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Abstract001

Multimodal Sarcasm Explanation (MuSE) is a002
new yet challenging task, which aims at gener-003
ating natural language explanations for sarcasm004
in social media image-text pairs. MuSE can005
further enhance sarcasm understanding and has006
attracted increasing research interest. Previous007
works design cross-modal attention or multi-008
source semantic graphs and achieve promising009
performance. However, these works either ig-010
nore the semantic gap between visual features011
and textual decoder or introduce complex graph012
constructions, which limits their practical ap-013
plicability and scalability for real-world sce-014
narios. Furthermore, they treat each sample015
equally during training, overlooking the dif-016
ferent effects of samples at different levels of017
difficulty. In this paper, we propose a novel018
MultiDimensional Sample Difficulty (MDSD)019
based training strategy with the Multimodal020
Large Language Models (MLLMs) for MuSE.021
Leveraging the multidimensional sample diffi-022
culty of image-text pairs, we enable MLLMs to023
learn from easy to hard samples in the training024
stage, mitigating the impact of samples of vary-025
ing difficulty and preventing local optima. We026
can achieve better cross-modal alignment with-027
out complicated procedures based on the align-028
ment and innate knowledge of MLLMs. Exper-029
imental results on two open-source MLLMs on030
a publicly released dataset MORE demonstrate031
that MDSD can further enhance MLLMs and032
achieve state-of-the-art performance.033

1 Introduction034

Sarcasm is a linguistic phenomenon where the lit-035

eral meaning is contradictory to the actual intent036

of speakers. Sarcasm detection aims to identify037

the actual sentiments of users and can be widely038

applied in various scenarios such as opinion min-039

ing (Pang et al., 2008; Riloff et al., 2013) and social040

media analysis (Tsur et al., 2010). In the multi-041

modal domain, multimodal sarcasm detection (Cai042

et al., 2019) focuses on analyzing the incongruity043

D
ifficulty

Input Text:
Thanks North Carolina, I was worried we 
weren't gonna hit traffic
Output Explanation:
The author was worried that they were 
gonna hit traffic in North Carolina and it 
turned out to be true.

Input Image

Input Text:
Your persistence has paid off , i am "" 
woke "" , the earth is flat ! ! ! 

Output Explanation:
Their persistence hasn't paid off, the 
author doesn't believe that the earth is flat.

Input Image

Figure 1: Examples of MuSE. The bottom example
only requires identifying a traffic jam in the image. The
upper harder example requires the prior knowledge that
“the Earth is round” to infer the subtly hidden sarcasm.

in image-text pairs to detect underlying sarcasm. 044

Although many works (Xu et al., 2020b; Liang 045

et al., 2021, 2022; Liu et al., 2022; Qin et al., 2023) 046

provide accurate sarcasm classification results, the 047

lack of corresponding explanations for why they 048

are sarcastic makes the classification results rela- 049

tively superficial for further sarcasm understand- 050

ing. Therefore, Multimodal Sarcasm Explanation 051

(MuSE) aims to provide natural language explana- 052

tions for given sarcastic image-text pairs and has 053

increasingly attracted research attention. Examples 054

of MuSE are shown in Figure 1. 055

Previous works on MuSE primarily focus on 056

effectively injecting visual features into text- 057

generation models. For instance, Desai et al. (2022) 058

incorporates the image and text features through 059

cross-modal attention in the Transformer (Vaswani 060

et al., 2017) encoder and generates explanations by 061

a BART (Lewis et al., 2020)-based auto-regressive 062

decoder. Jing et al. (2023) further uses image 063

object-level metadata, an external knowledge base, 064

and a multi-source semantic graph for sarcasm rea- 065

soning. Despite their effectiveness, they either 066

overlook the semantic gap between visual features 067

and the textual decoder or heavily rely on com- 068

plex graph constructions and the extra knowledge 069
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Figure 2: The average BLEU-4 score of previous meth-
ods on the MORE test set with increasing difficulty1.

