∗(j) at each time. We aim to minimize
the expected stable regret for agent j over time horizon T , which is defined as

Rj(T ) = Tµj,m∗(j) − E

[
T∑

t=1

Mt(j)Xj,It(j)(t)

]
.

3 ALGORITHM

In this section, we introduce our MO-UCB-D4 Algorithm (Many-to-one UCB with Decentralized
Dominated arms Deletion and Local Deletion Algorithm) (Algorithm 1) for the decentralized many-
to-one market, where there is no platform to arrange actions for agents. The MO-UCB-D4 algorithm
sets multiple phases, and each phase i mainly includes regret minimization block (line 6 - 12) and
communication block (line 13 - 16) with duration 2i−1, i = 1, 2, · · · .

Algorithm 1 MO-UCB-D4 algorithm (for agent j)
Input:

θ ∈ (0, 1/K), α > 1.
1: Set global dominated set Gj [0] = ϕ
2: for phase i = 1, 2, ... do
3: Reset the collision set Cj,k[i] = 0, ∀k ∈ [K];
4: Reset active arms set Chj [i] = [K]\Gj [i− 1];
5: if t < 2i +NK(i− 1) then
6: Local deletion Lj [i] = {k : Cjk[i] ≥ ⌈θ2i⌉};
7: Play arm It(j) ∈ argmax

k∈Chj [i]\Lj [i]

(
µ̂j,k(t− 1) +

√
2α log(t)
Nj,k(t−1)

)
;

8: if k = It(j) is successfully matched with agent j, i.e. mt(j) = k then
9: Update estimate µ̂j,k(t) and matching count Nj,k(t);

10: else
11: Cj,k[i] = Cj,k[i] + 1;
12: end if
13: else if t = 2i +NK(i− 1) then
14: Oj [i]← most matched arm in phase i;
15: Gj [i]← COMMUNICATION(i,Oj [i]);
16: end if
17: end for

For each agent j in phase i, the algorithm adds arm deletion process to reduce potential conflicts,
which contains global deletion and local deletion. The former eliminates the arms most preferred
by agents who rank higher than agent j and obtains active set Chj [i] (line 4), and the latter deletes
the arms that still have many conflicts with agent j after global deletion (line 6). We set a collision
counter Cj,k[i] to record the number of collisions for agent j pulling arm k in phase i.

In the regret minimization block of phase i, we use Lj [i] = {k : Cj,k[i] ≥ ⌈θ2i⌉} to represent the
arms that collide more times than a threshold ⌈θ2i⌉ when matching with agent j. Arms in Lj [i] are
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first locally deleted to reduce potential collisions for agent j (line 6). After that, agent j selects an
optimal action It(j) from remaining arms in Chj [i]\Lj [i] in phase i according to UCB index, which is

computed by µ̂j,k(t−1)+
√

2α log(t)
Nj,k(t−1) (line 7), where Nj,k(t−1) is the number that agent j and arm

k have been matched at time t− 1. If the selected arm is successfully matched with agent j, then the
algorithm updates estimated reward µ̂j,k(t) =

1
Nj,k(t)

∑t
s=1 1{Is(j) = k and Ms(j) = 1} Xj,k(t)

and Nj,k(t) (line 9). Otherwise, the collision happens (line 11) and agent j receives zero reward. The
regret minimization block identifies the most played arm Oj [i] for agent j in each phase i, which is
estimated as the best arm for agent j, thus making optimal policy to minimize expected regret.

Algorithm 2 COMMUNICATION
Input:

Phase number i, and most played arms Oj [i] for agent j, ∀j ∈ [N ] .
1: Set C = ∅;
2: for t = 1, 2, · · · , NK − 1 do
3: if K(j − 1) ≤ t ≤ Kj − 1 then
4: Agent j plays arm It(j) = (t mod K) + 1;
5: if Collision Occurs then
6: C = C ∪ {It(j)};
7: end if
8: else
9: Play arm It(j) = Oj [i];

10: end if
11: end for
12: RETURN C;

In the communication block (Algorithm 2), there are N sub-blocks, each with duration K. In the
ℓ − th sub-block, only agent ℓ pulls arm 1, arm 2, · · · , arm K in round-robin while other agents
select their most preferred arms estimated as the most played ones (line 4). This block aims to detect
globally dominated arms for each agent j: Gj [i] ⊂ {Oj′ [i] : j

′ ≻Oj′ [i]
j}. Under the stable matching

m∗, the globally dominated arm set for agent j is denoted as G∗
j . After the communication block in

phase i, each agent j updates its active arm set Chj [i+ 1] for phase i+ 1, by globally deleting arm
set Gj [i], and enters into the next phase (line 4 in Algorithm 1).

Hence, multi-phases setting can guarantee that the active sets in different phases have no inclusion
relationship so that if an agent deletes an arm in a certain phase, this arm can still be selected in the
later rounds. This ensures that each agent will not permanently eliminate its stable matched arm, and
if agent j mistakenly deletes an arm, it will not lead to linear regret.

4 RESULTS

4.1 UNIQUENESS CONDITIONS

4.1.1 α̃-CONDITION

When the preferences of agents and arms are given by some utility functions instead of random
preferences, like payments for workers in the labor markets, the stable matching is usually unique.
Thus the assumption of the unique stable matching is quite common in real applications. And some
uniqueness conditions have important properties like consistency, which states that any stable pair
leaving the market does not affect the remaining to form a stable matching. In dynamic markets
where agents and arms come and go, the consistency property is desirable to keep the matching
majority static Basu et al. (2021). And in this way, the market is divided into pairs with priority,
which is divided into hierarchical structures, so that the design of the algorithm is inductive, and the
regret is constrained to the number of sub-optimal matchings (Appendix 3). Besides, when the stable
matching is unique, there would be no dispute about adopting stable matching preferred by which
side, thus is fairer to both sides Cen & Shah (2022). Note that the outcome of the GS algorithm
would prefer the proposal side and would be unfair to the other side Clark (2006).
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In this section, we propose a new uniqueness condition, α̃-condition. First, we introduce uniqueness
consistency (Unqc) Karpov (2019), which guarantees robustness and uniqueness of markets.
Definition 1. A preference profile satisfies uniqueness consistency if and only if

(i) there exists a unique stable matching m∗;

(ii) for any subset of arms or agents, the preference profile on this subset with their stable-matched
pair can induce a unique stable matching.

It guarantees that even if an arbitrary subset of stable pairs are deleted out of the system, there still
exists a unique stable matching among the remaining agents and arms. This condition allows the
algorithm to find the unique stable matching by detecting the stable matching pairs iteratively. To
obtain the unique stable matching in the many-to-one market, we propose a new α̃-condition, which
is a sufficient and necessary condition for Unqc (proved in Appendix C).

We considers a finite set of arms [K] = {1, 2, · · · ,K} and a finite set of agents [N ] = {1, 2, · · · , N}
with preference profile P . Assume that [N ]r={A1, A2, · · · , AN} is a permutation of {1, 2, · · · , N}
and [K]r={c1, c2, · · · , cK} is a permutation of {1, 2, · · · ,K}. Denote [N ], [K] as the left order and
[N ]r, [K]r as the right order. The k-th arm in the right order set [K]r has the index ck in the left
order set [K] and the j-th agent in the right order set [N ]r has the index Aj in the left order set [N ].
Considering arm capacity, we denote γ∗(ck) (right order) as the stable matched agent set for arm ck.
Definition 2. A many-to-one matching market satisfies the α̃-condition if,

(i) The left order of agents and arms satisfies

∀j ∈ [N ],∀k > j, k ∈ [K], µj,m∗(j) > µj,k ,

where m∗(j) is agent j’s stable matched arm;

(ii) The right order of agents and arms satisfies

∀k < k′ ≤ K, ck ∈ [K]r, Ak′ ⊂ [N ]r, γ
∗(ck) ≻ck A∑k′−1

i=1 qci+1
,

where the set γ∗(ck) is more preferred than A∑k′−1
i=1 qci+1

means that the least preferred agent in

γ∗(ck) for ck is better than A∑k′−1
i=1 qci+1

for ck.

Under our α̃-condition, the left order and the right order satisfy the following rule. The left order
gives rankings according to agents’ preferences. The first agent in the left order set [N ] prefers arm 1
in [K] most and has it as the stable matched arm. Similar properties for the agent 2 to q1 since arm 1
has q1 capacity. Then the (q1 + 1)-th agent in the left order set [N ] has arm 2 in [K] as her stable
matched arm and prefers arm 2 most except arm 1. The remaining agents follow similarly. Similarly,
the right order gives rankings according to arms’ preferences. The first arm 1 in the right order set
[K]r most prefers the first qc1 agents in the right order set [N ]r and takes them as its stable matched
agents. The remaining arms follow similarly.

This condition is more general than existing SPC condition Reny (2021) and can recover the known
α-condition in one-to-one matching market Karpov (2019). The relationship between existing
uniqueness conditions and our proposed conditions will be analyzed in detail later in Section 4.1.2.

The main idea from one-to-one to many-to-one analysis is to replace individuals with sets. In
general, under α̃-condition, the left order satisfies that when arm 1 to arm k − 1 are removed, agents(∑k−1

i=1 qi + 1
)

to
(∑k

i=1 qi
)

prefer k most, and the right order means that when A1 to agents
A∑k−1

i=1 qi
are removed, arm k prefers agents Ak = {A∑k−1

i=1 qci+1, A
∑k−1

i=1 qci+2, · · · , A∑k
i=1 qci

},
where Ak is the agent set that are most qk preferred by arm k among those who have not been
matched by arm 1, 2, · · · , k − 1. The α̃-condition can be detected as follows: After running GS
algorithm and finding a stable matching, we can find two orders of arms and agents by sequential
elimination higher ranked agents or arms with their matching pairs. And the α̃-condition satisfied if
the two orders are identical. The next theorem gives a summary.

Theorem 1. If a market M = (K,J ,P) satisfies α̃-condition, then m∗(
∑j−1

i=1 qi + 1) =

m∗(
∑j−1

i=1 qi + 2) = · · · = m∗(
∑j

i=1 qi) = j (the left order), γ∗(ck) = Ak and m∗(Aj) = cj (the
right order) under stable matching.

