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ABSTRACT

In deep learning, Stochastic Gradient Descent (SGD) will find different solutions
that are functionally similar but far away from each other in the parameter space.
The loss landscape of linearly connecting two SGD solutions is called Linear
Mode Connectivity (LMC), which often shows barriers. Current neuron alignment
methods seek to find a network permutation that can map two SGD solutions into
the same loss basin to improve LMC and model fusion. However, these methods are
post-hoc and usually require large computations due to the astronomical number of
permutation matrices. Can we realize training-time neuron alignment? In this paper,
we first hypothesize that it can be realized by learning into an effective subspace.
First, we provide a preliminary theoretical result to support the hypothesis. We
further propose a subspace algorithm for partially fixing neuron weights to reduce
the potential permutation symmetries without hurting accuracy. It is found that
by applying our training-time alignment method, the LMC is largely improved
and the required computation for post-matching is reduced. Interestingly, we also
find random pruning at initialization can improve connectivity, which validates our
subspace hypothesis. Lastly, we propose two algorithms, incorporating training-
time neuron alignment in federated learning, to showcase its prospects in boosting
model fusion even under heterogeneous datasets.

1 INTRODUCTION

Understanding the loss landscape of Deep Neural Networks (DNNs) is the key to understanding the
mechanisms and training dynamics behind generalization and optimization (Li et al., 2018b; Fort
& Jastrzebski, 2019; Simsek et al., 2021; Vlaar & Frankle, 2022), and it is still an open problem.
Empirical findings demonstrate that Stochastic Gradient Descent (SGD) will find many minima that
are functionally similar but far away from each other in parameter space (Draxler et al., 2018; Zhang
et al., 2021; Entezari et al., 2022). The literature in Linear Mode Connectivity (LMC) suggests that
if we linearly interpolate two independently trained networks, which have the same initialization
and trainset but have different SGD random seeds (i.e., batch orders), there will be a loss barrier in
the landscape (Draxler et al., 2018; Garipov et al., 2018; Ainsworth et al., 2022) (also see Figure 3).
The loss barrier reflects that the two SGD solutions fall into two different loss basins that cannot be
linearly connected, and it is detrimental to model fusion (Ainsworth et al., 2022; Li et al., 2022).
The reasons behind the barrier in LMC are mainly the over-parameterization and permutation
invariance (also known as permutation symmetry) properties of DNNs. Over-parameterization
explains why there are abundant minima found by SGD (Zhang et al., 2021; Neyshabur et al., 2017;
Safran & Shamir, 2018). Permutation invariance suggests that the function of the network can remain
the same while changing the permutations of neurons, which can result in many functionally same
but geometrically different solutions (Ainsworth et al., 2022; Wang et al., 2020a; Tatro et al., 2020).
Previous works seek to achieve neuron alignment for improving LMC by utilizing the permutation
invariance property. In Entezari et al. (2022), it is conjectured that if taking all permutations into
account, all SGD solutions can be mapped into the same loss basin where no barrier in LMC. Git
Re-Basin (Ainsworth et al., 2022) further validates this conjecture by proposing three algorithms to
find such permutations.
However, post-hoc neuron alignment is a hard combinatorial optimization problem. As stated in
Ainsworth et al. (2022), even for a three-layer MLP with 512 widths, the number of permutation
symmetries is nearly 10 ^ 3498. It is very computationally expensive and difficult to find an
appropriate permutation to align one network with the other. For the scenarios where alignment
among multiple models is needed, especially federated learning, the post-hoc alignment task is more
challenging (Wang et al., 2020b).
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Instead of the post-matching, in this paper, we provide a new perspective from the training time. We
explore the potential of training-time neuron alignment, which can improve LMC and also reduce the
burdens of post-hoc alignment after training.
To realize training-time alignment, we first delve into the causes behind the LMC barrier. Over-
parameterization and permutation invariance imply that the optimization space of training is so large
that two independently trained models can hardly converge to the same loss basin. Intuitively, if we
can map the parameters of models into a consistent and effective subspace1 during training, so the
neurons will be more aligned. The “effective” means that i) learning in this subspace will not hurt the
accuracies of the trained models; ii) the barrier in LMC can be reduced; and iii) the convex fusion of
multiple models can be improved. Towards this goal, we have the following contributions.
• We discover the neuron alignment problem from the perspective of training time, which provides

new insights. We hypothesize that learning in subspaces can reach better neuron alignment.
• We make preliminary verification of the hypothesis theoretically. Further, we propose an algorithm

for the effective subspaces, validated under LMC and model fusion.
• We extend the training-time alignment method of LMC in federated learning, where model fusion

from multiple heterogeneous sources is required. It is shown that our two methods can have
dominant empirical improvements by making neurons more aligned during training.

2 BACKGROUND

In this section, we provide the basic backgrounds and definitions regarding linear mode connectivity
and permutation invariance. Additionally, the preliminary of federated learning is in Appendix D.
Linear mode connectivity (LMC). In this paper, we focus on the linear mode connectivity of
two SGD solutions, which have the same initialization but different data orders2. We present the
definitions of loss barrier and accuracy barrier below.

Definition 2.1 (Loss barrier (Entezari et al., 2022)) Let fw(·) be a function represented by a neural
network with parameter vector w that includes all parameters and L(w) be the any given loss
(e.g., train or test error) of fw(·). Given two independently trained networks w1 and w2, let
L(αw1+(1−α)w2), for α ∈ [0, 1] be the loss of the linearly interpolated network. The loss barrier
Bloss(w1,w2) along the linear path between w1 and w2 is defined as the highest difference between
the loss of the interpolated network and linear interpolation of the loss values of the two networks:

Bloss(w1,w2) = sup
α

[L(αw1 + (1− α)w2)]− [αL(w1) + (1− α)L(w2)]. (1)

The loss barrier of the above definition is not bounded. To better depict and compare the barrier
changes, we then propose a definition of the accuracy barrier which is bounded within [0, 1].

Definition 2.2 (Accuracy barrier) Let A(w) be the accuracy (e.g., train or test accuracy) of fw(·).
Let A(αw1 + (1− α)w2), for α ∈ [0, 1] be the accuracy of the linearly interpolated network. The
accuracy barrier Bacc(w1,w2) along the linear path between w1 and w2 is defined as the highest
ratio of the interpolated network’s accuracy drop to the averaged accuracy:

Bacc(w1,w2) = sup
α

[
1− A(αw1 + (1− α)w2)

αA(w1) + (1− α)A(w2)

]
. (2)

The above definition maps the barrier into [0, 1]. If the accuracy barrier is 0, it means no barrier exists
along the linear interpolation path; else if the barrier is nearly 1, it means the generalization of the
interpolated model is nearly zero, and its prediction is no better than random guessing.
Permutation invariance. Permutation invariance refers to the property that the positions (i.e.,
permutations) of neurons of a given network can be changed without changing the network’s function,
and it is also known as permutation symmetry (Ainsworth et al., 2022). We take a multi-layer MLP
as an example to demonstrate the property.

1The word “subspace” in this paper means: given a network, making the learnable parameters/degrees of
freedom reduced. We note that there may exist some other subspace definitions/meanings, but they are not under
this paper’s scope.

2We note that there are other forms of LMC, such as the LMC from the initialization and the trained
model (Vlaar & Frankle, 2022), and the LMC between two models with different initializations (Entezari et al.,
2022). While in this paper, we focus on LMC and model fusion with specific applications in federated learning,
we only consider the LMC cases with the same initialization.
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Assume an MLP network has L+1 layers (containing input and output layer), and each layer contains
Jl neurons, where l ∈ {0, 1, · · · , L} is the layer index. J0 and JL are input and output dimensions.
We denote the parameters of each layer as the weight matrix Wl ∈ RJl×Jl−1 and the bias vector
bl ∈ RJl , l ∈ {1, 2, · · · , L}. The input layer does not have parameters. We use hl ∈ RJl as the
outputs of the l-th layer. We have hl = σl(Wlhl−1 + bl), where σl(·) is the element-wise activation
function, e.g., ReLU. We use Π ∈ {0, 1}J×J as a permutation matrix that satisfies

∑
j Π·,j = 1 and∑

j Πj,· = 1. By applying the permutation matrices to the layers, the network function remains
unchanged. For the l-th layer, the layer-wise permutation process is

hl = fl(ΠlWlΠ
T
l−1hl−1 +Πlbl), (3)

where Π0 = I and ΠL = I , meaning that the input and output are not shuffled. We note that the
permutation matrices have the following properties:

ΠTΠ = I,Πa+Πb = Π(a+ b),Πa⊙Πa = Π(a⊙ b), σ(Πx) = Πσ(x), (4)

where I is the identity matrix, ⊙ denotes Hadamard product, and σ(·) is an element-wise function.
The connection between LMC and permutation invariance. In Entezari et al. (2022); Ainsworth
et al. (2022), it is conjectured that if applying appropriate permutation matrices to the networks,
two SGD solutions that have barriers before can be mapped into the same loss basin and linearly
connected (with low barriers). In previous literature, post-hoc matching methods are proposed to
approximate the right permutations (Ainsworth et al., 2022; Peña et al., 2023). However, the number
of permutation matrices is astronomical, and finding such appropriate permutations is hard. In this
paper, instead of post-matching, we provide a new perspective by exploring the potential of improving
linear mode connectivity in training time.