base, which limits their applicability and scalabil-070

ity for real-world scenarios. Moreover, they treat071

all samples equally during training without consid-072

ering the different effects of samples at different073

levels of difficulty (Bengio et al., 2009; Xu et al.,074

2020a; Wang et al., 2022). As shown in Figure 2,075

the performance of MuSE models declines with the076

increasing difficulty of samples.077

Inspired by the data-centric training of Large078

Language Models (LLMs) (Lin et al., 2024; McK-079

inzie et al., 2024; Tirumala et al., 2024) and080

the wide applications of Multimodal Large Lan-081

guage Models (MLLMs) (Liu et al., 2023a; Dai082

et al., 2023), we propose a novel MultiDimensional083

Sample Difficulty (MDSD) based training strat-084

egy with MLLMs for MuSE. Specifically, we085

measure sample difficulty from three dimensions:086

MLLM Self-Assessment, Text-Image Consistency,087

and Textual Difficulty. We rank the samples accord-088

ing to the sample difficulty and enable MLLMs089

to learn from easy to hard during training, which090

can achieve a better sarcasm understanding. By091

leveraging the inherent knowledge and sufficient092

cross-modal alignment of MLLMs, we can achieve093

better alignment without cumbersome procedures.094

In summary, our contributions are as follows:095

• We design the MDSD to measure the difficulty096

of image-text pairs. This helps MuSE models097

learn from easy to hard samples, reducing the098

impact of variable difficulty during training.099

• We propose to use MLLMs for MuSE, which100

can achieve better cross-modal alignment101

without complex processes.102

• Experimental results on a public dataset103

demonstrate that MDSD can enhance MLLMs104

and achieve state-of-the-art performance.105

0The difficulty is Dtotal, which is obtained in Section 2.2.

2 Methodology 106

In this section, we first present the brief task formu- 107

lation of MuSE and describe the MDSD to measure 108

the difficulty of image-text pairs, including MLLM 109

SelfAssessment, Text-Image Consistency, and Tex- 110

tual Difficulty. Finally, we rank the image-text pairs 111

based on the total difficulty and enable MLLMs to 112

learn from easy to hard. 113

2.1 Task Formulation 114

Given image-text pairs ⟨vi, ti⟩, where vi is the i- 115

th image input and ti is the i-th text input. The 116

multimodal sarcasm explanation model needs to 117

generate the corresponding sarcasm explanation. 118

2.2 Difficulty Measurement 119

We design the multidimensional sample difficulty, 120

which consists of MLLM SelfAssessment, Text- 121

Image Consistency, and Textual Difficulty. We 122

measure the samples from totally different dimen- 123

sions and assume that they are independent of each 124

other and each contributes to different extents. 125

2.2.1 MLLM SelfAssessment 126

Large language models have been found to per- 127

form a strong powerful self-decision-making ca- 128

pability, which has been applied in data optimiza- 129

tion (Xu et al., 2023) and decision-making (Yang 130

et al., 2023; Asai et al., 2023). In this paper, we aim 131

to enable MLLMs to better understand the sarcasm 132

in multimodal image-text pairs. Thus allowing 133

MLLMs to self-score the difficulty of samples can 134

distinguish samples of varying difficulty from the 135

dimension of models. 136

As shown in Figure 3, MLLMs are required to 137

assign a score from 0 to 10 to evaluate the difficulty 138

Dself of explaining sarcasm in the given image-text 139

pair. A higher score indicates a greater difficulty 140

of the sample. For simple samples, the model can 141

easily interpret the sarcasm, while more complex 142

samples require further sarcasm understanding. 143

2.2.2 Text-Image Consistency 144

As for multimodal sarcasm, sarcasm often resides 145

in the semantic differences between text and im- 146

age pairs. For example, as shown in the bottom 147

example of Figure 1, the text “I was worried we 148

weren’t gonna hit traffic” contrasts with the image 149

of a traffic jam, thus creating a sarcastic expres- 150

sion. Additionally, current MLLMs typically use 151

an adapter to connect the visual encoder with the 152
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I don 't know why poorThanks North Carolina, I100 % open-house ready . 

