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Abstract

Multimodal Sarcasm Explanation (MuSE) is a
new yet challenging task, which aims at gener-
ating natural language explanations for sarcasm
in social media image-text pairs. MuSE can
further enhance sarcasm understanding and has
attracted increasing research interest. Previous
works design cross-modal attention or multi-
source semantic graphs and achieve promising
performance. However, these works either ig-
nore the semantic gap between visual features
and textual decoder or introduce complex graph
constructions, which limits their practical ap-
plicability and scalability for real-world sce-
narios. Furthermore, they treat each sample
equally during training, overlooking the dif-
ferent effects of samples at different levels of
difficulty. In this paper, we propose a novel
MultiDimensional Sample Difficulty (MDSD)
based training strategy with the Multimodal
Large Language Models (MLLMs) for MuSE.
Leveraging the multidimensional sample diffi-
culty of image-text pairs, we enable MLLMs to
learn from easy to hard samples in the training
stage, mitigating the impact of samples of vary-
ing difficulty and preventing local optima. We
can achieve better cross-modal alignment with-
out complicated procedures based on the align-
ment and innate knowledge of MLLMs. Exper-
imental results on two open-source MLLMs on
a publicly released dataset MORE demonstrate
that MDSD can further enhance MLLMs and
achieve state-of-the-art performance.

1 Introduction

Sarcasm is a linguistic phenomenon where the lit-
eral meaning is contradictory to the actual intent
of speakers. Sarcasm detection aims to identify
the actual sentiments of users and can be widely
applied in various scenarios such as opinion min-
ing (Pang et al., 2008; Riloff et al., 2013) and social
media analysis (Tsur et al., 2010). In the multi-
modal domain, multimodal sarcasm detection (Cai
et al., 2019) focuses on analyzing the incongruity
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Figure 1: Examples of MuSE. The bottom example
only requires identifying a traffic jam in the image. The
upper harder example requires the prior knowledge that
“the Earth is round” to infer the subtly hidden sarcasm.

in image-text pairs to detect underlying sarcasm.
Although many works (Xu et al., 2020b; Liang
etal., 2021, 2022; Liu et al., 2022; Qin et al., 2023)
provide accurate sarcasm classification results, the
lack of corresponding explanations for why they
are sarcastic makes the classification results rela-
tively superficial for further sarcasm understand-
ing. Therefore, Multimodal Sarcasm Explanation
(MuSE) aims to provide natural language explana-
tions for given sarcastic image-text pairs and has
increasingly attracted research attention. Examples
of MuSE are shown in Figure 1.

Previous works on MuSE primarily focus on
effectively injecting visual features into text-
generation models. For instance, Desai et al. (2022)
incorporates the image and text features through
cross-modal attention in the Transformer (Vaswani
et al., 2017) encoder and generates explanations by
a BART (Lewis et al., 2020)-based auto-regressive
decoder. Jing et al. (2023) further uses image
object-level metadata, an external knowledge base,
and a multi-source semantic graph for sarcasm rea-
soning. Despite their effectiveness, they either
overlook the semantic gap between visual features
and the textual decoder or heavily rely on com-
plex graph constructions and the extra knowledge



BLEU-4

25
Easy 10% 20% 30% 40% 50%  60%
Di 1t

70% 80% 90% 100% Hard
ifficulty Level

Figure 2: The average BLEU-4 score of previous meth-
ods on the MORE test set with increasing difficulty'.

base, which limits their applicability and scalabil-
ity for real-world scenarios. Moreover, they treat
all samples equally during training without consid-
ering the different effects of samples at different
levels of difficulty (Bengio et al., 2009; Xu et al.,
2020a; Wang et al., 2022). As shown in Figure 2,
the performance of MuSE models declines with the
increasing difficulty of samples.

Inspired by the data-centric training of Large
Language Models (LLMs) (Lin et al., 2024; McK-
inzie et al., 2024; Tirumala et al., 2024) and
the wide applications of Multimodal Large Lan-
guage Models (MLLMs) (Liu et al., 2023a; Dai
et al., 2023), we propose a novel MultiDimensional
Sample Difficulty (MDSD) based training strat-
egy with MLLMs for MuSE. Specifically, we
measure sample difficulty from three dimensions:
MLLM Self-Assessment, Text-Image Consistency,
and Textual Difficulty. We rank the samples accord-
ing to the sample difficulty and enable MLLMs
to learn from easy to hard during training, which
can achieve a better sarcasm understanding. By
leveraging the inherent knowledge and sufficient
cross-modal alignment of MLLMs, we can achieve
better alignment without cumbersome procedures.
In summary, our contributions are as follows:

* We design the MDSD to measure the difficulty
of image-text pairs. This helps MuSE models
learn from easy to hard samples, reducing the
impact of variable difficulty during training.

