
Less is KEN: a Universal and Simple Non-Parametric Pruning Algorithm
for Large Language Models

Anonymous ACL submission

Abstract

Neural network pruning has become increas-001
ingly crucial due to the complexity of neural002
network models and their widespread use in003
various fields. Existing pruning algorithms004
often suffer from limitations such as archi-005
tecture specificity, excessive complexity and006
reliance on intricate calculations, rendering007
them impractical for real-world applications.008
In this paper, we propose KEN (Kernel density009
Estimator for Neural network compression):010
a straightforward, universal and unstructured011
pruning algorithm based on Kernel Density Es-012
timation (KDE). KEN aims to construct opti-013
mized transformer models by selectively pre-014
serving the most significant parameters while015
restoring others to their pre-training state. This016
approach maintains model performance while017
allowing storage of only the optimized subnet-018
work, leading to significant memory savings.019
Extensive evaluations on seven transformer020
models demonstrate that KEN achieves equal021
or better performance than the original models022
with a minimum parameter reduction of 25%.023
In-depth comparisons against other pruning and024
PEFT algorithms confirm KEN effectiveness.025
Furthermore, we introduce KENviz , an explain-026
able tool that visualizes the optimized model027
composition and the subnetwork selected by028
KEN.029

1 Introduction030

Large Language Models (LLMs) have become the031

best and simplest solution for achieving state-of-032

the-art results in many natural language processing033

(NLP) applications. However, the increasing use034

of neural networks (NNs) and transformer models035

(Vaswani et al., 2017) has resulted in a rise in com-036

putational cost due to the complexity of arithmetic037

calculations, larger matrices and the addition of038

more layers. Consequently, the weight and struc-039

ture of these models become more complex, requir-040

ing high demands in computation and memory.041

One of the best approaches to address the over- 042

whelming size of LLMs is to reduce their resources 043

through pruning algorithms. These algorithms can 044

eliminate parameters or entire components in a NN, 045

making it lighter without compromising its origi- 046

nal performance. Pruning algorithms emerged in 047

parallel with the earliest use of NNs (Mozer and 048

Smolensky, 1989; Janowsky, 1989; LeCun et al., 049

1989), but they have gained significant importance 050

in the last decade due to the widespread use of these 051

networks in various fields. There are many pruning 052

algorithms in literature (Blalock et al., 2020), each 053

with a unique approach or adapted old algorithms 054

for these new architectures (Benbaki et al., 2023). 055

However, the complexity of neural networks can 056

pose a challenge when creating pruning algorithms, 057

as these may require creating new complex theo- 058

ries to make the models lightweight (Dong et al., 059

2017; Malach et al., 2020). Additionally, existing 060

pruning algorithms often exhibit shortcomings in 061

their completeness (Blalock et al., 2020) and fail 062

to consider a critical aspect: the efficient storage 063

of the pruned model. Some algorithms compress 064

the model at runtime, but they lack a mechanism to 065

persist the reduced NN for future use. Therefore, 066

most algorithms in the literature focus only on the 067

speed at which they reduce and execute the model 068

without considering this crucial final stage. This 069

is particularly important in resource-limited envi- 070

ronments that use neural networks, such as smart 071

devices and mobile phones (Yang et al., 2017; Sze 072

et al., 2017). 073

This paper presents KEN (Kernel density 074

Estimator for Neural network compression): a uni- 075

versal, simple, magnitude-based transformer prun- 076

ing algorithm that leverages Kernel Density Esti- 077

mation (KDE) for parameter pruning. In contrast 078

to other pruning methods that rely on loss function 079

minimization or exhaustive parameter search, KEN 080

utilizes KDEs to identify and retain the most in- 081

fluential parameters while resetting the remaining 082

1



ones to their original pre-trained values. This in-083

novative pruning strategy streamlines the optimiza-084

tion process by leveraging the natural distribution085

of model parameters, eliminating any architecture-086

specific considerations. KEN effectively reduces087

the size of transformer models by a minimum of088

25% without compromising performance. The089

pruned models consist solely of a subnetwork of090

trained parameters, which can be seamlessly down-091

loaded and injected into pre-trained models on de-092

mand. This feature enables dynamic model recon-093

figuration and saves significant memory space that094

would otherwise be needed to store the fully trained095

model. Comparative evaluations demonstrate KEN096

exceptional capabilities, surpassing existing trans-097

former pruning and PEFT algorithms. Addition-098

ally, we introduce KENviz: an explainable tool099

that graphically depicts the optimized model from100

various perspectives. KENviz highlights the KEN-101

selected parameters, their layer-wise differences102

and neighbor counts for each matrix that made up103

the analyzed model. Using KEN, we employed104

a non-parametric method widely used in statistics105

to create an efficient and intuitive pruning algo-106

rithm. Our approach achieved excellent results in107

terms of efficiency and performance, making it a108

practical alternative to other more complex pruning109

algorithms.110

2 Background111

Compression algorithms can be summarized in112

three areas of research: weight pruning (Han et al.,113

2015; Zhu and Gupta, 2017), quantization (Gong114

et al., 2014; Zhu et al., 2016) and knowledge dis-115

tillation (Ba and Caruana, 2014; Kim and Rush,116

2016). These techniques aim to make models117

lighter, but each of them takes a different approach.118

Weight pruning removes model parameters accord-119

ing to the chosen algorithm and strategy, while120

quantization reduces the number of bits necessary121

to represent each parameter. Knowledge distilla-122

tion, instead, tries to minimize the learned large123

knowledge of a model into a smaller one without124

affecting its validation.125

Focusing on pruning algorithms, there are differ-126

ent approaches depending on the strategy and algo-127

rithm adopted. Pruning algorithms can be classified128

as either structured or unstructured, based on the129

approach applied and magnitude-based or impact-130

based, according to the algorithm used. Structured131

pruning (Huang et al., 2018; Wang et al., 2019; Gor-132

don et al., 2020) removes weights in groups, such 133

as entire neurons, filters or layers, while unstruc- 134

tured pruning (Han et al., 2015; Frankle and Carbin, 135

2018; Lagunas et al., 2021; Benbaki et al., 2023) 136

does not consider any relationship between param- 137

eters and selects weights to prune based on their 138

impact or magnitude. Magnitude-based algorithms 139

(Hanson and Pratt, 1988; Mozer and Smolensky, 140

1989; Gordon et al., 2020) analyze the absolute 141

value of each parameter to determine its impor- 142

tance. In contrast, impact-based algorithms (LeCun 143

et al., 1989; Hassibi and Stork, 1992; Singh and 144

Alistarh, 2020) work on the loss function and its 145

variation caused by removing a parameter. The win- 146

ning ticket hypothesis (Frankle and Carbin, 2018), 147

is a recent advancement in pruning techniques. A 148

winning ticket is a subnetwork within a trained 149

model that - when trained in isolation - can achieve 150

performance comparable to the original model even 151

after significant pruning. To identify the winning 152

ticket, a pruning criterion is applied to zero-mask 153

weights and the remaining network is retrained. 154

This process can be repeated multiple times or in a 155

one-shot manner. 156

3 Related Work 157

In this section, we present three algorithms that 158

are relevant benchmarks for our proposed algo- 159

rithm, KEN. These algorithms have some similar- 160

ities with it: the first two, called FLOP and BMP, 161

are pruning algorithms designed to reduce the size 162

of transformer models by employing algebraic or 163

geometric techniques. The third, LoRA is the SoTA 164

parameter-efficient algorithm for LLMs. 165

Factorized Low-rank Pruning (FLOP: Wang 166

et al., 2019) FLOP is a magnitude-based pruning 167

algorithm that employs matrix factorization to re- 168

duce the size of matrices in transformer models. 169

This approach involves decomposing each matrix 170

into smaller rank-1 components, which are then 171

multiplied together to form the original matrix. For 172

attention layers, FLOP decomposes each matrix 173

into smaller rank-1 components based on the mag- 174

nitudes of the matrix entries. For embedding layers, 175

FLOP adaptively prunes dimensions based on word 176

clusters. This means that FLOP only prunes dimen- 177

sions that are not frequently used (Joulin et al., 178

2017; Bastings et al., 2019), which helps to reduce 179

the model size without sacrificing performance. 180

2



Figure 1: KEN workpath: From a fine-tuned model (1), for each of its fine-tuned matrices (2), the row distribution
and the respective KDE (Kernel Density Estimator) are calculated. All values within the KDE are selected (3.a),
while the remainder are restored to their pre-tuned value (3.b). The resulting optimized matrix (4) is then fed back
into the model (5)

