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ABSTRACT

An emerging line of research is dedicated to the problem of one-to-one matching
markets with bandits, where the preference of one side is unknown and thus we
need to match while learning the preference through multiple rounds of interaction.
However, in many real-world applications such as online recruitment platform for
short-term workers, one side of the market can select more than one participant from
the other side, which motivates the study of the many-to-one matching problem.
Moreover, the existence of a unique stable matching is crucial to the competitive
equilibrium of the market. In this paper, we first introduce a more general new a-
condition to guarantee the uniqueness of stable matching in many-to-one matching
problems, which generalizes some established uniqueness conditions such as SPC
and Serial Dictatorship, and recovers the known a-condition if the problem is
reduced to one-to-one matching. Under this new condition, we design an MO-

UCB-D4 algorithm with O (%;‘(T)) regret bound, where 7' is the time horizon,

N is the number of agents, K is the number of arms, and A is the minimum
reward gap. Extensive experiments show that our algorithm achieves uniform good
performances under different uniqueness conditions.

1 INTRODUCTION

The data-driven matching market is faced with the problems of learning customer preference and
matching the demand side with the supply side of the market to maximize the benefits of both sides.
Online platforms, like Lyft, Thumbtack and Taskrabbit, make decisions for customers and service
providers to match, on the basis of their diversified needs, which is abstracted as a matching market
with an agent side and an arm side, and each side has a preference profile over the opposite side. They
choose from the other side according to preference and perform a matching. Specific examples like
pool riding in ride-share system that matches a driver to multiple riders, Slate ranking in recommender
systems that a user is matched to various content at a single request |le et al.|(2019). The stability of
the matching result is a key property of the market Roth & Sotomayor (1992); |Abizadal (2016)); [Park
(2017).

This work takes online short-term recruitment as the main example, combine the traditional matching
problem Bade] (2020)); Bogomolnaia & Moulin| (2001)); Roth & Sotomayor| (1992) with the online
system |Gunn et al.|(2022); Malgonde et al.| (2020); Johari et al.| (2021)). Companies with short-term
needs accommodate workers who are voluntarily looking for flexible probation periods. The worker
preferences may be unknown in advance, thus matching while learning the preferences is necessary.
The multi-armed bandit (MAB) Thompson| (1933)); |Garivier et al.| (2016); |Auer et al.|(2002) is an
important tool for NV independent agents in matching market simultaneously selecting arms adaptively
from received rewards at each round. And the upper confidence bound algorithm (UCB) |Auer et al.
(2002) is a typical MAB algorithm, which sets a confidence interval to represent uncertainty. The
idea of applying MAB to one-to-one matching problems, introduced by |Liu et al.|(2020a), assumes
that there is a central platform to make decisions for all agents. Following this, other works|Liu et al.
(2020b); Sankararaman et al.|(2021); [Basu et al.|(2021) consider a more general decentralized setting
without a central platform to arrange matchings, and our work is also based on this setting.

However, it is not enough to just study the one-to-one setting. In online short-term worker employment
problem, employers have numerous similar short-term tasks to be recruited and workers can only
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choose one task according to the company’s needs at a time while one company can accept more
than one employee. Each company makes a fixed ranking for candidates according to its own
requirements but workers have no knowledge of companies’ preferences. The reward for workers is a
comprehensive consideration of salary and job environment. The online matching is in an iterative
way that tasks are short-term, or if an agent do not get an ideal job, he will leave the platform or start
a new competition to select another company. We abstract companies as arms and workers as agents.
Each arm has a capacity ¢ which is the maximum number of agents this arm can accommodate.
When an arm faces multiple choices, it accepts its most ¢ preferred agents. Agents thus competing
for arms and may receive zero reward if losing the conflict. It is worth mentioning that arms with
capacity ¢ in the many-to-one matching can not just be replaced by ¢ independent replicates with
the same preference since there would be implicit competition. In addition, when multiple agents
select one arm at a time, collision is unavoidable, which hinder the communication among different
agents under the decentralized assumption. They cannot distinguish who is more preferred by this
arm in one round as it can accept more than one agent while this can be done in one-to-one case.
Communication here lets each agent learn more about preferences of arms and other agents, so as to
formulate better policies to reduce collisions and learn faster about their stable results.

This work focuses on a many-to-one market under uniqueness conditions. Previous work |(Clark
(2006)); |Gutin et al.|(2021)) emphasize the importance of constructing a unique stable matching for the
equilibrium of matching problems and some existing uniqueness conditions are studied in many-to-
one matching, such as Sequential Preference Condition (SPC) and Acyclicity Niederle & Yariv|(2009);
Akahoshi|(2014)). Our work is motivated by Basu et al|(2021), but the unique one-to-one mapping
between arms and agents in their study which gives a surrogate threshold for arm elimination does
not work in the many-to-one setting. And the uniqueness conditions in many-to-one matching are
not well-studied, which also brings a challenge to identify and leverage the relationship between the
resulting stable matching and preferences of two sides in the design of bandit algorithms. We propose
an &-condition that can guarantee a unique stable matching and recover a-condition Karpov| (2019)
if reduced to the one-to-one setting. We establish the relationships between our new a-condition and
existing uniqueness conditions in many-to-one setting.

For clarity, in this paper, we study the bandit algorithm for a decentralized many-to-one matching
market with uniqueness conditions. Under our newly proposed uniqueness condition, &-condition,
we design an MO-UCB-D4 algorithm with arm elimination to construct a stable matching result. The

regret of our algorithm can be upper bounded by O (%f(ﬂ), where N is the number of agents,

K is the number of arms, and A is the minimum reward gap, and the regret reaches the lower bound
in terms of 7" and A. Finally, we conduct a series of experiments to simulate our algorithm under
various conditions of Serial dictatorship, SPC and &-condition to study the stability and regret of the
algorithm.

2  SETTING

This paper considers a many-to-one matching market M = (K, J, P), where K = [K], is a finite
arm set and J = [N] is a finite agent set. Each arm £ has a fixed capacity g5, > 1. To guarantee that

no agents will be unmatched, we focus on the market with NV < ZZK:1 q;- P is the fixed preference
order of agents and arms, which is ranked by the mean reward. We assume that arm preference is over
individuals Roth & Sotomayor|(1992)); |Sethuraman et al.|(2006)); |Altinok! (2019), and arm preferences
for agents are unknown and needed to be learned. If agent j prefers arm k than &', i.e., f1; 5 > ftj,1,
we denote by k >; k’. And the preference is strict that p; ;, 7# ;5 if k # k’. Similarly, each arm
k has preferences >, over all agents, and specially, j = j’ means that arm k prefers agent j over
j’. Throughout, we focus on the market where all agent-arm pairs are mutually acceptable, that is,
j>r0andk =, Qforallk € [K]and j € [N].

Let a mapping m be the matching result. m;(j) is the matched arm for agent j at time ¢, and ¢ (k) is
the agent set matched with arm kﬂ At each time agent j selects an arm I;(j), and we use M;(j) to
denote whether j is successfully matched with its selected arm. M, (j) = 1 if agent j is matched with
I:(j), and My(j) = 0, otherwise. If multiple agents select arm k at the same time, only top g; agents
can successfully match. The agent j matched with arm & can observe the reward X; ,,,, (;)(t), where

"The mapping m is not reversible as it is not a injective, thus we do not use m; ! (k).
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the random reward X; 1, (¢) € [0, 1] is independently drawn from a fixed distribution with mean ;.
While the unmatched one has collisions and receives zero reward. Generally, the reward obtained by
agent j is XjJt(j)(t) M(j).

We say an agent j and an arm k form a blocking pair for a matching m if they prefer each other
over their current assignments, i.e. k >; m(j) and 35' € v(k), j > j'. We say a matching satisfies
individually rational (IR), if a; >, ) and p; -,, @ forall i € [N]and j € [K], that is, every worker
prefers to find a job rather than do nothing, and every company also wants to recruit workers rather
than not recruit anyone. Under the IR condition, a matching in the many-to-one setting is stable if
there does not exist a blocking pair|Salonen & Salonen| (2018)); Sethuraman et al.| (2006)).

This paper considers the matching markets under the uniqueness condition. Thus the overall goal is
to find the unique stable matching between the agent side and arm side through iterations. Let m* ()
be the stable matched arm for agent j under the stable matching m*. The reward obtained by agent j
is compared against the reward received by matching with m* () at each time. We aim to minimize
the expected stable regret for agent j over time horizon 7', which is defined as

Rj(T) = Tjm=jy — E

T
Z Mt(j)Xj,It(j)(t)] .

3 ALGORITHM

In this section, we introduce our MO-UCB-D4 Algorithm (Many-to-one UCB with Decentralized
Dominated arms Deletion and Local Deletion Algorithm) (Algorithm |1)) for the decentralized many-
to-one market, where there is no platform to arrange actions for agents. The MO-UCB-D4 algorithm
sets multiple phases, and each phase ¢ mainly includes regret minimization block (line [6]- [I2)) and
communication block (line[13]-[16) with duration 2/1,i = 1,2, - -.

Algorithm 1 MO-UCB-D4 algorithm (for agent j5)
Input:
0€(0,1/K), o> 1.
1: Set global dominated set G;[0] = ¢
2: for phase:=1,2,... do
3:  Reset the collision set C ;[i| = 0, Vk € [K];

4:  Reset active arms set Ch,[i] = [K]\G,[i — 1];

5. ift <2'4+ NK(i— 1) then

6: Local deletion L;[i] = {k : Cj[i] > [62%]};

7: Play arm [;(j) € argmax (ﬂj’k(t -1)+ ,/%ﬂ?));

kech; [i\L; [4] o

8: if k& = I,(j) is successfully matched with agent j, i.e. m:(j) = k then
9: Update estimate [i; 5 (¢) and matching count N; (t);
10: else
11: Cj7k[i] = Cjk[l] +1;
12: end if

13:  elseif t =2+ NK(i — 1) then
14: O;[i] < most matched arm in phase ;
15 Gjli] + COMMUNICATION(i, O;]i]):

16:  end if
17: end for

For each agent j in phase ¢, the algorithm adds arm deletion process to reduce potential conflicts,
which contains global deletion and local deletion. The former eliminates the arms most preferred
by agents who rank higher than agent j and obtains active set Ch;[¢] (line , and the latter deletes
the arms that still have many conflicts with agent j after global deletion (line[6). We set a collision
counter C'; j[i] to record the number of collisions for agent j pulling arm % in phase ¢.