5



Under review as a conference paper at ICLR 2023

Under α̃-condition, the stable matched arm may not be the most preferred one for each agent j,
j ∈ [N ], thus (i) we do not have m∗(j) to be dominated only by the agent 1 to agent j − 1, i.e. there
may exist j′ > j, s.t. j′ ≻m∗(j) j; (ii) the left order may not be identical to the right order, we
define a mapping lr to match the index of an agent in the left order with the index in the right order,
i.e. Alr(j) = j. From Theorem 1, the stable matched set for arm k is its first qk preferred agents
γ∗(ck) = Ak. We define lr as lr(i) = max{j : Aj ∈ γ∗(m∗(i)), j ∈ [N ]}, that is, in the right
order, the mapping for arm k ∈ [K] is the least preferred one among its most qk preferred agents.
Note that this mapping is not an injective, i.e. ∃j, j′, s.t. agent j = Alr(j) = Alr(j′). An intuitive
representation can be seen in Figure 4 in Appendix B.1.

4.1.2 UNIQUE STABLE CONDITIONS IN MANY-TO-ONE MATCHING

Uniqueness consistency (Unqc) leads the stable matching to a robust one which is a desirable property
in large dynamic markets with constant individual departure Basu et al. (2021). A precondition of
Unqc is to ensure global unique stability, hence finding uniqueness conditions is essential.

The existing unique stable conditions are well established in one-to-one setting (analysis can be
found in Appendix C), and in this section, we focus on the uniqueness conditions in many-to-one
market, such as SPC, Reny (2021), Aligned Preference, Serial Dictatorship Top-top match and
Acyclicity Niederle & Yariv (2009); Akahoshi (2014); Reny (2021) (Definition 9, 7, 8, 10 in Appendix
C.2). Akahoshi (2014) proposes a necessary and sufficient condition for unique stable matching in
many-to-one matching where unacceptable agents and arms may exist on both sides. We denote this
condition as Acyclicity∗. Under our setting, both two sides are acceptable, and we first give the proof
that Acyclicity∗ is a necessary and sufficient condition for uniqueness in this setting (Section C.2.4).
We then give relationships between our newly α̃-condition and other existing uniqueness conditions,
intuitively expressed in Figure 1, and we give proof for this section in Appendix C.2.
Lemma 1. In a many-to-one matching marketM = (K,J ,P), both Serial Dictatorship and Aligned
Preference can produce a unique stable matching and they are equivalent.
Theorem 2. In a many-to-one matching marketM = (K,J ,P), our α̃-condition satisfies:

(i) SPC is a sufficient condition to α̃-condition;

(ii) α̃-condition is a necessary and sufficient condition to Unqc;

(iii) α̃-condition is a sufficient but not necessary condition to Acyclicity∗.

Figure 1: Relations of Uniqueness Conditions in Many-to-one Market.

4.2 THEORETICAL RESULTS OF REGRET

We then provide theoretical results of MO-UCB-D4 algorithm under our α̃-condition. Recall that G∗
j

is the globally dominated arms for agent j under stable matching m∗. For each arm k /∈ G∗
j , we give

the definition of the blocking agents for arm k and agent j: Bjk = {j′ : j′ ≻k j, k /∈ G∗
j}, which

contains agents more preferred by arm k than j. The hidden arms for agent j is Hj = {k : k /∈
G∗

j} ∩ {k : Bjk ̸= ∅}. The reward gap for agent j and arm k is defined as ∆jk = |µj,m∗(j) − µj,k|
and the minimum reward gap across all arms and agents is ∆ = minj∈[N ]{mink∈[K] ∆j,k}. We
assume that the reward is different for each agent, thus ∆j,k > 0 for every agent j and arm k.
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Theorem 3. (Regret upper bound) Let Jmax(j) = max {j + 1, {j′ : ∃k ∈ Hj , j
′ ∈ Bjk}} be the

max blocking agent for agent j and fα̃(j) = j + lrmax(j) is a fixed factor depends on both the left
order and the right order for agent j. Following MO-UCB-D4 algorithm with horizon T , the expected
regret of a stable matching under α̃-condition (Definition 2) for agent j ∈ [N ] is upper bounded by

E [Rj(T )] ≤
∑

k/∈G∗
j∪m∗(j)

8α

∆jk

(
log(T ) +

√
π

α
log(T )

)
+
∑
k/∈G∗

j

∑
j′∈Bjk:k/∈G∗

j′

8αµj,m∗(j)

∆2
j′k

(
log(T ) +

√
π

α
log(T )

)

+ cj log2(T ) +O

(
N2K2

∆2
+
(
min(1, θ|Hj |)fα̃(Jmax(j)) + fα̃(j)− 1

)
2i

∗
+N2Ki∗

)
,

where i∗ = max{8, i1, i2} (i1, i2 are defined in equation 3), and lrmax(j) = max{lr(j′) : 1 ≤ j′ ≤
j}, is the maximum right order mapping for agent j′ who ranks higher than j.

From Theorem 3, the scale of the regret upper bound under α̃-condition is O
(

NK log(T )
∆2

)
.

Proof Sketch of Theorem 3. The main proof idea is how agents settle down to their stable matched
arms inductively. Agent 1 will find its stable matched arm 1 at first since arm 1 is the most preferred
arm for agent 1. The same is true for agent 2 to agent q1. When they all settle down with arm 1, then
agent q1 + 1 will find its stable arm 2 since agent q1 + 1 has deleted arm 1 in the communication
block and thus arm 2 becomes its most preferred arm. We can show by induction that agent j will
find its stable matched arm after agent 1 to j − 1 has settled down. The regret of agent j can be
decomposed into four parts: sub-optimal play, collision, communication, and local deletion. Both
collisions between agent j and other agents in the blocking agent set and sub-optimal play are due to
the wrong estimation of UCB index (Lemma 6). Communication regret can be bounded by the length
of the communication block. Local deletion regret can be controlled by the threshold we set (line 6 in
Algorithm 1). The regret bound is decomposed as follows, and the complete proof can be seen in
Section 3.
Lemma 2. (Regret Decomposition) For a stable matching under α̃-condition, the upper bound of
regret for the agent j ∈ [N ] under our algorithm can be decomposed by:

E [Rj(T )] ≤ E
[
SFαj

]︸ ︷︷ ︸
(Regret before phase Fαj )

+min(θ|Hj |, 1)E
[
SVαj

]︸ ︷︷ ︸
(Local deletion)

+
(
(K − 1 + |Bj,m∗(j)|) log2(T ) +NKE [Vαj ]

)︸ ︷︷ ︸
(Communication)

+
∑
k/∈G∗

j

∑
j′∈Bj,k:k/∈G∗

j′

8αµj,m∗(j)

∆2
j′,k

(
log(T ) +

√
π

α
log(T )

)
︸ ︷︷ ︸

(Collision)

+
∑

k/∈G∗
j∪m∗(j)

8α

∆j,k
(log(T ) +

√
π

α
log(T ))

︸ ︷︷ ︸
(Sub-optimal play)

+NK

(
1 + (ϕ(α) + 1)

8α

∆2

)
,

where Fαj , Vαj are the time points when agent j enters into α̃-Good phase and α̃-Low Collision
phase respectively, are defined in Appendix B.2.

5 DIFFICULTIES AND SOLUTIONS

From one-to-one setting to many-to-one setting First, arm preference is difficult to learn in a
decentralized many-to-one setting. Influenced by capacity, in communication block, when two agents
select one arm at a time, as an arm can accept more than one agent, these two cannot distinguish
who is more preferred by this arm, while it can be done in one-to-one markets. Thus identifying arm
preference for each agent encounters more challenges, and then influences total regret. In order to
solve this, we introduce the dominated arm set G∗

j into communication block to identify arms who
are preferred by higher ranked agents than agent j. The arm set G∗

j is one of the main sources that
prevent agent j from forming a stable matching, and it will be deleted before each phase to reduce
collisions.
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Second, the idea from one-to-one to many-to-one is a transition from individual to set. It is natural to
split sets into individuals or correspond sets to individuals. Although we assume that arm preference
is over individuals Roth & Sotomayor (1992); Sethuraman et al. (2006); Altinok (2019), the agents
matched by one arm are not independent. Specially, arms with capacity q can not just be replaced
by q independent individuals with the same preference. Since there would be implicit competition
among different replicates of one arm, and he can reject previously accepted agents when he faces a
more preferred agent. In addition, considering capacity, the matching result for each arm k is a set
rather than an individual. In order to give a description of a uniqueness condition, we need to give
a threshold for the range of stable matched agents set. The lr in Basu et al. (2021) is a one-to-one
mapping that corresponds the agent index in the left order and the agent index in the right order, which
is related to regret bound (Theorem 3 in Basu et al. (2021) and Theorem 3 in our work). While it does
not hold in our setting. We construct a new mapping lr (Figure 4 in Appendix B) which connects
the index of agents in two orders in many-to-one setting. lr maps each arm k to the least preferred
one of its stable matched agents in the right order, thus giving a mapping between individuals and
individuals.

From α-condition to α̃-condition In general markets, preferences are difficult to learn when one
arm can accommodate multiple agents. We consider the market with uniqueness condition. For one
thing, equilibrium plays an important role in the fairness and stability of matching problems. For
another, to reduce the conflicts among agents, we adopt an arm deletion idea and Unqc (Definition 1)
can ensure that the deletion does not affect the stable matching.

Our work extends α-condition to many-to-one setting, which needs to define preferences among
sets. However, there might be an exponential number of sets due to the combinatorial structure and
simply constraining preferences over all possible sets will lead to high complexity. Motivated by
α-condition which characterizes properties of matched pairs in one-to-one setting, we come up with
a possible constraint by regarding the arm and the least preferred agent in its matched set as the
matched pair and define preferences according to this grouping. It turns out that we only need to
define arm preferences over disjoint agent sets to complete this extension as α-condition is defined
under the stable matching, which can also fit the regret analysis well. Under this α̃-condition, it
induces a hierarchy in the matching market, which reduces the regret bound from collision block to
the number of matchings with sub-optimal arms by induction, thus making the regret reach the lower
bound related to time horizon T and reward gap ∆ (Appendix D) in matching problem with bandit
algorithm Sankararaman et al. (2021).

In a summary, there might be other possible ways to extend the α-condition but we present a successful
trial to not only give a good extension with similar inclusion relationships but also guarantee a good
regret bound.