Block Movement Pruning (BMP: Lagunas et al.,181

2021) introduces an extension to the movement182

pruning technique used in transformers (Sanh et al.,183

2020). This approach reduces the size of each184

matrix in a transformer model by dividing it into185

fixed-sized blocks. Regularization is then applied,186

and the NN is trained through distillation to match187

the performance of a teacher model. Our focus is188

on two pruning methods: Hybrid and HybridNT.189

The key difference between these two approaches is190

that HybridNT does not involve the use of a teacher191

model during training (No Teacher).192

Low-Rank Adaptation of Large Language Mod-193

els (LoRA: Hu et al., 2021) LoRA is a novel194

fine-tuning method that leverages low-rank decom-195

position to reduce the parameter size of large lan-196

guage models (LLMs) while preserving their per-197

formance. This approach involves decomposing the198

LLMs weight matrices into low-rank components,199

which are then fine-tuned along with the original200

weights. This approach enables efficient parameter201

adaptation to specific tasks without compromising202

the LLMs generalization capabilities.203

4 KEN pruning algorithm204

KEN (Kernel density Estimator for Neural net-205

work compression) pruning algorithm is designed206

to identify and extract the most essential subnet- 207

work from each transformer model following the 208

main idea of the winning ticket hypothesis (Fran- 209

kle and Carbin, 2018). This algorithm effectively 210

prunes the network by employing Kernel Density 211

Estimators (KDEs), retaining only the essential pa- 212

rameters and resetting the rest to their pre-trained 213

values. The optimized subnetwork can be stored 214

independently and seamlessly integrated into its 215

pre-trained configuration for downstream applica- 216

tions. 217

KEN utilizes KDE to generalize the point dis- 218

tribution of each transformer matrix, resulting in 219

a lightweight and smooth version of the original 220

fine-tuned model. To prevent the complete decon- 221

struction of the initial matrix composition, KEN 222

applies KDE to the individual rows. The KDE 223

calculation requires a k value, which defines the 224

number of points employed in the distribution cal- 225

culation. Consequently, the k value determines 226

the number of the selected fine-tuned parameters, 227

thus a lower k value indicates a closer resemblance 228

to the pre-trained model while a higher k value re- 229

flects a closer alignment with its fine-tuned version. 230

The KEN algorithm can be described using the 231

three phases defined below: 232

Phase 1: Parameter Extraction and KDE Calcu- 233

lation Given a pre-trained matrix W 0 of a fixed 234

3



layer l:235

W 0 = {w0
1,1, ..., w

0
n,m} | W 0 ∈ Rn×m236

and its corresponding fine-tuned counterpart W t:237

W t = {wt
1,1, ..., w

t
n,m} | W t ∈ Rn×m238

For each row rti of the fine-tuned matrix W t:239

rti = {wt
i,1, ..., w

t
i,m} ∀i ∈ [1, n]240

KEN calculates the KDE distribution of the row rti241

using a bandwidth parameter h determined follow-242

ing Scott’s rule of thumb (Scott, 2015).243

h = 1.06 · σ̂ · n− 1
5244

where σ̂ is the standard deviation of rti .245

Phase 2: Parameter Retention and Pre-trained246

Value Reset Using the KDE likelihood, the k247

points that best fit the rti row distribution are iden-248

tified, while the others are reset to their pre-trained249

values. This process results in an optimized row r̂i:250

r̂i = {ŵi,1, ..., ŵi,m} ∀i ∈ [1, n]251

computed using the following binary function:252

f(ŵi,j) =

{
wt
i,j if wt

i,j ∈ KDE likelihood
w0
i,j otherwise

(1)253

Phase 3: Matrix Replacement and Optimized254

Fine-tuned Model After applying the previous255

step on each row, the optimized matrix Ŵ :256

Ŵ = {ŵ1,1, ..., ŵn,m} | Ŵ ∈ Rn×m257

will replace the original fine-tuned matrix W t258

within the model.259

KEN operates iteratively, replacing the W t ma-260

trix with Ŵ during each iteration. So, after the t-th261

iteration, the model will have t-optimized matrices,262

effectively replacing the fine-tuned matrices with-263

out creating any additional versions of the model.264

This versatility allows KEN to prune the entire265

model or specific layer ranges.266

Alg. 1 explains more formally all the three267

phases described to generate the optimized ma-268

trix Ŵ . Additionally, the graphical representation269

displayed in Fig. 1 provides a clear and compre-270

hensive visualization of all KEN steps while Fig.2271

shows different Ŵ matrices obtained using differ-272

ent k values.273

Algorithm 1: Generate the optimized Ŵ
matrix using KEN
Data: W 0 = {w0

1,1, ..., w
0
n,m},

W t = {wt
1,1, ..., w

t
n,m}, k

Result: Ŵ
Ŵ [n,m]← 0
for i = 1 to n do

best_points← KDE(rti , k)
for j = 1 to m do

r̂ti ← []
if rti [j] in best_points then

r̂ti [j]← rti [j]
else

r̂ti [j]← r0i [j]
end

end
Ŵ [i]← r̂ti

end
return Ŵ

5 Experiments 274

To validate our algorithm, we conducted a series 275

of extensive case studies. Sec. 5.1 describes the 276

experimental setup, including the models employed 277

and the k values tested. Additionally, Sec. 5.2 278

focused on investigating the feasibility of saving 279

and loading compressed data. 280

5.1 Experimental set-up 281

To evaluate KEN pruning algorithm performance 282

across different architectures and datasets, we con- 283