In the regret minimization block of phase i, we use L;[i] = {k : C; x[i] > [62%]} to represent the
arms that collide more times than a threshold [62] when matching with agent j. Arms in L;[i] are
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first locally deleted to reduce potential collisions for agent j (line[6). After that, agent j selects an
optimal action I;(j) from remaining arms in Ch, [¢]\ L;[¢] in phase ¢ according to UCB index, which is

computed by [1; 5 (t—1)+ 4/ % (line, where N; 1, (¢t — 1) is the number that agent j and arm
75

k have been matched at time ¢ — 1. If the selected arm is successfully matched with agent j, then the

algorithm updates estimated reward [i; 1 (t) = W S H{I(j) = kand M, (j) = 1} X, x(t)

and N; ,(t) (line @) Otherwise, the collision happens (line[I1) and agent j receives zero reward. The

regret minimization block identifies the most played arm O, [¢] for agent j in each phase ¢, which is
estimated as the best arm for agent j, thus making optimal policy to minimize expected regret.

Algorithm 2 COMMUNICATION

Input:
Phase number 4, and most played arms O; 4] for agent j, Vj € [N].
1: SetC =0

2: fort=1,2,--- , NK —1do

3 ifK(j—1) <t<Kj—1then

4: Agent j plays arm I;(j) = (¢ mod K) + 1;
5: if Collision Occurs then

6: C=CU{L(y};

7: end if

8: else

9: Play arm I, (j) = O,i];

10:  end if

11: end for

12: RETURN C;

In the communication block (Algorithm @]), there are N sub-blocks, each with duration K. In the
¢ — th sub-block, only agent ¢ pulls arm 1, arm 2, - - -, arm K in round-robin while other agents
select their most preferred arms estimated as the most played ones (line ). This block aims to detect
globally dominated arms for each agent j: G;[i] C {Oj/[i] : j' =0, 1s) 7} Under the stable matching
m*, the globally dominated arm set for agent j is denoted as G;. After the communication block in
phase ¢, each agent j updates its active arm set Ch; [i 4 1] for phase ¢ + 1, by globally deleting arm
set G;[4], and enters into the next phase (line E]in Algorithm .

Hence, multi-phases setting can guarantee that the active sets in different phases have no inclusion
relationship so that if an agent deletes an arm in a certain phase, this arm can still be selected in the
later rounds. This ensures that each agent will not permanently eliminate its stable matched arm, and
if agent 7 mistakenly deletes an arm, it will not lead to linear regret.

4 RESULTS

4.1 UNIQUENESS CONDITIONS

4.1.1 &-CONDITION

When the preferences of agents and arms are given by some utility functions instead of random
preferences, like payments for workers in the labor markets, the stable matching is usually unique.
Thus the assumption of the unique stable matching is quite common in real applications. And some
uniqueness conditions have important properties like consistency, which states that any stable pair
leaving the market does not affect the remaining to form a stable matching. In dynamic markets
where agents and arms come and go, the consistency property is desirable to keep the matching
majority static [Basu et al|(2021)). And in this way, the market is divided into pairs with priority,
which is divided into hierarchical structures, so that the design of the algorithm is inductive, and the
regret is constrained to the number of sub-optimal matchings (Appendix [3)). Besides, when the stable
matching is unique, there would be no dispute about adopting stable matching preferred by which
side, thus is fairer to both sides |Cen & Shah| (2022). Note that the outcome of the GS algorithm
would prefer the proposal side and would be unfair to the other side |Clark|(2006).



Under review as a conference paper at ICLR 2023

In this section, we propose a new uniqueness condition, &-condition. First, we introduce unigueness
consistency (Ungc) Karpov| (2019), which guarantees robustness and uniqueness of markets.

Definition 1. A preference profile satisfies uniqueness consistency if and only if
(i) there exists a unique stable matching m*;

(ii) for any subset of arms or agents, the preference profile on this subset with their stable-matched
pair can induce a unique stable matching.

It guarantees that even if an arbitrary subset of stable pairs are deleted out of the system, there still
exists a unique stable matching among the remaining agents and arms. This condition allows the
algorithm to find the unique stable matching by detecting the stable matching pairs iteratively. To
obtain the unique stable matching in the many-to-one market, we propose a new &-condition, which
is a sufficient and necessary condition for Ungc (proved in Appendix [C).

We considers a finite set of arms [K] = {1,2,--- , K} and a finite set of agents [N] = {1,2,--- , N}
with preference profile P. Assume that [N],={4;, Aa,--- , Ay} is a permutation of {1,2,--- | N}
and [K|,.={c1,ca, -+ ,ck } is a permutation of {1,2,--- | K'}. Denote [IV], [K] as the left order and
[N],, [K], as the right order. The k-th arm in the right order set [K], has the index ¢, in the left
order set [K] and the j-th agent in the right order set [IV], has the index A; in the left order set [N].
Considering arm capacity, we denote v*(cy,) (right order) as the stable matched agent set for arm c.

Definition 2. A many-to-one matching market satisfies the &-condition if,
(i) The left order of agents and arms satisfies

Vj € [N|,VE > g,k € [K], ltjm=(j) > Mjk
where m*(j) is agent j’s stable matched arm;
(ii) The right order of agents and arms satisfies

Vk < k/ < K,Ck; € [K]T;Ak’ C [N]Ta’y*(ck) >_Ck Azk ;1q 410

where the set v*(cy) is more preferred than A S -1 means that the least preferred agent in

e; T1
v*(ck) for ¢y, is better than A ST +1for ck

Under our a-condition, the left order and the right order satisfy the following rule. The left order
gives rankings according to agents’ preferences. The first agent in the left order set [N] prefers arm 1
in [K] most and has it as the stable matched arm. Similar properties for the agent 2 to ¢; since arm 1
has ¢; capacity. Then the (¢; + 1)-th agent in the left order set [N] has arm 2 in [K] as her stable
matched arm and prefers arm 2 most except arm 1. The remaining agents follow similarly. Similarly,
the right order gives rankings according to arms’ preferences. The first arm 1 in the right order set
[K],- most prefers the first ¢., agents in the right order set [IV],- and takes them as its stable matched
agents. The remaining arms follow similarly.

This condition is more general than existing SPC condition Reny|(2021) and can recover the known
a-condition in one-to-one matching market |Karpov| (2019). The relationship between existing
uniqueness conditions and our proposed conditions will be analyzed in detail later in Section[#.1.2]

The main idea from one-to-one to many-to-one analysis is to replace individuals with sets. In
general, under a-condition, the left order satisfies that when arm 1 to arm k£ — 1 are removed, agents
(Zf 11 g +1)to (Zf 1 i) prefer k most, and the right order means that when A; to agents
AEf:f ., are removed, arm k prefers agents A = {A g 1 AE?:—II go 4207 ’AZZ‘;l g, 1,
where A;, is the agent set that are most ¢ preferred by arm k among those who have not been
matched by arm 1,2,--- ,k — 1. The a-condition can be detected as follows: After running GS
algorithm and finding a stable matching, we can find two orders of arms and agents by sequential
elimination higher ranked agents or arms with their matching pairs. And the &-condition satisfied if
the two orders are identical. The next theorem gives a summary.

Theorem 1. If a market M = (K,J,P) satisfies a-condition, then m (g +1) =

(Zl 1 G +2) = =m*(>]_, ;) = j (the left order), v*(c) = Ay, and m*(A;) = c¢; (the
rzght order) under stable matching.
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Under &-condition, the stable matched arm may not be the most preferred one for each agent j,
j € [N], thus (i) we do not have m*(j) to be dominated only by the agent 1 to agent j — 1, i.e. there
may exist j' > j, s.t. j' =m=(j) J> (ii) the left order may not be identical to the right order, we
define a mapping /r to match the index of an agent in the left order with the index in the right order,
i.e. Ay.jy = j. From Theorem|l} the stable matched set for arm £ is its first g preferred agents
v*(cx) = Ag. We define Ir as [r(i) = max{j : A; € v*(m*(7)),j € [N]}, that is, in the right
order, the mapping for arm k € [K] is the least preferred one among its most ¢, preferred agents.
Note that this mapping is not an injective, i.e. 3j, j', s.t. agent j = A;,.(;) = Ajp(j-). An intuitive
representation can be seen in Figure ] in Appendix [B.T]

4.1.2 UNIQUE STABLE CONDITIONS IN MANY-TO-ONE MATCHING

Uniqueness consistency (Ungc) leads the stable matching to a robust one which is a desirable property
in large dynamic markets with constant individual departure Basu et al.|(2021). A precondition of
Unqc is to ensure global unique stability, hence finding uniqueness conditions is essential.

The existing unique stable conditions are well established in one-to-one setting (analysis can be
found in Appendix[C), and in this section, we focus on the uniqueness conditions in many-to-one
market, such as SPC, Reny| (2021)), Aligned Preference, Serial Dictatorship Top-top match and
Acyclicity Niederle & Yariv (2009);|Akahoshi| (2014); Reny| (2021)) (Definition[9] [10]in Appendix
[C.2). [Akahoshi (2014) proposes a necessary and sufficient condition for unique stable matching in
many-to-one matching where unacceptable agents and arms may exist on both sides. We denote this
condition as Acyclicity™. Under our setting, both two sides are acceptable, and we first give the proof
that Acyclicity* is a necessary and sufficient condition for uniqueness in this setting (Section|C.2.4).
We then give relationships between our newly a-condition and other existing uniqueness conditions,
intuitively expressed in Figure (1] and we give proof for this section in Appendix

Lemma 1. In a many-to-one matching market M = (IC, J, P), both Serial Dictatorship and Aligned
Preference can produce a unique stable matching and they are equivalent.

Theorem 2. In a many-to-one matching market M = (IC, T, P), our &-condition satisfies:
(i) SPC is a sufficient condition to &-condition;
(ii) a-condition is a necessary and sufficient condition to Ungc,

(iii) &-condition is a sufficient but not necessary condition to Acyclicity™.

Uniqueness < Acyclicity*

a-condition

SPC

top-top match

Serial Dictatorship
o

Aligned Preference

Figure 1: Relations of Uniqueness Conditions in Many-to-one Market.