6 EXPERIMENTS

In this section, we verify the experimental results of our MO-UCB-D4 algorithm (Algorithm 1) for
decentralized many-to-one matching markets. For all experiments, the rankings of all agents and
arms are sampled uniformly. We set the reward value towards the least preferred arm to be 1/N
and the most preferred one as 1 for each agent, then the reward gap between any adjacently ranked
arms is ∆ = 1/N . The reward for agent j matches with arm k at time t Xj,k(t) is sampled from
Ber(µj,k). The capacity is equally set as q = N/K. We investigate how the cumulative regret and
cumulative market unstability depend on the size of the market and the number of arms under three
different unique stability conditions: Serial Dictatorship, SPC, α̃-condition. The former cumulative
regret is the total mean reward gap between the stable matching result and the simulated result, and
the latter cumulative unstability is defined as the number of unstable matchings in round t. In our
experiments, all results are averaged over 10 independent runs, hence the error bars are calculated as
standard deviations divided by

√
10.

Varying the market size. To test effects on cumulative regret and cumulative unstability, we first
vary N with fixed K with market size of N ∈ {10, 20, 30, 40} agents and K = 5 arms. The number
of rounds is set to be 100, 000. The cumulative regrets in Figure 2(a)(c)(e) show an increasing trend
with convergence as the number of agents increases under these three conditions. When the number
of agents increases, there is a high probability of collisions among agents, resulting in an increase of
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cumulative regret. Similar results for cumulative unstability are shown in Figure 2(b)(d)(f). When N
is larger, the number of unstable pairs becomes more. With the increase of the number of rounds, both
two indicators increase first and then tend to be stable. The jumping points are caused by multi-phases
setting of MO-UCB-D4 algorithm.
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Figure 2: Cumulative regret and cumulative
unstability of MO-UCB-D4 of size with N ∈
{10, 20, 30, 40} and the number of arms K = 5
under Serial Dictatorship, SPC, α̃-condition.
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Figure 3: Cumulative regret and cumulative
unstability of MO-UCB-D4 of size with K ∈
{2, 5, 10, 20} under Serial Dictatorship, SPC, α̃-
condition.

Varying arm capacity. The number of arms K is chosen by K ∈ {2, 5, 10, 20}, with N = 20 and
q = N/K. The number of rounds we set is 400, 000. With the increase of K, both the cumulative
regret in Figure 3(a)(c)(e) and the cumulative unstability in Figure 3(b)(d)(f) increase monotonously.
When K increases, the capacity qk for each arm k decreases, and then the number of collisions
will increase, which leads to an increase of cumulative regret. And it also leads to more unstable
pairs, which needs more communication blocks to converge to a stable matching. Under these three
conditions, the performances of the algorithm are similar.

7 CONCLUSIONS

We are the first to study the bandit algorithm for the many-to-one matching market under the unique
stable matching. This work focuses on a decentralized market. A new α̃-condition is proposed
to guarantee a unique stable outcome in many-to-one market, which is more general than existing
uniqueness conditions like SPC, Serial Dictatorship and could recover the usual α-condition in
one-to-one setting. We propose a phase-based algorithm of MO-UCB-D4 with arm-elimination,
which obtains O

(
NK log(T )

∆2

)
stable regret under α̃-condition. By carefully defining a mapping from

arms to the least preferred agent in its stable matched set, we could effectively correspond arms and
agents by individual-to-individual. A series of experiments under two environments of varying the
market size and varying arm capacity are conducted. The results show that our algorithm performs
well under Serial Dictatorship, SPC and α̃-condition respectively.
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A RELATED WORKS

The study of matching markets has a long history in economics and operation research Bogomolnaia &
Moulin (2001); Bade (2020); Roth & Sotomayor (1992) with real applications like school enrollment,
labor employment, hospital resource allocation, and so on Abizada (2016); Ma (2010); Roth (1986);
Hatfield et al. (2014). A salient feature of market matching is making decisions for competing
players on both sides Thompson (1933); Gale & Shapley (1962). MAB is an important tool to
study matching problems under uncertainty to obtain a maximum reward, and upper confidence
bound algorithm (UCB) Auer et al. (2002) is a typical algorithm, which sets a confidence interval to
represent uncertainty.

This paper contributes mainly to intersection of MABs and two-sided matching markets literature.We
analyze recent works in this direction. After Das & Kamenica (2005) proposed to apply MAB in
learning preference, the learning uncertain matching system provided inspiration for the design of
online platform, and then there was a series of algorithm design Liu et al. (2020a;b); Sankararaman
et al. (2021); Basu et al. (2021); Gunn et al. (2022); Malgonde et al. (2020); Johari et al. (2021).
In a general centralized market without conflicts, Liu et al. (2020a) applied the common ETC and
UCB algorithms to the matching market, and obtained the regret order of O(NK log(T )

∆ ). Following
this, a more general market, decentralized one, was studied by traditional UCB algorithm, and
obtain a O( exp (N4)N5K2 log2(T )

∆ ) regret by setting a delay parameter to reduce collisions among
agents. By limiting preferences, we can get algorithms that have better convergence or can learn
information about unknown preferences. Under Serial Dictatorship condition, Sankararaman et al.
(2021) proposed an phased UCB algorithm with global communication to solve decentralized market
with nonlocal information. As Serial Dictatorship condition is too strong, a weaker Uniqueness
Consistency condition is applied in this online data-driven market Basu et al. (2021). Under the
conditions on preferences, the regret bound in decentralized matching is reduced to O(NK log(T )

∆ ).
However, these valuable articles focused on one-to-one matching that one arm can accept only one
agent as his stable pair. Motivated by these, we extend works not only to a many-to-one setting, but
also under a weaker uniqueness condition which is first introduced by this work.

In terms of uniqueness conditions, a flurry of works proposed some descriptive conditions in one-
to-one setting, like the Serial Dictatorship Sankararaman et al. (2021), the No Crossing Condition
(NCC) Clark (2006), the Sequential Preference Condition (SPC) Eeckhout (2000), the α-Condition
Karpov (2019). However, a few of works concentrated on the unique stable property in many-to-one
market. Some exiting conditions are SPC, Reny (2021), Aligned Preference, Serial Dictatorship
Top-top match and Acyclicity Niederle & Yariv (2009); Akahoshi (2014); Reny (2021), which are
strong that are not universal in algorithm design.

The research on many-to-one market is a relatively meaningful work recently. Leaning preferences
and form a stable matching are also key features in this setting Jagadeesan et al. (2021). Altinok
(2019); Özkan & Ward (2020); Johari et al. (2021) studied dynamic many-to-one matching. For one
thing, their concerns provide motivation for our work, for another, they also provide more latent
future directions for the application of MAB in matching.

B ANALYSIS FOR OUR α̃-CONDITION

B.1 MAPPING UNDER α̃-CONDITION

To connect two sides of the market, we define a mapping lr as lr(i) = max{j : Aj ∈ γ∗(m∗(i)), j ∈
[N ]}, from agent index in the left order to agent index in the right order under α̃-condition since
arms in the right order can select more than one agents. From Theorem 1, the stable matching
for arm k is its first qk preferred agents γ∗(ck) = Ak. Recall that the preference is strict. Denote
that the first qk agents are ranked as A(1)

k ≻ A(2)
k ≻ · · ·A(qk)

k . Then the rule of the mapping lr
in the right order we set is as follows: the mapping for arm k ∈ [K] is the least preferred one
among its most preferred qk agents, that is, Alr(k) = A

(qk)
k . And the intuitive representation can be

seen in Figure 4. If we assume that ci2 = c1, then the right order can be seen form the figure and
lr(q1 + 1) = · · · = lr(q1 + qc1) = qc1 holds.

12



Under review as a conference paper at ICLR 2023

1

2

q1

q1 + 1

N

1

2

K

ci1

ci2

ciK

A1 = A(1)
1

Aqc1
= A(qc1 )

1

Aqc1+1 = A(1)
2

AN = A(qcK )

K

Left Order Right Order

Agents Arms Agents

Figure 4: The mapping from the left order to the right order (assume that ci2 = c1)

B.2 PROOF FOR REGRET ANALYSIS UNDER α̃ - CONDITION

The proof idea is mainly as follows. We construct phases with good properties and denote that the
time point of agent j reaching its good phase by Fαj . From phase Fαj on-wards, agent j+1 will find
the globally dominated arm set G∗

j+1 and will eliminate arm m∗(j) according to Algorithm 1. Then
the process of each agent is divided into two stages: before Fαj and after Fαj . After Fαj , according
to the causes of regret, it is divided into four blocks: collision, local deletion, communication, and
sub-optimal play. Phases before Fαj can be bounded by induction.

We first give some notations and definitions:

Rank for Each Agent Recall that if arm k prefers agent j over j′, we denote j ≻k j′. And
under α̃-condition, the stable matched arm m∗(j) for agent j is agent j’s most preferred arm among
remaining arms who still have vacant seats within its capacity. Denote the agents that match with the
stable matched arm of agent j by γ∗(m∗(j)).

Classification of arm sets The dominated arms set Dj = {m∗(j′) : j′ ≻m∗(j′) j} means the
stable matched arms of agents who are more preferred by these arms than agent j, and the globally
dominated arms set under stable matching m∗ is G∗

j , a subset of Dj . Global deletion here follows
the left order. Recall that Oj [i] is the best arm for agent j in phase i. In Algorithm 1, the estimated
dominated arms set in phase i is Dj [i] = {Oj′ [i] : j

′ >Oj′ [i]
j} and the globally dominated arms in

each phase i Gj [i] ⊂ Dj [i]
2. For each arm k /∈ G∗

j , we give the definition of the blocking agents for
arm k and agent j: Bj,k = {j′ : j′ ≻k j, k /∈ G∗

j}, which contains agents more preferred by arm k
than j. The hidden arms for agent j isHj = {k : k /∈ G∗

j} ∩ {k : Bj,k ̸= ∅}.
Under SPC condition, the stable matched pair is also the best arm for each agent, and agents that
arm k matches with are its qk most preferred agents. It can be easily understood by the definition
of Top-top match. While under our α̃-condition, the stable results may not be the best choices for
the two sides. We then define a set NTT (j), in which each arm is a stable matched arm for some
other agents Aj′ , is a sub-optimal arm for j, and j is preferred by that arm than its stable matched
pairs γ∗(k). The NTT (j) set can be understood as "not Top-top match" stable results, and it can be
mathematically expressed as

NTT (j) =

{
k : k ∈ [K], µj,k < µj,m∗(j),∃j′ /∈ γ∗(m∗(j)), s.t.k = m∗(Aj′) and j ≻k γ

∗(k)

}
,

2We can obtain Dj [i] = Gj [i] in the one-to-one setting
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where j ≻k γ
∗(k) means that k prefers j than any agents in γ∗(k).