ducted a thorough series of experiments utilizing 284

seven distinct transformer models. To maintain con- 285

sistent evaluation conditions, we uniformly divided 286

each dataset into training, validation and test sets. 287

These divisions remained consistent throughout our 288

experiments and across models. All datasets were 289

imported from Huggingface1. To achieve optimal 290

performance, we fine-tuned each model before ap- 291

plying KEN algorithm per each dataset, adjusting 292

the number of epochs until the fine-tuned model 293

achieved the highest possible F1-weighted score. 294

Despite what the literature suggests, we used the F1 295

measure instead of classical accuracy as a compari- 296

son metric - if not explicitly used by the compari- 297

son benchmarks, because it delivers more reliable 298

predictions, particularly on strongly unbalanced 299

datasets. 300

1https://huggingface.co/datasets

4

https://huggingface.co/datasets


(a) Fine-tuned matrix (b) Reset params 34.90% (c) Reset params: 60.94% (d) Reset params: 86.98%

Figure 2: Comparing the impact of KEN parameter selection on the same fine-tuned matrix (a). Matrix (a) represents
the in_proj matrix at layer 0 of a DeBERTa model trained on the AG_NEWS dataset. No selected parameters are
blank

To fully assess KEN algorithm capabilities, we301

gradually increased the k value required for the302

algorithm, starting from a low k value and incre-303

mentally increasing it until its fine-tuned version304

was reached. This incremental approach allowed us305

to identify the critical threshold value whereby the306

compressed model obtained results similar to its307

fine-tuned version or when the compression value308

k leads to a catastrophic decline of performances,309

as reported in Apx. A.310

To provide a comprehensive analysis of KEN,311

we selected different transformer models with312

unique architecture, attention mechanisms, training313

approaches or different versions of the same model.314

Tab.1 compares the architectures of the models ex-315

amined, emphasizing the number of layers and the316

number of parameters of each.317

Model # Layers # params
BLOOM1B7 (Workshop et al., 2022) 24 1.72 B
BLOOM560k (Workshop et al., 2022) 24 560 M
DeBERTa (He et al., 2020) 12 138 M
Bert (Devlin et al., 2018) 12 109 M
Ernie (Sun et al., 2020) 12 109 M
DistilBERT (Sanh et al., 2019) 6 66 M
Electra (Clark et al., 2020) 12 33 M

Table 1: Properties of the analyzed models

5.2 Model compression318

Transformer models and other neural networks of-319

ten have large file sizes, with a fine-tuned trans-320

former potentially reaching up from 500 MB to321

2GB or more in size. However, the KEN algo-322

rithm reduces this size by selecting and retaining323

a subset of k parameters while restoring the rest324

to their pre-trained values. This process creates325

a more concentrated model that only includes the326

essential k values for each matrix, resulting in sig-327

nificant weight reduction. To accurately assess the328

weight reduction achieved by KEN, we save the 329

compressed model generated during this phase and 330

compare it to its original, unpruned version. To en- 331

sure a fair comparison, we use the same technique 332

to save both the compressed and original fine-tuned 333

models. Nevertheless, KEN requires a support file, 334

such as a dictionary, to load the k parameters saved 335

into their appropriate positions during the loading 336

process. This is because during loading, the k fine- 337

tuning values must be loaded into a pre-trained 338

model and the support file provides the necessary 339

mapping to ensure proper placement. Sec. 6.2 340

provides a comprehensive overview of the com- 341

pression results obtained during this analysis. 342

6 Results and Discussion 343

In this section, we present the results obtained for 344

each KEN main goals. Sec. 6.1 discusses the ef- 345

fectiveness of KEN-pruned models in comparison 346

to: their unpruned counterparts, pruning bench- 347

marks and state-of-the-art PEFT algorithm. Sec. 348

6.2 focuses on the process of saving and loading 349

the subnetwork extracted by KEN, comparing the 350

reduced file sizes achieved by it with those of the 351

original models. Finally, Sec. 6.3 shows KENviz, 352

illustrating its applications. 353

6.1 Experiment results 354

To evaluate the efficacy of KEN, we conducted a se- 355

ries of experiments across diverse classification and 356

sentiment analysis datasets. For each dataset, we 357

implemented KEN multiple times, employing var- 358

ied k values and calculating the mean and standard 359

deviation of the resulting F1-weighted scores. The 360

complete dataset list can be found in Apx. B. As ev- 361

idenced in Tab. 2, KEN successfully compresses all 362

analyzed models without sacrificing their original, 363

unpruned performance. We observed a remarkable 364

5



Model Trainable params Reset params (%) AG-NEWS EMO IMDB YELP_POLARITY glue-sst2

BLOOM1B7

442M 74.31 87.5 (±0.1) 88.0 (±0.1) 76.6 (±0.1) 96.1 (±0.1) 80.4 (±0.1)
531M 69.17 92.2 (±0.1) 90.6 (±0.1) 84.2 (±0.1) 96.3 (±0.1) 90.9 (±0.1)
664M 61.46 93.1 (±0.1) 90.1 (±0.1) 87.6 (±0.1) 96.5 (±0.1) 92.9 (±0.1)

BLOOM560k

411M 26.34 91.3 (±0.1) 81.4 (±0.1) 82.7 (±0.1) 95.2 (±0.1) 92.4 (±0.1)
420M 24.80 91.8 (±0.1) 83.0 (±0.1) 84.3 (±0.1) 95.3 (±0.1) 92.1 (±0.1)
429M 23.26 92.1 (±0.1) 84.0 (±0.1) 85.8 (±0.1) 95.3 (±0.1) 92.3 (±0.1)