3 HYPOTHESIS AND PRELIMINARY THEORETICAL ANALYSIS

Due to the numerous parameters and permutation symmetries, during training, SGD will find solutions
that are far from each other in the landscapes. Therefore, we make the following hypothesis.
Hypothesis 3.1 If we can reduce the potential of permutation symmetries by learning the models in
a unified subspace, the linear mode connectivity will be improved.
For the subspace hypothesized in Hypothesis 3.1, the number of learned parameters is reduced and
the neurons’ updates are regularized toward a more unified direction, as a result, the final trained
models will be more connected in the parameter geometry.
We first make a preliminary theoretical analysis of the subspace hypothesis, shown in Theorem 3.2
(proof is in Appendix B). The main idea is to treat the linear interpolated landscape of the barrier as a
function of parameter α, and the connectivity can be depicted by the first and second derivatives of
the function.
Theorem 3.2 We define a two-layer neural network with ReLU activation, and the function is
fv,U (x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and U ∈ Rh×d are
parameters3 and x ∈ Rd is the input which is taken from X = {x ∈ Rd|∥x∥2 < b} uniformly.
Consider two different networks parameterized with {U ,v} and {U ′,v′} respectively, and for
arbitrarily chosen masks Mv ∈ {0, 1}h and MU ∈ {0, 1}h×d, each element of U and U ′, v and
v′ is i.i.d. sampled from a sub-Gaussian distribution sub-G(0, σ2

U ) and sub-G(0, σ2
v) respectively

with setting vi = v′i when Mv,i = 0 and Ui,j = U ′
i,j when MU ,ij = 0. We consider the linear mode

connectivity of the two networks and define the difference function between interpolated network and
original networks as zx(α) = (αv + (1− α)v′)⊤σ((αU + (1− α)U ′)x)− αv⊤σ(Ux)− (1−
α)v′⊤σ(U ′x), α ∈ [0, 1]. The function over all inputs is defined as z(α) = 1

|X|
∫
X zx(α)dx. We use

|z(α)|,
∣∣∣dz(α)dα

∣∣∣ and
∣∣∣d2z(α)

dα2

∣∣∣ to depict the linear mode connectivity, showing the output changes along
the α path. With probability 1− δ, it has,

|z(α)| ≤
√
2bσvσU log(8h/δ)

√
h
√
1− ρU , (5)∣∣∣∣dz(α)dα

∣∣∣∣ ≤ 4
√
2bσvσU log (24h/δ)

√
h(
√

1− ρv +
√
1− ρU ), (6)∣∣∣∣d2z(α)dα2

∣∣∣∣ ≤ 8bσvσU log(4h/δ)
√
h
√

(1−max{ρU , ρv}), (7)

3For simplicity and without loss of generality, we omit the bias terms.
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where ρv and ρU refer to the mask ratios (the proportion of zeros in the mask) of masks Mv and
MU respectively.

Remark 3.3 |z(α)| is the barrier given α.
∣∣∣dz(α)dα

∣∣∣ demonstrates the barrier function changes along

the interpolation path α ∈ [0, 1], and the smaller value means smaller changes. If
∣∣∣dz(α)dα

∣∣∣→ 0, it

means that z(α) is a constant, but it does not mean z(α) is a linear function of α.
∣∣∣d2z(α)

dα2

∣∣∣ reflects

the linearity of function z(α), and if
∣∣∣d2z(α)

dα2

∣∣∣→ 0, it means that z(α) is linear w.r.t. α.

Theorem 3.2 preliminarily shows that if the learnable weights (higher ρv and ρU ) are reduced by
masking some weights from updating (learning in the subspace), LMC can be improved. We will
show in the next section how to find such an effective subspace to reduce permutation symmetries
and improve LMC.

4 TRAINING-TIME NEURON ALIGNMENT BY PARTIALLY FIXING NEURONS

We aim to explore the effective subspaces for improving LMC. The “effective” means that i) learning
in this subspace will not hurt the generalization of the trained models; ii) the barrier in LMC
can be reduced; iii) the convex fusion of multiple models (i.e., multi-model LMC) can be also
improved. In our preliminary attempts, we have studied some existing subspace learning methods
such as LoRA (Hu et al., 2021) (a.k.a. learning in intrinsic dimension (Li et al., 2018a)) and model
pruning (Liu et al., 2018) and found they can generally improve LMC but not effective enough (results
of pruning are in Figure 2 and discussion of LoRA is in subsection C.1). Thus, in this section, we
present Training-time Neuron Alignment with Partially Fixed Neurons (TNA-PFN) which is found to
be more effective for improving LMC and model fusion.

4.1 METHOD FORMULATION

w/o fixing 

any neuron.

Original network 

with function:

Partially fix 1

 neuron’s weight.

Partially fix 

2 neurons’ weights. No permutation 


counterparts.

1 permutation 

counterpart.

5 permutation 

counterparts.

Figure 1: A simple demonstration showcasing how
TNA-PFN can reduce the permutation symmetries.

The number of permutation symmetries is
numerous since the positions of neurons
are not fixed and the network is symmet-
ric. Hence, we propose to fix some neu-
rons’ weights, which will break the net-
work symmetry so the permutations are re-
duced, and due to the redundancy of neu-
ral networks (Liu et al., 2018; Frankle &
Carbin, 2018), the accuracy will not be hurt
in most cases. An intuitive demonstration
is in Figure 1, by fixing some weights of
neurons, the number of potential permuta-
tions decreases.
Specifically, given an initial network pa-
rameterized by a weight vector w0 ∈ Rd. For w0, we randomly generate a mask for each layer
according to the mask ratio ρ (refers to the proportion of zeros in the mask m0), and the whole mask
is m0 ∈ {0, 1}d. In m0, 0 for fixed and 1 for updated, indicating the parameter update status. We
individually train n models with different batch orders or datasets. We set each model’s initialization
as wi ← w0, i ∈ [n]. Each model wi, i ∈ [n] conducts the following updates in every SGD iteration:

wi ← wi − η(m0 ⊙ gi(wi)), (8)

where ⊙ denotes the element-wise Hadamard product, η refers to the learning rate, and gi is its gradi-
ents of the optimizer, such as SGD or Adam. After training for E epochs, we validate the LMC with
respect to the loss or accuracy barriers in Definitions 2.1 and 2.2. The method is notated as TNA-PFN.
Discussion on gradient/model masks. Applying gradient masks is discovered in previous gradient
compression literature of distribution optimization, but our method is different from the previous
works in the aspects as follows. Motivation difference: Gradient compression is proposed for com-
munication efficiency of distributed optimization while we study the training-time neuron alignment
problem in LMC. Implementation difference: Gradient compression uses different random top-k gra-
dient masks at each worker and changes the mask per communication iteration (Lin et al., 2018; Vogels
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Figure 3: Left two: Accuracy barriers of MLP under different hidden layers (h) and widths (w).
Right two: Loss landscapes of MLP. For MLPs, if the barriers exist, TNA-PFN can reduce them.
The shadow areas refer to the standard deviations.

et al., 2019); whereas, TNA-PFN uses unified random gradient masks at each model, fixes the mask,
and independently trains the models without any communications; and FedPFN/FedPNU (presented
in section 5) uses unified masks at each client’s local training and changes the mask per global com-
munication round. Effect difference: Since the masks of workers are different and changing, previous
gradient compression methods cannot learn in a unified subspace of parameters, while we learn in a
subspace by unified gradient masks so that some neuron weights are not updated. We will also discuss
the relation between TNA-PFN and model mask (i.e., model pruning) in the following subsection.

4.2 UNDERSTANDING TNA-PFN: MODEL PRUNING AND MASK RATIOS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratios

10

20

30

40

50

60

Ac
cu

ra
cy

CIFAR-10 - CNN

Vanilla Train Avg. Acc.
Vanilla Train Interp. Acc.
TNA-PFN Avg. Acc.
TNA-PFN Interp. Acc.
Pruning Avg. Acc.
Pruning Interp. Acc.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Mask Ratios

20

40

60

80

100

Ac
cu

ra
cy

MNIST - MLP_h5_w200

Vanilla Train Avg. Acc.
Vanilla Train Interp. Acc.
TNA-PFN Avg. Acc.
TNA-PFN Interp. Acc.
Pruning Avg. Acc.
Pruning Interp. Acc.

Figure 2: Pruning and TNA-PFN under different mask ratios.
The shadow areas mean the accuracy barriers.

According to our “subspace hy-
pothesis”, model pruning also
has the potential to improve
LMC, which is not explored
in previous literature. We im-
plement experiments to com-
pare the performances of prun-
ing and TNA-PFN under dif-
ferent mask ratios in Figure 2.
Here, we use random pruning
at initialization according to
the pruning mask ratio ρ. In-
terestingly, it is revealed that pruning can actually facilitate the LMC under mild ρ, which further sup-
ports our hypothesis. But when the ratio ρ is high (i.e., 0.8 and 0.9), pruning will result in an untrain-
able network with nearly zero generalization, while our TNA-PFN also keeps steady performances.
Actually, pruning is a special case of TNA-PFN where the fixed weights are set the same as zero.
However, generally in TNA-PFN, the fixed weights’ values are different and not zeros, causing
different learning dynamics with pruning. An intuitive illustration is in Figure 1 that the fixed values
should be different in each neuron to avoid the potential permutation symmetries, but if the fixed
weights are pruned, some permutations still exist. In Figure 1, if the red weights in the bottom small
network are pruned instead of being fixed, the left two yellow neurons can also be permuted. Another
major difference is that high pruning ratios will cause more deaths of neurons, which is detrimental to
model learnability, whereas TNA-PFN will keep the neurons activated even if the subspace dimension
is low. Additionally, TNA-PFN can be easily incorporated in applications like federated learning
(shown in section 5) for improving the global model’s generalization while pruning cannot.
Regarding LMC, generally, for both pruning and TNA-PFN, when the mask ratio is higher, the
accuracy barriers diminish along with the decrease in the averaged accuracies of independently
trained models, showing the connectivity-accuracy tradeoff. However, when ρ is set appropriately
(e.g., 0.4-0.6 for the CIFAR-10 and CNN setting), both the averaged accuracy and LMC can be
improved for pruning and TNA-PFN. The accuracy improvement of random pruning at initialization
also validates the observations in Liu et al. (2018), and in this paper, we make the contribution by
extending the power of pruning to the improvement of linear mode connectivity.

4.3 EXPERIMENTS ON LINEAR MODE CONNECITIVITY

In this subsection, we will conduct experiments to validate the effectiveness of TNA-PFN in improving
LMC. If not mentioned otherwise, the mask ratio ρ of TNA-PFN is 0.4 (the hyperparameter which is
mild across various settings).
Different model depths, widths, and architectures. In Figure 3, we conduct experiments on MLP
with different hidden layers and widths. For MNIST (LeCun & Cortes, 2010), we find shallower and
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Table 1: The performances of post-matching methods after TNA-PFN. Interpolated Accuracy
(Interp. Acc.) means the accuracy of the linearly interpolated model, i.e., A(0.5w1 + 0.5w2). “Iter.”
refers to the number of iterations in the post-matching methods, reflecting the computation costs.