4.2 THEORETICAL RESULTS OF REGRET

We then provide theoretical results of MO-UCB-D4 algorithm under our &-condition. Recall that G
is the globally dominated arms for agent j under stable matching m*. For each arm k ¢ G, we give
the definition of the blocking agents for arm k and agent j: Bjx = {j' : j' = j,k ¢ G}, which
contains agents more preferred by arm k than j. The hidden arms for agent jis H; = {k : k ¢
G5} N {k: Bjx # 0}. The reward gap for agent j and arm k is defined as Ay = |11, (j) — t4). x|
and the minimum reward gap across all arms and agents is A = min;ey{mingex) A} We
assume that the reward is different for each agent, thus A; ;, > 0 for every agent j and arm k.
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Theorem 3. (Regret upper bound) Let Jmax(j) = max{j +1,{j’ : 3k € H;,j’ € Bji}} be the
max blocking agent for agent j and f5(j) = j + lrmax(J) is a fixed factor depends on both the left
order and the right order for agent j. Following MO-UCB-D4 algorithm with horizon T, the expected
regret of a stable matching under &-condition (Definition [2)) for agent j € [N| is upper bounded by

Bl s S 3 (e [Tosn) + Y S W(logcm Tou(r))

kg GruUm* (5) kEG) ' €B;ikEGY,
N2K?
A2

+ ¢jlogy(T) + O( + (min(1, 0H;]) fa (Jmax(3)) + fa(j) — 1)2" + N2Ki* ),

N—

IN

where i* = max{8,iy,i2} (i1, i2 are defined in equation, and lrmax (7)) = max{lr(j') : 1 < j/
J}, is the maximum right order mapping for agent j' who ranks higher than j.

From Theorem the scale of the regret upper bound under a-condition is O (%ozg(ﬂ)'

Proof Sketch of Theorem The main proof idea is how agents settle down to their stable matched
arms inductively. Agent 1 will find its stable matched arm 1 at first since arm 1 is the most preferred
arm for agent 1. The same is true for agent 2 to agent g;. When they all settle down with arm 1, then
agent ¢; + 1 will find its stable arm 2 since agent ¢; + 1 has deleted arm 1 in the communication
block and thus arm 2 becomes its most preferred arm. We can show by induction that agent 5 will
find its stable matched arm after agent 1 to j — 1 has settled down. The regret of agent j can be
decomposed into four parts: sub-optimal play, collision, communication, and local deletion. Both
collisions between agent j and other agents in the blocking agent set and sub-optimal play are due to
the wrong estimation of UCB index (Lemma|6). Communication regret can be bounded by the length
of the communication block. Local deletion regret can be controlled by the threshold we set (line[6]in
Algorithm [T). The regret bound is decomposed as follows, and the complete proof can be seen in
Section

Lemma 2. (Regret Decomposition) For a stable matching under &-condition, the upper bound of
regret for the agent j € [N] under our algorithm can be decomposed by:

E[R;(T) <  E[Sp,]  +min(0|H;[,1)E [Sv,,]+ (K =1+ [Bjm-j|) logs(T) + NKE [V,;])
———
(Regret before phase F,;) (Local deletion) (Communication)

80&/1 im*(j [

k}QG; j’EBj)k:k¢G;,

(Collision)

+ Z z—a(log(T) + glog(T)) +NK (1 + (p(a) + 1)80[) ,

2
) ik A
kgGrum=(j) 7

(Sub-optimal play)

where Fy;, V,; are the time points when agent j enters into &-Good phase and ¢&-Low Collision
phase respectively, are defined in Appendix[B.2}

5 DIFFICULTIES AND SOLUTIONS

From one-to-one setting to many-to-one setting First, arm preference is difficult to learn in a
decentralized many-to-one setting. Influenced by capacity, in communication block, when two agents
select one arm at a time, as an arm can accept more than one agent, these two cannot distinguish
who is more preferred by this arm, while it can be done in one-to-one markets. Thus identifying arm
preference for each agent encounters more challenges, and then influences total regret. In order to
solve this, we introduce the dominated arm set i into communication block to identify arms who
are preferred by higher ranked agents than agent j. The arm set G is one of the main sources that
prevent agent j from forming a stable matching, and it will be deleted before each phase to reduce

collisions.
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Second, the idea from one-to-one to many-to-one is a transition from individual to set. It is natural to
split sets into individuals or correspond sets to individuals. Although we assume that arm preference
is over individuals Roth & Sotomayor] (1992); |Sethuraman et al.| (2006); |Altinok| (2019), the agents
matched by one arm are not independent. Specially, arms with capacity ¢ can not just be replaced
by ¢ independent individuals with the same preference. Since there would be implicit competition
among different replicates of one arm, and he can reject previously accepted agents when he faces a
more preferred agent. In addition, considering capacity, the matching result for each arm k is a set
rather than an individual. In order to give a description of a uniqueness condition, we need to give
a threshold for the range of stable matched agents set. The /7 in|Basu et al.|(2021)) is a one-to-one
mapping that corresponds the agent index in the left order and the agent index in the right order, which
is related to regret bound (Theorem 3 in|Basu et al.[(2021) and TheoremE]in our work). While it does
not hold in our setting. We construct a new mapping [r (Figure [din Appendix [B) which connects
the index of agents in two orders in many-to-one setting. [r maps each arm k to the least preferred
one of its stable matched agents in the right order, thus giving a mapping between individuals and
individuals.

From a-condition to a-condition In general markets, preferences are difficult to learn when one
arm can accommodate multiple agents. We consider the market with uniqueness condition. For one
thing, equilibrium plays an important role in the fairness and stability of matching problems. For
another, to reduce the conflicts among agents, we adopt an arm deletion idea and Unqc (Definition [T)
can ensure that the deletion does not affect the stable matching.

Our work extends a-condition to many-to-one setting, which needs to define preferences among
sets. However, there might be an exponential number of sets due to the combinatorial structure and
simply constraining preferences over all possible sets will lead to high complexity. Motivated by
a-condition which characterizes properties of matched pairs in one-to-one setting, we come up with
a possible constraint by regarding the arm and the least preferred agent in its matched set as the
matched pair and define preferences according to this grouping. It turns out that we only need to
define arm preferences over disjoint agent sets to complete this extension as c-condition is defined
under the stable matching, which can also fit the regret analysis well. Under this &-condition, it
induces a hierarchy in the matching market, which reduces the regret bound from collision block to
the number of matchings with sub-optimal arms by induction, thus making the regret reach the lower
bound related to time horizon T" and reward gap A (Appendix D) in matching problem with bandit
algorithm |Sankararaman et al.[(2021)).

In a summary, there might be other possible ways to extend the a-condition but we present a successful
trial to not only give a good extension with similar inclusion relationships but also guarantee a good
regret bound.

6 EXPERIMENTS

In this section, we verify the experimental results of our MO-UCB-D4 algorithm (Algorithm [T for
decentralized many-to-one matching markets. For all experiments, the rankings of all agents and
arms are sampled uniformly. We set the reward value towards the least preferred arm to be 1/N
and the most preferred one as 1 for each agent, then the reward gap between any adjacently ranked
arms is A = 1/N. The reward for agent j matches with arm £ at time ¢ X ;(¢) is sampled from
Ber(u; x). The capacity is equally set as ¢ = N/K. We investigate how the cumulative regret and
cumulative market unstability depend on the size of the market and the number of arms under three
different unique stability conditions: Serial Dictatorship, SPC, a-condition. The former cumulative
regret is the total mean reward gap between the stable matching result and the simulated result, and
the latter cumulative unstability is defined as the number of unstable matchings in round ¢. In our
experiments, all results are averaged over 10 independent runs, hence the error bars are calculated as
standard deviations divided by V10.

Varying the market size. To test effects on cumulative regret and cumulative unstability, we first
vary N with fixed K with market size of N € {10, 20, 30,40} agents and K = 5 arms. The number
of rounds is set to be 100, 000. The cumulative regrets in Figure Ja)(c)(e) show an increasing trend
with convergence as the number of agents increases under these three conditions. When the number
of agents increases, there is a high probability of collisions among agents, resulting in an increase of
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cumulative regret. Similar results for cumulative unstability are shown in Figure 2(b)(d)(f). When N
is larger, the number of unstable pairs becomes more. With the increase of the number of rounds, both
two indicators increase first and then tend to be stable. The jumping points are caused by multi-phases
setting of MO-UCB-D4 algorithm.

(2) Serial Dictatorship (b) Serial Dictatorship (a) Serial Dictatorship (b) Serial Dictatorship

w FHHHH T
s

Expected Cumulative Regret
Expected Cumulative Unstability

(d) SPC (c) sPC (d) sPC

Expected Cumulative Regret
Expected Cumulative Unstability

(e) &-condition () &-condition (e) &-condition (f) &-condition

Expected Cumulative Regret

Expected Cumulative Unstability

Expected Cum

Figure 2: Cumulative regret and cumulative

unstability of MO-UCB-D4 of size with N ¢  Figure 3: Cumulative regret and cumulative

{10, 20, 30,40} and the number of arms K = 5 unstability of MO-UCB-D4 of size with K €

under Serial Dictatorship, SPC, &-condition. {2,5,10,20} under Serial Dictatorship, SPC, &-
condition.

Varying arm capacity. The number of arms K is chosen by K € {2,5,10,20}, with N = 20 and
g = N/K. The number of rounds we set is 400, 000. With the increase of K, both the cumulative
regret in Figure [3(a)(c)(e) and the cumulative unstability in Figure [3{b)(d)(f) increase monotonously.
When K increases, the capacity g for each arm & decreases, and then the number of collisions
will increase, which leads to an increase of cumulative regret. And it also leads to more unstable
pairs, which needs more communication blocks to converge to a stable matching. Under these three
conditions, the performances of the algorithm are similar.

7 CONCLUSIONS

We are the first to study the bandit algorithm for the many-to-one matching market under the unique
stable matching. This work focuses on a decentralized market. A new &-condition is proposed
to guarantee a unique stable outcome in many-to-one market, which is more general than existing
uniqueness conditions like SPC, Serial Dictatorship and could recover the usual a-condition in
one-to-one setting. We propose a phase-based algorithm of MO-UCB-D4 with arm-elimination,

which obtains O %@gq)

arms to the least preferred agent in its stable matched set, we could effectively correspond arms and
agents by individual-to-individual. A series of experiments under two environments of varying the
market size and varying arm capacity are conducted. The results show that our algorithm performs
well under Serial Dictatorship, SPC and &-condition respectively.