M
LLM

<image>Please rate the difficulty 
of sarcasm explanation for this 
image and <100 % open-house 
ready . > on a scale of 1-10:

CLIP Image
Encoder

CLIP Text
Encoder

Perplexity

C
osine Sim

Softm
ax

open-house isn't ready, things are 
spread all around.

Input Texts

Input Images

MLLM

Softm
ax

Softm
ax

Visual Encoder

Adapter
Tokenization & Embedding

Large Language Model

<image>\nPlease explain 
why  t he  <100  % open-
house ready . > and this 
image contain sarcasm:

Multidimensional Sample Difficulty Learning from easy to hard

  

Figure 3: The overview of MDSD. First, we measure the multidimensional sample difficulty of the image-text pairs,
then rank them by difficulty to enable MLLM to learn from easy to hard samples.

large language model. The degree of alignment be-153

tween textual and visual modalities also influences154

the understanding of MLLMs of multimodal data.155

Therefore, we can assess the difficulty of image-156

text pairs from a cross-modal alignment dimension.157

Specifically, we use CLIPScore (Hessel et al.,158

2021), which is designed to evaluate text-image159

similarity. Given image-text pairs, we obtain em-160

beddings from the visual and textual encoder of161

CLIP (Radford et al., 2021):162

Embv = CLIPvis(V ) (1)163

164
Embt = CLIPtext(T ) (2)165

where Embv and Embt are the visual and textual166

embeddings of images V and texts T .167

The higher the text-image consistency, the more168

similar the text and image, allowing models to ex-169

plain sarcasm just by analyzing their differences.170

Conversely, the lower the text-image consistency,171

the greater the disparity between the text and im-172

age, requiring models to perform more extensive173

analysis to understand sarcasm. Thus we measure174

the difficulty of text image consistency DTIS by175

the reciprocal of cosine similarity Embv and Embt:176

DTIS = 1/cos(Embv,Embt) (3)177

The higher the DTIS , the harder the sample.178

2.2.3 Textual Difficulty179

For MLLMs, the core component is LLMs, and180

the text generation capability of LLMs could influ-181

ence the final generation of sarcasm explanations in182

natural language. Considering that the commonly183

used loss function of LLM’s pre-training stage is184

perplexity, which is also often used to measure tex- 185

tual difficulty (Marion et al., 2023; Muennighoff 186

et al., 2024), we employ perplexity as the metric to 187

measure the difficulty Dppl of the input text: 188

Dppl =

(
N∏
i=1

1

P (wi|w1, . . . , wi−1)

) 1
N

(4) 189

where N is the length of the given text and wi is 190

the i-th word. The higher Dppl, the more difficult it 191

is for LLMs to generate the required explanation. 192

2.2.4 Total Difficulty 193

After obtaining the difficulties from the different 194

dimensions mentioned above, we need to combine 195

them to get the final total difficulty. Our goal is to 196

rank the samples based on their difficulty. There- 197

fore, we only need to determine the relative diffi- 198

culty of each sample within the overall samples. 199

We also treat three dimensions of difficulty with 200

equal importance. Specifically, we normalize the 201

three above difficulties separately by softmax, and 202

then sum them: 203

Di
total =

eD
i
self∑

j e
Dj

self

+
eD

i
TIS∑

j e
Dj

TIS

+
eD

i
ppl∑

j e
Dj

ppl

(5) 204

where Di
total is the total difficulty of the given i-th 205

image-text pair. 206

2.3 Optimization Object 207

Finally, we rank the image-text pairs based on 208

Dtotal and enable MLLMs to learn from easy to 209

hard samples. We construct the input for MLLMs 210

by a pre-designed template for the given image-text 211

pair, as shown in Figure 3. 212
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Consistent with the loss calculation in auto-213

regressive LLMs, we only compute the cross-214

entropy loss for the response of MLLMs, i.e., the215

corresponding sarcasm explanation of the input:216

Lce =

n−1∑
i=1

− log pθ(yi+1|⟨Xv,Xinstruction⟩,Yi)