Phases with Good Properties In the decentralized market with limited information, estimating
preferences of other agents is challenging, thus we set a communication block. This block for agent j
is mainly to judge the dominated arms of agents that rank higher than j, where the dominated arm is
measured as the arm with the most number of times matched with each agent. Under our α̃-condition,
the most preferred arm is not necessarily the stable matched result, hence if arms in NTT (j) match
too many times with j, agents cannot distinguish the preference of agent j. During the time period
with limitation of arms in the NTT (j), other agents can identify the preferences of j, which helps to
reduce conflicts.
Definition 3. We say phase i is a Warm-up Phase for some j ∈ [N ] under α̃-condition if the
following conditions hold for each arm k ∈ NTT (j):

(i) arm k is matched with agent j at most 10αi
∆2

j,k
in phase i, where α is a parameter of UCB index (line

7 in Algorithm 1);

(ii) arm k is not agent j’s most matched arm in phase i.

According to it, we introduce the Unlocked phase (Uj) that all phases on and after it, agents A1 to Aj

are all into warm-up phase. Let i1 = min
{
i : (N − 1) 10αi∆2 < θ2(i−1)

}
, where ∆ is the minimum

reward gap, and

1W [i, j] =

{
1, phase i is a warm-up phase for agent j;
0, otherwise.

Uj = max

i1,min

i :
lr(j)−1∏
j′=1

∏
i′≥i

1W [i′, A′
j ] = 1

 ∪ {∞}
 .

Definition 4. We say phase i is a α̃-Good Phase for some j ∈ [N ] under α̃-condition if the following
are all satisfied:

(i) The globally dominated arms for agent j are globally deleted in phase i. Then, Gj [i] = G∗
j holds.

(ii) The phase i is a warm-up phase for all agents in Lj = {j′ : m∗(j) ∈ NTT (j′)}.
(iii) For each arm k /∈ G∗

j ∪m∗(j) (neither be globally deleted nor stable matched arm of agent j),
arm k is successfully matched with agent j in phase i at most 10αi

∆2
j,k

times.

(iv) The stable matched arm m∗(j) is selected the most number of times in phase i.

The definition of α̃-Good Phase is naturally to be brought up that during this phase, agent j has
collisions with low probability. When agent j selects an arm competing with a more preferred agent
by this arm, it receives zero reward with high probability (w.h.p.), thus condition (i) in Definition
4 is necessary for a lower regret. Recall that the stable matched pair may not be the best pair for j,
(ii) aims to limit arms in other agents’ NTT sets to avoid too many conflicts. And (iii), (iv) are
beneficial for other agents to estimate the stable matching of agent j. Similarly, we define α̃-Low
Collision Phase as Basu et al. (2021):
Definition 5. We say phase i is a α̃-Low Collision Phase for agent j under α̃-condition if:

(i) Phase i is a α̃-Good Phase for agent 1 to agent j;

(ii) Phase i is a α̃-Good Phase for agent j′ ∈ ∪k∈HjBj,k.

Define that

Fαj = max

i1,min({i :
∏
i′≥i

 j−1∏
j′=1

1Gα [i
′, j′]

 ∏
j′′∈Lj

1W [i′, j′′]

 = 1) ∪ {∞}

 , (1)

and

Vαj = max

i1,min({i :
∏
i′≥i

1LCα
[i′, j] = 1} ∪ {∞})

 , (2)
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where the definitions of 1LCα
[i, j] and 1Gα

[i, j] is similar to 1W [i, j].

Hence, all phases on and after phase Fαj are α̃-Good Phase and all phases after phase Vαj are α̃-Low
Collision Phase for agent j. Hence, 1W [i, j], 1LCα [i, j] and 1Gα [i, j] are the indicator to represent
whether phase i is a warm-up phase, α̃-low deletion phase and α̃-good phase respectively.

Before we give the complete proof of the regret bound in Theorem 3, we propose some propositions.

Proposition 1. The stable matched arm m∗(j) for agent j can be blocked by agents in Lj , where

Lj =
{
j′ : m∗(j) ∈ NTT (j′)

}
.

Proof. Assume that we have stable matching m∗. By contradiction, if j ≻m∗(j′) j
′ but µj,m∗(j) <

µj,m∗(j′), then (j,m∗(j′)) forms a blocking pair since they prefer each other than matched one
but they are unmatched, this leads to the instability of m∗. So, if j ≻m∗(j′) j

′, then µj,m∗(j) >
µj,m∗(j′) under the stable matching. Thus, if j′ ≻m∗(j) j, then µj′,m∗(j′) > µj,m∗(j), then m∗(j) ∈
NTT (j′).

Proposition 1 tells us that m∗(j) can be blocked only by agents in Lj , and the next proposition gives
the range of Lj .

Proposition 2. For each agent j ∈ [N ], Lj ⊆
⋃lr(j)−1

j′=1 Aj′

Proof. Under α̃-condition, for ∀k < j ≤ K, ck ∈ [K]r, Aj ∈ [N ]r, γ∗(ck) ≻ck Aj . And by
Theorem 1, γ∗(ck) = Ak. Therefore, for ∀j, j′ ∈ [N ], and j < j′, Aj ≻m∗(Aj) Aj′ . In particular,
for any j′ > lr(j), we have j = Alr(j) ≻m∗(j) Aj′ . This implies that for ∀j′ ≥ lr(j), we
can not obtain j′ ≻m∗(j) j, hence m∗(j) /∈ NTT (j′), that is, for ∀j′ ≥ lr(j), j′ /∈ Lj . Then
Lj ⊆ ∪lr(j)−1

j′=1 Aj′ .

Proposition 3. For each agent j ∈ [N ], Fαj
≤ max

{
U(lr(j)−1),max(Fαj′ : 1 ≤ j

′ ≤ j − 1)
}

happens with probability 1.

Proof. By the definition of Uj , we know that on and after phase U(lr(j)−1), all agents {Aj′ :
j′ = 1, 2, · · · , lr(j) − 1} are in warm-up phase. By proposition 2, the set of deadlock agents as
Lj ⊆ ∪lr(j)−1

j′=1 Aj′ . Hence, all agents in Lj are also in warm-up phase on and after Ulr(j)−1. Further,
the agents 1 to (j − 1) are in α̃-good phase from phase max{Fαj′ : 1 ≤ j′ ≤ j − 1} onwards. Then
the proposition holds w.p.1.

As the events decomposition for regret minimization block in Lemma 6 requires that m∗(j) always
exit and will not be deleted, it is important to find conditions or a certain phase with good properties
to guarantee that m∗(j) will not be globally deleted or locally deleted. The next lemma give us
theoretical guarantee.

Lemma 3. Let i1 = min

{
i : (N − 1) 10αi∆2 < θ2i−1

}
, for any phase i (i ≥ i1) and any agent

j ∈ [N ], the following properties holds.

(a) If phase i and (i− 1) are warm-up phases for all j′ ∈ Lj , then m∗(j) will not be globally
deleted or locally deleted almost surely, i.e. m∗(j) /∈ Lj [i] ∪Gj [i].

(b) If phase i ≥ min
{
U(lr(j)−1), Fαj

}
+ 1, then m∗(j) /∈ Lj [i] ∪Gj [i] a.s.

(c) If phase i ≥ Vαj + 1 is a low collision phase for agent j then Lj [i] = ∅ a.s.

Proof. (i) All agents j′ can block arm m∗(j) are in Lj by Proposition 1. And m∗(j) ∈ NTT (j′)
for any agent j′ ∈ Lj due to the definition of Lj . Therefore, if all agents in Lj are in warm-up phase
in phase (i− 1), then m∗(j) /∈ Gj [i] because by the definition of warm-up phase for agent j′ and
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m∗(j) ∈ NTT (j′), so m∗(j) is not agent j′ ’s most matched arm. Hence, m∗(j) /∈ Gj [i]. further-

more, the total number of times the arm m∗(j) can be deleted is at most
(∑lr(j)−1

i=1 qi − 1
)

10αi
∆2

j,k
for

any i ≥ i1, which is less than the local deletion threshold. So m∗(j) /∈ Lj [i] ∪Gj [i] after phase i1.

(ii) (a) Lj ⊆ ∪lr(j)−1
j′=1 Aj′ holds by Proposition 3, this implies that for phase i ≥ Ulr(j)−1 + 1 (i.e.

i− 1 ≥ Ulr(j)−1 + 1) is a warm-up phase for all agents in Lj = {j′ : m∗(j) ∈ NTT (j)}.

(b) By the definition of Fαj , all agents in Lj = {j′ : m∗(j) ∈ NTT (j)} are in warm-up phase for
phase i ≥ Fαj+1.

By (a), (b) and (i) we know that (ii) holds.

(iii) It can easily check by the definition of Vαj .

B.3 PROOF FOR THEOREM 3

After defining Fαj and Vαj3, we divide the whole process into two main modules: the process before
phase Fαj and after Fαj . We denote Si by the beginning time point of phase i. The regret during time
period [SFαj

, T] can be decomposed by four blocks: Local Deletion Block, Communication Block,
Collision Block and Sub-optimal Block. The regret during time period [0, SFαj ] can be bounded by
induction with j (Lemma 7).

Local Deletion Block. Lemma 3 implies that there is no collision after phase Vαj , so we only need
to consider the regret from Fαj +1 to Vαj . Following our algorithm, there is at most θ2i−1 collisions
when pulling an arm from the setHj in each round. This amounts to

Vαj∑
i=(Fαj+1)

∑
k∈Hj

θ · 2i−1 ≤
Vαj∑

i=(Fαj+1)

θ|Hj | · 2i−1

<
1− 2Vαj−1

1− 2
θ|Hj | = (2Vαj−1 − 1)θ|Hj |

= SVαj
· θ|Hj | ≤ min(SVαj

, 1) · θ|Hj | .