* We propose to use MLLMs for MuSE, which
can achieve better cross-modal alignment
without complex processes.

» Experimental results on a public dataset
demonstrate that MDSD can enhance MLLMs
and achieve state-of-the-art performance.

OThe difficulty is Dyotq1, Which is obtained in Section 2.2.

2 Methodology

In this section, we first present the brief task formu-
lation of MuSE and describe the MDSD to measure
the difficulty of image-text pairs, including MLLM
SelfAssessment, Text-Image Consistency, and Tex-
tual Difficulty. Finally, we rank the image-text pairs
based on the total difficulty and enable MLLMs to
learn from easy to hard.

2.1 Task Formulation

Given image-text pairs (v;, t;), where v; is the i-
th image input and ¢; is the ¢-th text input. The
multimodal sarcasm explanation model needs to
generate the corresponding sarcasm explanation.

2.2 Difficulty Measurement

We design the multidimensional sample difficulty,
which consists of MLLM SelfAssessment, Text-
Image Consistency, and Textual Difficulty. We
measure the samples from totally different dimen-
sions and assume that they are independent of each
other and each contributes to different extents.

2.2.1 MLLM SelfAssessment

Large language models have been found to per-
form a strong powerful self-decision-making ca-
pability, which has been applied in data optimiza-
tion (Xu et al., 2023) and decision-making (Yang
et al., 2023; Asai et al., 2023). In this paper, we aim
to enable MLLMs to better understand the sarcasm
in multimodal image-text pairs. Thus allowing
MLLMs to self-score the difficulty of samples can
distinguish samples of varying difficulty from the
dimension of models.

As shown in Figure 3, MLLMs are required to
assign a score from 0O to 10 to evaluate the difficulty
Dy of explaining sarcasm in the given image-text
pair. A higher score indicates a greater difficulty
of the sample. For simple samples, the model can
easily interpret the sarcasm, while more complex
samples require further sarcasm understanding.

2.2.2 Text-Image Consistency

As for multimodal sarcasm, sarcasm often resides
in the semantic differences between text and im-
age pairs. For example, as shown in the bottom
example of Figure 1, the text “I was worried we
weren’t gonna hit traffic” contrasts with the image
of a traffic jam, thus creating a sarcastic expres-
sion. Additionally, current MLLMs typically use
an adapter to connect the visual encoder with the
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Figure 3: The overview of MDSD. First, we measure the multidimensional sample difficulty of the image-text pairs,
then rank them by difficulty to enable MLLM to learn from easy to hard samples.

large language model. The degree of alignment be-
tween textual and visual modalities also influences
the understanding of MLLMs of multimodal data.
Therefore, we can assess the difficulty of image-
text pairs from a cross-modal alignment dimension.

Specifically, we use CLIPScore (Hessel et al.,
2021), which is designed to evaluate text-image
similarity. Given image-text pairs, we obtain em-
beddings from the visual and textual encoder of
CLIP (Radford et al., 2021):

Emb, = CLIPy(V) (1

Emb; = CLIP ey (T) )

where Emb,, and Emb; are the visual and textual
embeddings of images V' and texts 7.

The higher the text-image consistency, the more
similar the text and image, allowing models to ex-
plain sarcasm just by analyzing their differences.
Conversely, the lower the text-image consistency,
the greater the disparity between the text and im-
age, requiring models to perform more extensive
analysis to understand sarcasm. Thus we measure
the difficulty of text image consistency Dryg by
the reciprocal of cosine similarity Emb,, and Emby:

Dris = 1/cos(Emb,,, Emby) 3)

The higher the Dr;g, the harder the sample.

2.2.3 Textual Difficulty

For MLLMs, the core component is LLMs, and
the text generation capability of LLMs could influ-
ence the final generation of sarcasm explanations in
natural language. Considering that the commonly
used loss function of LLM’s pre-training stage is

perplexity, which is also often used to measure tex-
tual difficulty (Marion et al., 2023; Muennighoff
et al., 2024), we employ perplexity as the metric to
measure the difficulty D,,,; of the input text:

1
N

Dpp = (H P wz‘wl, .. 7wi—1)> @

where N is the length of the given text and w; is
the i-th word. The higher D,,;, the more difficult it
is for LLMs to generate the required explanation.