CIFAR-10 MNIST
MLP_h2_w200 ResNet20 MLP_h5_w200 MLP_h6_w200

Metrics\Methods TNA-PFN Vanilla train TNA-PFN Vanilla train TNA-PFN Vanilla train TNA-PFN Vanilla train

Interp. Acc. w/o Post-matching 43.7±0.4 31.9±2.4 46.2±4.7 36.1±4.3 84.8±8.2 59.4±24.2 87.5±8.9 63.7±15.6

Interp. Acc. after 10 Iter. of SA 43.7±0.4 32.2±2.2 46.2±4.7 36.7±3.4 85.4±8.0 59.7±24.2 87.7±9.1 64.9±14.4
Interp. Acc. after 100 Iter. of SA 43.7±0.4 31.9±2.4 46.2±4.7 36.1±4.3 86.9±7.6 60±24.1 88.2±7.9 64.2±15.1

Interp. Acc. after WM 48.5±0.9 44.7±1.3 53.6±2.5 53.7±2.9 97.1±0.2 96.9±0.3 96.9±0.4 96.8±0.3
Required Iter. in WM 4.8±1.5 5.2±1.0 2.5±0.2 4.6±0.5 7.6±3.8 10.4±1.2 7.33±4.2 11.2±1.8

wider networks will not cause barriers, which is consistent with the previous observations (Entezari
et al., 2022). For CIFAR-10 (Krizhevsky et al., 2009), the barriers always exist under various depths
and widths. Our proposed TNA-PFN can obviously reduce the accuracy barriers from 0.3-0.4 to 0.1,
and we also visualize the loss landscapes, which illustrate the barrier reductions. To see more results
and illustrations, please refer to subsection C.2.
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Figure 4: Accuracy barriers
under different model archi-
tecture. WRN56 abbreviates
for WideResNet56. CIFAR-10.

We study the LMC of simple CNN and ResNets and present the
results in Figure 4. ResNets (He et al., 2016) have higher barriers
than simple CNN, and the barriers are exacerbated when the net-
works are deeper or wider. It is suggested that TNA-PFN can lower
the barriers under different architectures.
Generally, we observe that TNA-PFN has more dominant advan-
tages when the models are wider, and the observations are: (1) the
second figure in Figure 3: for CIFAR-10 when width increases, the
barriers of vanilla training go up while the barriers of TNA-PFN
go down; (2) Figure 4: the barrier reduction of TNA-PFN is more
obvious for WRN56 compared with ResNet56. The reason is TNA-
PFN can reduce the potential of permutation invariance within each
layer by fixing some weights, but it will have loose regularization
on the layer-to-layer relationship, so if the network goes deeper, its
advantage will decrease. Considering the layer-to-layer effects on training-time neuron alignment
can be an interesting future work.
The role of post-hoc neuron alignment methods after training-time alignment. We consider
simulated annealing (SA) (Entezari et al., 2022) and weight matching (WM) (Ainsworth et al., 2022)
after TNA-PFN in Table 1. SA requires large computations, and we notice the improvements are
also marginal. Under limited computation budgets (10 or 100 iterations), we find that TNA-PFN can
reach a higher result than vanilla training after SA. For WM, it is indicated that after TNA-PFN, the
required iterations are shortened while the interpolated accuracies are similar. The results reveal that
training-time neuron alignment can reduce the costs of post-matching and remain similar or even
better post-matched LMC.

Table 2: Results of loss barriers on more deep
learning tasks.

Methods\Datasets 2nd Polynomial 3rd Polynomial IMDb
Vanilla Train 0.268±0.061 0.0554±0.047 0.710±0.17
TNA-PFN 0.0381±0.0096 0.0355±0.023 0.375±0.17

More deep learning tasks. We conduct more
experiments beyond vision tasks and display the
results in Table 2. Polynomial approximation
task (Peña et al., 2023; von Oswald et al., 2019):
we use an MLP with one hidden layer to approx-
imate the second and third polynomial functions:
y = 2x2 − 1, y = (x− 3)3. Sentiment analysis of text (Liu et al., 2022b): we use an LSTM (Graves
& Graves, 2012) to predict the sentiment of IMDb reviews (Maas et al., 2011). It can be seen that
the loss barriers are decreased by training-time alignment under both polynomial approximation and
sentiment analysis tasks. We also implement the experiments on a large-scale dataset, the subset of
ImageNet (Deng et al., 2009; tin, Accessed: 2023). The result is shown in Table 9 of Appendix.
Results under multi-model fusion. We study the LMC of multi-model fusion and the results are
shown in Table 3. We consider the connectivity of 5 independently trained models by assigning a
uniformly weighted fusion after training. We test the generalization of the fused model as interpolated
accuracy and compared it with the averaged accuracy of independent models. It is evident that after
the training-time alignment, the interpolated accuracies are largely promoted by up to 152% and
the barriers are much lower with a maximal reduction of 84.9%, showing TNA-PFN’s prospects in
applications like federated learning. It is also intriguing to observe that the averaged accuracies also
increase after TNA-PFN. We explain this phenomenon that partially fixing some weights may play
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Table 3: Linear mode connectivity of multi-model
fusion. The number of models is 5.

Datasets / Models Metrics Vanilla Train TNA-PFN

CIFAR-10 / CNN
Avg. Acc. 63.1± 0.6 65.5± 0.3

Interp. Acc. 21.3± 9.1 48.3± 7.2

Acc. Barrier 0.663± 0.14 0.264± 0.11

CIFAR-10 / MLP_h2_w200
Avg. Acc. 44.2± 0.5 48.4± 0.5

Interp. Acc. 21.6± 1.9 36.6± 1.4

Acc. Barrier 0.511± 0.043 0.245± 0.035

MNIST / MLP_h5_w200
Avg. Acc. 96.5± 0.3 96.5± 0.2
Interp. Acc 34.5± 15.5 87.1± 9.4

Acc. Barrier 0.643± 0.16 0.0974± 0.096

Table 4: Linear mode connectivity of
non-random initialization. The initialized
model is first trained on a disjoint dataset
for 0.5 epoch. The dataset is CIFAR-10.

Models Metrics TNA-PFN Vanilla Train

CNN

Avg. Acc. 65.8± 0.2 64.4± 0.7
Interp. Acc. 63.3± 1.2 52.8± 2.3

Acc. Barrier 0.0413± 0.018 0.181± 0.027
Loss Barrier 0.0762± 0.038 0.306± 0.058

ResNet20

Avg. Acc. 67.1± 2.4 69.4± 0.8
Interp. Acc. 48.5± 2.0 42.2± 8.5

Acc. Barrier 0.277± 0.019 0.393± 0.12
Loss Barrier 0.453± 0.044 0.675± 0.21

the role of regularization and for some models with redundant neurons, this regularization can also
help in generalization.
Results under non-random initializations. We also examine whether training-time alignment can
help when the initializations are not random, which commonly occurs in the pretraining-finetuning
paradigm and federated learning. We first trained a model from random initialization on a dataset that
shares the same distribution but is disjoint with the trainset for 0.5 epoch. Then, the trained model is
set as the initialization. As presented in Table 4, TNA-PFN is also beneficial to improve LMC under
non-random initialization, and it nearly clears the barriers under the setting of CNN and CIFAR-10.
However, we notice a slight decline in average accuracy when the model is ResNet20.
Layer-wise analysis. We conduct a layer-wise analysis of TNA-PFN to see which layer matters most
in improving LMC in Figure 7 of Appendix.

5 EXTENDING TRAINING-TIME ALIGNMENT IN FEDERATED LEARNING

Federated learning requires model fusion on the server, and it meets neuron alignment problems
during training (Wang et al., 2020b; Li et al., 2022; Yurochkin et al., 2019). Previous methods
utilize post-hoc matching methods on the server, and they usually require large computations. In this
paper, we extend training-time neuron alignment methods in federated learning (FL) to improve the
global model’s generalization to showcase its potential in applications. Due to the space limit, the
preliminary of FL is in Appendix D.

5.1 METHODS

In this subsection, we propose two variants of TNA-PFN in FL, the first is called Federated Learning
with Partially Fixed Neurons (FedPFN) and the second is Federated Learning with Progressive
Neuron Updating (FedPNU).
FedPFN (pseudo-code in Algorithm 1). There are T communication rounds in FL. During FL
training, in communication round t ∈ [T ], the central server generates a random mask mt ∈ {0, 1}d
according to the masking ratio ρ. Also, the central server generates the global model wt by the global
aggregation scheme (e.g., FedAvg (McMahan et al., 2017)) and sends mt and wt to the clients.
Clients initialize their local models as the received global model, wt

i ← wt. Client i conducts SGD
updates with mask mt, so that the masked neuron weights are fixed at this round. The SGD updates
are as follows for E epochs,

wt
i ← wt

i − ηl(m
t ⊙ gi(w

t
i)), (9)

where ⊙ denotes the element-wise (Hadamard) product and ηl refers to the local learning rate. By
applying FedPFN, during local training, all clients learn in the same effective subspace so model
drifts and permutation invariance issues can be relieved. Besides, the neuron mask mt changes from
round to round, so all the neurons can be evenly trained, and it will break the connectivity-accuracy
tradeoff observed in LMC.
FedPNU (pseudo-code in Algorithm 2). In FedPNU, we additionally consider a reversed mask m̂t of
mt. During training, the clients first train with mask mt according to Equation 9 for the half local
training, i.e., int(E2 ) epochs; then, they train with the reversed mask m̂t for the remaining E− int(E2 )
epochs. In FedPNU, the clients progressively train the networks in a subspace and the accordingly
complementary subspace, by which the neurons of local models are more aligned.
For more discussion about the related works of subspace and partial training in federated learning,
please refer to Appendix E.
We note that FedPFN and FedPNU are lightweight and flexible since they only add a gradient mask
before the optimizer’s updates, so they are orthogonal to current FL algorithms (especially server-side
global model fusion schemes). We will show they can be incorporated into existing FL methods for
further improving performances.
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Table 5: Top-1 test accuracy (%) achieved by comparing the FL methods on three datasets with
different model architectures (E = 3). Bold fonts highlight the best two methods in each setting.