Communication Block. In the communication block, there are N sub-blocks, and the duration
of each sub-block is K. Agent j pulls arm 1, arm 2, · · · , arm K in order in the j-th block and pulls
Oj [i] in other blocks, whereOj [i] is the arm that it matched the most times in the regret minimization
block in phase i. The best arm for agent j is not played in all but (K − 1) number of steps for
each communication phase after phase Fαj + 1, and other agents j′ collide at most once after phase
Vαj (since each of them enters good phase). Hence, the regret comes from communication block is(
(K − 1 + |Bj,m∗(j)|) log2(T ) +NKE [Vαj ]

)
.

Collision Block. The regret caused by collision from phase Fαj + 1 to Vαj has been included
in the previous communication block (the regret of the period during Fαj + 1 and Vαj is rel-
atively loose), so we only consider the regret after phase Vαj . After phase Vαj + 1, regret
comes from the collision between agent j and the agents in the set Bj,k. And by the definition
of Vαj , agent j and agent j′ ∈ Bjk have deleted dominated arms for themselves, this leads to∑

k/∈G∗
j

∑
j′∈Bj,k:k/∈G∗

j′
µj,m∗(j)

(
Nj′,k(T ) − Nj′,k(SVαj )

)
. And by lemma 6, the number of the

matchings with suboptimal arms can be bounded, and the main resource of regret is bounded as a
scale of O(NK log(T )

∆2 )4.

3Under α̃-condition it is no longer the case as agent 1 is not the most preferred agent for arm 1. For agent A1

and its stable match arm c1, c1 may not be the best arm for agent A1 but for arm c1 we have A1 as its best agent.
Therefore, agent A1 will not delete it’s stable match pair arm a1, but unless global deletion eliminates better
arms it will not converge to this arm.

4It is α̃-condition that induces a hierarchy in the matching market, which reduces the regret bound from
collision block to the number of matchings with sub-optimal arms by induction.
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Sub-optimal Play Block. From phase Fαj + 1 on-wards, regret happens for agent j when
agent j selects arm k /∈ G∗

j ∪ m∗(j) and successfully be matched. This amounts to∑
k/∈G∗

j∪m∗(j) ∆jk(Njk(T )−Njk(SFαj
)) regret, and it can be upper bounded by Lemma 6.

Then we illustrate the relationship among those phases with good properties and indicators. We first
show that for phases i ≥ Uαj−1 + 1, the probability that phase i is not a Warm-up phase for agent
Aj is low. Let

i1 = min{i : (N − 1)
10αi

∆2
< θ2(i−1)} (3)

i2 = min{i : C(i− 1)− 1 ≤ 2i+1} , (4)

then we have the following lemma.

Lemma 4. For phase i ≥ i∗ = max(8, i1, i2), and for ∀j ∈ [N ], α > 1, then the following holds:

P ((1W [i, Aj ] = 0) ∩ (i ≥ Uj−1 + 1)) ≤ (K − j)2−i(α−1)

(
1 +

64

∆2

)
.

Similarly, we give the relationship between Fαj and α-Good phase.

Lemma 5. For any agent j and phase i ≥ i∗, and for α > 1, then

P ((1Gα [i, j] = 0) ∩ (i ≥ Fαj + 1)) ≤ (K − j)2−i(α−1)

(
1 +

64

∆2

)
.

We only give the proof of Lemma 4, and another one can similarly be verified.

Proof.

P ((1W [i, Aj ] = 0) ∩ (i ≥ Uαj−1 + 1))

≤
(i)

P

(
∪k∈NTT (Aj){(NAj ,k[i]−NAj ,k[i− 1]) >

10αi

∆2
Aj ,k

} ∩ (i ≥ (Uαj−1 + 1))

)

≤
(ii)

∑
k∈NTT (Aj)

P

(
(∪(Si+1−1)

t∈Si
NAj ,k(t) =

10αi

∆2
Aj ,k

) ∩ (It(Aj) = k) ∩ (i ≥ (Uαj−1 + 1))

)

≤
(iii)

∑
k∈NTT (Aj)

(Si+1−1)∑
t∈Si

P

(
(NAj ,k(t) =

10αi

∆2
Aj ,k

) ∩ (uAj ,k(t− 1) > uAjaj
(t− 1))

)

≤ |NTT (Aj)| 2−i(α−1)(1 +
64

∆2
)

≤ (K − j)2−i(α−1)(1 +
64

∆2
) .

The inequality (i) is because that if phase i is not a Warm-up phase for agent Aj , there exists an
arm k ∈ NTT (Aj), which is played more than 10αi

∆2
Aj,k

times in phase i. Next, (ii) holds since

the probability of union is less than or equal to the sum of probability. By Lemma 3, m∗(Aj) /∈
GAj

[i] ∪ LAj
[i]. Hence, the inequality (iii) holds since It(Aj) = k is equivalent to that the UCB

index (line 7 in Algorithm 1) of arm m∗(j) = aj can not be less than arm k.

We now give the upper bound of E
[
Njk(T )−Njk(SFαj )

]
, which is helpful to bound the regret

resulting from collision block and sub-optimal block.

Lemma 6. For ∀j ∈ [N ], k /∈ G∗
j ∪m∗(j), for α > 1,

E
[
Nj,k(T )−Nj,k(SFαj )

]
≤ ϕ(α) 8

∆2
j,k

+ 1 +
8

∆2
j,k

(
α log(T ) +

√
πα log(T ) + 1

)
.

17



Under review as a conference paper at ICLR 2023

Proof. Due to Lemma 3, m∗(j) will not be globally deleted or locally deleted after phase i ≥
(Fαj + 1). Denote Ij(t) as the arm that agent j pulls at time t. After phase Fαj , the reason for
agent j pulling arm k rather than m∗(j) are as follows: (1) the UCB index of the optimal arm m∗(j)
is less than µj,m∗(j) − ϵ; (2) Ij(t) = k and its UCB index is larger than µj,m∗(j) − ϵ. For any
k /∈ G∗

j ∪m∗(j) and ϵ > 0,

Nj,k(T )−Nj,k(SFαj ) =

T∑
t=SFαj+1

1{It(j) = k}

≤
T∑

t=SFαj
+1

1{(uj,k(t) ≥ µj,m∗(j) − ϵ) ∧ (It(j) = k)}︸ ︷︷ ︸
(a)

+1{uj,m∗(j) ≤ µj,m∗(j) − ϵ}︸ ︷︷ ︸
(b)

 .
First, we bound (a).

E

 T∑
t=SFαj

+1

1

{
(uj,k(t) ≥ µj,m∗(j) − ϵ) ∧ (It(j) = k)

}
≤E

 T∑
t=SFαj

+1

1

{
(µ̂j,k(t− 1) +

√
2α log(t)

Nj,k(t− 1)
≥ µj,m∗(j) − ϵ) ∧ (It(j) = k)

}
≤E

[
T∑

t=1

1

{
(µ̂j,k(t− 1)

√
2α log(T )

Nj,k(t− 1)
≥ µj,m∗(j) − ϵ) ∧ (It(j) = k)

}]

≤E

[
T∑

s=1

1

{
(µ̂j,k(s) +

√
2α log(T )

s
≥ µj,k +∆j,k − ϵ)

}]

≤1 + 2

(∆j,k − ϵ)2

(
α log(T ) +

√
απ log(T ) + 1

)
.

Then we turn to bound (b)

E

 T∑
t=SFαj

+1

uj,m∗(j) ≤ µj,m∗(j) − ϵ


≤E

[
T∑

t=1

uj,m∗(j) ≤ µj,m∗(j) − ϵ

]

≤E

[
T∑

t=1

T∑
s=1

P

(
µ̂j,k(t− 1) +

√
2α log(t)

Nj,k(t− 1)
≤ µj,m∗(j) − ϵ

)]

≤
T∑

t=1

T∑
s=1

exp

(
−s
2
(

√
2α log(t)

s
+ ϵ)2

)

≤
T∑

t=1

t−α
T∑

s=1

exp(−sϵ
2

2
)

≤ψ(α) 2
ϵ2
.

By choosing ϵ = ∆j,k

2 , we have

E
[
Nj,k(T )−Nj,k(SFαj

)
]
≤ ψ(α) 8

∆2
j,k

+ 1 +
8

∆2
j,k

(
α log(T ) +

√
απ log(T ) + 1

)
.
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We define lrmax(j) = max{lr(j′) : 1 ≤ j′ ≤ j}, and F̃j = max

(
Ulrmax(j)−1,max(F̃j′ : 1 ≤

j′ ≤ (j − 1))

)
, and F̃j > Fαj . Then we introduce a lemma to bound the probability that a phase i is

not an α̃-Good phase when i ≥ Fαj + 1.
Lemma 7. For any j ∈ [N ] and m ≥ 1, the following hold with i∗ (i∗ = max{8, i1, i2})

E
[
F̃m
j

]
≤ 2i1 + (lrmax(j) + j − 2)

(
(i∗)m +K(1 +

64

∆2
)

)
2−(α−1)(i∗−2)

(2(α−1) − 1)2
,

E
[
2F̃j

]
≤ 2i1 + (lrmax(j) + j − 2)

(
2i

∗
+K(1 +

64

∆2
)

)
2−(α−1)(i∗−2)

(2(α−1) − 1)2
.

The proof is the same as Basu et al. (2021).

Hence, the upper bound of E
[
SFαj

]
is

E
[
SFαj

]
= E

[
C(Fαj − 1) + 2Fαj

]
≤ E

[
C(F̃j − 1) + 2F̃j

]
≤ C(2i1 − 1) + C

(
lrmax(j) + j − 2

)
i∗ +

(
lrmax(j) + j − 2

)
2i

∗

+
(
C + 1

)(
lrmax(j) + j − 2

)
K
(
1 +

64

∆

)2−(α−1)(i∗−2)

(2(α−1) − 1)2
,

where C is a constant term.

Then for formula with term E
[
SVαj

]
, we can transform its upper bound to another term related to

E
[
SF̃Jmax(j)

]
since

Vαj = max
(
Fα(j+1),∪k∈Hj∪j′∈Bjk

Fαj

)
≤ max

(
F̃(j+1),∪k∈Hj∪j′∈Bjk

F̃(j+1)

)
= F̃Jmax(j) .