2.2.4 Total Difficulty

After obtaining the difficulties from the different
dimensions mentioned above, we need to combine
them to get the final total difficulty. Our goal is to
rank the samples based on their difficulty. There-
fore, we only need to determine the relative diffi-
culty of each sample within the overall samples.
We also treat three dimensions of difficulty with
equal importance. Specifically, we normalize the
three above difficulties separately by softmax, and

then sum them:
i @D;elf eD%“IS eD;pl
total — + —+ e ®))
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where Dz otar 18 the total difficulty of the given i-th
image-text pair.

2.3 Optimization Object

Finally, we rank the image-text pairs based on
Diotqr and enable MLLMs to learn from easy to
hard samples. We construct the input for MLLMs
by a pre-designed template for the given image-text
pair, as shown in Figure 3.



Consistent with the loss calculation in auto-
regressive LLMs, we only compute the cross-
entropy loss for the response of MLLMs, i.e., the
corresponding sarcasm explanation of the input:

n—1

Lee = Z —log po(Yi+1|{Xv, Xinstruction), Yi)

i=1

(6)

where X, is the visual input, X;p,siruction 1S the

textual instruction. Y; = (y1, ..., y;) is the under

generating response, n is the response token num-

bers, y; is the i-th token of generated response and
0 represents the parameters of MLLMs.

3 Experiments

3.1 Dataset and Metrics

We evaluate our method on the only public multi-
modal sarcasm explanation dataset MORE (Desai
et al., 2022), which contains sarcastic image-text
pairs from various social media sites (Twitter?, In-
staram’ and Tumblr*) and the corresponding sar-
casm explanation for each pair is manually anno-
tated, including 2, 983 for training, 175 for valida-
tion, and 352 for testing. Each sample of MORE is
a triplet of (image, text, explanation). Statistics
of the MORE dataset are shown in Table 1.

Following previous works (Desai et al., 2022;
Jing et al., 2023), we adopt BLEU-{1,2,3,4} (Pa-
pineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), ROUGE-{1,2,L} (Lin, 2005),
BERTScore (Zhang et al., 2019) and Sentence-
BERT (Reimers and Gurevych, 2019) to assess
the performance of our proposed method.

3.2 Experimental Settings

We choose the LLaVA-1.5-7B (Liu et al., 2023a)
and ShareGPT4V-7B (Chen et al., 2023b) as the
base MLLM. We use the same vision encoder of
MLLMs to calculate text-image consistency, and
the same LLM to calculate textual difficulty. For
the image inputs, we used “BLIP2-FlanT5-XL"” to
extract captions as inputs for LLMs. We adopt
Parameter-Efficient-Fine-Tuning (PEFT) for the
training stage,i.e., LORA (Hu et al., 2021), and in-
ject the low-rank matrices as adapters into MLLM.
The rank of the update matrices is 128 and the scal-
ing factor of LoRA is 256. We freeze the vision
encoder and fine-tune the vision-language adapter

2https ://twitter.com/
3https ://www.instagram.com/
4h’ctps ://www. tumblr.com/

MORE | Samples | Input Avg.L. | Explanation Avg.L
Train 2,983 19.75 15.47
Val 175 18.85 15.39
Test 352 19.43 15.08
Total 3,510 19.68 15.43

Table 1: The statistics of MORE datasets. Input Avg.L
denotes the average length of input text. Explanation
Avg.L denotes the average length of output explanation.

and LLM. The learning rate for the adapter is 2e-5
and the learning rate for LLM is 2e-4. The batch
size is 12 and the training epoch is 2. In the first
epoch, we train the model from simple to difficult
samples in the hope that it will better learn the sar-
castic meanings in the samples. After the model has
acquired a basic capability for sarcasm explanation
in the first epoch, we randomize the samples in the
second epoch to enhance the training’s robustness.
All models are trained on 2 NVIDIA 3090Ti GPUs
for several hours and tested on a single NVIDIA
3090Ti GPU.

3.3 Compared Methods

To valid the effectiveness of our proposed method,
we compare our method with the following existing
methods following previous works (Desai et al.,
2022; Jing et al., 2023):

(1) PGN (See et al., 2017). The Pointer Genera-
tor Network is a text-based generation model that
utilizes a conventional decoder and a copy mecha-
nism to directly copy words from the input text.

(2) Transformer (Vaswani et al., 2017). A text-
based generation baseline generates sarcasm expla-
nations with the transformer architecture.