DeBERTa
92M 33.86 92.2 (±0.1) 87.9 (±1.2) 82.5 (±5.1) 95.9 (±0.4) 94.6 (±0.2)
99M 28.35 92.7 (±0.1) 87.3 (±1.0) 88.3 (±1.1) 96.1 (±0.2) 94.9 (±0.1)
107M 22.84 92.9 (±0.1) 87.1 (±1.2) 89.8 (±0.1) 96.2 (±0.1) 94.8 (±0.1)

Bert
69M 37.05 93.4 (±0.1) 84.2 (±1.1) 86.8 (±0.1) 95.0 (±0.4) 93.7 (±0.5)
75M 31.80 93.7 (±0.2) 87.4 (±0.7) 87.3 (±0.1) 95.0 (±0.5) 93.7 (±0.4)
80M 26.55 93.6 (±0.1) 87.9 (±0.3) 87.6 (±0.1) 95.1 (±0.4) 93.8 (±0.4)

Ernie
69M 37.05 93.3 (±0.4) 89.1 (±0.6) 89.4 (±0.2) 95.8 (±0.1) 94.1 (±0.2)
75M 31.80 93.3 (±0.3) 88.7 (±1.2) 89.2 (±0.2) 95.8 (±0.3) 93.8 (±0.2)
80M 26.55 93.8 (±0.2) 88.1 (±0.8) 89.6 (±0.3) 95.9 (±0.2) 93.4 (±0.2)

DistilBERT
44M 34.39 92.3 (±0.6) 88.1 (±1.4) 83.2 (±1.1) 94.6 (±0.1) 91.9 (±0.2)
47M 28.92 93.1 (±0.2) 88.8 (±0.6) 84.4 (±0.5) 94.7 (±0.1) 91.9 (±0.1)
51M 23.45 93.3 (±0.2) 88.2 (±0.3) 84.6 (±0.9) 94.9 (±0.1) 92.0 (±0.1)

Electra
8.9M 75.56 84.1 (±2.4) 84.3 (±0.4) 78.9 (±0.5) 88.5 (±0.9) 79.9 (±0.7)
12M 64.75 89.7 (±0.3) 86.0 (±0.3) 82.0 (±0.5) 92.1 (±0.8) 85.0 (±0.2)
14M 55.94 91.3 (±0.2) 85.6 (±0.3) 84.3 (±0.1) 93.7 (±0.4) 90.1 (±0.1)

Table 2: Results on various datasets obtained using different trainable parameters. Bold results indicate a similar
or better F1-weighted value compared to the original (unpruned) model. The reset params column indicates the
percentage of the restored pre-trained params in the model. Other results are shown in Apx.B

reduction in overall model parameter count, rang-365

ing from a minimum of 25% to a substantial ≈366

70% for certain models. Intriguingly, the models367

with both the highest and lowest parameter counts368

exhibited the most significant parameter reduction.369

Additionally, for each model under examination,370

we observed no substantial difference in perfor-371

mance as the percentage of reset parameters in-372

creased, maintaining a remarkable resemblance to373

the unpruned model performance. This observation374

underscores KEN exceptional generalization capa-375

bility, striking a balance between performance and376

compression even at middle-to-high compression377

rates.378

We compared KEN to other pruning algorithms379

specifically designed for transformer models, in-380

cluding FLOP, Hybrid and HybridNT, as described381

in Sec. 3. It is essential to note that Lagunas et al.382

(2021) models (Hybrid and HybridNT) only prune383

the attention layers and not the entire model. To384

facilitate a comprehensive and standardized com-385

parison of all algorithms, we recalibrated the size386

of their models based on our holistic perspective,387

ignoring any partial considerations. We combined388

the results obtained in their publication with those389

obtained from KEN and FLOP in Tab. 3. KEN out-390

performed all other compared models with a signifi-391

cant performance gap while utilizing fewer parame-392

ters in every instance. In addition to these findings,393

we conducted a thorough analysis of FLOP, which394

Model Trainable params
glue-sst2

Accuracy
Bert-base 109M 93.37
Hybrid 94M 93.23
HybridNT 94M 92.20
KEN 80M 93.80
Hybrid 66M 91.97
HybridNT 66M 90.71
Sajjad et al. (2020) 66M 90.30
Gordon et al. (2020) 66M 90.80
Flop 66M 83.20
KEN 63M 92.90

Table 3: Pruning algorithm comparations on SST-2
datasets

is the most complete pruning algorithm studied and, 395

like KEN, decomposes original matrices to derive 396

pruned ones. We conducted additional experiments 397

on all models analyzed, using the datasets listed 398

in Tab. 2. We compared the results obtained from 399

FLOP with those of KEN, which employed fewer 400

parameters than FLOP. As shown in Tab. 4, FLOP 401

outperforms KEN in only one instance. For all 402

other models and datasets analyzed, KEN consis- 403

tently outperforms FLOP. 404

Although KEN belongs to the winning ticket 405

pruning algorithms family, it shares similarities 406

with Parameter Efficient Fine-tuning (PEFT) algo- 407

rithms. This is because both approaches aim to 408

identify a subset of optimal parameters within the 409

fine-tuned model. We conducted a thorough evalu- 410

6



Model
Pruning

algorithm
Trainable params. AG-NEWS EMO IMDB YELP_POLARITY glue-sst2

BLOOM1B7
KEN 531M 92.2 (±0.1) 90.6 (±0.1) 84.2 (±0.1) 96.3 (±0.1) 90.9 (±0.1)
FLOP 1.1B 90.1 (±1.3) 84.0 (±1.9) 80.9 (±0.3) 85.5 (±3.5) 80.7 (±1.7)

BLOOM560k
KEN 404M 91.3 (±0.1) 85.5 (±3.5) 81.3 (±0.3) 94.8 (±0.5) 92.0 (±0.4)
FLOP 408M 91.0 (±0.6) 84.0 (±2.3) 72.1 (±7.1) 87.0 (±0.5) 81.8 (±0.5)

DeBERTa
KEN 84M 91.4 (±0.6) 88.9 (±1.5) 82.5 (±3.1) 96.0 (±0.2) 92.8 (±0.4)
FLOP 88M 90.6 (±0.7) 83.1 (±1.7) 81.1 (±0.8) 91.4 (±0.1) 82.3 (±1.1)

Bert
KEN 57M 91.6 (±0.7) 86.0 (±0.5) 84.9 (±0.8) 93.8 (±1.6) 92.8 (±0.5)
FLOP 66M 90.9 (±0.9) 83.3 (±0.8) 80.5 (±0.6) 90.2 (±0.6) 83.2 (±0.2)