Hence, E
[
SVαj

]
≤ E

[
SF̃Jmax(j)

]
.

Lastly, the regret can be bounded by the decomposition of E
[
SFαj

]
and phases after SFαj

with
properties above, where phases on and after SFαj

contain local deletion, collision, communication,
sub-optimal play blocks.

E [Rj(T )] ≤ E
[
SFαj

]
+min(θ|Hj |, 1)E

[
SVαj

]
+
(
(K − 1 + |Bj,m∗(j)|) log2(T ) +NKE [Vαj ]

)
+
∑
k/∈G∗

j

∑
j′∈Bj,k:k/∈G∗

j′

8αµkj∗

∆2
j′k

(
log(T ) +

√
π

α
log(T )

)
+

∑
k/∈G∗

j∪m∗(j)

8α

∆j,k
(log(T ) +

√
π

α
log(T ))

+NK

(
1 + (ϕ(α) + 1)

8α

∆2

)
≤
∑
k/∈G∗

j

∑
j′∈Bj,k:k/∈G∗

j′

8αµkj∗

∆2
j′,k

(
log(T ) +

√
π

α
log(T )

)

+
∑

k/∈G∗
j∪m∗(j)

8α

∆j,k

(
log(T ) +

√
π

α
log(T )

)
+ cj log2(T )

+O

(
N2K2

∆2
min

+

(
min(1, θ|Hj |)fα̃(Jmax(j)) + fα̃(j)− 1

)
2i

∗
+N2Ki∗

)
.

C PROOF FOR UNIQUE STABLE CONDITIONS

C.1 UNIQUENESS CONDITIONS IN ONE-TO-ONE MATCHING.

There are many existing conditions that guarantee the unique stable matching in one-to-one setting,
like the Serial Dictatorship Sankararaman et al. (2021), the No Crossing Condition (NCC) Clark
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(2006), the Sequential Preference Condition (SPC) Eeckhout (2000), the α-Condition Karpov (2019).
Previous works tell us that top-top match and SPC condition can lead to a unique stable matching
in both one-to-one Niederle & Yariv (2009); Clark (2006) and many-to-one setting Reny (2021).
Niederle & Yariv (2009) use the Top-top match property instead of α-reducibility 5 for the same
meaning in the one-to-one setting. Serial Dictatorship in one-to-one setting means that for each agent,
the arms are ranked heterogeneously, in an increasing order of arm-means which is different for each
agent-arm pair while the agents are ranked homogeneously across all arms, and vice versa. Followed
by Romero-Medina & Triossi (2013); Niederle & Yariv (2009), we know that Aligned preference is
equal to Serial dictatorship in marriage problem as they are both equivalent to no cycle property. And
NCC and Serial Dictatorship are not mutually inclusive, which can be seen in Clark (2006). Hence,
the relationship can be represented intuitively in figure 5:

Figure 5: Relations of Unique Stable Conditions in One-to-one (left) and Many-to-one (right) Setting.

C.2 UNIQUENESS CONDITIONS IN MANY-TO-ONE SETTING.

In this section, we focus on conditions that guarantee the unique stable matching in the many-to-
one setting, such as SPC, Reny (2021), Aligned Preference, Serial Dictatorship Top-top match
and Acyclicity Niederle & Yariv (2009); Akahoshi (2014); Reny (2021) and give the proof of the
relationships among uniqueness conditions6.
Definition 6. (Aligned Preference.) In a many-to-one marketM = (K,J ,P), K = (k)k∈[K],J =
(j)j∈[N ], if the preference profile P satisfies

∀k ∈ K, j ≻k j
′,∀j < j′ (1.a)

∀j ∈ N , k ≻j k
′,∀k < k′ (1.b)

then the market has aligned preference. The one-to-one setting has the same definition.
Definition 7. (Serial Dictatorship) We say that if all arms (school) have the same preference for
agents (students), while agents’ preferences are heterogeneous (vice versa), then the system satisfies
serial dictatorship.
Definition 8. (Top-top Match) A stable pair (k, j) is a Top-top match for sub-marketM′ ∈ M if,
for arm k, agent j is the favorite candidate inM′, and vice versa.
Definition 9. (SPC) SPC condition in the many-to-one setting Reny (2021) is to require the existence
of a sequence of agents 1, 2, · · · , N in which each agent appears once, and a sequence of arms
1, 2, · · · ,K in which each arm appears once for each seat in its capacity, such that k ≻j k

′ for every
k′ > k and j ∈ [N ]; in addition, such that j ≻k j

′ for every j′ > j and k ∈ [K].

C.2.1 PROOF FOR LEMMA 1.

Proof. ⇒):
5Park (2017); Clark (2006) introduce that a matching problem is α-reducible if there is a top trading single

or pair for every sub-problem.
6The remark in Niederle & Yariv (2009) tells us that Aligned Preference is stronger than Top-top match and

SPC condition.
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Table 1: Preference Profiles
(a) Exm1: Companies

c1 : s1 > s2 > s3 > s4 > s5
c2 : s2 > s3 > s4 > s5 > s1
c3 : s3 > s4 > s5 > s1 > s2

(b) Exm1: Workers
s1 : c1 > c2 > c3
s2 : c2 > c3 > c1
s3 : c3 > c2 > c1
s4 : c3 > c1 > c2
s5 : c2 > c1 > c3

(c) Exm2: Companies

c1 : s1 > s2 > s3 > s4 > s5
c2 : s3 > s2 > s1 > s4 > s5
c3 : s1 > s5 > s2 > s4 > s3

(d) Exm2: Workers
s1 : c1 > c3 > c2
s2 : c1 > c2 > c3
s3 : c2 > c1 > c3
s4 : c1 > c2 > c3
s5 : c3 > c2 > c1

Serial Dictatorship⇒ Aligned Preference. In order to distinguish the symbols of agents and
arms, we consider arms set {ck, k = 1, 2, · · · ,K} and agents set {sj : j = 1, 2, · · · , N}. If arms
have the same preference for individual agent, then there is no cycle in the preference of the arm, i.e.
there is no case that

∃T, s0 ≻c0 sT ≻cT sT−1 · · · s1 ≻c1 s0
for s0, s1, · · · , sT and c0, c1, · · · , cT . Otherwise, assume that there exists the cycle above, then by
the same preference of arms, we know that ≻c0=≻c1 . And then s0 ≻c0 s1 and s1 ≻c1 s0, hence
s0 ≻c0 s1 and s1 ≻c0 s0, which yields a contradiction.

Now we prove that no cycle property implies Aligned preference. By contradiction, if there exists a
cl such that sk ≻cl sj , for k > j, then we can construct a cycle:

sk ≻cl sj ≻cj sj−1 · · · sk−2 ≻ck−1
sk−1 ≻ck sk.

⇐):

Aligned Preference⇒ Serial Dictatorship. We first illustrate that aligned preference leads to no
cycle property. By contradiction, if there is a cycle

s1 ≻c1 sT ≻cT sT−1 · · · s2 ≻c2 s1

for some s1, s2, · · · , sT , c1, c2, · · · , cT and T . It is obvious that it yields s1 ≻c1 sT , T > 1, which
contradicts the aligned principle. Then, if there is no cycle of length two, which implies that all
college have the same preferences because all students are acceptable to every college, which induces
the group serial dictatorship property.

C.2.2 PROOF FOR THEOREM 2.

(i) Proof for the relationship between SPC and α̃-condition

SPC states that after eliminating all Top-top match, there is at least one new Top-top match in the
remaining system under the restricted preference profile. Then it satisfies α̃-condition naturally.
However, examples below tell us that SPC can not imply α̃-condition. We give two examples to
illustrate this relationship where the order that an agent successfully matches with its stable pair
corresponds to the left order and right order.

Example Consider a market with three companies and five workers. Assume that the preference
profile of companies c1, c2, c3 and workers s1, s2, s3, s4, s5 is as follows and the capacities are 2, 1, 2
respectively for c1, c2, c3.

The preference in Table 1 (1(a))(1(b)) satisfies both SPC and α̃-condition with valid or-
der {(c2, s2), (c3, s3, s4), (c1, s1, s5)}. While preference in Table 1 (1(c))(1(d)) only sat-
isfies α̃-condition with valid left order {(c1, s1, s2), (c2, s3), (c3, s4, s5)} and right order
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{(c2, s3), (c1, s1, s2), (c3, s4, s5)}, and SPC does not hold.

(ii) Proof for the relationship between Unqc and α̃-condition

⇐) : Sufficiency: If α̃-condition holds, then the agent-proposing Gale-Shapley algorithm and the
arm-proposing Gale-Shapley algorithm leads to matching m in all consistent restrictions.

⇒) : Necessity: We first prove for K = 2, N = q1 + q2 case. Assume that there are two arms c1, c2,
each has capacity qk(k = 1, 2) and the agents set S = s1, s2, · · · , sq1+q2 . By contradiction, assume
that Unqc is satisfied while α̃-condition is not. Then we know that not all matching pairs are Top-top
match, so there exists an agent sk, c1 ≻sk c2, but sk is not in the agents set that first q1 preferred by
c1. The matched result may have two cases:

(· · · · · ·︸ ︷︷ ︸
q1

, c1) and (sk, · · · · · ·︸ ︷︷ ︸
q2−1

, c2) (i) ,

(sk, · · · · · ·︸ ︷︷ ︸
q1−1

, c1) and (· · · · · ·︸ ︷︷ ︸
q2

, c2) (ii) .

We first consider matching (ii). If sk matches c1, then there must be an agent in A1 matches with
c2. Let’s assume that there is an agent sℓ ∈ A1 that matches with c2. There are two situations to
discuss at this time. If c1 ≻sℓ c2, then (ii) is an unstable matching, which is recorded as case (A); If
sℓ prefers c2 more than c1, then (ii) is a stable matching and is recorded as event (B).

Apply the above two cases (A), (B) to matching (i). In (A), c1 and sℓ prefer each other, so there is a
Top-top match and then α̃-condition is satisfied, and a conclusion contradictory to the hypothesis is
derived. In (B), this case will produce two stable matchings, which contradicts Unqc.