(3) MFFG-RNN and MFFG-Trans. Two vari-
ations of MFFG (Liu et al., 2020), which is a
multimodal-based generation model for video sum-
marization. MFFG-RNN and MFFG-Trans use
RNN and transformer as the decoder respectively.

(4) M-Transf (Yao and Wan, 2020). The multi-
modal Transformer model for machine translation.
M-Transf adopts the concatenation of text and im-
age features for query and text representation for
key and value in the cross-modal attention.

(5) ExMore (Desai et al., 2022). This method
is designed for multimodal sarcasm explanation,
which adopts BART (Lewis et al., 2020) as the
model backbone and employs cross-modal atten-
tion in the encoder to inject the visual information
into BART. Different from M-Transf, ExMore uses
text representation for query and image representa-
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BLEU ROUGE BERTScore SentBERT

Model Bl B2 B3 B4 | RL RI R |[METEOR o Rec FI | (Cosine)
PGN 1754 631 233 1.67 |16.00 17.35 6.90 15.06 | 84.80 85.10 84.90 | 49.42
Transformer 11.44 479 168 0.73 | 1590 17.78 5.83 9.74 83.40 84.90 84.10| 5255
MFFG-RNN 1416 6.10 231 1.12 |1621 1747 5.53 1231 | 81.50 84.00 8270 | 44.65
MFFG-Transf 13.55 495 200 076 |15.14 16.84 4.30 1097 |81.10 83.80 8240 | 41.58
M-Transf 1437 648 294 157 |18.77 2099 6.98 12.84 |86.30 86.20 86.20 | 53.85
ExMore 1926 1121 6.56 426 2523 27.55 1249 | 19.16 |88.30 87.50 87.90 | 59.12
TEAM-w/o-Know | 52.63 42.42 3580 30.91 | 48.67 49.28 33.18| 4853 |90.90 9140 91.10 | 71.58
TEAM 5532 45.12 3827 33.16 | 50.58 51.72 34.96 | 5095 |91.80 91.60 91.70 | 72.92
ChatGPT-zero-shot | 12.64 6.83 440 3.01 |18.56 19.18 6.51 2539 |83.62 86.77 85.15| 60.85
ChatGPT-one-shot | 26.20 1534 991 599 [28.98 30.22 11.46| 28.61 |86.95 87.84 87.38| 63.19
ChatGLM2-6B 53.51 44.28 37.98 3326|5298 5546 3871 | 46.82 |91.96 90.94 9142 | 7546
Llama2-7B 57.54 4737 40.61 3557|5341 56.76 39.55| 49.65 |91.85 91.51 91.66| 7831
LLaVA1.5-7B 57.92 47.83 4121 36.18 | 54.63 56.95 39.72| 50.54 |92.01 91.74 91.85| 7843
ShareGPT4V-7B | 59.07 48.67 41.84 36.62 | 54.64 57.76 40.17 | 51.61 |92.07 91.95 91.99 | 78.65
MDSD (LLaVA) |58.827 49.43" 43.16" 38.381(56.65" 59.63" 42.777| 52.267 [92.497 92.037 92.24F| 79.32f
MDSD (ShareGPT4V) | 58.33 49.27" 43.16" 38.48' [57.05! 59.73" 43.191| 52371 |92.577 91.98" 92.257| 79.32t

Table 2: Experimental results on MORE. 1 means our method outperforms the base MLLM (LLaVA, ShareGPT4V)
significantly with p < 0.05. The best results are highlighted in bold, and the second-best results are underlined.

tion for key and value projections.

(6) TEAM-w/0o-Know and TEAM (Jing et al.,
2023). This is the previous SOTA method, which
is a graph-based method utilizing the object-level
meta-data and external knowledge base like Con-
ceptNet (Speer et al., 2017) for multimodal sarcasm
explanation. TEAM conducts the multi-source
semantic graph construction process through the
graph convolutional network in the BART encoder,
and generates explanations in the BART decoder.
TEAM-w/o-Know means TEAM that does not use
external knowledge like ConceptNet.

We also compare our method with recent LLMs
and MLLMs for a comprehensive comparison:

(7) ChatGPT-zero-shot and ChatGPT-one-
shot 7. A closed-source LLM for chat, as known
as GPT-3.5-turbo. For the one-shot setting, we ran-
domly choose an example of the training set of
MORE as the demonstration.

(8) ChatGLM2-6B (Du et al., 2022). An open
bilingual language model based on the general lan-
guage model, with 6.2 billion parameters.

(9) Llama-2-7B (Touvron et al., 2023b). The
foundation LLM pre-trained on 2 trillion tokens,
with 7 billion parameters.