(6)217

where Xv is the visual input, Xinstruction is the218

textual instruction. Yi = ⟨y1, ..., yi⟩ is the under219

generating response, n is the response token num-220

bers, yi is the i-th token of generated response and221

θ represents the parameters of MLLMs.222

3 Experiments223

3.1 Dataset and Metrics224

We evaluate our method on the only public multi-225

modal sarcasm explanation dataset MORE (Desai226

et al., 2022), which contains sarcastic image-text227

pairs from various social media sites (Twitter2, In-228

staram3 and Tumblr4) and the corresponding sar-229

casm explanation for each pair is manually anno-230

tated, including 2, 983 for training, 175 for valida-231

tion, and 352 for testing. Each sample of MORE is232

a triplet of ⟨image, text, explanation⟩. Statistics233

of the MORE dataset are shown in Table 1.234

Following previous works (Desai et al., 2022;235

Jing et al., 2023), we adopt BLEU-{1,2,3,4} (Pa-236

pineni et al., 2002), METEOR (Banerjee and237

Lavie, 2005), ROUGE-{1,2,L} (Lin, 2005),238

BERTScore (Zhang et al., 2019) and Sentence-239

BERT (Reimers and Gurevych, 2019) to assess240

the performance of our proposed method.241

3.2 Experimental Settings242

We choose the LLaVA-1.5-7B (Liu et al., 2023a)243

and ShareGPT4V-7B (Chen et al., 2023b) as the244

base MLLM. We use the same vision encoder of245

MLLMs to calculate text-image consistency, and246

the same LLM to calculate textual difficulty. For247

the image inputs, we used “BLIP2-FlanT5-XL” to248

extract captions as inputs for LLMs. We adopt249

Parameter-Efficient-Fine-Tuning (PEFT) for the250

training stage,i.e., LoRA (Hu et al., 2021), and in-251

ject the low-rank matrices as adapters into MLLM.252

The rank of the update matrices is 128 and the scal-253

ing factor of LoRA is 256. We freeze the vision254

encoder and fine-tune the vision-language adapter255

2https://twitter.com/
3https://www.instagram.com/
4https://www.tumblr.com/

MORE Samples Input Avg.L Explanation Avg.L

Train 2,983 19.75 15.47
Val 175 18.85 15.39
Test 352 19.43 15.08
Total 3,510 19.68 15.43

Table 1: The statistics of MORE datasets. Input Avg.L
denotes the average length of input text. Explanation
Avg.L denotes the average length of output explanation.