We use induction to prove it. Suppose, that for all (N̂ , K̂), N̂ ≤ N, K̂ ≤ K, N ≥ q1 + q2 +
· · · + qK the α̃-condition is a necessary condition for the uniqueness consistency. Then we prove
for (N + 1, q1 + q2 + · · · + qK) (similarly, we would have for (N, q1 + q2 + · · · + qK + 1) and
q1+ q2+ · · ·+ qK ≥ N ). Assume that the newly added agent is X , select an agent from the original
N agents and record it as Y . Let k∗X and k∗Y be the arms rank first for X and Y respectively. By the
K = 2, N = q1 + q2 case proved above, we know that X and Y satisfy α̃-condition, hence either X
or Y matches with its first ranked arm. The agent matches with its first ranked arm is denoted by s1,
and the remaining N agents are s2, · · · , sN . Except k∗s1 and stable matched agents for k∗s1 , there are
N agents and K − 1 arms, and N ≥ q1 + q2 + · · ·+ qK − qk∗

s1
. From the inductive hypothesis, we

can know that α̃-condition is satisfied.

The relationship between α̃-condition and Acyclicity∗ is illustrated in Section C.2.4.

C.2.3 DIFFICULTIES FROM SPC TO α̃-CONDITION IN REGRET ANALYSIS

When we use the events decomposition for regret minimization block to prove the bound inequality
of the number of times agent j is pulled (Lemma 6), it requires that m∗(j) always exit and will
not be deleted. Under SPC condition, m∗(j) always exits as the stable matched partner is the most
preferred one among the remaining market for the certain agent while α̃-condition cannot guarantee
this property. Hence, it is important to find conditions or a certain phase with good properties to
guarantee that m∗(j) will not be globally deleted or locally deleted. And we consider Fαj

and Vαj

in Lemma 3 (in Appendix B.2) to solve this problem. And since the stable matched pair is not
top-top match in the remaining system under α̃-condition while the answer is true under SPC, we
introduce a new mapping (Figure 4) to describe the corresponding relationships of stable pairs. In
addition, as shown in Figure 1, Acyclicity∗ is the weakest condition to ensure uniqueness up to now,
and Bettina Klaus and Flip Klijn Klaus & Klijn (2013) point that acyclicity has a tight connection
with consistency. Hence, whether we can further weaken α̃-condition and propose a new algorithm
remains to study.
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C.2.4 Acyclicity∗ GUARANTEES A UNIQUE STABLE MATCHING

Definition 10. The preference profile of the arm side Pc has a cycle with length ℓ if there exists
integer ℓ ≥ 2, c1, c2, · · · , cℓ are ℓ distinct arms and s1, s2, · · · , sℓ are ℓ distinct agents, subset
T1, T2, · · · , Tℓ ⊂ S\{s1, · · · , sℓ} and for any i ∈ {1, 2, · · · , ℓ}, the following two conditions are
satisfied.

(P) {si+1} ≻ci {si} ≻ci ϕ, where sl+1 ≡ s1, and

(Q) |Ti| = qci − 1 and Ti ⊆ Uci(si), where Uci(si) = {s : s ≻ci si}.
If Pc has no cycle, it satisfies Acyclicity∗.

Akahoshi (2014) pointed that Acyclicity∗ is a necessary and sufficient condition for a unique
stable matching in many-to-one matching. They study the problem with responsive preference7 and
unacceptable agents and arms may exist on both sides of the market. Under our setting, both two
sides are acceptable, and we will prove that Acyclicity∗ is also a necessary and sufficient condition
for uniqueness in our problem.
Theorem 4. In our setting, our new α̃-condition is a sufficient condition to Acyclicity∗ (Theorem 2
(iii)).

We first see the example above to explain hoe to check whether the Acyclicity∗ is satisfied. As
mentioned above, the preference profile in Table 1 (1(a))(1(b)) satisfies both SPC and α̃-condition
with valid order {(c2, s2), (c3, s3, s4), (c1, s1, s5)}. We now check that it also satisfies Acyclicity∗.

From preference profile (1(a)), we can find four cycle:

(i) s1 ≻c1 s2 ≻c2 s1;
(ii) s2 ≻c2 s3 ≻c3 s2;

(iii) s3 ≻c2 s1 ≻c1 s3;
(iv) s3 ≻c3 s1 ≻c1 s2 ≻c2 s3;

Condition (P ) in Definition 10 is satisfied, and we then illustrate that condition (Q) is not satisfied,
thus Acyclicity∗ holds. For cycle (i), T1, T2 ⊂ S\{s1, s2}, |T1| = qc1 − 1 = 1. However, it violates
T1 ⊂ Uc1(s1) = ∅. Similarly, (ii), (iii), (iv) all imply that Acyclicity∗ is satisfied. For cycle (iv),
T1, T2, T3 ⊂ S\{s1, s2, s3}, |T1| = qc1 − 1 = 1 while T1 ⊂ Uc1(s1) = ∅. Then, this example also
satisfies Acyclicity∗.

In fact, we can see from the definitions of these two conditions that Acyclicity∗ only limits the
preferences of the arm side, while α̃-condition limits the preferences of both sides of the market.
Intuitively, Acyclicity∗ is a more general condition. We now give the theoretical proof.

If α̃-condition holds, then Acyclicity∗ also holds. By contradiction, if Acyclicity∗ is violated, then
there is a cycle (Definition 10). For preference sequences that can produce stable matchings, as
long as there is a cycle or a ring structure, we can always construct at least two stable matchings
Romero-Medina & Triossi (2013). For example, for fixed agents set S = {s1, s2, · · · , sN} and arms
set C = {c1, c2, · · · , cK} with preference profile P and this matching market has stable matching
m∗. If there is a cycle s1 ≻c1 s2 ≻c2 s1, for this stable matching m∗ containing (s1, c1), (s2, c2),
when other matching pairs remain unchanged, (s2, c1), (s1, c2) with other pairs can lead to a new
stable matching. Thus the uniqueness is violated, and then α̃-condition is also violated.

Conversely, we consider a counterexample that Acyclicity∗ holds while α̃-condition may not hold.

From Table 2, we now explain that a market with arms c1, c2, c3, agents s1, s2, s3, s4, s5, and capacity
q = (2, 1, 2) with preference (2(a)) and (2(b)) satisfies Acyclicity∗ and can lead to a unique stable
matching but does not satisfy α̃-condition. We run GS Algorithm in many-to-one market and
obtain stable matching {(c1; s2, s5), (c2; s1), (c3; s3, s4)}. And Acyclicity∗ is easily verified. After
eliminating (c3; s3, s4), only s1, s2, s5, c1, c2 remain in the system, and then the preference profile
is represented as (2(c)) and (2(d)) in Table 2. Apparently, this preference can produce two stable
matching. Thus, α̃-condition is violated.

7The responsive preference here means that if only one student in the two matchings is different, the college
prefers the matching containing the preferred student.
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Table 2: Preference Profiles
(a) Exm3: Arms

c1 : s1 > s2 > s5 > s3 > s4
c2 : s2 > s1 > s4 > s3 > s5
c3 : s1 > s3 > s2 > s4 > s5

(b) Exm3: Agents

s1 : c2 > c3 > c1
s2 : c1 > c2 > c3
s3 : c3 > c1 > c2
s4 : c1 > c2 > c3
s5 : c1 > c2 > c3

(c) Exm3: Arms
c1 : s1 > s2 > s5
c2 : s2 > s1 > s5

(d) Exm3: Agents

s1 : c2 > c1
s2 : c1 > c2
s5 : c1 > c2

Theorem 5. Suppose that (K,J ,P) are arbitrarily fixed. Pc and Ps are the preference profiles of
arms and agents respectively. Then, Pc satisfies Acyclicity∗ if and only if there is a unique stable
matching in many-to-one setting for each Ps.

Proof. In order to prove this theorem, we first introduce a lemma.

Lemma 8. For a given P , suppose that there are two stable matchings under P: µ, µ′, then Akahoshi
(2014)

• |µ(s)| = |µ′(s)| for each s ∈ J and |µ(c)| = |µ′(c)| for each c ∈ K.

Moreover, for each c ∈ K with µ′(c) ̸= µ(c),

• |µ(c)| = |µ′(c)| = qc;

• µ(c)\µ′(c) ̸= ∅ and µ′(c)\µ(c) ̸= ∅;

• if µ′(c) ≻c µ(c), then for each s′ ∈ µ′(c) and s ∈ µ(c)\µ′(c), {s′} ≻c {s}.

⇒) : Necessity: We complete this proof by contradiction. Suppose there are at least two distinct
stable matchings under P . From GS algorithm Gale & Shapley (1962), there exists optimal matchings
µs and µc, s.t. µc ≻c µ

s and µs ≻s µ
c. Under the multi-stability assumption, µs ̸= µc. Then,

∃c0 ∈ K, s.t. µs(c0) ̸= µc(c0), and by the optimality of µc, µc(c0) ≻c0 µs(c0). Consider the
following algorithm:

• Step 1: Choose c1 ∈ K, such that µs(c1) ̸= µc(c1) and choose s2 ∈ J , such that
s2 ∈ µc(c1)\µs(c1). Choose c2 ∈ K\{c1}, {c2} = µs(s2). Go to step 2;

• Step k (k ≥ 2): Choose sk+1 ∈ J , such that sk+1 ∈ µc(ck)\µs(ck) and ck+1 ∈ K\{ck},
s.t. {ck+1} = µs(sk+1). If ck+1 ∈ {c1, c2, · · · , ck}, then the algorithm terminates. If not,
go to the next step.

• Result: If the algorithm terminates at Step ℓ (ℓ ≥ 2) with cℓ+1 = cj(j ≥ 1), then the result
is:

Given the students {sj+1, sj+2, · · · , sℓ+1} and the college {cj , cj+1, · · · , cℓ}, there is a
cycle: sℓ+1 ≻cℓ sℓ · · · · · · sj+2 ≻cj+1 sj+1 ≻cj sj , then condition (P ) is satisfied. Let
Tk = µc(ck)\{sk}, k ∈ {j, j + 1, · · · , ℓ}, since each agent ultimately matches only one
arm, µc(cj), µ

c(cj+1), · · · , µc(cℓ) are mutually disjoint, then Tj , Tj+1, · · · , Tℓ are disjoint.
And by the definition of Tk, k ∈ {j, j + 1, · · · , ℓ}, Tk does not contain any agent in
{sj+1, sj+2, · · · , sℓ+1}. By the second property in Lemma 8, |Tk| = qck − 1 and by the
last property, Tk ⊂ Uck(sk).