Datasets FashionMNIST CIFAR-10 CIFAR-100

dir 100 0.1 100 0.1 100 0.1

Methods\Models MLP LeNet MLP LeNet CNN ResNet CNN ResNet CNN ResNet CNN ResNet

FedAvg 88.7±0.5 90.5±0.1 81.7±2.7 83.5±3.8 65.4±1.2 73.4±2.1 57.5±1.3 50.9±1.8 18.9±0.9 26.4±0.4 22.6±0.9 28.5±1.3
FedPFN 88.8±0.1 90.6±0.1 81.8±1.7 84.9±2.8 66.9±0.6 73.7±1.3 62.2±0.5 51.4±0.7 20.9±0.7 27.3±0.3 24.9±1.2 34.5±2.4
FedPNU 88.7±0.2 90.4±0.2 83.2±0.8 86.6±1.0 67.5±0.3 73.5±2.5 61.3±0.4 55.9±1.6 22.1±0.5 29.4±0.0 24.8±0.2 35.3±1.5

FedProx 88.0±0.1 90.0±0.2 82.6±0.9 85.8±0.7 65.4±0.9 65.5±0.8 59.7±1.1 49.9±2.1 27.7±0.5 26.7±0.4 24.7±0.0 23.0±1.5
FedProx+FedPFN 86.9±0.1 89.5±0.1 81.4±1.3 85.0±0.8 66.9±1.0 60.3±0.7 60.3±0.5 51.8±0.5 27.7±0.7 19.6±0.1 24.4±0.0 17.3±0.6
FedProx+FedPNU 86.2±0.1 89.2±0.1 81.0±1.3 84.6±0.6 67.2±0.1 57.2±1.0 60.0±0.3 49.7±0.3 24.7±0.2 15.9±0.3 22.9±1.0 16.6±0.9

FedDF 89.1±0.1 90.3±0.2 81.3±2.8 86.0±1.9 66.3±0.8 75.6±3.3 57.6±3.0 55.2±1.4 21.4±0.3 28.5±1.0 24.2±0.2 31.2±1.2
FedDF+FedPFN 88.9±0.2 90.5±0.1 80.7±3.3 86.4±2.0 67.9±0.4 73.0±1.2 59.3±3.6 54.4±5.1 27.8±0.8 31.0±1.3 27.0±0.2 31.1±1.2
FedDF+FedPNU 88.7±0.1 90.7±0.2 82.1±2.4 86.4±1.8 66.4±0.8 74.1±1.3 60.0±2.4 57.1±4.1 22.2±0.9 30.8±1.2 25.8±0.7 35.2±1.2
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Figure 5: Performances of FedPFN and
FedPNU under different local epochs.
CIFAR-10 with dir = 0.1 and the model is CNN.
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Figure 6: Performances of FedPFN and
FedPNU under different mask ratios.
CIFAR-10, CNN, and E = 3.

5.2 EXPERIMENTS

Settings and baselines. We use three datasets to verify the algorithms: FashionMNIST (Xiao et al.,
2017), CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009). We adopt the Dirichlet sampling
to generate non-IID data (a.k.a., heterogeneous data) for each client, which is widely used in FL
literature (Lin et al., 2020; Chen & Chao, 2021). The Dirichlet sampling considers a class-imbalanced
data heterogeneity, controlled by the hyperparameter “dir”, the smaller, the more heterogeneous. We
vary “dir” in range [100, 0.5, 0.1], which respectively means IID, moderately non-IID, and extremely
non-IID data. For FashionMNIST, the models are MLP_h2_w200 and LeNet5 (LeCun et al., 1998);
for CIFAR-10 and CIFAR-100, the models are simple CNN (Li et al., 2023) and ResNet20 (He et al.,
2016). For client-side methods, we consider vanilla training and FedProx (Li et al., 2020a); for the
server-side algorithms, we consider FedAvg (McMahan et al., 2017) and FedDF (Lin et al., 2020). If
not mentioned otherwise, the number of clients in the experiments is 20 and full client selection is
applied. For more implementation details, please refer to Appendix A.
Different datasets and models. In Table 5, we demonstrate the results under different datasets,
data heterogeneity, and models. We note that the vanilla FedPFN/FedPNU are actually Fe-
dAvg+FedPFN/FedPNU, and we also combine our methods with server-side approach FedDF and
client-side FedProx. FedPFN and FedPNU consistently improve over FedAvg, showing that incor-
porating the training-time alignment method can boost model fusion in FL. It can be seen that the
variants of our methods usually achieve the best results. Specifically, they can strengthen FedDF to
reach a higher performance. However, we find our methods are not always compatible with FedProx,
especially when FedProx is worse than FedAvg; but in some cases when FedProx works well, our
methods can also strengthen it (e.g., CIFAR-10 with CNN).

Table 6: Results about different numbers of
clients and partial selections. CIFAR-10 with
dir = 0.5 and E = 3, the model is CNN.

Methods Number of clients (selection ratio)
30 (1.0) 60 (1.0) 90 (0.4) 90 (0.6) 90 (1.0)

FedAvg 63.6±1.2 62.5±0.7 60.8±0.4 61.4±0.7 61.6±0.5

FedPFN 65.6±0.1 64.7±0.3 62.9±0.4 63.6±0.5 64.0±0.4
FedPNU 65.2±0.2 63.2±0.7 62.0±0.9 62.3±0.3 62.3±0.7

Different number of clients. We scale the num-
ber of clients in the range [30, 60, 90] and apply
partial client selections when the number is 90.
From Table 6, it is found that our methods can
still improve the global model’s generalization
when scaling up the clients, which showcases
the effectiveness of training-time neuron align-
ment methods in improving multi-model linear
mode connectivity.
Different local epochs. We verify the TNA variants in FL under different local epochs in Figure 5.
We find that the improvements are also strong when there are more local updates. It is observed that
FedPNU is more robust regarding local epochs, and this is because it learns in the complementary
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subspaces progressively, reducing the negative effects of subspaces on accuracy. Similar reasons are
also for why FedPNU is robust when the mask ratio is as high as 0.9 in Figure 6.
The effects of mask ratios for FedPFN and FedPNU. From Figure 6, it is shown that FedPFN
benefits under smaller subspaces (higher mask ratios) but falls short when the subspace is too small
(ratio ρ = 0.9); whereas FedPNU is robust across all mask ratios due to its progressive learning.

Table 7: Results of random initialization prun-
ing in FL and fixing FedPFN’s mask. CIFAR-10
with dir = 0.3 and E = 3.

Models\Methods FedAvg FedPFN FedPFN (fixed) FedPruning
CNN 64.8 ± 1.0 65.7 ± 1.0 64.9 ± 1.0 63.7 ± 1.1
ResNet20 72.0 ± 0.7 72.4 ± 0.5 71.3 ± 1.3 70.2 ± 1.3

Comparison with pruning and fixed masks.
We make an ablation study on the design of
FedPFN. We compare FedPFN with the TNA-
PFN variant denoted as FedPFN (fixed) in which
we fix the neuron mask mt in every round
(mt = mt−1 = m0). We also implement the
setting where the random pruning is applied at
initialization before FL training, named as FedPruning. Table 7 presents the results. Although we find
pruning can improve LMC in subsection 4.2, it will cause generalization degradation in FL due to the
connectivity-accuracy tradeoff. Also, if we incorporate TNA-PFN by keeping the same neuron mask
during FL training, it will have marginal or even negative improvements. The above findings indicate
that FL is sensitive in the subspaces and further validate the rationale of our devised methods.
We include more results and illustrations in subsection C.3.

6 RELATED WORKS

Linear Mode Connectivity. Linear mode connectivity refers to the phenomenon that there exists a
loss (energy) barrier along the linear interpolation path of two networks, in the cases where i) the two
networks have the same initialization and are trained on the same dataset but with different random
seeds (data shuffles and augmentations) (Ainsworth et al., 2022); ii) the two networks are with
different initializations but are trained on the same dataset (Entezari et al., 2022); iii) the two networks
are the initial network and the final trained network (Vlaar & Frankle, 2022). Specifically, Adilova
et al. (2023) examines the linear mode connectivity of different layers. Vlaar & Frankle (2022) studies
the relationship between generalization and the initial-to-final linear mode connectivity. Frankle
et al. (2020) connects linear mode connectivity with the lottery ticket hypothesis and finds better
connectivity can result in better pruning performances. Zhao et al. (2020) bridges mode connectivity
and adversarial robustness. Some works try to extend mode connectivity beyond “linear”, e.g.,
searching for a non-linear low-loss path (Draxler et al., 2018) or studying mode connectivity under
spurious attributes (Lubana et al., 2023).
Permutation Invariance and Model Fusion. Permutation invariance (a.k.a. permutation symmetry)
refers to the property of neural networks that the positions of neurons can be permuted without
changing its function (Simsek et al., 2021; Hecht-Nielsen, 1990), and it is believed to be the primary
cause of loss barrier in linear mode connectivity (Entezari et al., 2022; Ainsworth et al., 2022).
Entezari et al. (2022) hypothesizes that if taking the permutation invariance into consideration, all
solutions can be mapped into the same low-loss basin with connectivity. Further, Ainsworth et al.
(2022) validates this hypothesis by using “re-basin” which aims to find the appropriate permutation
matrices to map the networks into the same basin. Other methods are also utilized to match the neurons
for better model fusion, such as optimal transport (Singh & Jaggi, 2020), Bayesian nonparametric
technique (Yurochkin et al., 2019; Wang et al., 2020a), Hungarian algorithm (Tatro et al., 2020),
graph matching (Liu et al., 2022a), and implicit Sinkhorn differentiation (Peña et al., 2023). We note
that all these methods are for post-matching after training, while we focus on training-time neuron
alignment. Note that the previous work of PAN (Li et al., 2022) shares a similar motivation with ours.
PAN uses position-aware encoding for intermediate activations which is orthogonal to our methods,
and it only focuses on FL, while we study both LMC and model fusion in FL.
In addition, we include more discussion of related works in Appendix E.