(10) LLaVA-1.5-7B (Liu et al., 2023a). An open-
source MLLM adopts a multi-layer perceptron as
an adapter to connect the vision encoder and LLM,
which has 7 billion parameters.

(11) ShareGPT4V-7B (Chen et al., 2023b). An
open-source MLLM with high-quality data anno-

Shttps://chatgpt.com/

tated by GPT4V.

For a fair comparison, we apply MDSD on the
two MLLMs, LLaVA and ShareGPT4YV, to vali-
date the effectiveness of our method. We utilize

image captions as the visual inputs for the LLMs:
ChatGPT, ChatGLM, and Llama.

3.4 Main Results

As shown in Table 2, our method achieves im-
provements on the majority of metrics across
two MLLMs, demonstrating the effectiveness of
MDSD. Additionally, MDSD (ShareGPT4V) out-
performs MDSD (LLaVA), indicating the impor-
tance of the choice of base models.

As for ChatGPT, we believe the low performance
is due to a gap between the content output of the
alignment standard by GPT after Reinforcement
Learning with Human Feedback (RLHF) and the
human-annotated reference standard of MORE. As
a result, the metrics calculated based on the GPT
output and reference results are not high. The one-
shot performs better than the zero-shot, indicating
the effectiveness of in-context learning.

For LLMs such as ChatGLM and Llama, even
when the input images are converted into textual
captions, LLMs can still perform well on the mul-
timodal task MuSE. Llama2-7B even surpasses
the previous SOTA method TEAM. The perfor-
mance differences between Llama and ChatGLM
are attributed to the differences in pre-training data,
which result in inherent performance differences
between the base models.
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BLEU ROUGE BERTScore SentBERT
Model BI B2 B3 B4 | RL Rl Rz |METEOR| " Rec  Fl | (Cosine)
Non-OCR samples
PGN 1787 637 192 126 | 1643 17.80 6.92 1562 | 8470 8520 84.90| 48.77
Transformer 11.65 565 173 0.69 |16.16 1741 626 10.13 | 83.60 85.10 84.30 | 48.40
MFFG-RNN 1543 682 246 133 |17.40 1861 5.71 1298 | 81.60 8430 8290 | 42.72
MFFG-Transf 1328 535 149 026 | 1490 16.80 4.35 11.19 | 81.30 84.00 82.60| 41.68
M-Transf 1491 690 266 0.83 |1934 21.05 7.08 1391 | 86.50 8630 86.40| 51.77
ExMore 1947 11.69 6.82 427 (2492 27.12 12.12| 1920 |8830 87.60 88.00 | 56.95
TEAM-w/o-Know | 53.43 43.41 36.77 31.78 | 49.72 51.12 3478 | 4924 |91.50 91.90 91.80 | 71.62
TEAM 56.45 4634 39.58 3434|5279 53.81 3678 | 51.62 |92.40 9290 9230 | 73.35
ChatGPT-zero-shot | 12.69 7.04 456 3.12 | 1890 19.32 6.83 26.54 | 8394 87.15 8535| 60.40
ChatGPT-one-shot | 25.74 1545 924 538 |27.24 2825 10.19| 26.15 |86.83 87.24 87.02| 63.39
ChatGLM2-6B 5460 4521 3838 33.16 | 55.08 57.36 40.57 | 49.02 |9220 9136 91.75| 74.79
Llama2-7B 59.34 4922 42.15 36.73 | 5493 58.04 40.84| 51.88 |92.13 9201 92.05| 73.35
LLaVA1.5-7B 60.05 50.11 43.12 37.65|57.70 59.29 4258 | 53.67 |92.41 9224 9230| 7841
ShareGPT4V-7B | 59.64 49.11 41.83 36.05 | 56.59 58.89 41.12| 53.37 |9226 9238 9230 | 79.68
MDSD (LLaVA)  60.721 51.297 44.707 39.497 59.447 61.83"7 44.947| 54.917 ]92.837 92.517 92.657  79.92f
MDSD (ShareGPT4V) 60.657 51.157 44.56" 39.29" 59.87" 62.151 45.24*‘ 55.407 ‘92.93* 92,597 92,747  80.17f
OCR samples