and LLM. The learning rate for the adapter is 2e-5 256

and the learning rate for LLM is 2e-4. The batch 257

size is 12 and the training epoch is 2. In the first 258

epoch, we train the model from simple to difficult 259

samples in the hope that it will better learn the sar- 260

castic meanings in the samples. After the model has 261

acquired a basic capability for sarcasm explanation 262

in the first epoch, we randomize the samples in the 263

second epoch to enhance the training’s robustness. 264

All models are trained on 2 NVIDIA 3090Ti GPUs 265

for several hours and tested on a single NVIDIA 266

3090Ti GPU. 267

3.3 Compared Methods 268

To valid the effectiveness of our proposed method, 269

we compare our method with the following existing 270

methods following previous works (Desai et al., 271

2022; Jing et al., 2023): 272

(1) PGN (See et al., 2017). The Pointer Genera- 273

tor Network is a text-based generation model that 274

utilizes a conventional decoder and a copy mecha- 275

nism to directly copy words from the input text. 276

(2) Transformer (Vaswani et al., 2017). A text- 277

based generation baseline generates sarcasm expla- 278

nations with the transformer architecture. 279

(3) MFFG-RNN and MFFG-Trans. Two vari- 280

ations of MFFG (Liu et al., 2020), which is a 281

multimodal-based generation model for video sum- 282

marization. MFFG-RNN and MFFG-Trans use 283

RNN and transformer as the decoder respectively. 284

(4) M-Transf (Yao and Wan, 2020). The multi- 285

modal Transformer model for machine translation. 286

M-Transf adopts the concatenation of text and im- 287

age features for query and text representation for 288

key and value in the cross-modal attention. 289

(5) ExMore (Desai et al., 2022). This method 290

is designed for multimodal sarcasm explanation, 291

which adopts BART (Lewis et al., 2020) as the 292

model backbone and employs cross-modal atten- 293

tion in the encoder to inject the visual information 294

into BART. Different from M-Transf, ExMore uses 295

text representation for query and image representa- 296
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Model BLEU ROUGE METEOR BERTScore SentBERT
B1 B2 B3 B4 RL R1 R2 Pre Rec F1 (Cosine)

PGN 17.54 6.31 2.33 1.67 16.00 17.35 6.90 15.06 84.80 85.10 84.90 49.42
Transformer 11.44 4.79 1.68 0.73 15.90 17.78 5.83 9.74 83.40 84.90 84.10 52.55
MFFG-RNN 14.16 6.10 2.31 1.12 16.21 17.47 5.53 12.31 81.50 84.00 82.70 44.65
MFFG-Transf 13.55 4.95 2.00 0.76 15.14 16.84 4.30 10.97 81.10 83.80 82.40 41.58

M-Transf 14.37 6.48 2.94 1.57 18.77 20.99 6.98 12.84 86.30 86.20 86.20 53.85
ExMore 19.26 11.21 6.56 4.26 25.23 27.55 12.49 19.16 88.30 87.50 87.90 59.12

TEAM-w/o-Know 52.63 42.42 35.80 30.91 48.67 49.28 33.18 48.53 90.90 91.40 91.10 71.58
TEAM 55.32 45.12 38.27 33.16 50.58 51.72 34.96 50.95 91.80 91.60 91.70 72.92

ChatGPT-zero-shot 12.64 6.83 4.40 3.01 18.56 19.18 6.51 25.39 83.62 86.77 85.15 60.85
ChatGPT-one-shot 26.20 15.34 9.91 5.99 28.98 30.22 11.46 28.61 86.95 87.84 87.38 63.19

ChatGLM2-6B 53.51 44.28 37.98 33.26 52.98 55.46 38.71 46.82 91.96 90.94 91.42 75.46
Llama2-7B 57.54 47.37 40.61 35.57 53.41 56.76 39.55 49.65 91.85 91.51 91.66 78.31

LLaVA1.5-7B 57.92 47.83 41.21 36.18 54.63 56.95 39.72 50.54 92.01 91.74 91.85 78.43
ShareGPT4V-7B 59.07 48.67 41.84 36.62 54.64 57.76 40.17 51.61 92.07 91.95 91.99 78.65

MDSD (LLaVA) 58.82† 49.43† 43.16† 38.38† 56.65† 59.63† 42.77† 52.26† 92.49† 92.03† 92.24† 79.32†

MDSD (ShareGPT4V) 58.33 49.27† 43.16† 38.48† 57.05† 59.73† 43.19† 52.37† 92.57† 91.98† 92.25† 79.32†

Table 2: Experimental results on MORE. † means our method outperforms the base MLLM (LLaVA, ShareGPT4V)
significantly with p < 0.05. The best results are highlighted in bold, and the second-best results are underlined.