7 CONCLUSION

In this paper, we revisit neuron alignment and linear mode connectivity from the training-time
perspective. We propose the hypothesis that if the networks can be learned in an effective subspace,
the linear mode connectivity can be improved. We verify the hypothesis theoretically and empirically
and find random pruning at initialization can actually improve connectivity. We further propose the
training-time neuron alignment method which randomly fixes the neuron weights during training to
reduce the potential of permutation symmetries. We then devise two variants of the training-time
alignment method in federated learning for improving the global model’s generalization.
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Appendix
In this appendix, we provide the details omitted in the main paper and more analyses and discussions.

• Appendix A: details of experimental setups (cf. section 4 and section 5 of the main paper).

• Appendix B: detailed proof of Theorem 3.2 (cf. section 3 of the main paper).

• Appendix C: additional results and analyses (cf. section 4 and section 5 of the main paper).

• Appendix D: preliminary of federated learning (cf. section 2 and section 5).

• Appendix E: more discussions about the related works (cf. section 6 of the main paper).

A IMPLEMENTATION DETAILS

Epochs lr in LMC datasets: poly
models: MLP CNN ResNet (without BN)
In this section, we provide the additional implementation details in section 4 and section 5.

A.1 DATASETS

MNIST. CIFAR-10. Poly. IMDb. FashionMNIST. CIFAR-100.
MNIST (LeCun & Cortes, 2010) comprises a collection of 70,000 handwritten digits (0-9), divided
into 60,000 training images and 10,000 testing images. Each image is grayscale and has a dimension
of 28x28 pixels. CIFAR-10 (Krizhevsky et al., 2009) consists of 60,000 32x32 color images, evenly
distributed across 10 different classes or labels, such as airplanes, automobiles, birds, cats, etc., each
represented by 6,000 images. The dataset is split into 50,000 training images and 10,000 test images.
The polynomial approximation dataset (Peña et al., 2023; von Oswald et al., 2019) is the synthetic
dataset of the second and third polynomial functions: y = 2x2 − 1, y = (x − 3)3. The input of
the second polynomial function is uniformly generated from x ∈ [−1.0, 1.0] with 100 data points;
and the input of the third polynomial function is uniformly generated from x ∈ [2.0, 4.0] with 100
data points. Each y label in both the second and the third polynomial datasets is added by a random
Gaussian noise with zero mean and 0.05 std. The IMDb (Internet Movie Database) (Maas et al., 2011)
dataset is a popular dataset used in Natural Language Processing (NLP) and sentiment analysis tasks.
It consists of 50,000 movie reviews, evenly split into 25,000 reviews for training and 25,000 reviews
for testing, each labeled as either positive or negative. FashionMNIST (Xiao et al., 2017) is a dataset
designed as a more advanced replacement for the MNIST dataset, suitable for benchmarking machine
learning models. It consists of 70,000 images divided into 60,000 training samples and 10,000 test
samples. Each image is a 28x28 grayscale representation of fashion items from 10 different classes,
including shirts, trousers, sneakers, etc. The CIFAR-100 dataset (Krizhevsky et al., 2009) is similar
to the CIFAR-10 dataset but more challenging as it contains 100 different classes grouped into 20
superclasses. It contains 60,000 32x32 color images, with 600 images per class, divided into 50,000
training images and 10,000 test images. This dataset is primarily used for developing and evaluating
more sophisticated image classification models.

A.2 MODELS

CNN and MLP. The simple CNN for CIFAR-10 and CIFAR-100 is a convolution neural network
model with ReLU activations which consists of 3 convolutional layers followed by 2 fully connected
layers. The first convolutional layer is of size (3, 32, 3) followed by a max pooling layer of size (2, 2).
The second and third convolutional layers are of sizes (32, 64, 3) and (64, 64, 3), respectively. The
last two connected layers are of sizes (64*4*4, 64) and (64, num_classes), respectively.
The MLP model MLP_h2_w200 stands for an MLP with 2 hidden layers and a width of 200 in
each layer. We vary h and w in Figure 3 to see the barriers in linear mode connectivity. We use
MLP_h2_w200 for the MLP model in Table 5.
ResNets. We followed the model architectures used in (Li et al., 2018b). The number of the model
names means the number of layers of the models. Naturally, the larger number indicates a deeper
network. For WRN56 in Figure 4, it is an abbreviation of Wide-ResNet56-4, where "4" refers to
four times as many filters per layer. The ResNets used in Table 5 are ResNet20 for CIFAR-10 and
CIFAR-100. It is notable that since the batch normalization layers will have abnormal effects on
model fusion (Li et al., 2020b; Lin et al., 2020), following Adilova et al. (2023), we remove all the
batch normalization layers from the ResNets.
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A.3 RANDOMNESS

In all experiments, we implement the experiments three times with different random seeds and report
the averaged results with standard deviations.
For the experiments in linear mode connectivity, within a set of experiments, we generate an initial
model according to the random seed a and conduct training, then, we set the random seed as a+ 1
and load the initial model from random seed a and conduct another independent training; afterward,
the linear connectivity of the two models are tested.
For the experiments in federated learning. Given a random seed, we set torch, numpy, and random
functions as the same random seed to make the data partitions and other settings identical. To make
sure all algorithms have the same initial model, we save an initial model for each architecture and
load the saved initial model at the beginning of one experiment. Also, for the experiments with partial
participation, the participating clients in each round are vital in determining the model performance,
and to guarantee fairness, we save the sequences of participating clients in each round and load the
sequences in all experiments. This will make sure that, given a random seed and participation ratio,
every algorithm will have the same sampled clients in each round.

A.4 EVALUATION

Linear mode connectivity. We validate all the accuracy and loss barriers on the test datasets to
indicate the model generalization.
Federated learning. We evaluate the global model performance on the test dataset of each dataset.
The test dataset is mostly class-balanced and can reflect the global learning objective of a federated
learning system. Therefore, the performance of the model on the test set can indicate the generalization
performance of global models (Li et al., 2023; Lin et al., 2020). In each experiment, we run 100
rounds and take the average test accuracy of the last 5 rounds as the final test accuracy.

A.5 HYPERPARAMETER

Linear mode connectivity. For CIFAR-10 and MNIST, We set a fixed learning rate of 0.1 and use
the SGD optimizer with a weight decay of 5e-4 and momentum of 0.9; the number of learning epochs
is 10. For the Polynomial datasets, the learning rate is 0.05 for 100 epochs. For the IMDb dataset, the
learning rate is 0.0005 for 20 epochs.
Federated learning. We set the initial learning rates as 0.08 in CIFAR-10 and FashionMNIST and
set it as 0.05 in CIFAR-100. Following (Li et al., 2023; Chen & Chao, 2021), we set a decaying
learning rate scheduler in all experiments; that is, in each round, the local learning rate is 0.99*(the
learning rate of the last round). We set the weight decay factor as 5e-4. We set SGD optimizer as the
clients’ local solver and set momentum as 0.9.
For the server-side optimizer FedDF, the server-side learning rate is 0.01 and the number of epochs is
20. We set µ = 0.001 for FedProx.

A.6 PSEUDO-CODES

We present the pseudo-codes of the federated learning methods FedPFN and FedPNU in Algorithm 1
and Algorithm 2.
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Algorithm 1 FedPFN: Federated Learning with Partially Fixed Neurons
Input: clients {1, . . . , n}, mask ratio ρ, comm. round T , local epoch E, initial global model w1

g;
Output: final global model wT

g ;
1: for each round t = 1, . . . , T do
2: # Client updates
3: for each client i, i ∈ [n] in parallel do
4: Receive global model wt

g and neuron mask mt;
5: Set local model wt

i ← wt
g;

6: Compute E epochs of client local training by Equation 9:
7: wt

i ← wt
i − ηl(m

t ⊙ gi(w
t
i));

8: end for
9: # Server updates

10: The server samples m clients and receive their models {wt
i}mi=1;

11: Obtain the global model by FedAvg:
12: wt+1

g ←
∑m

i=1 λiwt
i, where λi is the aggregation weight of client i;

13: Randomly generate the new neuron mask mt+1 according to the ratio ρ.
14: end for
15: Obtain the final global model wT

g .

Algorithm 2 FedPNU: Federated Learning with Progressive Neuron Updating
Input: clients {1, . . . , n}, mask ratio ρ, comm. round T , local epoch E, initial global model w1

g;
Output: final global model wT

g ;
1: for each round t = 1, . . . , T do
2: # Client updates
3: for each client i, i ∈ [n] in parallel do
4: Receive global model wt

g and neuron mask mt;
5: Set local model wt

i ← wt
g and compute the reverse mask m̂t of mt;

6: Compute int(E2 ) epochs of client local training by Equation 9:
7: wt

i ← wt
i − ηl(m

t ⊙ gi(w
t
i));

8: Compute E - int(E2 ) epochs of client local training by Equation 9:
9: wt

i ← wt
i − ηl(m̂

t ⊙ gi(w
t
i));

10: end for
11: # Server updates
12: The server samples m clients and receive their models {wt

i}mi=1;
13: Obtain the global model by FedAvg:
14: wt+1

g ←
∑m

i=1 λiwt
i, where λi is the aggregation weight of client i;

15: Randomly generate the new neuron mask mt+1 according to the ratio ρ.
16: end for
17: Obtain the final global model wT

g .

B PROOF OF THEOREM 3.2

We first recap the Theorem 3.2 for convenience and provide the proof.