) stable regret under a-condition. By carefully defining a mapping from
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A RELATED WORKS

The study of matching markets has a long history in economics and operation research|Bogomolnaia &
Moulin| (2001)); Bade| (2020); Roth & Sotomayor (1992)) with real applications like school enrollment,
labor employment, hospital resource allocation, and so on|Abizada) (2016); Ma|(2010); [Roth/(1986);
Hatfield et al. (2014). A salient feature of market matching is making decisions for competing
players on both sides [Thompson| (1933)); (Gale & Shapley| (1962). MAB is an important tool to
study matching problems under uncertainty to obtain a maximum reward, and upper confidence
bound algorithm (UCB) Auer et al.|(2002) is a typical algorithm, which sets a confidence interval to
represent uncertainty.

This paper contributes mainly to intersection of MABs and two-sided matching markets literature.We
analyze recent works in this direction. After|Das & Kamenica| (2005)) proposed to apply MAB in
learning preference, the learning uncertain matching system provided inspiration for the design of
online platform, and then there was a series of algorithm design |Liu et al.|(2020alb); Sankararaman
et al.| (2021); [Basu et al.| (2021)); |Gunn et al.[(2022); [Malgonde et al.| (2020); Johari et al.| (2021]).
In a general centralized market without conflicts, Liu et al.|(2020a) applied the common ETC and

UCB algorithms to the matching market, and obtained the regret order of O(M). Following
this, a more general market, decentralized one, was studied by traditional UCB algorithm, and

obtain a O (=L (N4)N;K2 1ogQ(T)) regret by setting a delay parameter to reduce collisions among
agents. By limiting preferences, we can get algorithms that have better convergence or can learn
information about unknown preferences. Under Serial Dictatorship condition, |Sankararaman et al.
(2021)) proposed an phased UCB algorithm with global communication to solve decentralized market
with nonlocal information. As Serial Dictatorship condition is too strong, a weaker Uniqueness

Consistency condition is applied in this online data-driven market Basu et al.| (2021). Under the
( NK 1§g(T) ).

conditions on preferences, the regret bound in decentralized matching is reduced to O
However, these valuable articles focused on one-to-one matching that one arm can accept only one
agent as his stable pair. Motivated by these, we extend works not only to a many-to-one setting, but
also under a weaker uniqueness condition which is first introduced by this work.

In terms of uniqueness conditions, a flurry of works proposed some descriptive conditions in one-
to-one setting, like the Serial Dictatorship |Sankararaman et al.|(2021)), the No Crossing Condition
(NCC)|Clark| (2006), the Sequential Preference Condition (SPC)Eeckhout (2000), the a-Condition
Karpov|(2019). However, a few of works concentrated on the unique stable property in many-to-one
market. Some exiting conditions are SPC, |[Reny| (2021), Aligned Preference, Serial Dictatorship
Top-top match and Acyclicity Niederle & Yariv|(2009)); |/ Akahoshi| (2014); |[Reny| (2021)), which are
strong that are not universal in algorithm design.

The research on many-to-one market is a relatively meaningful work recently. Leaning preferences
and form a stable matching are also key features in this setting |Jagadeesan et al.| (2021)). |Altinok
(2019); \Ozkan & Ward| (2020); Johari et al.| (2021) studied dynamic many-to-one matching. For one
thing, their concerns provide motivation for our work, for another, they also provide more latent
future directions for the application of MAB in matching.

B ANALYSIS FOR OUR @-CONDITION

B.1 MAPPING UNDER &-CONDITION

To connect two sides of the market, we define a mapping Ir as Ir(i) = max{j : A; € v*(m*(i)),j €
[N]}, from agent index in the left order to agent index in the right order under &-condition since
arms in the right order can select more than one agents. From Theorem [I] the stable matching
for arm k is its first g, preferred agents v*(cx) = Aj. Recall that the preference is strict. Denote

that the first g, agents are ranked as .A,(Cl) - Af) - .A,(Cq’“). Then the rule of the mapping Ir
in the right order we set is as follows: the mapping for arm k € [K] is the least preferred one

among its most preferred g, agents, that is, A;,(x) = A,(f’“). And the intuitive representation can be
seen in Figure [d] If we assume that ¢;, = c;, then the right order can be seen form the figure and
Ir(gi+1)=---=1lr(q1 + ¢e,) = gc, holds.

12



Under review as a conference paper at ICLR 2023

Left Order Right Order
Agents Arms Agents
(/T\)
N

Figure 4: The mapping from the left order to the right order (assume that c;, = c;)

B.2 PROOF FOR REGRET ANALYSIS UNDER & - CONDITION

The proof idea is mainly as follows. We construct phases with good properties and denote that the
time point of agent j reaching its good phase by F\, ;. From phase F,,; on-wards, agent j + 1 will find
the globally dominated arm set G, ; and will eliminate arm m* () according to Algorithm Then
the process of each agent is divided into two stages: before F\,; and after F,,;. After Fy,;, according
to the causes of regret, it is divided into four blocks: collision, local deletion, communication, and
sub-optimal play. Phases before [7,; can be bounded by induction.

We first give some notations and definitions:

Rank for Each Agent Recall that if arm % prefers agent j over j’, we denote j > j'. And
under G-condition, the stable matched arm m*(j) for agent j is agent j’s most preferred arm among
remaining arms who still have vacant seats within its capacity. Denote the agents that match with the
stable matched arm of agent j by v*(m*(5)).

Classification of arm sets The dominated arms set Dj = {m*(j') : j' >,y j} means the
stable matched arms of agents who are more preferred by these arms than agent j, and the globally
dominated arms set under stable matching m* is G, a subset of D;. Global deletion here follows
the left order. Recall that O [d] is the best arm for agent j in phase ¢. In Algorithm (I} the estimated
dominated arms set in phase i is D;[i] = {Oj[i] : j' >o,,}; j} and the globally dominated arms in
each phase ¢ G,[i] C D; [z]ﬂ For each arm k ¢ G}, we give the definition of the blocking agents for
arm k and agent j: B = {j’ : j' = j, k & G}, which contains agents more preferred by arm &
than j. The hidden arms for agent j is H; = {k : k ¢ G5} N {k: Bjx # 0}.

Under SPC condition, the stable matched pair is also the best arm for each agent, and agents that
arm k£ matches with are its g5 most preferred agents. It can be easily understood by the definition
of Top-top match. While under our &-condition, the stable results may not be the best choices for
the two sides. We then define a set NTT'(j), in which each arm is a stable matched arm for some
other agents A, is a sub-optimal arm for j, and j is preferred by that arm than its stable matched
pairs v*(k). The NTT'(j) set can be understood as "not Top-top match" stable results, and it can be
mathematically expressed as

NTT(j) = {k tk € [K] e < pjm= i), 35 € 77 (m* (), stk = m”(Ajr) and j - 7*(k)} ,

2We can obtain D;[i] = G;[i] in the one-to-one setting

13
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where j > 7*(k) means that k prefers j than any agents in y* (k).

Phases with Good Properties In the decentralized market with limited information, estimating
preferences of other agents is challenging, thus we set a communication block. This block for agent j
is mainly to judge the dominated arms of agents that rank higher than j, where the dominated arm is
measured as the arm with the most number of times matched with each agent. Under our &-condition,
the most preferred arm is not necessarily the stable matched result, hence if arms in N7'T(j) match
too many times with j, agents cannot distinguish the preference of agent j. During the time period
with limitation of arms in the NT7T'(j), other agents can identify the preferences of j, which helps to
reduce conflicts.

Definition 3. We say phase i is a Warm-up Phase for some j € [N| under &-condition if the
Sollowing conditions hold for each arm k € NTT(j):

(i) arm k is matched with agent j at most
[Ain Algorithm|[I);

IAOf” in phase i, where o is a parameter of UCB index (line
7.k

(ii) arm k is not agent j’s most matched arm in phase 1.

According to it, we introduce the Unlocked phase (U} ) that all phases on and after it, agents A; to A;
are all into warm-up phase. Let i; = min {z C(N - 18 < 20D }, where A is the minimum
reward gap, and
. 1, phase i is a warm-up phase for agent j;
]1W [Zv .]} = .
0, otherwise.
Ir(5)—1
U; = max | 41, min i: H H Twli', A5] =1 > U{oo}
§'=1 i>i

Definition 4. We say phase i is a &-Good Phase for some j € [N| under &-condition if the following
are all satisfied:

(i) The globally dominated arms for agent j are globally deleted in phase i. Then, G,[i] = G holds.
(ii) The phase i is a warm-up phase for all agents in L; = {j' : m*(j) € NTT(j')}.
(iii) For each arm k ¢ G;um” (j) (neither be globally deleted nor stable matched arm of agent j),

10ai
2

A.?J\"r

arm k is successfully matched with agent j in phase i at most times.

(iv) The stable matched arm m*(j) is selected the most number of times in phase 1.

The definition of &-Good Phase is naturally to be brought up that during this phase, agent j has
collisions with low probability. When agent j selects an arm competing with a more preferred agent
by this arm, it receives zero reward with high probability (w.h.p.), thus condition (%) in Definition
is necessary for a lower regret. Recall that the stable matched pair may not be the best pair for j,
(#¢) aims to limit arms in other agents’ NT'T sets to avoid too many conflicts. And (ii3), (iv) are
beneficial for other agents to estimate the stable matching of agent j. Similarly, we define &-Low
Collision Phase asBasu et al. (2021):

Definition 5. We say phase i is a a-Low Collision Phase for agent j under c-condition if:
(i) Phase i is a a-Good Phase for agent 1 to agent j;
(ii) Phase i is a &-Good Phase for agent j' € Uken, Bj k.

Define that
j—1
Foj =max [ iy, min({i: [T | J] te.li’, 4 IT 1wl 5| =1 u{ec} ], M)
>0 \j'=1 JEL;
and
Voj = max | iy, min({i: [[ Loc,[i',4] = 1} U{oc}) | | 2)
i’ >4
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where the definitions of 11¢, [¢, j] and 1, [4, j] is similar to Ty [, j].