PGN 1719 6.08 249 1.79 | 1555 1692 6.76 1464 | 8490 8490 84.90| 49.53
Transformer 10.68 4.01 149 071 |1504 1725 532 8.99 8320 8470 83.90 | 53.94
MFFG-RNN 12.18 492 173 0.88 | 1401 1518 4.56 10.64 | 8120 83.70 8240 | 4591
MFFG-Transf 1287 412 169 0.62 | 1420 1554 3.53 970 | 81.00 83.60 8230 | 41.13
M-Transf 1406 625 322 228 | 1842 21.04 7.01 1206 | 8620 86.10 86.10 | 55.66
ExMore 1940 1131 6.83 476 | 2566 28.02 12.10| 19.15 |8820 87.50 87.90 | 60.82
TEAM-w/o-Know | 51.91 41.51 34.85 29.85|47.53 49.00 32.77| 47.94 |90.50 91.00 90.70 | 71.43
TEAM 52.88 43.08 36.81 3234 | 4846 49.68 33.83| 49.25 |90.90 90.00 90.80 | 71.93
ChatGPT-zero-shot | 12.56 6.78 435 290 | 1854 1890 6.63 2468 |83.61 8649 8501 | 61.55
ChatGPT-one-shot | 25.58 14.85 924 538 |27.24 2825 10.19| 26.15 |86.83 87.24 87.02| 63.39
ChatGLM2-6B 5270 43.65 3774 3336 |51.62 54.11 37.43| 4490 |91.81 90.60 91.18 | 75.32
Llama2-7B 56.19 46.08 39.53 34.72 | 5236 55.84 38.69 | 47.92 |91.65 91.06 91.33| 77.98
LLaVA1.5-7B 56.46 46.24 39.89 35.17 | 5221 5496 37.40| 47.70 |91.67 91.27 9144 | 77.86
ShareGPT4V-7B | 58.72 48.48 4201 37.14 | 53.14 56.57 39.41 | 4893 |91.87 91.54 91.68| 77.30
MDSD (LLaVA)  57.637 48.24% 42.13" 37.58" 54.531 57.731 40.887| 49.957 [92.18" 91.597 91.867 78.51t
MDSD (ShareGPT4V) 56.75 48.03 42.247 37.96' 54.92" 57.67" 41.467| 49.71"7 |92.24" 91.43 91.817  78.14"

Table 3: Experimental results on MORE. { means our method outperforms the base MLLM (LLaVA, ShareGPT4V)
significantly with p < 0.05. The best results are highlighted in bold, and the second-best results are underlined.

4 Analysis

4.1 Multidimensional Sample Difficulty
Benefit

Taking LLaVA as the base MLLM, we also calcu-
late the BLEU-4 scores based on different difficul-
ties to further validate the effectiveness of MDSD.
As shown in Figure 4, both MDSD (LLaVA) and
LLaVA significantly outperform TEAM, indicat-
ing the promising performance of simply adopting
MLLMs. Furthermore, MDSD can especially en-
hance MLLMs to learn difficult samples, e.g., the
samples of 50%-80% difficulty level, demonstrat-
ing the effectiveness of MDSD. It is worth noting
that the test set of the MORE dataset has a relatively
small sample size. When samples are divided ac-
cording to difficulty level, the number of samples
for each difficulty level is different, which will lead
to fluctuations in the calculated BLEU score curve,
as shown in 4. However, the trend of the curve still
allows us to draw the conclusions.

TEAM
LLaVA
MDSD (LLaVA)

45

25

10% 20% 30% 40% 50% 60% 70% 80% 90%  100% H?"d

Difficulty Level

Figure 4: The average BLEU-4 score of our method,
LLaVA (Liu et al., 2023a) and TEAM (Jing et al., 2023)
at different difficulties on the MORE test set.

4.2 Non-OCR and OCR Settings

Following previous works (Desai et al., 2022; Jing
et al., 2023), we also conduct the performance com-
parison of different methods across three dataset
settings: all samples (as shown in Table 2), Non-
OCR samples, and OCR samples. OCR samples de-
note the samples whose images contain embedded
texts, while Non-OCR samples do not. As shown



BLEU

ROUGE BERTScore SentBERT

Model Bl B2 B3 B4 |RL RI Rz METEOR| o Rec FI | (Cosine)

All samples
MDSD (LLaVA) |58.82 49.43 43.16 38.38/56.65 59.63 42.77| 5226 |92.49 92.03 92.24| 79.32
W/o Dyer 57.51 48.18 41.91 37.17|56.09 59.19 42.12| 51.93 |92.01 92.62 91.98| 79.85
wlo Drrs 57.74 47.19 41.75 36.84|55.78 58.11 41.33| 51.81 |92.44 91.98 92.19| 78.89
W/ Dy 58.13 49.22 43.03 38.12|56.45 59.44 42.48| 52.15 |92.44 92.02 9221| 79.23