Hence, there is a cycle (Definition 10), which induces a contradiction.
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⇐) : Sufficiency: Assume that there exists a cycle sℓ+1 ≻cℓ sℓ · · · s3 ≻c2 s2 ≻c1 s1, sℓ+1 ≡ s1,
and |Ti| = qci − 1, Tci ⊆ Uci(si), then we construct preference profiles for both arms (Figure C.2.4)
and agents (Figure C.2.4):

Table 3: Preference Profile of K.
note c1 c2 · · · · · · cℓ−1 cℓ cℓ+1 · · · · · · ck

1 s2 s3 · · · · · · sℓ s1 ∗ · · · · · · ∗
2 sℓ+2 sℓ+2 · · · · · · sℓ+2 sℓ+2 ∗ · · · · · · ∗
...

...
... · · · · · ·

...
...

... · · · · · ·
...

sℓ+1+q1

... · · · · · · sℓ+1+qℓ−1

...
... · · · · · ·

...

qi sℓ+1+q2 · · · · · ·
... sℓ+1+qℓ

... · · · · · ·
...

sℓ+2+q1 sℓ+2+q2 · · · · · · sℓ+2+qℓ−1
1sℓ+2+qℓ · · · · · ·

sℓ+3+q1 sℓ+3+q2 · · · · · · sℓ+3+qℓ−1
1sℓ+3+qℓ · · · · · ·

...
... · · · · · ·

...
... · · · · · ·

sN sN · · · · · · sN sN · · · · · ·
The remaining s1 s1 · · · · · · s1 s2

of {sℓ} s3 s2 · · · · · · s2 s3

are ranked
... s4 · · · · · ·

...
...

at last
...

... · · · · · ·
...

...
sℓ sℓ · · · · · · sℓ−1 sℓ

Table 4: Preference Profile of J .

s1 s2 · · · · · · sℓ−1 sℓ sℓ+1 · · · · · · sN
c1 c2 · · · · · · sℓ−1 s1 ∗ · · · · · · ∗
cℓ c1 · · · · · · cℓ−2 cℓ−1 ∗ · · · · · · ∗
...

... · · · · · ·
...

...
... · · · · · ·

...
[K]\{c1, cℓ} [K]\{c2, c1} · · · · · · [K]\{cℓ−1, cℓ−2} [K]\{cℓ, cℓ−1} ∗ · · · · · · ∗

Then we can find two distinct matchings µc and µs (Figure C.2.4 and Figure C.2.4), which induce a
contradiction.

Table 5: µc.
c1 c2 · · · · · · cℓ−1 cℓ cℓ+1 · · · · · · cK
s2 s3 · · · · · · sℓ s1 ∗ · · · · · · ∗
∗ ∗ · · · · · · ∗ ∗ ∗ · · · · · · ∗

Table 6: µs.
c1 c2 · · · · · · cℓ−1 cℓ cℓ+1 · · · · · · cK
s1 s2 · · · · · · sℓ−1 sℓ ∗ · · · · · · ∗
∗ ∗ · · · · · · ∗ ∗ ∗ · · · · · · ∗
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D MORE DISCUSSIONS ABOUT OUR WORK

D.1 STABILITY IN MANY-TO-ONE SETTING

Stable matchings are always exist in one-to-one market Gale & Shapley (1962) while the answer is
not necessarily correct under many-to-one setting Roth & Sotomayor (1992). Roth & Sotomayor
(1992) points out that responsive preference (RP) that can refrain from this unexpectation. Our work
assume that arm preference profiles are over individuals rather than agents sets, which naturally
satisfies RP Sethuraman et al. (2006)8.

D.2 SOME DETAILS ABOUT ALGORITHM

Multi-phases to Reduce Collisions In previous work, the CA-UCB algorithm Liu et al. (2020b)
was proposed to manage conflicts in the decentralized market combined with the bandit algorithm, but
it has limitations for more general preference structures. In CA-UCB, if we set the delay probability
for all agents as zero, then agents may fall into infinite loops and cause high regret. To avoid linear
regret, the paper of Sankararaman et al. (2021) applies a phased UCB algorithm with arm elimination
in the one-to-one setting. Our MO-UCB-D4 algorithm in many-to-one matching is also carried out in
multi-phases for conflict management. The multi-phases is to guarantee that the active set in different
phases has no inclusion relationship so that if an agent deletes an arm in a phase, this arm can still be
selected in the later phases. This ensures when the agent wrongly deletes an arm, it will not lead to
linear regret.

Parameter Selection and Scale The parameter θ ∈ (0, 1/K) in our MO-UCB-D4 algorithm is
chosen for the local deletion threshold. Increasing the threshold leads to higher regret until local
deletion vanishes. This happens as more collisions are allowed until an arm is deleted. But a higher
threshold allows for quick detection of the stable matched arms. However, decreasing the threshold
results in a more aggressive deletion and then lower regret from collision each phase, at a cost of
longer detection time for the stable matched arms. Therefore, there is a trade-off when choosing θ
and we can design an algorithm to iteratively update θ based on the previous information.

Baseline experimental design Although our work mainly focuses on theory and therefore we did
not put much emphasis on the experimental evaluation, we still carefully design our experiments to
test the robustness of our algorithm across different environments. Since our work is the first one to
study the many-to-one setting with uniqueness conditions, there are indeed no comparable baselines.
It is possible to design some sub-optimal algorithms in which each agent runs a MAB algorithm
independently and there is no communication block among agents. However, such algorithm may not
find the stable matching and thus suffers a linear regret.

Optimality of our bound and the lower bound Recall that our bound is O(NK log(T )
∆2 ). There

exists a lower bound of O( log(T )
∆2 ) under the setting where arms have the same and known preferences

Sankararaman et al. (2021), which is a special case of our setting. Our bound is optimal in terms of
T and ∆. For N , since each agent j needs to face collisions from non-dominated arms and other
agents, regret is bounded over the summation of agents and thus leads to the term O(N). Usually
in a multi-player decentralized setting Avner & Mannor (2014); Rosenski et al. (2016), each agent
will suffer regret of term N since it will be collided with other agents. Thus we conjecture such N is
unavoidable. For K, since in the decentralized setting, agents have no knowledge of arm preference,
each agent needs to try each O(log(T )/∆2) times to identify the stable matched arm. And it may get
collided when pulling the other agent’s stable matched arm, thus leading to the term K. K might be
removed for those agents who may never get collisions due to the special market structure.

8This assumption Roth & Sotomayor (1992); Akahoshi (2014); Altinok (2019) in our setting states that
the addition of another agent pi′′ will not influence the preference ranking for an arm to agent pi and pi′ , i.e.
pi′′ ∪ pi ≻aj pi′′ ∪ pi′ is equivalent to pi′ ≻aj pi

26



Under review as a conference paper at ICLR 2023

D.3 STRICT PREFERENCE AND “INDIFFERENT AGENTS”

Our work focuses on strict preference rather than the more general case that considering indifferent
agents. As far as we know, a lot of works studying the traditional (offline) matching markets would
assume preferences to be strict Gale & Shapley (1962); Karpov (2019); Gutin et al. (2021); Nguyen
et al. (2021); Akahoshi (2014), perhaps due to the reason of simplicity. Our work mainly follows these
existing settings of the offline matching markets Gale & Shapley (1962); Karpov (2019); Gutin et al.
(2021); Nguyen et al. (2021); Akahoshi (2014) and the bandit learning on the one-to-one matching
markets Basu et al. (2021); Liu et al. (2020a); Sankararaman et al. (2021); Liu et al. (2020b) that
assume strict preferences.

Note that if the agents are indifferent (or nearly indifferent) over the arms that are far down the
ranking lists and do not affect the stable matching, our algorithm and analysis can actually go through.
The gap appeared in the regret bound actually depends only on the those “(nearly) optimal” arms that
appear in the stable matching or are the best among those not appeared in the stable matching.

Recall that our setting is to learn a particular stable matching, like previous works Basu et al. (2021);
Liu et al. (2020a); Sankararaman et al. (2021); Liu et al. (2020b) learning the unique, or agent-
pessimal/optimal stable matching on the one-to-one setting. Under this objective, if the agents are
nearly indifferent, not exactly indifferent, over “(nearly) optimal” arms, no matter how small the
gap is, the agents will need to figure out the which arm is better and the gap appears as the learning
hardness. This phenomenon is common in multi-armed bandits where differentiating the optimal
arm and the second optimal arm is the most difficult part of the learning. Then one might be curious
about the objective to learn a “nearly stable matching”. This would be more general and would prefer
to leave it as interesting future work.

For the case when agents are exactly indifferent on “(nearly) optimal” arms, the stable matchings
would not be unique. In this case, the communication block and the global deletion set of our
algorithm need to be revised to allow each agent to keep more than one stable matched arm. Note
that after this revision, the selected matching will not become fixed during interactions and will
switch between all optimal stable matchings since the learning algorithm needs to continue exploring
these arms to take precautions against the case of small gap. This will result in a phenomenon of
fast-changing matching-selections, compared with our setting and most previous works Basu et al.
(2021); Liu et al. (2020a); Sankararaman et al. (2021); Liu et al. (2020b) where the learning algorithm
tends to stick on a specific matching in the latter learning period.

D.4 FUTURE DIRECTIONS FOR MANY-TO-ONE SETTING

First, we propose some interesting directions about the setting. This paper considers preference over
individuals rather than agent sets. For example, when the first and fourth employees have cooperation
experience and the second and third employees have no cooperation experience before, the company
may prefer to recruit 1-st and 4-th together rather than 1-st, 2-nd or 2-nd, 3-rd. That is, 1, 4 ≻k 2, 3
may occur for arm k and 1, 2, 3, 4 ∈ [N ]. Further research can also take this combination effect as
the starting point. We assume that the preferences over agents for arms are known in our setting9.
When multiple agents are accepted by one arm simultaneously, the ranking of these agents cannot be
judged if under the assumption of unknown preference ranking. Therefore, the algorithm for rank
estimation still needs further design. And our work is based on fixed finite agents set and arms set,
thus how to generalize this setting to a dynamic one?

9The preference profile over arms for agents is unknown in our setting, and needed to be learned.
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