Hence, all phases on and after phase I, ; are &-Good Phase and all phases after phase V,,; are a-Low
Collision Phase for agent j. Hence, 1y [i, j], 1 ¢, [4, j] and 1¢_ [¢, j] are the indicator to represent
whether phase ¢ is a warm-up phase, &-low deletion phase and &-good phase respectively.

Before we give the complete proof of the regret bound in Theorem [3] we propose some propositions.
Proposition 1. The stable matched arm m*(j) for agent j can be blocked by agents in L;, where

£; = {7 m*(j) e NTT(7) },

Proof. Assume that we have stable matching m*. By contradiction, if j >« ;) 7' but 15 = (jy <
Hjm=(;7)» then (j,m*(j’)) forms a blocking pair since they prefer each other than matched one
but they are unmatched, this leads to the instability of m*. So, if j =,«(jr) j', then p; ;=) >
[, m=(;+) under the stable matching. Thus, if 5" .« (;) j, then i =1y > f1j,m= (). then m*(j) €
NTT(j"). O

Propositiontells us that m*(j) can be blocked only by agents in £;, and the next proposition gives
the range of £;.

Proposition 2. For each agent j € [N], L; C U?;(:j%*l Aji

Proof. Under a-condition, for Vk < j < K, ¢ € [K]|,,A; € [N]y, v*(ck) >¢, Aj. And by
Theorem I} v*(cx) = Ag. Therefore, for Vj, j' € [N], and j < j', Aj =p,-(a;) Ajs. In particular,
for any j° > Ir(j), we have j = Aj. j) =p-(j) Aj. This implies that for Vj' > Ir(j), we
can not obtain j' >,,-(;) j, hence m*(j) ¢ NTT(j'), that is, for Vj" > Ir(j), j* ¢ L;. Then

Ir(y)—1
L; CUT9T A O

Proposition 3. For each agent j € [N}, F,; < max{U(lT(j),l),max(Faj, 1< <j— 1)}
happens with probability 1.

Proof. By the definition of Uj;, we know that on and after phase U;(;)—1), all agents {A;: :
j =1,2,---,lr(j) — 1} are in warm-up phase. By proposition the set of deadlock agents as

L; C U;T,(:ji_lAj/. Hence, all agents in £; are also in warm-up phase on and after Up,.(j)_. Further,

the agents 1 to (j — 1) are in &-good phase from phase max{Fy,; : 1 < j' < j — 1} onwards. Then
the proposition holds w.p.1. O

As the events decomposition for regret minimization block in Lemma@ requires that m*(j) always
exit and will not be deleted, it is important to find conditions or a certain phase with good properties
to guarantee that m*(j) will not be globally deleted or locally deleted. The next lemma give us
theoretical guarantee.

Lemma 3. Let iy = min {z D (N - 1)1 < 92i_1},f0r any phase i (i > i1) and any agent
j € [N], the following properties holds.

(a) If phase i and (i — 1) are warm-up phases for all j' € L;, then m*(j) will not be globally
deleted or locally deleted almost surely, i.e. m*(j) ¢ L;[i] U G,[i].

(b) If phase i > min {U,(j)—1), Fa, } + 1, then m*(j) ¢ L;[i] U G;i] a.s.

(c) If phase i > V,,, + 1 is a low collision phase for agent j then L;[i] = 0 a.s.

Proof. (i) All agents j’ can block arm m*(j) are in £; by Proposition[l]} And m*(j) € NTT(j')
for any agent j € £; due to the definition of £;. Therefore, if all agents in £; are in warm-up phase
in phase (i — 1), then m*(j) ¢ G;[i] because by the definition of warm-up phase for agent ;' and
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m*(j) € NTT(j"), so m*(j) is not agent j' ’s most matched arm. Hence, m*(j) ¢ G;[i]. further-
1

more, the total number of times the arm m*(j) can be deleted is at most <EiT_({ - 1) 5 for
Gk

any ¢ > 41, which is less than the local deletion threshold. So m*(j) ¢ L;[i] U G,[¢] after phase i1.

(i) (@) £; C U?,‘(:ji*lAj, holds by Proposition this implies that for phase ¢ > Up,.(jy—1 + 1 (i.e.
i — 1> U jy—1 + 1) is a warm-up phase for all agents in £; = {j" : m*(j) € NTT(j)}.

(b) By the definition of F,,;, all agents in £; = {j" : m*(j) € NTT(j)} are in warm-up phase for
phase i > Fijy1.

By (a), (b) and (i) we know that (ii) holds.
(iii) It can easily check by the definition of V. O

B.3 PROOF FOR THEOREM [3]

After defining F,; and Va‘jﬂ, we divide the whole process into two main modules: the process before
phase Fi,; and after F, ;. We denote S; by the beginning time point of phase ¢. The regret during time
period [S F.,;» T]can be decomposed by four blocks: Local Deletion Block, Communication Block,
Collision Block and Sub-optimal Block. The regret during time period [0, Sr, ;] can be bounded by
induction with j (Lemmal[7).

Local Deletion Block. Lemma implies that there is no collision after phase V5, ;, so we only need
to consider the regret from F,,; + 1 to V,,;. Following our algorithm, there is at most §2:~! collisions
when pulling an arm from the set ; in each round. This amounts to

Va Vo

Soood 02t > o2
i=(Foaj+1) kEH; i=(Faj+1)

1— 2Vaj—1
< ﬁﬂ%l = (2"~ — 1)0|H,|

= Svaj . 9|7‘[J| S min(SVaj,l) 9|7‘[J| .

Communication Block. In the communication block, there are N sub-blocks, and the duration
of each sub-block is K. Agent j pulls arm 1, arm 2, - - -, arm K in order in the j-th block and pulls
;4] in other blocks, where (O, [¢] is the arm that it matched the most times in the regret minimization
block in phase i. The best arm for agent j is not played in all but (K — 1) number of steps for
each communication phase after phase F,; + 1, and other agents j’ collide at most once after phase
Va; (since each of them enters good phase). Hence, the regret comes from communication block is

(K = 14 |Bj m=(j)) loga(T) + NKE [Va,]).

Collision Block. The regret caused by collision from phase F,; + 1 to V,,; has been included
in the previous communication block (the regret of the period during Fi,; + 1 and V,,; is rel-
atively loose), so we only consider the regret after phase V,;. After phase V,; + 1, regret
comes from the collision between agent j and the agents in the set 3; ;. And by the definition
of V,;, agent j and agent j° € Bjj, have deleted dominated arms for themselves, this leads to

ZkQG: Zj/egjwk:kga;/ 145.m () (Nj,yk(T) - Nj/,k(Svaj)) And by lemmaH the number of the

matchings with suboptimal arms can be bounded, and the main resource of regret is bounded as a
scale of O(%ﬁg(ﬂ)ﬂ

3Under G-condition it is no longer the case as agent 1 is not the most preferred agent for arm 1. For agent A;
and its stable match arm ¢y, ¢; may not be the best arm for agent A; but for arm ¢; we have A; as its best agent.
Therefore, agent A; will not delete it’s stable match pair arm a1, but unless global deletion eliminates better
arms it will not converge to this arm.

It is G-condition that induces a hierarchy in the matching market, which reduces the regret bound from
collision block to the number of matchings with sub-optimal arms by induction.
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Sub-optimal Play Block. From phase F,; + 1 on-wards, regret happens for agent j; when
agent j selects arm k& ¢ G5 U m*(j) and successfully be matched. This amounts to

Zk¢G;Um*(j) Aji(Njx(T) — Nji(SF,,;)) regret, and it can be upper bounded by Lemma@

Then we illustrate the relationship among those phases with good properties and indicators. We first
show that for phases ¢ > U,;_1 + 1, the probability that phase ¢ is not a Warm-up phase for agent
Aj is low. Let

iy =min{i: (N — 1) 1232 < 92(i_1)} 3)
iy =min{i: C(i —1) —1< 21}, S

then we have the following lemma.

Lemma 4. For phase i > i* = max(8,11,12), and for Vj € [N], a > 1, then the following holds:

P((ﬂw[Z,A]] = 0) N (’L > Uj—l + 1)) < (K 7]')271'(0471) (1 + Zt) .

Similarly, we give the relationship between F,,; and a-Good phase.

Lemma 5. For any agent j and phase i > i*, and for o > 1, then

P((lg,[i,§] =0)N (i > Foj +1)) < (K — j)27@ Y (1 N zt) .

We only give the proof of Lemma4] and another one can similarly be verified.

Proof.
P((Mwli, Aj] = 0) N (i > Uaj—1 +1))
. . 10 )
(S_) P (UkeNTT(Aj){(NAj,k[Z] = Nagwli = 1) > 75— N (1 2 Uaj—1 + 1)))
i Ak

Siir 100 ,
< > P((uﬁest ”NAj,m)—AQmut(Aj)—k)rw(zz(Uaj1+1>>>
() ke NTT(A;) Ajk

< Y Y or ((NAj,k(t) - Ai;) N (ua, k(= 1) > uaq, (t - 1)))

() heNTT(4;) teS:

< [NTT(Aj)[27* 7D (1 + Az)
Nl 64
< (K —j)27" 1)(14'@)-

The inequality (¢) is because that if phase ¢ is not a Warm-up phase for agent A;, there exists an
arm k € NTT(A;), which is played more than 292" times in phase i. Next, (ii) holds since

Ajik
the probability of union is less than or equal to the sum of probability. By Lemma 3} m*(4;) ¢
G 4,1i] U L 4, [i]. Hence, the inequality (i74) holds since I;(A;) = k is equivalent to that the UCB

index (linein Algorithm of arm m*(j) = a; can not be less than arm k. O

We now give the upper bound of E [N;4(T') — N;(SF,,)], which is helpful to bound the regret
resulting from collision block and sub-optimal block.

Lemma 6. ForVj € [N], k ¢ G5 Um*(j), fora > 1,

E [Njx(T) — Njx(Sk.,)] < ¢(a)A82k t14 Aik (a log(T) + /7 log(T) + 1) .
75 7>
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Proof. Due to Lemma [3] m*(j) will not be globally deleted or locally deleted after phase ¢ >
(Faj + 1). Denote I;(t) as the arm that agent j pulls at time ¢. After phase F,;, the reason for
agent j pulling arm k rather than m*(j) are as follows: (1) the UCB index of the optimal arm m* ()
is less than p1; ;) — € (2) I;(t) = k and its UCB index is larger than fi; ,~(;) — €. For any
k¢ GrUm*(j)ande >0,

T
Njk(T) = Njw(Se,) = Y. L) =k}
t=SF,+1
T
< D | Hr(®) = ey — ) A Te() = B)} + 1{t =) < jm=(j) — €}
t:SFaj+1

(a) (b)

First, we bound (a).