Theorem B.1 We define a two-layer neural network with ReLU activation, and the function is
fv,U (x) = v⊤σ(Ux) where σ(·) is the ReLU activation function. v ∈ Rh and U ∈ Rh×d are
parameters4 and x ∈ Rd is the input which is taken from X = {x ∈ Rd|∥x∥2 < b} uniformly.
Consider two different networks parameterized with {U ,v} and {U ′,v′} respectively, and for
arbitrarily chosen masks Mv ∈ {0, 1}h and MU ∈ {0, 1}h×d, each element of U and U ′, v and
v′ is i.i.d. sampled from a sub-Gaussian distribution sub-G(0, σ2

U ) and sub-G(0, σ2
v) respectively

with setting vi = v′i when Mv,i = 0 and Ui,j = U ′
i,j when MU ,ij = 0. We consider the linear mode

connectivity of the two networks and define the difference function between interpolated network and
original networks as zx(α) = (αv + (1− α)v′)⊤σ((αU + (1− α)U ′)x)− αv⊤σ(Ux)− (1−

4For simplicity and without loss of generality, we omit the bias terms.
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α)v′⊤σ(U ′x), α ∈ [0, 1]. The function over all inputs is defined as z(α) = 1
|X|

∫
X zx(α)dx. We use

|z(α)|,
∣∣∣dz(α)dα

∣∣∣ and
∣∣∣d2z(α)

dα2

∣∣∣ to depict the linear mode connectivity, showing the output changes along
the α path. With probability 1− δ, it has,

|z(α)| ≤
√
2bσvσU log(8h/δ)

√
h
√
1− ρU , (10)∣∣∣∣dz(α)dα

∣∣∣∣ ≤ 4
√
2bσvσU log (24h/δ)

√
h(
√

1− ρv +
√
1− ρU ), (11)∣∣∣∣d2z(α)dα2

∣∣∣∣ ≤ 8bσvσU log(4h/δ)
√
h
√

(1−max{ρU , ρv}), (12)

where ρv and ρU refer to the mask ratios (the proportion of zeros in the mask) of masks Mv and
MU respectively.
Proof: Let’s first define gα(x) = (αU + (1− α)U ′)x. Then we can express zx(α) as:

zx(α) = (αv + (1− α)v′)⊤σ(gα(x))− αv⊤σ(Ux)− (1− α)v′⊤σ(U ′x). (13)
The first derivative of zx(α) with respect to α will be:
dzx(α)

dα
= (v− v′)⊤σ(gα(x)) + (αv+ (1−α)v′)⊤σ′(gα(x))− v⊤σ(Ux) + v′⊤σ(U ′x). (14)

The second derivative with respect to α will be:
d2zx(α)

dα2
= 2(v − v′)⊤σ′(gα(x)) + (αv + (1− α)v′)⊤σ′′(gα(x)). (15)

We also assume that the number of hidden neurons h is sufficiently large for the convenience of
analysis as (Entezari et al., 2022) and we use #{MU = i} and #{Mv = i} denote the number of
i in MU and Mv respectively, i = 1, 2. In the following proof, we will make use of Hoeffding’s
inequality for sub-Gaussian distributions. Here, we state it for reference: Let X1, . . . , Xn be n
independent random variables such that Xi ∼ sub-G

(
0, σ2

)
. Then for any a = (a1, ..., an) ∈ Rn,

we have

P

[
|

n∑
i=1

aiXi| > t

]
≤ 2 exp

(
− t2

2σ2||a||22

)
.

1) For the 0-order difference equation, we have

|zx(α)| =
∣∣∣αv⊤ [σ(gα(x))− σ(Ux)] + (1− α)v′⊤ [σ(gα(x))− σ(U ′x)]

∣∣∣ (16)

≤ α
∣∣v⊤ [(σ(gα(x))− σ(Ux)]

∣∣+ (1− α)
∣∣∣v′⊤ [σ(gα(x))− σ(U ′x)]

∣∣∣ . (17)

Then we bound the first term and the second term is bounded similarly due to symmetry. For the
concentration upper bound of the first term of Equation 17, we use the Hoeffding’s inequality for
elements of v, with probability 1− δ

k

α
∣∣v⊤ [(σ(gα(x))− σ(Ux)]

∣∣ ≤ ασv

√
2 log(2k/δ)∥σ(gα(x))− σ(Mx)∥2 (18)

≤ ασv

√
2 log(2k/δ)∥gα(x)−Mx∥2 (19)

= α(1− α)σv

√
2 log(2k/δ)∥(U ′ −U)x∥2. (20)

Equation 19 is due to the fact that the ReLU activation function satisfies the Lipschitz continuous
condition with constant 1. For the item ∥(U −U ′)x∥2, notice that Uij = U ′

ij when MU ,ij = 0, and
then take a union bound, with probability 1− δ

k , we have

∥(U −U ′)x∥2 ≤

√√√√ h∑
i=1

|[MU ,i: ⊙ (Ui,: −U ′
i,:)]x|2 (21)

=

√√√√ h∑
i=1

|(Ui,: −U ′
i,:)(MU ,i: ⊙ x)|2 (22)

≤ σU

√√√√ h∑
i=1

∥MU ,i: ⊙ x∥22
√
4 log(2hk/δ). (23)
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Then take a union bound choosing k = 4 (because the union bound is taken for 4 equations,
Equation 20 and Equation 23 for the first and the second terms in Equation 17 respectively. Subsequent
values of k are determined with a similar method.), with probability 1− δ we have

|zx(α)| < 4
√
2α(1− α)σvσU log(8h/δ)

√√√√ h∑
i=1

∥MU ,i: ⊙ x∥22. (24)

Then integrate it on the region X. With probability 1− δ, we have

|z(α)| ≤ 4
√
2α(1− α)σvσU log(8h/δ)b

√
d

d+ 2

√
h− #{Mv = 0}

d
(25)

≤
√
2σvσU log(8h/δ)b

√
h− #{Mv = 0}

d
(26)

=
√
2σvσU log(8h/δ)b

√
h
√
1− ρU . (27)

Equation 25 is due to fact that the integration 1
|X|

∫
X

√∑h
i=1 ∥MU ,i: ⊙ x∥22dx satisfies

1

|X|

∫
X

√√√√ h∑
i=1

∥MU ,i: ⊙ x∥22dx ≤

√√√√(
1

|X|

∫
X

h∑
i=1

∥MU ,i: ⊙ x∥22dx)(
1

|X|

∫
X
dx) (28)

=

√
1

|X|

∫
X
#{MU = 1}x2

i dx (29)

=

√
#{MU = 1}

d

1

|X|

∫
X
∥x∥22dx (30)

=

√
(h− #{MU = 0}

d
)
db2

d+ 2
, (31)

where Equation 28 is due to Cauchy-Schwarz inequality of integration, Equation 29 and Equation 30
is due to the symmetry of different components of x and Equation 31 is due to the integration
1
|X|

∫
X ∥x∥

k
2dx = dbk

d+k , k ∈ Z.
2) For the first derivative, we have∣∣∣∣dzx(α)dα

∣∣∣∣≤ ∣∣(v−v′)⊤σ(gα(x))
∣∣+∣∣(αv+(1− α)v′)⊤σ′(gα(x))

∣∣+|v⊤σ(Ux)−v′⊤σ(U ′x)|. (32)

i) For the concentration upper bound of the first term of Equation 32, we use the Hoeffding’s
inequality for elements of v − v′ and notice that vi − v′i = 0 when Mv,i = 0, with probability 1− δ

k∣∣(v − v′)⊤σ(gα(x))
∣∣ ≤ σv

√
4 log(2k/δ)∥Mv ⊙ σ(gα(x))∥2 (33)

≤ σv

√
4 log(2k/δ)∥Mv ⊙ gα(x)∥2 (34)

≤ σv

√
4 log(2k/δ)(α∥Mv ⊙Ux∥2 + (1− α)∥Mv ⊙U ′x∥2). (35)

Equation 34 is due to the property of ReLU activation function that |σ(x)| < |x|. The Hoffding’s
inequality is used again for each row i of matrix U and U ′ with Mv,i = 1, and after taking a union
bound, we have the following inequality with probability 1− δ

k ,

∥Mv ⊙Ux∥2 =

√ ∑
Mv,i=1

|Ui,:x|2 (36)

≤ σU

√
2(h−#{Mv = 0}) log(2hk/δ)∥x∥2. (37)

∥Mv ⊙U ′x∥2 can be calculated similarly to Equation 37. Then after taking a union bound, with
1− δ

k the first term is bounded as∣∣(v − v′)⊤σ(gα(x))
∣∣ ≤ 2

√
2
√

h−#{Mv = 0}σvσU log(6hk/δ)∥x∥2. (38)
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ii) For the concentration upper bound of the second term of Equation 32, we use the Hoeffeding’s
inequality for each element of v and v′ and take a union bound, with probability 1− δ

k we have the
following inequality,

∣∣(αv + (1− α)v′)⊤σ′(gα(x))
∣∣

=
∣∣(αv + (1− α)v′)⊤σ′(y)|y=gα(x) ⊙ (U −U ′)x)

∣∣ (39)

≤
√
α2 + (1− α)2σv

√
2log(2k/δ)∥σ′(y)|y=gα(x) ⊙ (U −U ′)x)∥2 (40)

≤ σv

√
log(2k/δ)∥(U −U ′)x∥2. (41)

Equation 39 is due to the chain rule of differentiation and Equation 40 is due to the fact
that the property |σ′(·)| < 1 of the ReLU activation function. The term ∥(U − U ′)x∥2 ≤
σU

√∑h
i=1 ∥MU ,i: ⊙ x∥22

√
4 log(2hk/δ) is obtained in Equation 23. Then with 1− δ

k after taking
a union bound, the second term is bounded as

|(αv + (1− α)v′)⊤σ′(gα(x)) ≤ 2 log(4hk/δ)σvσU

√√√√ h∑
i=1

∥MU ,i: ⊙ x∥22. (42)

iii) For the concentration upper bound of the third term of Equation 32, first write it as

∣∣∣v⊤σ(Ux)− v′⊤σ(U ′x)
∣∣∣ = ∣∣∣v⊤σ(Ux)− v⊤σ(U ′x) + v⊤σ(U ′x)− v′⊤σ(U ′x)

∣∣∣ (43)

≤
∣∣v⊤ [σ(Ux)− σ(U ′x)]

∣∣+ ∣∣(v − v′)⊤σ(U ′x)
∣∣ . (44)

Then we use the Hoeffeding’s inequality for each element of v and v′ and notice that vi − v′i = 0
when Mv,i = 0. After taking a union bound, with probability 1− δ

k we have the following inequality,

∣∣∣v⊤σ(Ux)− v′⊤σ(U ′x)
∣∣∣

≤ σv

√
2 log(4k/δ)∥σ(Ux)− σ(U ′x)∥2 + σv

√
4 log(4k/δ)∥Mv ⊙ σ(U ′x)∥2 (45)

≤ σv

√
2 log(4k/δ)∥(U −U ′)x)∥2 + σv

√
4 log(4k/δ)∥Mv ⊙U ′x∥2. (46)