Ernie
KEN 57M 91.5 (±1.4) 88.3 (±0.4) 87.6 (±0.6) 95.7 (±0.1) 94.1 (±0.4)
FLOP 67M 89.8 (±0.4 ) 83.8 (±2.3) 81.1 (±0.8) 90.9 (±0.1) 83.2 (±0.9)

DistilBERT
KEN 40M 91.9 (±0.3) 88.2 (±1.1) 78.1 (±1.4) 94.1 (±0.1) 89.2 (±0.7)
FLOP 45M 90.7 (±0.9) 83.2 (±1.2) 81.2 (±0.9) 90.7 (±0.1) 82.4 (±1.2)

Electra
KEN 14M 91.3 (±0.2) 85.6 (±0.3) 84.3 (±0.1) 93.7 (±0.4) 90.1 (±0.1)
FLOP 28M 90.9 (±0.3) 83.1 (±2.1) 81.2 (±0.1) 90.5 (±0.1) 81.1 (±0.3)

Table 4: Comparation between KEN and FLOP pruning algorithms on different datasets. Mean and standard
deviation are calculated on equal runs for each dataset and algorithm analyzed. The Trainable params column
indicates the number of parameters used by each algorithm after the pruning phase.

ation of KEN and compared it to LoRA, which is411

currently the state-of-the-art PEFT algorithm. We412

applied LoRA and KEN to the same layers of each413

model. We then trained the LoRA-based models for414

five times more epochs than their KEN-based coun-415

terparts. Additionally, we gradually increased the416

number of rank decomposition matrices for each417

model from 16 to its original matrix size. In each418

LoRA-based experiment, only the LoRA-specific419

parameters were designated as either trainable or420

not. Our results, presented in Fig. 3, demonstrate421

that KEN consistently outperforms LoRA in terms422

of F1-measure while utilizing fewer trained param-423

eters. However, when LoRA parameters are not424

the only ones trained, it produces similar results to425

KEN but consistently maintains a higher parameter426

count.427

These compelling results provide strong evi-428

dence supporting our hypothesis that strategically429

selecting a subset of parameters and resetting the430

remainder offers a promising alternative to conven-431

tional pruning techniques.432

6.2 Compression values433

One of the primary objectives of KEN is to sig-434

nificantly reduce the overall size of transformer435

models, including their file sizes. To accomplish436

this goal, KEN leverages a subnetwork comprising437

only k-trained parameters, allowing it to be saved438

and then injected into its pre-trained counterpart.439

This process requires a support file, like a dictio-440

nary, that specifies the precise location of each441

saved parameter within the pre-trained model. To442

ensure a fair comparison between the original and443

Model
Total

params
Original
file size

# trainable
params

Compressed file size
(Model + support dict)

BLOOM1B7 1.72B 7,055 MB
664M 3,071 MB (2,923 + 148)
442M 2137 MB (2,013 + 124)

BLOOM560k 560M 2,294 MB
429M 2,084 MB (1,956 + 128)
386M 1,842 MB (1,731 + 111)

BERT 109M 438 MB
80M 358 MB (320 + 38)
57M 260.2 MB (228 + 32.2)

DistilBERT 66M 266 MB
51M 231.4 MB (203 + 28.4)
36M 165 MB (145 + 20)

DeBERTa 138M 555 MB
107M 476.3 MB (428 + 48.3)
76M 348.4 MB (306 + 42.4)

Ernie 109M 438 MB
80M 356.9 MB (320 + 36.9)
57M 260.3 MB (228 + 32.3)

Electra 33M 134 MB
14M 67.01 MB (59.1 + 7.91)
9M 42.58 MB (35.5 + 7.08)

Table 5: Comparison of the .pt file size between the
original and compressed transformer weights

compressed model sizes, the compressed model is 444

saved using the same techniques and format as the 445

original model, guaranteeing consistent results. For 446

each model, two compressed versions are gener- 447

ated, employing both high and low k values. 448

As shown in Tab. 5, both versions of the com- 449

pressed models exhibit substantial memory savings, 450

with their size directly proportional to the number 451

of saved parameters. Specifically, models saved 452

using a high k value, and thus closely mirroring 453

the structure of the unpruned model, also conserve 454

significant memory. This value further increases 455

as the number of trained parameters saved dimin- 456

ishes. The support dictionary for parameter injec- 457

tion, stored using the Lempel-Ziv-Markov chain 458

data compression algorithm, has an insignificant 459

impact on the model final weight, which remains 460

significantly smaller than the original. Furthermore, 461

the time required to load the injected parameters 462

7



Figure 3: Comparison between KEN and LoRA. Labels for the LoRA marker indicate the dimension of the
rank-decomposition matrix analyzed while, for KEN, the k value used

into the pre-trained model is linear with the trans-463

former architecture and the compression employed.464

6.3 KENviz465

KENviz is a visualization tool that provides a clear466

understanding of matrices composition after the467

application of KEN pruning step. It offers various468

views to explore the pruned model, including:469

1. Single Matrix View: It displays only the re-470

tained parameters, leaving the pruned ones471

blank (Fig. 2).472

2. Neighbor Count View: It visualizes the num-473

ber of non-zero neighbors (horizontally and474

vertically) for each point in a given matrix.475

3. Layer-wise View: This iterative view applies476

the previous two views to each matrix per477

model layer.478

The examples in Fig. 4 and Apx. C both indicate479

that the number of non-zero neighbors for each480

point remains consistently high even in cases with481

high reset parameters. This suggests that the cho-482

sen parameters not only represent the most effec-483

tive elements but also display a well-proportioned484

distribution within each matrix.485

7 Conclusions486

In this paper, we presented KEN, a novel non-487

architecture-specific pruning algorithm that lever-488

ages KDE to construct an abstraction of the pa-489

rameter distribution and selectively retain a finite490

subset of parameters while resetting the rest to491

(a) Reset params: 47.92% (b) Neighor counts

Figure 4: Output of KENviz of the key attention matrix
at layer 12 of a BERT model trained on glue-sst2.
(a) show the matrix after the KEN pruning stage while
(b) its neighbor counts.