T
El 3 n{wj,k(t)>uj,m*<j>—e>A<ft<j>=k>}

T
<E| > n{(ﬂj,k(t1)+ mZuj,m*(j)E)A(It(j)k)}

<2 S 1d (it - 1) mzuj,m*g)—em(ft(j):k)}]

{
. i]l{(ﬂj,k‘(s) n \/MLTT) > i+ Djg — 6)}1
2

<1+ <alog(T) + v arlog(T) + 1) .

(Ajr—¢)

Then we turn to bound (b)

T

El Y tme() < Hjme) — €
_t:SFoejJrl

r T
<E > Ujme() < Hjom= () — 6]

Li=1
rT
. 2alog(t)
<E Z ZP (Mj,k(t -1+ Noat—1) < fjome(5) — 6)]
Lt=1 s=1 3.k
T T
s, [2alog(t) 9
< _2
<> exp < 5 - )
t=1s=1
T T o2
< —a =
<D D exp(——r)
t=1 s=1
< il
<v(o)
By choosing € = Ag”‘” , we have
8 8
E [N;s(T) = Nj(SE,,)] < (@) 55— + 1+ 53— (aloa() + Varlog(T) +1) .
J:k Jik
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We define Irnax(j) = max{lr(j’) : 1 < j’ < j}, and Fj = max (Ulrmax(j)l,max(ﬁj/ 1<

J<{- 1))> ,and Fj > F,;. Then we introduce a lemma to bound the probability that a phase i is

not an &-Good phase when i > F,; + 1.
Lemma 7. Forany j € [N] and m > 1, the following hold with i* (i* = max{8,i1,i2})

A2
64 9—(a—1)(i"-2)
) -

- ) ) _ o 64 9—(a=1)(i"-2)
E [Fj } < 201 + (Irmax(4) +7 — 2) ((Z )"+ K(1+ )) m,

E [21%} < 20y + (Irmax(§) + 7 — 2) (2“ + K1+

The proof is the same as|Basu et al.| (2021).
Hence, the upper bound of E [S Fa_,»] is

E [SFaj] =E [C(Faj -1+ QF‘*J] <E {C(Fj —1) +2FJ}

<20 —1) + c(zrrnax(j) - 2)@* n (lrmax(j) . 2) 97"

+ (c+ 1) (szax(j) +3 —2)K(1 + Gﬁ)m

where C' is a constant term.

Then for formula with term E [SV J , we can transform its upper bound to another term related to

e

E [S~ } since
Fmax(s)
Vo = max (Fa(jﬂ), Ukeﬂjuj,esijaj) < max (F(j+1)7 Ukeﬂjuj,egjkﬁml)) = Fpunh) -
Hence, E [Sy,,| <E {S};ﬂjmaxm]

Lastly, the regret can be bounded by the decomposition of E [S Faj] and phases after Sg,; with
properties above, where phases on and after Sr,; contain local deletion, collision, communication,
sub-optimal play blocks.

E[R;(T)] < E [Sk,,| + min(8|H;],1)E [Sv,,] + (K — 1 + |Bjm(j|) loga(T) + NKE [Vy;])

S+ T 8a m
+ Z Z A I <log(T) +\a log(T)) + Z —~—(log(T) + - log(T))
KEG; JeB; okgar, Ik kG Um=(j) 0

+NK (H(qs(a)ﬂ)ii) <y ¥ SZ‘];’“Z (1og(T)+,/Zlog(T)>

k@G j'€B; k¢ G,

Y ASJO; (10g(T) + \/%) +¢;logy(T)

kgGrum* ()

e (JZKZ N (min(l’ O1H31) fa (o)) + fa5) = 1) 2 4 N2Ki*> |

min

C PROOF FOR UNIQUE STABLE CONDITIONS

C.1 UNIQUENESS CONDITIONS IN ONE-TO-ONE MATCHING.

There are many existing conditions that guarantee the unique stable matching in one-to-one setting,
like the Serial Dictatorship |Sankararaman et al.| (2021)), the No Crossing Condition (NCC) |Clark:
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(20006)), the Sequential Preference Condition (SPC)|Eeckhout| (2000), the a-Condition Karpov| (2019).
Previous works tell us that fop-top match and SPC condition can lead to a unique stable matching
in both one-to-one Niederle & Yariv| (2009); |Clarkl (2006) and many-to-one setting |[Reny| (2021]).
Niederle & Yariv| (2009) use the Top-top match property instead of a-reducibility | for the same
meaning in the one-to-one setting. Serial Dictatorship in one-to-one setting means that for each agent,
the arms are ranked heterogeneously, in an increasing order of arm-means which is different for each
agent-arm pair while the agents are ranked homogeneously across all arms, and vice versa. Followed
by Romero-Medina & Triossi (2013)); Niederle & Yariv|(2009), we know that Aligned preference is
equal to Serial dictatorship in marriage problem as they are both equivalent to no cycle property. And
NCC and Serial Dictatorship are not mutually inclusive, which can be seen in |Clark| (2006)). Hence,
the relationship can be represented intuitively in figure [5}

Uniqueness . .
q Uniqueness < Acyclicity*

a-condition — .
a-condition

SPC

SPC

a-reducible & top-top match
top-top match

Serial Dictatorship
@

Aligned Preference

Serial Dictatorship
3

Aligned Preference

Figure 5: Relations of Unique Stable Conditions in One-to-one (left) and Many-to-one (right) Setting.

C.2 UNIQUENESS CONDITIONS IN MANY-TO-ONE SETTING.

In this section, we focus on conditions that guarantee the unique stable matching in the many-to-
one setting, such as SPC, Reny| (2021), Aligned Preference, Serial Dictatorship Top-top match
and Acyclicity Niederle & Yariv| (2009); |Akahoshi| (2014)); Reny| (2021)) and give the proof of the
relationships among uniqueness condition
Definition 6. (Aligned Preference.) In a many-to-one market M = (K, J,P), K = (k)rex), J =
(7)je[ny, if the preference profile P satisfies

VkeK,j=rji Vi<j (La)

VjeN,k=; k' \Vk <k (1b)
then the market has aligned preference. The one-to-one setting has the same definition.

Definition 7. (Serial Dictatorship) We say that if all arms (school) have the same preference for
agents (students), while agents’ preferences are heterogeneous (vice versa), then the system satisfies
serial dictatorship.

Definition 8. (Top-top Match) A stable pair (k, j) is a Top-top match for sub-market M’ € M if,
for arm k, agent j is the favorite candidate in M’, and vice versa.

Definition 9. (SPC) SPC condition in the many-to-one setting |Reny| (202 1)) is to require the existence
of a sequence of agents 1,2,--- N in which each agent appears once, and a sequence of arms
1,2,---, K in which each arm appears once for each seat in its capacity, such that k >; k' for every
k' > k and j € [N]; in addition, such that j =y, j' for every j' > j and k € [K).

C.2.1 PROOF FOR LEMMA[I]l

Proof. =):

SPark|(2017); [Clark| (2006) introduce that a matching problem is a-reducible if there is a top trading single
or pair for every sub-problem.

SThe remark in|Niederle & Yariv|(2009) tells us that Aligned Preference is stronger than Top-top match and
SPC condition.
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Table 1: Preference Profiles

(a) Exm1: Companies (b) Exm1: Workers
C1: 81 >89 >83> 84 > S5 S1: €1 >Co >C3
Co: SS9 >83 >S4 >85> 81 Sg . € >C3>C
C3: 83> 84 >85> 81 > 82 S3: €3 >Cy>C1

Sq4: €3 >C1 > C2
S5 Ca>C1 >C3

(c) Exm2: Companies (d) Exm2: Workers

Cl1: 81 >82>83>S84> S5 81 : Cc1 > C3 > C2
Co: 83 >89 >81 > 84> S5 S9! c1 > Cy > C3
C3: 81 >85> 82 > 84> 83 S3 ¢ Co >C1 > C3
S4 : Cc1 > Co > C3

S5 €3 >Cy>C1

Serial Dictatorship = Aligned Preference. In order to distinguish the symbols of agents and
arms, we consider arms set {cx,k = 1,2,--- , K} and agents set {s; : j = 1,2,--- , N}. If arms
have the same preference for individual agent, then there is no cycle in the preference of the arm, i.e.
there is no case that
T, so >co ST 7cp ST—1"""81 7¢; S0

for sg, s1, -+ ,s7 and cg, c1, - - - , cr. Otherwise, assume that there exists the cycle above, then by
the same preference of arms, we know that >, ,=>.,. And then s¢ >, s1 and s; >, sg, hence
50 >¢, S1 and s1 >, S0, which yields a contradiction.

Now we prove that no cycle property implies Aligned preference. By contradiction, if there exists a
c; such that s, =, s;, for k > j, then we can construct a cycle:

Sk =¢; S5 7c; Sj—1"""Sk=2 ™cp_1 Sk—1 >c; Sk-
<)

Aligned Preference = Serial Dictatorship. We first illustrate that aligned preference leads to no
cycle property. By contradiction, if there is a cycle

81 >c¢y ST »cp ST—1"""82 »¢, S1

for some s1, S2, -+, ST, C1,C2,- -+ ,cr and T'. It is obvious that it yields s; >, s7,7 > 1, which
contradicts the aligned principle. Then, if there is no cycle of length two, which implies that all
college have the same preferences because all students are acceptable to every college, which induces
the group serial dictatorship property.

O
C.2.2 PROOF FOR THEOREM[2]

(i) Proof for the relationship between SPC and a-condition

SPC states that after eliminating all Top-top match, there is at least one new Top-top match in the
remaining system under the restricted preference profile. Then it satisfies a-condition naturally.
However, examples below tell us that SPC can not imply &-condition. We give two examples to
illustrate this relationship where the order that an agent successfully matches with its stable pair
corresponds to the left order and right order.