Equation 46 is due to the fact the ReLU activation function σ(·) satisfied the Lipschitz
continuity condition with constant 1 and |σ(x)| ≤ |x|. The term ∥(U − U ′)x)∥2 ≤
σU

√∑h
i=1 ∥MU ,i: ⊙ x∥22

√
4 log(2hk/δ) in Equation 46 can be calculated as in Equation 23 with

probability 1− δ
k and the term ∥Mv ⊙U ′x∥2 ≤ σU

√
2(h−#{Mv = 0}) log(2hk/δ)∥x∥2 can

be caluclated as in Equation 37 with probability 1− δ
k . Then take the union bound, with probability

1− δ
k we have

∣∣∣v⊤σ(Ux)− v′⊤σ(U ′x)
∣∣∣

≤ σvσU log(8kh/δ)(2
√
2

√√√√ h∑
i=1

∥MU ,i: ⊙ x∥22 + 2
√
2
√
h−#{Mv = 0}∥x∥2). (47)
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In conjunction with analyses i),ii) and iii) and take a union bound choosing k = 3, we have with
probability 1− δ,∣∣∣∣dzx(α)dα

∣∣∣∣ ≤√
h−#{Mv = 0}2

√
2σvσU log(18h/δ)∥x∥2

+ 2log(12h/δ)σvσU

√√√√ h∑
i=1

∥MU ,i: ⊙ x∥22

+ σvσU log(24h/δ)(2
√
2

√√√√ h∑
i=1

∥MU ,i: ⊙ x∥22 + 2
√
2
√

h−#{Mv = 0}∥x∥2) (48)

≤
√
h−#{Mv = 0}4

√
2σvσU log(24h/δ)∥x∥2

+ 4
√
2log(24h/δ)σvσU

√√√√ h∑
i=1

∥MU ,i: ⊙ x∥22. (49)

Then integrate them on the region X. With probability 1− δ we have∣∣∣∣dz(α)dα

∣∣∣∣ ≤√
h−#{Mv = 0}4

√
2σvσU log(24h/δ)

db

d+ 1

+ 4
√
2σvσU log(24h/δ)σvσU b

√
d

d+ 2

√
h− #{MU = 0}

d
(50)

≤ 4
√
2bσvσU log (24h/δ)(

√
h−#{Mv = 0}+

√
h− #{MU = 0}

d
) (51)

= 4
√
2bσvσU

√
h log (24h/δ)(

√
1− ρv +

√
1− ρM ). (52)

Equation 50 is due to the integration 1
|X|

∫
X ∥x∥2dx = db

d+1 and 1
|X|

∫
X

√∑h
i=1 ∥MU ,i: ⊙ x∥22dx ≤√

(h− #{MU=0}
d ) db2

d+2 from Equation 31
3) For the second derivative, we have∣∣∣∣d2zx(α)dα2

∣∣∣∣ ≤ 2
∣∣(v − v′)⊤σ′(gα(x))

∣∣+ ∣∣(αv + (1− α)v′)⊤σ′′(gα(x))
∣∣ . (53)

i) For the concentration upper bound of the first term of Equation 53, we use the Hoeffding’s
inequality for each element of v − v′ and notice that vi − v′i = 0 when Mv,i = 0, with probability
1− δ

k , we have

2
∣∣(v − v′)⊤σ′(gα(x))

∣∣ = 2
∣∣(v − v′)⊤σ′(y)|y=gα(x) ⊙ (U −U ′)x

∣∣ (54)

= 2
∣∣(v − v′)⊤Mv ⊙ σ′(y)|y=gα(x) ⊙ (U −U ′)x

∣∣ (55)

≤ 4σv

√
log(2k/δ)∥Mv ⊙ σ′(y)|y=gα(x) ⊙ (U −U ′)x∥2 (56)

≤ 4σv

√
log(2k/δ)∥Mv ⊙ (U −U ′)x∥2. (57)

Equation 54 is due to the chaine rule of differentiation, Equation 55 is due to vi = v′i when Mv,i = 0,
Equation 56 is due to Hoeffding’s inequation and Equation 57 is due to the property |σ′(x)| < 1
of the ReLU activation function. For the item ∥Mv ⊙ (U −U ′)x∥2, notice that Uij = U ′

ij when
MU ,ij = 0 and take a union bound with probability 1− δ

k , we have

∥Mv ⊙ (U −U ′)x∥2 ≤
√ ∑

Mv,i=1

|[MU ,i: ⊙ (Ui,: −U ′
i,:)]x|2 (58)

≤
√ ∑

Mv,i=1

|(Ui,: −U ′
i,:)(MU ,i: ⊙ x)|2 (59)

≤ σU

√ ∑
Mv,i=1

∥MU ,i: ⊙ x∥22
√

4 log(2hk/δ). (60)
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Then with 1− δ
k after taking a union bound, the first term is bounded as

2
∣∣(v − v′)⊤σ′(gα(x))

∣∣ ≤ 8σvσU log(4hk/δ)

√ ∑
Mv,i=1

∥MU ,i: ⊙ x∥22. (61)

ii) For the concentration upper bound of the second term of Equation 53, note that property
σ′′(x) = 0 of ReLU activation function, then∣∣(αv + (1− α)v′)⊤σ′′(gα(x))

∣∣
=

∣∣(αv + (1− α)v′)⊤σ′′(y)|y=gα(x) ⊙ (U −U ′)x⊙ (U −U ′)x
∣∣ (62)

= 0. (63)

In conjunction with analyses i) and ii) and take a union bound choosing k = 1, with probability 1− δ
we have ∣∣∣∣d2zx(α)dα2

∣∣∣∣ ≤ 8σvσU log(4h/δ)

√ ∑
Mv,i=1

∥MU ,i: ⊙ x∥22. (64)

Then integrate them on the region X. With probability 1− δ we have∣∣∣∣d2z(α)dα2

∣∣∣∣ ≤ 8σvσU log(4h/δ)

√
(h− max{#{MU = 0}, d#{Mv = 0}}

d
)
db2

d+ 2
(65)

≤ 8σvσU log(4h/δ)b

√
(h− max{hdρU , hdρv}

d
) (66)

≤ 8σvσU log(4h/δ)b
√
h
√

(1−max{ρU , ρv}). (67)

Equation 65 is due to the integration 1
|X|

∫
X

√∑h
i=1 ∥MU ,i: ⊙ x∥22dx satisfying

1

|X|

∫
X

√ ∑
Mv,i=1

∥MU ,i: ⊙ x∥22dx ≤

√√√√(
1

|X|

∫
X

∑
Mv,i=1

∥MU ,i: ⊙ x∥22dx)(
1

|X|

∫
X
dx) (68)

=

√
1

|X|

∫
X
#{MU ⊙MV = 1}x2

i dx (69)

=

√
#{MU ⊙MV = 1}

d

1

|X|

∫
X
∥x∥22dx (70)

≤
√
(h− max{#{MU = 0}, d#{Mv = 0}}

d
)
db2

d+ 2
, (71)

where MV is the matrix whose each column is Mv . Equation 68 is due to Cauchy-Schwarz inequality
of integration, Equation 69 and Equation 70 is due to the symmetry of different components of x
and Equation 71 is due to the integration 1

|X|
∫
X ∥x∥

2
2dx = db2

d+2 and #{MU ⊙MV = 1} ≤
min{#{MU = 1},#{MV = 1}} = min{#{MU = 1}, d#{Mv = 1}}. □

C MORE ANALYSIS AND RESULTS

C.1 MORE FORMS OF SUBSPACES REGARDING THE SUBSPACE HYPOTHESIS

Table 8: Accuracy barriers of LoRA under dif-
ferent subspace dimensions. The learning rates
are the same as 0.01 and the dataset is CIFAR-10.

Models\Dimensions 2000 1000 500
CNN 0.148±0.052 0.325±0.11 0.428±0.023
ResNet20 0.499±0.042 0.379±0.069 0.324±0.24

We test LoRA (Hu et al., 2021) (a.k.a.
learning in intrinsic dimension (Li et al.,
2018a)) for our subspace hypothesis to see
whether smaller subspaces will improve lin-
ear mode connectivity. LoRA is the ab-
breviation for Low-rank Adaption, and it is
commonly used in parameter-efficient train-
ing of large language models (Hu et al., 2021). The idea of LoRA is to use a random
low-rank matrix to map the parameter space into a subspace with lower dimensions.
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Figure 7: Layer-wise analysis of TNA-PFN. The dataset is CIFAR-10. “vanilla” refers to vanilla
training. “first”/“middle”/“last” refers to only applying TNA-PFN to the first/middle/last layer.
“all” refers to applying TNA-PFN to all layers (vanilla TNA-PFN). For CNN, the first layer is the
convolution layer Conv2d(3, 32, 3), the middle layer is the convolution layer Conv2d(64, 64, 3), and
the last layer is the fully connected layer Linear(64, 10) for classification; for MLP_h2_w200, the first
layer is the fully connected layer Linear(32*32*3, 200), the middle layer is the fully connected layer
Linear(200, 200), and the last layer is the fully connected layer Linear(200, 10) for classification; for
ResNet20, the first layer is the convolution layer Conv2d(3, 16, kernel_size=3, stride=1, padding=1,
bias=False), the middle layer is the middle block, and the last layer is the fully connected layer
Linear(64*block.expansion, 10) for classification;

Table 9: Linear mode connectivity on Tiny Im-
ageNet. The ρ for CNN is 0.4 and the ρ for
ResNet18 is 0.3. The learning rate is 0.08.