their pre-trained values. Our extensive evalua- 492

tions on seven diverse transformer models demon- 493

strate that KEN consistently achieves remarkable 494

compression rates, reducing unnecessary param- 495

eters by a minimum of 25% up to ≈ 70% on 496

some models, without compromising model per- 497

formance. Moreover, by leveraging the KEN core 498

idea, is possible to store only the subnetwork of 499

k-trained parameters, leading to significant mem- 500

ory savings. We also present KENviz: the KEN 501

visualizer that provides insights into the algorithm 502

operation. KENviz reveals that KEN uniformly 503

selects parameters across matrices, hindering clus- 504

ter formation. With KEN we demonstrate how a 505

simple, non-parametric strategy commonly used 506

in statistics can be adopted for model pruning to 507

obtain excellent results in terms of compression 508

and performance. 509

8



8 Limitations510

One of the major limitations of KEN is its computa-511

tional efficiency, particularly when analyzing large512

models. Although KEN excels at producing de-513

tailed distributions using large k values, this comes514

at the cost of increased processing time. The com-515

putational effort increases linearly with the size of516

the model matrix, the number of model layers and517

the chosen k value. It is important to note that this518

performance impact mainly affects the parameter519

selection phase and does not significantly affect the520

saving or loading of compressed models.521

Furthermore, although our paper focused on the522

sequence classification task to ensure complete and523

comparable results, preliminary unpublished exper-524

iments demonstrate the effectiveness of KEN in525

other tasks. Future work will explore its broader526

applicability and address potential optimizations527

for large-scale scenarios.528

References 529

Jimmy Ba and Rich Caruana. 2014. Do deep nets really 530
need to be deep? Advances in neural information 531
processing systems, 27. 532

Francesco Barbieri, Jose Camacho-Collados, Luis Es- 533
pinosa Anke, and Leonardo Neves. 2020. TweetEval: 534
Unified benchmark and comparative evaluation for 535
tweet classification. In Findings of the Association 536
for Computational Linguistics: EMNLP 2020, pages 537
1644–1650, Online. Association for Computational 538
Linguistics. 539

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019. 540
Interpretable neural predictions with differentiable 541
binary variables. arXiv preprint arXiv:1905.08160. 542

Riade Benbaki, Wenyu Chen, Xiang Meng, Hussein 543
Hazimeh, Natalia Ponomareva, Zhe Zhao, and Rahul 544
Mazumder. 2023. Fast as chita: Neural network prun- 545
ing with combinatorial optimization. arXiv preprint 546
arXiv:2302.14623. 547

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan 548
Frankle, and John Guttag. 2020. What is the state 549
of neural network pruning? Proceedings of machine 550
learning and systems, 2:129–146. 551

Ankush Chatterjee, Kedhar Nath Narahari, Meghana 552
Joshi, and Puneet Agrawal. 2019. SemEval-2019 task 553
3: EmoContext contextual emotion detection in text. 554
In Proceedings of the 13th International Workshop 555
on Semantic Evaluation, pages 39–48, Minneapo- 556
lis, Minnesota, USA. Association for Computational 557
Linguistics. 558

Kevin Clark, Minh-Thang Luong, Quoc V Le, and 559
Christopher D Manning. 2020. Electra: Pre-training 560
text encoders as discriminators rather than generators. 561
arXiv preprint arXiv:2003.10555. 562

Arman Cohan, Waleed Ammar, Madeleine van Zuylen, 563
and Field Cady. 2019. Structural scaffolds for ci- 564
tation intent classification in scientific publications. 565
In Proceedings of the 2019 Conference of the North 566
American Chapter of the Association for Computa- 567
tional Linguistics: Human Language Technologies, 568
Volume 1 (Long and Short Papers), pages 3586–3596, 569
Minneapolis, Minnesota. Association for Computa- 570
tional Linguistics. 571

Thomas Davidson, Dana Warmsley, Michael Macy, and 572
Ingmar Weber. 2017. Automated hate speech de- 573
tection and the problem of offensive language. In 574
Proceedings of the international AAAI conference on 575
web and social media, volume 11, pages 512–515. 576

Ona de Gibert, Naiara Perez, Aitor García-Pablos, and 577
Montse Cuadros. 2018. Hate Speech Dataset from 578
a White Supremacy Forum. In Proceedings of the 579
2nd Workshop on Abusive Language Online (ALW2), 580
pages 11–20, Brussels, Belgium. Association for 581
Computational Linguistics. 582

9

https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/2020.findings-emnlp.148
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/S19-2005
https://doi.org/10.18653/v1/N19-1361
https://doi.org/10.18653/v1/N19-1361
https://doi.org/10.18653/v1/N19-1361
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102


Jacob Devlin, Ming-Wei Chang, Kenton Lee, and583
Kristina Toutanova. 2018. Bert: Pre-training of deep584
bidirectional transformers for language understand-585
ing. arXiv preprint arXiv:1810.04805.586

Xin Dong, Shangyu Chen, and Sinno Pan. 2017. Learn-587
ing to prune deep neural networks via layer-wise op-588
timal brain surgeon. Advances in neural information589
processing systems, 30.590

Jonathan Frankle and Michael Carbin. 2018. The lottery591
ticket hypothesis: Finding sparse, trainable neural592
networks. arXiv preprint arXiv:1803.03635.593

Yunchao Gong, Liu Liu, Ming Yang, and Lubomir594
Bourdev. 2014. Compressing deep convolutional595
networks using vector quantization. arXiv preprint596
arXiv:1412.6115.597

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.598
2020. Compressing bert: Studying the effects of599
weight pruning on transfer learning. arXiv preprint600
arXiv:2002.08307.601

Antonio Gulli. 2005. Ag’s corpus of news articles.602

Harsha Gurulingappa, Abdul Mateen Rajput, Angus603
Roberts, Juliane Fluck, Martin Hofmann-Apitius, and604
Luca Toldo. 2012. Development of a benchmark605
corpus to support the automatic extraction of drug-606
related adverse effects from medical case reports.607
Journal of Biomedical Informatics, 45(5):885 – 892.608
Text Mining and Natural Language Processing in609
Pharmacogenomics.610

Song Han, Jeff Pool, John Tran, and William Dally.611
2015. Learning both weights and connections for612
efficient neural network. Advances in neural infor-613
mation processing systems, 28.614

Stephen Hanson and Lorien Pratt. 1988. Comparing615
biases for minimal network construction with back-616
propagation. Advances in neural information pro-617
cessing systems, 1.618

Babak Hassibi and David Stork. 1992. Second order619
derivatives for network pruning: Optimal brain sur-620
geon. Advances in neural information processing621
systems, 5.622

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and623
Weizhu Chen. 2020. Deberta: Decoding-enhanced624
bert with disentangled attention. arXiv preprint625
arXiv:2006.03654.626