Example Consider a market with three companies and five workers. Assume that the preference
profile of companies c;, c2, c3 and workers s, S2, S3, S4, S5 is as follows and the capacities are 2, 1,2
respectively for cq, co, c3.

The preference in Table [I] (I(@))(I(B)) satisfies both SPC and &-condition with valid or-
der {(co,s2),(c3,83,84),(c1,81,85)}. While preference in Table 1] (1(c))(1(d)) only sat-

isfies a-condition with valid left order {(ci1,s1,$2),(c2,s83),(c3,54,85)} and right order
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{(c2,s3), (1, 81, 82), (3, S4, S5) }, and SPC does not hold.

(ii) Proof for the relationship between Unqc and a-condition

<) : Sufficiency: If &-condition holds, then the agent-proposing Gale-Shapley algorithm and the
arm-proposing Gale-Shapley algorithm leads to matching m in all consistent restrictions.

=) : Necessity: We first prove for K = 2, N = ¢q; + ¢ case. Assume that there are two arms ¢y, ¢,
each has capacity g;(k = 1,2) and the agents set S = s1, 2, - - - , S, +4,- By contradiction, assume
that Unqc is satisfied while a-condition is not. Then we know that not all matching pairs are Top-top
match, so there exists an agent s, c1 >, c2, but sy is not in the agents set that first ¢; preferred by
c1. The matched result may have two cases:

( ...... 7cl)and (Skn """ ,02) (Z) ’
q1 921
(5k7 ...... 7cl)and( ~~~~~~ ,62) (“)
a1—1 g2

We first consider matching (i¢). If s matches ¢y, then there must be an agent in .A; matches with
co. Let’s assume that there is an agent s, € A; that matches with ¢o. There are two situations to
discuss at this time. If ¢; >, co, then (4) is an unstable matching, which is recorded as case (A); If
sp prefers co more than ¢, then (7) is a stable matching and is recorded as event (B).

Apply the above two cases (A), (B) to matching (7). In (A), ¢; and s, prefer each other, so there is a
Top-top match and then a-condition is satisfied, and a conclusion contradictory to the hypothesis is
derived. In (B), this case will produce two stable matchings, which contradicts Ungc.

We use induction to prove it. Suppose, that for all (N, K') N < N,K <K,N>qg+q+
.-+ + g the a-condition is a necessary condition for the uniqueness consistency. Then we prove
for (N + 1,91 + g2 + - - - + qx ) (similarly, we would have for (N,q1 + g2 + -+ + gk + 1) and
q1+q2+---+gx > N ). Assume that the newly added agent is X, select an agent from the original
N agents and record it as Y. Let k% and k3 be the arms rank first for X and Y respectively. By the
K =2, N = ¢ + g» case proved above, we know that X and Y satisfy &-condition, hence either X
or Y matches with its first ranked arm. The agent matches with its first ranked arm is denoted by s,
and the remaining N agents are so, - - -, siy. Except k7, and stable matched agents for k7 , there are
N agentsand K — 1l arms,and N > ¢ +q2 + -+ - + qx — i, - From the inductive hypothesis, we

can know that a-condition is satisfied.

The relationship between &-condition and Acyclicity* is illustrated in Section|[C.2.4]

C.2.3 DIFFICULTIES FROM SPC TO &-CONDITION IN REGRET ANALYSIS

When we use the events decomposition for regret minimization block to prove the bound inequality
of the number of times agent j is pulled (Lemma @) it requires that m*(j) always exit and will
not be deleted. Under SPC condition, m*(j) always exits as the stable matched partner is the most
preferred one among the remaining market for the certain agent while &-condition cannot guarantee
this property. Hence, it is important to find conditions or a certain phase with good properties to
guarantee that 7 (j) will not be globally deleted or locally deleted. And we consider F,; and V,
in Lemma [3] (in Appendix to solve this problem. And since the stable matched pair is not
top-top match in the remaining system under &-condition while the answer is true under SPC, we
introduce a new mapping (Figure ) to describe the corresponding relationships of stable pairs. In
addition, as shown in Figure[l| Acyclicity™* is the weakest condition to ensure uniqueness up to now,
and Bettina Klaus and Flip Klijn |Klaus & Klijnl (2013) point that acyclicity has a tight connection
with consistency. Hence, whether we can further weaken &-condition and propose a new algorithm
remains to study.
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C.2.4 Acyclicity* GUARANTEES A UNIQUE STABLE MATCHING

Definition 10. The preference profile of the arm side P. has a cycle with length 0 if there exists
integer { > 2, c1,ca, -+ ,c¢ are £ distinct arms and sy, s2,- -+ , Sg are € distinct agents, subset
T,Ts,--- , Ty C S\{s1, -, 8¢} and for any i € {1,2,--- L}, the following two conditions are
satisfied.

(P) {sit1} =c; {8i} =, ¢, where s;11 = s1, and
(O)|Ti| = gc, — Land T; CU,,(s;), where U, (s;) = {s: s >¢, si}
If P, has no cycle, it satisfies Acyclicity*.

Akahoshil (2014) pointed that Acyclicity™ is a necessary and sufficient condition for a unique
stable matching in many-to-one matching. They study the problem with responsive preference[] and
unacceptable agents and arms may exist on both sides of the market. Under our setting, both two
sides are acceptable, and we will prove that Acyclicity”™ is also a necessary and sufficient condition
for uniqueness in our problem.

Theorem 4. In our setting, our new &-condition is a sufficient condition to Acyclicity* (Theorem|2]

(iii)).

We first see the example above to explain hoe to check whether the Acyclicity* is satisfied. As
mentioned above, the preference profile in Table [T] (I(2))(I(b)) satisfies both SPC and &-condition
with valid order {(c2, s2), (c3, $3, 84), (c1, 51, $5) }. We now check that it also satisfies Acyclicity*.

From preference profile (I(a)), we can find four cycle:

(@) s1 ¢, S2 ¢, S13

(i) 82 >¢, 83 ¢y 523

(111) 53 >"cg S1 >’c1 53,

(iV) 83 ¢y 81 ¢, 52 ey 535
Condition (P) in Definition[10]is satisfied, and we then illustrate that condition (Q) is not satisfied,
thus Acyclicity* holds. For cycle (i), 71, T2 C S\{s1, 82}, [T1| = ¢., — 1 = 1. However, it violates
Ty C U, (s1) = 0. Similarly, (ii), (iii), (iv) all imply that Acyclicity* is satisfied. For cycle (iv),
Ty, To,T5 C S\{s1, 52,53}, |T1| = go, —1 =1 while T} C U,,(s1) = 0. Then, this example also
satisfies Acyclicity®.

In fact, we can see from the definitions of these two conditions that Acyclicity™ only limits the
preferences of the arm side, while &-condition limits the preferences of both sides of the market.
Intuitively, Acyclicity™ is a more general condition. We now give the theoretical proof.

If &-condition holds, then Acyclicity™* also holds. By contradiction, if Acyclicity™* is violated, then
there is a cycle (Definition [I0). For preference sequences that can produce stable matchings, as
long as there is a cycle or a ring structure, we can always construct at least two stable matchings
Romero-Medina & Triossi|(2013). For example, for fixed agents set S = {s1, 2, - , sy} and arms
setC = {c1,ca, -, ci } with preference profile P and this matching market has stable matching
m*. If there is a cycle $1 ¢, S2 >, S1, for this stable matching m* containing (s1,¢1), (s2,c2),
when other matching pairs remain unchanged, (s2, ¢1), (81, co) with other pairs can lead to a new
stable matching. Thus the uniqueness is violated, and then &-condition is also violated.

Conversely, we consider a counterexample that Acyclicity™ holds while a-condition may not hold.

From Table@ we now explain that a market with arms ¢y, co, c3, agents s1, S2, S3, S4, S5, and capacity
q = (2,1, 2) with preference and satisfies Acyclicity* and can lead to a unique stable
matching but does not satisfy a-condition. We run GS Algorithm in many-to-one market and
obtain stable matching {(cl; s2, s5), (c2; 81), (¢3; 83, 84) }. And Acyclicity™ is easily verified. After
eliminating (cs; s3, $4), only s1, Sa, S5, €1, C2 Temain in the system, and then the preference profile
is represented as and in Table[2] Apparently, this preference can produce two stable
matching. Thus, &-condition is violated.

"The responsive preference here means that if only one student in the two matchings is different, the college
prefers the matching containing the preferred student.

23



Under review as a conference paper at ICLR 2023

Table 2: Preference Profiles

(a) Exm3: Arms (b) Exm3: Agents
Cl1: 81 >82>85>83> 84 S1: €y >cC3>C
Co: 89 > 81 >84 > 83> S5 Sg: €1 >Co >C3
C3: 81 >83> 89> 84> S5 S3: €3 >C > C2

S4: €1 >Co>C3
S5 €1 > Cy > C3

(c) Exm3: Arms (d) Exm3: Agents
c1: 81> 82> 85 S1: €y >C1
Co: So > 81 > S5 Sg . €1 > Co

S5 C1 > C2

Theorem 5. Suppose that (IC, J,P) are arbitrarily fixed. P, and Ps are the preference profiles of
arms and agents respectively. Then, P, satisfies Acyclicity* if and only if there is a unique stable
matching in many-to-one setting for each P;.

Proof. In order to prove this theorem, we first introduce a lemma.

Lemma 8. For a given P, suppose that there are two stable matchings under P: p, 1/, then Akahoshi
(2014)

o |u(s)| = | (s)| for each s € T and |u(c)| = |/ (c)| for each ¢ € K.
Moreover, for each ¢ € K with p/(c) # u(c),

* (o) = ()] = ges
¢ e\ () £ 0 and g (e)\p(e) £ 0;
o if u/(c) > plc), then for each s € p/(c) and s € p(c)\w'(c), {s'} =¢ {s}.

=) : Necessity: We complete this proof by contradiction. Suppose there are at least two distinct
stable matchings under P. From GS algorithm|Gale & Shapley|(1962), there exists optimal matchings
w®and pc, s.t. u€ =, p® and p® =, p°. Under the multi-stability assumption, p® # p°. Then,
Jeg € K, st p®(co) # u(co), and by the optimality of p°, p°(co) >¢, #°(co). Consider the
following algorithm:

» Step 1: Choose ¢; € K, such that p®(c1) # pc(cq1) and choose s € J, such that
s2 € p(c1)\w*(c1). Choose cg € K\{c1}, {ca} = p¥(s2). Go to step 2;

* Step k (k > 2): Choose si+1 € J, such that ;11 € p(cr)\p*(cx) and i1 € K\{ck},
s.t. {epr1} = p¥(sgp1). i cpqn € {c1,¢2,- -+, ¢}, then the algorithm terminates. If not,
go to the next step.