Models Metrics TNA-PFN Vanilla Train

CNN

Avg. Acc. 11.4± 0.6 9.85± 0.3
Interp. Acc. 2.91± 0.9 1.4± 0.2

Acc. Barrier 0.75± 0.07 (12.8% ↓) 0.86± 0.03
Loss Barrier 0.75± 0.09 (10.4% ↓) 0.84± 0.08

ResNet20

Avg. Acc. 31.6± 0.4 31.8± 0.3
Interp. Acc. 12.5± 2.1 6.86± 1.8

Acc. Barrier 0.60± 0.07 (23% ↓) 0.78± 0.06
Loss Barrier 1.2± 0.09 (22.2% ↓) 1.6± 0.2

However, when we implement LoRA with ran-
dom initialization, we find LoRA is very sen-
sitive to the learning rate especially when the
mapped dimension is low. Using the same learn-
ing rate, when we decrease the dimension, the
network will become untrainable (with no gener-
alization gains compared with random models).
We hypothesize that the equivalent learning rates
are different in different dimensions of LoRA,
and for lower dimensions, the equivalent learn-
ing rates are larger. Thus, it is unfair to com-
pare the connectivity of LoRAs under the same
explicit learning rate since the learning rate is
essential in determining the barriers (Adilova et al., 2023). However, we cannot quantify the relation-
ship between the mapped dimension and the equivalent learning rate, and it is an interesting and open
problem for future research.
We still provide the preliminary results in Table 8. Under the same learning rate, we measure the
accuracy barriers when changing the mapped dimensions. It is found that different models reflect
different tendencies. When the model is CNN, lower dimensions result in higher barriers, while for
ResNet20, lower dimensions may indicate lower barriers. We note this result may not be rigorous
enough to draw a conclusion, and further investigations in future work are needed.

C.2 MORE RESULTS AND ILLUSTRATIONS IN LINEAR MODE CONNECTIVITY

Results on large-scale dataset. We conduct experiments on Tiny ImageNet (tin, Accessed: 2023),
a subset of ImageNet (Deng et al., 2009), containing 100000 images of 200 classes (500 for each
class) downsized to 64×64 colored images. Each class has 500 training images, 50 validation images,
and 50 test images. The result is shown in Table 9. It can be seen that under large-scale datasets,
TNA-PFN also can reduce the barriers in the linear mode connectivity.
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Figure 8: Upper two: Loss barriers of MLP under different hidden layers (h) and widths (w).
Middle two and Lower two: Accuracy and loss landscapes of MLPs.
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Figure 9: Upper two: Loss and accuracy landscapes of CNN. Lower two: Loss and accuracy
landscapes of ResNet20.

Layer-wise analysis. We conduct a layer-wise analysis of TNA-PFN to see which layer matters most
in improving LMC in Figure 7, and different model architecture poses different results. For simple
CNN, only applying neuron fixing in the first layer (convolution) will improve LMC, and partially
fixing weights in the middle (convolution) and the last (fully connected) layers will cause barrier
increases. For MLP_h2_w200, we observe that independently fixing one layer will all cause barrier
reductions, and the performance is more dominant when fixing the first and the last layers; jointly
fixing all layers (“all”) will have the lowest barrier. For ResNet20, it is revealed that only fixing the
middle layers (the middle block) will cause barrier degradation.
Extensions of Figure 3. We provide more illustrations about the loss and accuracy barriers and
landscapes in Figure 8.
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Figure 12: Performances of FedPFN and
FedPNU under different mask ratios. CIFAR-
10, ResNet20, and E = 3.

Extensions of Figure 4. We provide illustra-
tions about the loss and accuracy barriers of the
Figure 4 results in Figure 9. It is obvious that
TNA-PFN can lower the barriers in LMC.
Loss and accuracy barriers w.r.t. epochs. We
demonstrate the barrier changes during training
in Figure 10. It is shown that barriers increase
during training, revealing that two independent
networks diverge in parameter space. TNA-PFN
has slower barrier-increasing rates than vanilla
training.
Extensions of Figure 2. We provide more re-
sults about pruning and TNA-PFN under dif-
ferent mask ratios in Figure 11. Interestingly,
for CNN, pruning and TNA-PFN improve both
the accuracy and connectivity and the improve-
ments go up along with the ratio increasing. On
the other side, we observe an obvious accuracy-
connectivity tradeoff for ResNet20 and it is more
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Figure 10: Barrier changes during training for different datasets and models.
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Figure 11: More results about pruning and TNA-PFN under different mask ratios. The shadow
areas mean the accuracy barriers.
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Figure 13: Test accuracy curves of the federated learning methods.

severe for pruning. Also, considering the layer-wise evaluation for ResNet in Figure 7, we reckon it
is important to devise different mask strategies for the layers in ResNet and other deeper or more
complex models.

C.3 MORE RESULTS AND ILLUSTRATIONS IN FEDERATED LEARNING

Extensions of Figure 6. We show the performances of FedPFN and FedPNU under different mask
ratios for ResNet20 in Figure 12. The results indicate that FedPFN is sensitive to the mask ratio
while FedPNU is more robust. FedPNU reaches higher performances under higher mask ratios
(ρ ∈ [0.8, 0.9]).
Illustrations of the learning curves. We present the test accuracy curves of FedAvg, FedPFN, and
FedPNU in Figure 13. Our methods show dominant advantages over FedAvg in both IID and non-IID
settings, especially for the more complex datasets, CIFAR-10 and CIFAR-100.

D PRELIMINARY OF FEDERATED LEARNING

Federated learning usually involves a server and n clients to jointly learn a global model without data
sharing, which is originally proposed in (McMahan et al., 2017). Denote the set of clients by S, the
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labeled data of client i by Di = {(xj , yj)}Ni
j=1 , and the parameters of the current global model by

wt
g . FL starts with client training in parallel, initializing each clients’ model wt

i with wt
g .

FL is more communication-efficient than the conventional distributed training, that it assumes the
clients train the models for epochs (the full data) instead of iterations (the mini-batch data) between
the communications to the server. The number of local epochs is denoted as E.
In each local epoch, clients conduct SGD update with a local learning rate ηl, each SGD iteration
shows as

Client training: wt
i ← wt

i − ηl∇ℓ(Bk,w
t
i), for k = 1, 2, · · · ,K, (72)

where ℓ is the loss function and Bk is the mini-batch sampled from Di at the kth iteration. After the
client local updates, the server samples m clients for aggregation. The client i’s pseudo gradient of
local updates is denoted as gti = wt

g −wt
i . Then, the server conducts FEDAVG to aggregate the local

updates into a new global model.

Weighted Model aggregation: wt+1
g = wt

g −
m∑
i=1

λigt
i, λi =

|Di|
|D|

,∀i ∈ [m]. (73)

With the updated global model wt+1
g , it then starts the next round of client training. The procedure

of FL therefore iterates between Equation 72 and Equation 73, for T communication rounds.
We assume the sum of clients’ data as D =

⋃
i∈S Di. The IID data distributions of clients refer

to that each client’s distribution Di is IID sampled from D. However, in practical FL scenarios,
heterogeneity exists among clients that their data are non-IID with each other. Each client may have
different data distributions in the input (e.g. image distribution) or output (e.g. label distribution).

E MORE DISCUSSIONS ABOUT RELATED WORKS

In this section, we give a more detailed discussion of the related works.
Relation with Frankle et al. (2020). In Frankle et al. (2020), the authors use linear mode connectivity
to study the performances of lottery-ticket-hypothesis-based pruning and find that the sparse pruned
model with good connectivity will be more likely to reach the full accuracy after pruning. While
in this paper, we find random pruning (not necessarily lottery tickets) can improve linear mode
connectivity. Though the two papers both discuss the relationship between pruning and linear mode
connectivity, they have different focuses and contributions: Frankle et al. (2020) finds LMC indicates
better results of pruning, whereas we find pruning can improve LMC, and the causal logic is different.
Subspace Learning. Subspace learning has various forms, and we summarize other forms of
subspaces that have not appeared in this paper. Intrinsic dimensions use a random low-rank matrix
to map the network parameters into a subspace and it finds neural networks have lower intrinsic
dimensions than the original dimension to reach a close or same accuracy (Li et al., 2018a). Further,
LoRA introduces intrinsic dimension in parameter-efficient finetuning of large language models (Hu
et al., 2021); and Gressmann et al. (2020) improves learning in intrinsic dimensions above random
matrices. Additionally, subspaces are used in improving continual and incremental learning. Chaudhry
et al. (2020) use a projection matrix to map the features into orthogonal subspaces to prevent
catastrophic forgetting in continual learning; Akyürek et al. (2021) adds a subspace regularizer for
improving few-shot class incremental learning.
Subspace and Partial Training in Federated Learning. Previous works in federated learning apply
subspace or partial training methods, but they have different motivations and are orthogonal to our
approaches FedPFN and FedPNU. In Isik et al. (2022), the authors propose to train a mask on a
random network instead of training the neurons from communication efficiency; while in Li et al.
(2021), it is proposed to learn a personalized sparsed network at clients. Additionally, partial training
is adopted in federated learning to save computation and communication. Lee et al. (2023) proposes
to train 1

E part of models and then aggregate on the server to relieve the negative effects brought by
large local epochs. Yang et al. (2022) proposes each client train 1

n disjoint part of the whole model
and combines the model on the server for efficiency. Niu et al. (2022) aims to enable large-model
training at edges by decoupling the model into several principle sub-models. In Hahn et al. (2022),
the authors utilize linear mode connectivity to improve personalization in federated learning.
Loss Landscape of Neural Networks and Generalization. Deep neural networks (DNNs) are
highly non-convex and over-parameterized, and visualizing the loss landscape of DNNs (Li et al.,
2018b; Vlaar & Frankle, 2022) helps understand the training process and the properties of minima.
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There are mainly two lines of works about the loss landscape of DNNs. The first one is the linear
interpolation of neural network loss landscape (Vlaar & Frankle, 2022; Garipov et al., 2018; Draxler
et al., 2018), it plots linear slices of the landscape between two networks. In linear interpolation loss
landscape, mode connectivity (Draxler et al., 2018; Vlaar & Frankle, 2022; Entezari et al., 2022)
is referred to as the phenomenon that there might be increasing loss on the linear path between
two minima found by SGD, and the loss increase on the path between two minima is referred to as
(energy) barrier. It is also found that there may exist barriers between the initial model and the trained
model (Vlaar & Frankle, 2022). The second line concerns the loss landscape around a trained model’s
parameters (Li et al., 2018b). It is shown that the flatness of loss landscape curvature can reflect
the generalization (Foret et al., 2020; Izmailov et al., 2018) and top hessian eigenvalues can present
flatness (Yao et al., 2020; Jastrzębski et al., 2018). Networks with small top hessian eigenvalues have
flat curvature and generalize well. Previous works seek flatter minima for improving generalization
by implicitly regularizing the hessian (Foret et al., 2020; Kwon et al., 2021; Du et al., 2021).
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