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan627
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,628
and Weizhu Chen. 2021. Lora: Low-rank adap-629
tation of large language models. arXiv preprint630
arXiv:2106.09685.631

Gao Huang, Shichen Liu, Laurens Van der Maaten, and632
Kilian Q Weinberger. 2018. Condensenet: An ef-633
ficient densenet using learned group convolutions.634
In Proceedings of the IEEE conference on computer635
vision and pattern recognition, pages 2752–2761.636

Steven A Janowsky. 1989. Pruning versus clipping in 637
neural networks. Physical Review A, 39(12):6600. 638

Armand Joulin, Moustapha Cissé, David Grangier, 639
Hervé Jégou, et al. 2017. Efficient softmax approx- 640
imation for gpus. In International conference on 641
machine learning, pages 1302–1310. PMLR. 642

Phillip Keung, Yichao Lu, György Szarvas, and Noah A. 643
Smith. 2020. The multilingual amazon reviews cor- 644
pus. In Proceedings of the 2020 Conference on Em- 645
pirical Methods in Natural Language Processing. 646

Yoon Kim and Alexander M Rush. 2016. Sequence- 647
level knowledge distillation. arXiv preprint 648
arXiv:1606.07947. 649

François Lagunas, Ella Charlaix, Victor Sanh, and 650
Alexander M Rush. 2021. Block pruning for faster 651
transformers. arXiv preprint arXiv:2109.04838. 652

Yann LeCun, John Denker, and Sara Solla. 1989. Opti- 653
mal brain damage. Advances in neural information 654
processing systems, 2. 655

Xin Li and Dan Roth. 2002. Learning question clas- 656
sifiers. In COLING 2002: The 19th International 657
Conference on Computational Linguistics. 658

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, 659
Dan Huang, Andrew Y. Ng, and Christopher Potts. 660
2011. Learning word vectors for sentiment analysis. 661
In Proceedings of the 49th Annual Meeting of the 662
Association for Computational Linguistics: Human 663
Language Technologies, pages 142–150, Portland, 664
Oregon, USA. Association for Computational Lin- 665
guistics. 666

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, 667
and Ohad Shamir. 2020. Proving the lottery ticket 668
hypothesis: Pruning is all you need. In International 669
Conference on Machine Learning, pages 6682–6691. 670
PMLR. 671

Michael C Mozer and Paul Smolensky. 1989. Using 672
relevance to reduce network size automatically. Con- 673
nection Science, 1(1):3–16. 674

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting 675
class relationships for sentiment categorization with 676
respect to rating scales. arXiv preprint cs/0506075. 677

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and 678
Preslav Nakov. 2020. Poor man’s bert: Smaller 679
and faster transformer models. arXiv preprint 680
arXiv:2004.03844, 2(2). 681

Victor Sanh, Lysandre Debut, Julien Chaumond, and 682
Thomas Wolf. 2019. Distilbert, a distilled version 683
of bert: smaller, faster, cheaper and lighter. arXiv 684
preprint arXiv:1910.01108. 685

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020. 686
Movement pruning: Adaptive sparsity by fine-tuning. 687
Advances in Neural Information Processing Systems, 688
33:20378–20389. 689

10

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://doi.org/https://doi.org/10.1016/j.jbi.2012.04.008
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://aclanthology.org/P11-1015


David W Scott. 2015. Multivariate density estimation:690
theory, practice, and visualization. John Wiley &691
Sons.692

Emily Sheng and David Uthus. 2020. Investigating693
societal biases in a poetry composition system. In694
Proceedings of the Second Workshop on Gender695
Bias in Natural Language Processing, pages 93–106,696
Barcelona, Spain (Online). Association for Computa-697
tional Linguistics.698

Sidak Pal Singh and Dan Alistarh. 2020. Woodfisher:699
Efficient second-order approximation for neural net-700
work compression. Advances in Neural Information701
Processing Systems, 33:18098–18109.702

Richard Socher, Alex Perelygin, Jean Wu, Jason703
Chuang, Christopher D. Manning, Andrew Ng, and704
Christopher Potts. 2013. Recursive deep models for705
semantic compositionality over a sentiment treebank.706
In Proceedings of the 2013 Conference on Empiri-707
cal Methods in Natural Language Processing, pages708
1631–1642, Seattle, Washington, USA. Association709
for Computational Linguistics.710

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao711
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0: A712
continual pre-training framework for language under-713
standing. In Proceedings of the AAAI conference on714
artificial intelligence, volume 34, pages 8968–8975.715

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S716
Emer. 2017. Efficient processing of deep neural net-717
works: A tutorial and survey. Proceedings of the718
IEEE, 105(12):2295–2329.719

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob720
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz721
Kaiser, and Illia Polosukhin. 2017. Attention is all722
you need. Advances in neural information processing723
systems, 30.724

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.725
Structured pruning of large language models. arXiv726
preprint arXiv:1910.04732.727

BigScience Workshop, Teven Le Scao, Angela Fan,728
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel729
Hesslow, Roman Castagné, Alexandra Sasha Luc-730
cioni, François Yvon, et al. 2022. Bloom: A 176b-731
parameter open-access multilingual language model.732
arXiv preprint arXiv:2211.05100.733

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. 2017.734
Designing energy-efficient convolutional neural net-735
works using energy-aware pruning. In Proceedings736
of the IEEE conference on computer vision and pat-737
tern recognition, pages 5687–5695.738

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.739
Character-level convolutional networks for text classi-740
fication. Advances in neural information processing741
systems, 28.742

Chenzhuo Zhu, Song Han, Huizi Mao, and William J743
Dally. 2016. Trained ternary quantization. arXiv744
preprint arXiv:1612.01064.745

Michael Zhu and Suyog Gupta. 2017. To prune, or not 746
to prune: exploring the efficacy of pruning for model 747
compression. arXiv preprint arXiv:1710.01878. 748

11

https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/2020.gebnlp-1.9
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170


Figure 5: Performance variation on AG-NEWS dataset with different reset parameters percentage value. All the
experiments were conducted using KEN full configuration