W/0 Dppi, D115, Dserp |57.92 47.83 41.21 36.18|54.63 56.95 39.72| 50.54 |92.01 91.74 91.85| 7843

Non-OCR samples

MDSD (LLaVA) |60.72 51.29 44.70 39.49|59.44 61.83 44.94| 5491 |92.83 92.51 92.65| 79.92

Ww/0 Dyeif 59.14 49.59 4290 37.71|58.60 61.35 44.32| 54.84 [92.95 92.55 92.73| 80.68

w/o Drrg 59.58 49.67 42.78 37.40|57.91 60.56 42.55| 54.33 ]92.60 92.41 92.48| 79.13

w/0 Dyl 59.96 51.13 44.58 39.16(59.19 61.22 44.19| 5478 |92.73 92.58 92.64| 80.14

w/0 Dypi, D115, Dserp |60.05 50.11 43.12 37.65|57.70 59.29 42.58| 53.67 |92.41 92.24 92.30| 78.41

OCR samples

MDSD (LLaVA) |57.63 48.24 42.13 37.58|54.53 57.73 40.88| 49.95 |92.18 91.59 91.86| 78.51
w/0 Dyerf 56.76 47.66 41.69 37.25|54.19 57.67 40.78| 49.85 |92.38 91.52 91.93| 78.79

w/o Drrg 56.75 47.44 41.28 36.68|54.31 57.41 40.53| 49.81 [92.30 91.58 91.92| 78.26

w/0 Dyl 56.99 47.78 42.74 38.27|54.39 57.90 41.02| 50.15 |92.16 91.53 91.82| 78.30

w/0 Dypi, D115, Dserp |56.46 46.24 39.89 35.17|52.21 54.96 37.40| 47.70 |91.67 91.27 91.44| 77.86

Table 4: Ablation study of MDSD (LLaVA) on MORE dataset. Ds.; ¢, Dr1s, Dppi are the difficulties in Sec 2.2.

in Table 3, most methods exhibit a performance
decline on the OCR setting, indicating that the em-
bedded text in the image poses a greater challenge
for MuSE models to understand the image inputs,
thereby increasing the difficulty of MuSE. Never-
theless, our proposed MDSD still achieves improve-
ments on the majority of metrics in both Non-OCR
and OCR settings, with the enhancements being
particularly significant in the non-OCR setting.

4.3 Ablation Study

We also choose MDSD (LLaVA) to conduct the ab-
lation study, as shown in Table 4. Without our mul-
tidimensional sample difficulty, i.e. pure LLaVA,
the model performs the worst, which demonstrates
the effectiveness of our method. Among the three
different dimensions of difficulty, the impact of
Drys is the greatest, while the impact of D, is
the smallest. This indicates that although adapters
are introduced to align image and text representa-
tions, enabling MLLMs to understand multimodal
data. For samples with low text-image consistency,
MLLMs require more knowledge and analysis to
understand the image and text to figure out the cor-
rect result. Therefore, allowing MLLMs to learn
from easy samples with high image-text consis-
tency can better facilitate the understanding of sar-
casm in image-text pairs. Furthermore, allowing
MLLMs to perform the self-assessment of sam-
ple difficulty Dy, ¢ and requiring MLLMs to learn
gradually can also boost MLLMs performance. As
for Dy, given that the widely used loss of LLMs

pre-training is already perplexity and that LLMs
have been trained on a large number of unsuper-
vised samples, focusing solely on perplexity in
MuSE may have minimal impact.

4.4 Case Study

To further demonstrate that ordering samples by
difficulty level helps in training, we also conduct
a case study, as shown in Figure 5. We select
ShareGPT4V (Liu et al., 2023a) as the base MLLM
and select cases from different difficulty levels.

From the perspective of MDSD difficulty levels,
the low-level case just requires recognizing that
“the baby” in the image is unhappy to explain the
sarcasm. The medium-level case needs to infer
that the image depicts a babysitting scenario and
that the job is “tiring” rather than “great”. The
High-level case further requires analyzing that the
windshield is covered with ice, which causes incon-
venience for the author, and better integrating the
textual description to infer that the author “hates
winter”. The difficulty of explaining the sarcasm
of the sample is consistent with our difficulty level,
demonstrating the effectiveness of MDSD.