* Result: If the algorithm terminates at Step £ (¢ > 2) with cg41 = ¢;(j > 1), then the result
is:

Given the students {s;41, 5,42, - ,S¢+1} and the college {¢;,cj41,--- , ¢}, there is a
cycle: Spy1 >¢, S 5j42 =ec; 11 Sj+1 =¢,; Sj, then condition (P) is satisfied. Let
T = p(cp)\{sk}, k € {j,j+1,---, £}, since each agent ultimately matches only one
arm, 11¢(c;), pé(¢jt1), - -+, p°(ce) are mutually disjoint, then T}, T 41, - - - , T} are disjoint.
And by the definition of Ty, k € {j,j + 1,---,¢}, Tk does not contain any agent in
{sj41,8j42, -+ ,Se+1}. By the second property in Lemma[8] |T%| = ¢, — 1 and by the
last property, T, C U, (sk).

Hence, there is a cycle (Definition [10), which induces a contradiction.
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<) : Sufficiency: Assume that there exists a cycle sg11 >¢, S¢- - S3 >cy S2 >¢; S1> Se+1 = S1,
and |T;| = q., — 1, T., C U,,(s;), then we construct preference profiles for both arms (Figure [C.2.4)
and agents (Figure[C.2.4):

Table 3: Preference Profile of .

note | «a ca | | co1n | e e | cn
l 82 83 ...... Sé 81 * ...... *
2 So+2 Sg+2 | S¢+2 Sp42 k| eeeen *
S4+14+q1 N S04+1+4qp_1 N A ISP
I | R . SOtl4gy | 0| ] Stldge | o |1
Se42+4q | Se424qx | Se+2+qi_1 | 1St42+q | | e
S043+q1 S434qy | S04+34qp_1 1Sg+3+qe ......
[ | RNUU. 2.\ A DU 7. AN D PR P\ AU A SN_ | _|LsoT |l
The remaining 51 s1 [ 51 So
of {S[} S3 Sg | e S9 s3
are ranked : Sa | e
at last : N : :
Sy S | e Sp—1 Sy

Table 4: Preference Profile of 7.

81 8o | e ‘ 0.1 ‘ se | sepn | -ooeee SN
C1 Co | e Sp—1 S1 % | ceeeon *
Ce c1 | e () Co_1 O *

KN en et | KN enad | o | KN e ) | KNemeend | 5 | oo |

Then we can find two distinct matchings 4 and p° (Figure[C.2.4] and Figure [C.2.4), which induce a
contradiction.

Table 5: pu°.
Cl CQ ...... CZ*]; CZ Ce+1 ...... CK
52 53 ...... Se 31 * ...... *
* K eeeeen * * k0 eeeeen *
Table 6: 1°.
Cl 02 ...... CZ_l c€ C€+1 ...... CK
81 52 ...... 8471 8£ * ......
>k K e e e e % * R
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D MORE DISCUSSIONS ABOUT OUR WORK

D.1 STABILITY IN MANY-TO-ONE SETTING

Stable matchings are always exist in one-to-one market Gale & Shapley|(1962) while the answer is
not necessarily correct under many-to-one setting |Roth & Sotomayor| (1992). [Roth & Sotomayor
(1992) points out that responsive preference (RP) that can refrain from this unexpectation. Our work
assume that arm preference profiles are over individuals rather than agents sets, which naturally
satisfies RP[Sethuraman et al.| (2006)F]

D.2 SOME DETAILS ABOUT ALGORITHM

Multi-phases to Reduce Collisions In previous work, the CA-UCB algorithm Liu et al.| (2020b)
was proposed to manage conflicts in the decentralized market combined with the bandit algorithm, but
it has limitations for more general preference structures. In CA-UCB, if we set the delay probability
for all agents as zero, then agents may fall into infinite loops and cause high regret. To avoid linear
regret, the paper of Sankararaman et al.|(2021) applies a phased UCB algorithm with arm elimination
in the one-to-one setting. Our MO-UCB-D4 algorithm in many-to-one matching is also carried out in
multi-phases for conflict management. The multi-phases is to guarantee that the active set in different
phases has no inclusion relationship so that if an agent deletes an arm in a phase, this arm can still be
selected in the later phases. This ensures when the agent wrongly deletes an arm, it will not lead to
linear regret.

Parameter Selection and Scale The parameter 6 € (0,1/K) in our MO-UCB-D4 algorithm is
chosen for the local deletion threshold. Increasing the threshold leads to higher regret until local
deletion vanishes. This happens as more collisions are allowed until an arm is deleted. But a higher
threshold allows for quick detection of the stable matched arms. However, decreasing the threshold
results in a more aggressive deletion and then lower regret from collision each phase, at a cost of
longer detection time for the stable matched arms. Therefore, there is a trade-off when choosing 6
and we can design an algorithm to iteratively update 6 based on the previous information.

Baseline experimental design Although our work mainly focuses on theory and therefore we did
not put much emphasis on the experimental evaluation, we still carefully design our experiments to
test the robustness of our algorithm across different environments. Since our work is the first one to
study the many-to-one setting with uniqueness conditions, there are indeed no comparable baselines.
It is possible to design some sub-optimal algorithms in which each agent runs a MAB algorithm
independently and there is no communication block among agents. However, such algorithm may not
find the stable matching and thus suffers a linear regret.

Optimality of our bound and the lower bound Recall that our bound is O(N K bi#). There
exists a lower bound of O(loi#) under the setting where arms have the same and known preferences
Sankararaman et al.|(2021), which is a special case of our setting. Our bound is optimal in terms of
T and A. For N, since each agent j needs to face collisions from non-dominated arms and other
agents, regret is bounded over the summation of agents and thus leads to the term O(N). Usually
in a multi-player decentralized setting | Avner & Mannor (2014); Rosenski et al.|(2016)), each agent
will suffer regret of term N since it will be collided with other agents. Thus we conjecture such [V is
unavoidable. For K, since in the decentralized setting, agents have no knowledge of arm preference,
each agent needs to try each O(log(T')/A?) times to identify the stable matched arm. And it may get
collided when pulling the other agent’s stable matched arm, thus leading to the term K. K might be
removed for those agents who may never get collisions due to the special market structure.

8This assumption Roth & Sotomayor] (1992); |Akahoshi| (2014); |Altinok (2019)) in our setting states that
the addition of another agent p,;» will not influence the preference ranking for an arm to agent p; and p,/, i.e.
Dt UDi »a; pir Upy is equivalent to pyr >a; pi
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D.3 STRICT PREFERENCE AND “INDIFFERENT AGENTS”

Our work focuses on strict preference rather than the more general case that considering indifferent
agents. As far as we know, a lot of works studying the traditional (offline) matching markets would
assume preferences to be strict|Gale & Shapley| (1962); Karpov| (2019); (Gutin et al.| (2021)); Nguyen
et al. (2021));/Akahoshi|(2014), perhaps due to the reason of simplicity. Our work mainly follows these
existing settings of the offline matching markets|Gale & Shapley|(1962); [Karpov|(2019);|Gutin et al.
(2021); Nguyen et al.| (2021)); /Akahoshi| (2014) and the bandit learning on the one-to-one matching
markets [Basu et al.| (2021)); Liu et al.| (2020a); [Sankararaman et al.| (2021); [L1u et al.| (2020b)) that
assume strict preferences.

Note that if the agents are indifferent (or nearly indifferent) over the arms that are far down the
ranking lists and do not affect the stable matching, our algorithm and analysis can actually go through.
The gap appeared in the regret bound actually depends only on the those “(nearly) optimal” arms that
appear in the stable matching or are the best among those not appeared in the stable matching.

Recall that our setting is to learn a particular stable matching, like previous works |Basu et al.| (2021);
Liu et al.| (2020a); Sankararaman et al.| (2021)); [Liu et al.| (2020b) learning the unique, or agent-
pessimal/optimal stable matching on the one-to-one setting. Under this objective, if the agents are
nearly indifferent, not exactly indifferent, over “(nearly) optimal” arms, no matter how small the
gap is, the agents will need to figure out the which arm is better and the gap appears as the learning
hardness. This phenomenon is common in multi-armed bandits where differentiating the optimal
arm and the second optimal arm is the most difficult part of the learning. Then one might be curious
about the objective to learn a “nearly stable matching”. This would be more general and would prefer
to leave it as interesting future work.

For the case when agents are exactly indifferent on “(nearly) optimal” arms, the stable matchings
would not be unique. In this case, the communication block and the global deletion set of our
algorithm need to be revised to allow each agent to keep more than one stable matched arm. Note
that after this revision, the selected matching will not become fixed during interactions and will
switch between all optimal stable matchings since the learning algorithm needs to continue exploring
these arms to take precautions against the case of small gap. This will result in a phenomenon of
fast-changing matching-selections, compared with our setting and most previous works [Basu et al.
(2021); [Liu et al.| (2020al); Sankararaman et al.|(2021); [Liu et al.|(2020b) where the learning algorithm
tends to stick on a specific matching in the latter learning period.

D.4 FUTURE DIRECTIONS FOR MANY-TO-ONE SETTING

First, we propose some interesting directions about the setting. This paper considers preference over
individuals rather than agent sets. For example, when the first and fourth employees have cooperation
experience and the second and third employees have no cooperation experience before, the company
may prefer to recruit 1-st and 4-th together rather than 1-st, 2-nd or 2-nd, 3-rd. Thatis, 1,4 > 2,3
may occur for arm k and 1,2, 3,4 € [N]. Further research can also take this combination effect as
the starting point. We assume that the preferences over agents for arms are known in our settingﬂ
When multiple agents are accepted by one arm simultaneously, the ranking of these agents cannot be
judged if under the assumption of unknown preference ranking. Therefore, the algorithm for rank
estimation still needs further design. And our work is based on fixed finite agents set and arms set,
thus how to generalize this setting to a dynamic one?

“The preference profile over arms for agents is unknown in our setting, and needed to be learned.
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