A How to prove the importance of749

selected parameters750

To assess the effectiveness of KEN core idea, which751

involves selecting parameters based on their dis-752

tribution using Kernel Density Estimation (KDE),753

we conducted parallel experiments. In these exper-754

iments, KEN randomly chose parameters to either755

retain or reset to their pre-trained values. This ran-756

domized approach allowed us to compare KEN757

KDE-based selection strategy against random pa-758

rameter pruning.759

Formally, for each matrix in a generic model,760

the optimized matrix Ŵ contained k randomly se-761

lected fine-tuned parameters. Our goal is to de-762

termine whether the parameters introduced into a763

generic transformer model by KEN constituted an764

optimal subnetwork or if equivalent results could be765

achieved by randomly selecting the same number766

of parameters. To address this question, we per-767

formed an experiment using the AG-NEWS dataset,768

comparing the performance differences between769

extracting Ŵ matrices using KEN and using k ran-770

dom values for each matrix row.771

The results, illustrated in Fig. 5, consistently772

show that KEN outperforms its random counterpart.773

KEN achieves a lower error rate and a smaller per-774

formance gap at reasonable compression levels. It775

is important to note that, in all cases and for all mod-776

els examined, there exists a threshold value beyond777

which the model performance inevitably declines.778

The KEN algorithm effectively compresses models779

while preserving high performance and minimizing780

error rates. However, if the reset parameters ex-781

ceed a certain threshold (specific to each model), its782

performance suffers a catastrophic decline. When783

random values are used, this threshold is reached 784

earlier, resulting in a larger performance gap and 785

higher error rate. Nevertheless, the upper limit ob- 786

tained with random selection is always lower than 787

or equal to the average value obtained with KEN. 788

Furthermore, when using KEN, the error rate 789

remains minimal within the threshold. This sug- 790

gests that the subnetwork derived from KEN is 791

not random; rather, it consistently selects the most 792

effective portion of the original network. 793

12



Dataset BLOOM1B7 BLOOM560k Bert DistilBert DeBERTa Ernie Electra
trec 61.46% 23.26% 26.55% 23.45% 22.84% 26.55% 55.94%
rotten_tomatoes 69.17% 24.80% 26.55% 34.39% 44.88% 42.29% 55.94%
hate_speech_offensive 61.46% 23.26% 26.55% 34.39% 22.84% 26.55% 55.94%
hate_speech18 61.46% 23.26% 26.55% 23.45% 33.86% 31.80% 64.75%
scicite 61.46% 23.26% 37.05% 28.92% 22.84% 31.80% 55.94%†

ade_corpus_v2 69.17% 24.80% 52.78% 45.32% 44.88% 63.28% 73.56%
amazon_reviews_multi 69.17% 24.80% 31.80% 34.39% 22.84% 31.80% 55.94%†

poem_sentiment 74.31% 26.34% 58.03% 45.32% 22.84% 47.54% 73.56%
tweet_eval-emoji 74.31% 23.26% 63.28% 23.45% 44.88% 79.02% 55.94%
tweet_eval-hate 61.46% 23.26% 26.55% 61.73% 44.88% 47.54% 55.94%
tweet_eval-irony 61.46% 23.26% 26.55% 23.45% 22.84% 26.55% 64.75%
tweet_eval-offensive 61.46% 23.26% 26.55%† 34.39% 28.35% 31.80% 55.94%
tweet_eval-femminist 61.46% 23.26% 26.55% 39.05% 22.84% 37.05% 64.75%

Table 6: Results obtained from the analysis of additional datasets not shown in Tab.2. The values presented in
this table correspond to the lowest percentage of reset parameters that KEN achieved without impacting the model
performance. The † symbol denotes a reset parameter rate that falls below the minimum value reported in Tab. 2

B Additional results794

In this appendix, we show additional results ob-795

tained using KEN not shown in Tab. 2. Tab. 7796

provides a comprehensive overview of all datasets797

analyzed in the paper, while Tab. 6 displays the798

additional results included. Unlike Tab. 2, Tab. 6799

focuses on the highest percentage of reset param-800

eters for each model on each dataset where KEN801

F1-weighted score matches or surpasses the per-802

formance of the original unpruned model. This803

highlights the exceptional compression capabilities804

of KEN, enabling it to achieve comparable or even805

improved performance while significantly reducing806

the model parameter count.

Dataset Reference
trec Li and Roth, 2002
AG-NEWS Gulli, 2005
rotten tomatoes Pang and Lee, 2005
IMDB Maas et al., 2011
ade_corpus_v2 Gurulingappa et al., 2012
glue-sst2 Socher et al., 2013
YELP POLARITY Zhang et al., 2015
hate_speech_offensive Davidson et al., 2017
hate_speech18 de Gibert et al., 2018
EMO Chatterjee et al., 2019
scicite Cohan et al., 2019
amazon_reviews_multi Keung et al., 2020
poem sentiment Sheng and Uthus, 2020
tweet_eval-emoji Barbieri et al., 2020
tweet_eval-hate Barbieri et al., 2020
tweet_eval-irony Barbieri et al., 2020
tweet_eval-offensive Barbieri et al., 2020
tweet_eval-feminist Barbieri et al., 2020

Table 7: Dataset analyized

807

C KENviz examples 808

The goal of KENviz is to generate visual represen- 809

tations of the pruning results obtained from KEN. 810

In this example, we highlight the key matrices of 811

layers 0 and 12 of a BERT model, trained on the 812

glue-sst2 dataset. The visualizations reveal the 813

parameters selected by KEN and their respective 814

neighbor counts, as discussed in Sec. 6.3. 815

In this experiment, we used BERT instead of 816

other models analyzed in the paper, because it per- 817

formed remarkably well at both low and high k 818

values during the testing phase (shown in Tab. 2 819

and Tab. 6). To fully examine the evolution of pa- 820

rameter selection patterns, we used three different 821

k values, representing different degrees of selected 822

parameters. This allowed us to observe how these 823

parameters changed as the amount of parameter 824

resetting increased. 825

From Fig. 6 and Fig. 7, it is clear that in all 826

configurations and in all analyzed layers, the distri- 827

bution of points in each row of each matrix is rela- 828

tively uniform and does not deviate into a distinct, 829

disconnected cluster. Additionally, the number of 830

non-zero neighbors for each point is quite uniform 831

even as the k value varies. 832

13



(a) Parameter reset 21.87%

(b) Parameter reset 47.91%

(c) Parameter reset 73.95%

Figure 6: Visualization of the key attention matrix at
layer 0 of a BERT model trained on the glue-sst2
dataset, utilizing KENviz . The left-hand figures depict
the matrix after undergoing the KEN pruning stage,
while the right-hand ones showcase the corresponding
neighbor counts

(a) Parameter reset 21.87%

(b) Parameter reset 47.91%

(c) Parameter reset 73.95%

Figure 7: Visualization of the key attention matrix at
layer 12 of a BERT model trained on the glue-sst2
dataset, utilizing KENviz . The left-hand figures depict
the matrix after undergoing the KEN pruning stage,
while the right-hand ones showcase the corresponding
neighbor counts

14