For the analysis of output results, our method
is closer to the target explanation compared to the
base MLLM. At the low level, our result accurately
identifies “the baby” to explain the sarcasm. At
the mid level, our result correctly recognizes that
babysitting is “exhausting”. At the high level, our
result also accurately identifies “hates the winter”.
This indicates that enabling MLLMs to learn from



Input Text:
We were so happy in this
picture!!!

Difficulty: Low

Ours: Ours:
the baby wasn't happy in this picture.

MLLM:
they weren't so happy in this picture.

MLLM:

not great.

Target Explanation:
the baby is crying in this picture.

Target Explanation:

Babysitting is exhausting.

the author is babysitting and it's

babysitting can be tiring.

Input Text:

Thank you winter i love you so
much, | wish you'd stay for 10
more years!!

Ours:
the author hates the winter and wishes it
would end.

the author wishes it'd stay for just 1@
more years.

Target Explanation:
the author hates winter, her windshield is
covered with ice.

Figure 5: Case study on the test set of MORE, D41, Dseirf, Drrs, Dppi are at the same level.

easy to hard based on our proposed MDSD during
training can significantly enhance their understand-
ing of sarcasm, leading to better performance.

5 Related Work

5.1 Multimodal Sarcasm Detection and
Explanation

Traditional sarcasm detection aims to identify
user sentiments and detect sarcasm in textual
data (Zhang et al., 2016; Tay et al., 2018; Babane-
jad et al., 2020). With the rise of multimodal data
on social media, the focus has shifted to multi-
modal sarcasm detection (Schifanella et al., 2016;
Cai et al., 2019). Further research on multimodal
sarcasm detection has explored the integration of
visual and textual data through various methods,
such as decomposition and relation networks (Xu
et al., 2020b), BERT-based models with modi-
fied attention mechanisms (Pan et al., 2020; Wang
et al., 2020), graph neural networks (Liang et al.,
2021, 2022), optimal transport (Pramanick et al.,
2022), hierarchical framework with external knowl-
edge (Liu et al., 2022), dynamic routing (Tian et al.,
2023) and utilization of CLIP (Radford et al., 2021)
from multi views (Qin et al., 2023).

However, the lack of corresponding natural lan-
guage explanations for those sarcasm samples
makes further understanding of sarcasm and its
applications difficult. Thus Desai et al. (2022) fur-
ther proposes the multimodal sarcasm explanation
with a cross-modal BART-based model. Jing et al.
(2023) adopts the graph neural network with extra
meta-data and knowledge bases to enhance the per-
formance of the multimodal sarcasm explanation
model. Compared with those methods, our pro-
posed methods can utilize MLLMs without extra
data resources and enable MLLMs to learn from

easy to hard for a better understanding of multi-
modal sarcasm samples.

5.2 Multimodal Large Language Models

In multimodal research, applying powerful
LLMs (Touvron et al., 2023a,b) to multimodal tasks
has garnered increasing attention. Early work, such
as Frozen (Tsimpoukelli et al., 2021), achieved im-
pressive performance by training a visual encoder
to encode image inputs as a prefix in a frozen pre-
trained language model. BLIP (Li et al., 2022) pre-
trained a multimodal mixture of encoder-decoder
model to enhance vision-language tasks further,
while BLIP2 (Li et al., 2023) introduced a Q-former
to efficiently align visual features to LLMs. Other
studies, such as MiniGPT4 (Zhu et al., 2023; Chen
et al., 2023a), LLaVA (Liu et al., 2023a,b), and
Qwen-VL (Bai et al., 2023), utilized adapters like
linear layers or multi-layer perceptrons to align
image features extracted from visual encoders like
ViT (Dosovitskiy et al., 2020). ShareGPT4V (Chen
et al., 2023b) adopts GPT4V-distilled data to con-
struct a stronger MLLM based on LLaVA.

6 Conclusion

In this paper, we propose the MultiDimensional
Sample Difficulty (MDSD) based training strategy
with MLLMs for MuSE. Specifically, we develop
MLLM self-assessment, image-text consistency,
and textual difficulty as the multidimensional diffi-
culty. We rank the samples based on the total diffi-
culty and enable MLLMs to learn from easy to hard.
Experimental results on two open-source MLLMs
on a public dataset demonstrate that MDSD can
boost MLLMs for MuSE and outperform previous
SOTA methods by a large margin.



Limitations

Our method is constrained by the foundational
performance of MLLMs themselves, such as the
components of LLLM, the visual encoder, and the
adapter. Due to limited resources, we do not evalu-
ate more recent larger MLLMs.

Ethics Statement

We affirm that our work here does not exacerbate
the biases already inherent in the large language
models and does not have ethics problems.
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