tion for key and value projections.297

(6) TEAM-w/o-Know and TEAM (Jing et al.,298

2023). This is the previous SOTA method, which299

is a graph-based method utilizing the object-level300

meta-data and external knowledge base like Con-301

ceptNet (Speer et al., 2017) for multimodal sarcasm302

explanation. TEAM conducts the multi-source303

semantic graph construction process through the304

graph convolutional network in the BART encoder,305

and generates explanations in the BART decoder.306

TEAM-w/o-Know means TEAM that does not use307

external knowledge like ConceptNet.308

We also compare our method with recent LLMs309

and MLLMs for a comprehensive comparison:310

(7) ChatGPT-zero-shot and ChatGPT-one-311

shot 5. A closed-source LLM for chat, as known312

as GPT-3.5-turbo. For the one-shot setting, we ran-313

domly choose an example of the training set of314

MORE as the demonstration.315

(8) ChatGLM2-6B (Du et al., 2022). An open316

bilingual language model based on the general lan-317

guage model, with 6.2 billion parameters.318

(9) Llama-2-7B (Touvron et al., 2023b). The319

foundation LLM pre-trained on 2 trillion tokens,320

with 7 billion parameters.321

(10) LLaVA-1.5-7B (Liu et al., 2023a). An open-322

source MLLM adopts a multi-layer perceptron as323

an adapter to connect the vision encoder and LLM,324

which has 7 billion parameters.325

(11) ShareGPT4V-7B (Chen et al., 2023b). An326

open-source MLLM with high-quality data anno-327

5https://chatgpt.com/

tated by GPT4V. 328

For a fair comparison, we apply MDSD on the 329

two MLLMs, LLaVA and ShareGPT4V, to vali- 330

date the effectiveness of our method. We utilize 331

image captions as the visual inputs for the LLMs: 332

ChatGPT, ChatGLM, and Llama. 333

3.4 Main Results 334

As shown in Table 2, our method achieves im- 335

provements on the majority of metrics across 336

two MLLMs, demonstrating the effectiveness of 337

MDSD. Additionally, MDSD (ShareGPT4V) out- 338

performs MDSD (LLaVA), indicating the impor- 339

tance of the choice of base models. 340

As for ChatGPT, we believe the low performance 341

is due to a gap between the content output of the 342

alignment standard by GPT after Reinforcement 343

Learning with Human Feedback (RLHF) and the 344

human-annotated reference standard of MORE. As 345

a result, the metrics calculated based on the GPT 346

output and reference results are not high. The one- 347

shot performs better than the zero-shot, indicating 348

the effectiveness of in-context learning. 349

For LLMs such as ChatGLM and Llama, even 350

when the input images are converted into textual 351

captions, LLMs can still perform well on the mul- 352

timodal task MuSE. Llama2-7B even surpasses 353

the previous SOTA method TEAM. The perfor- 354

mance differences between Llama and ChatGLM 355

are attributed to the differences in pre-training data, 356

which result in inherent performance differences 357

between the base models. 358

5
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Model BLEU ROUGE METEOR BERTScore SentBERT
B1 B2 B3 B4 RL R1 R2 Pre Rec F1 (Cosine)

Non-OCR samples

PGN 17.87 6.37 1.92 1.26 16.43 17.80 6.92 15.62 84.70 85.20 84.90 48.77
Transformer 11.65 5.65 1.73 0.69 16.16 17.41 6.26 10.13 83.60 85.10 84.30 48.40
MFFG-RNN 15.43 6.82 2.46 1.33 17.40 18.61 5.71 12.98 81.60 84.30 82.90 42.72
MFFG-Transf 13.28 5.35 1.49 0.26 14.90 16.80 4.35 11.19 81.30 84.00 82.60 41.68

M-Transf 14.91 6.90 2.66 0.83 19.34 21.05 7.08 13.91 86.50 86.30 86.40 51.77
ExMore 19.47 11.69 6.82 4.27 24.92 27.12 12.12 19.20 88.30 87.60 88.00 56.95

TEAM-w/o-Know 53.43 43.41 36.77 31.78 49.72 51.12 34.78 49.24 91.50 91.90 91.80 71.62
TEAM 56.45 46.34 39.58 34.34 52.79 53.81 36.78 51.62 92.40 92.90 92.30 73.35

ChatGPT-zero-shot 12.69 7.04 4.56 3.12 18.90 19.32 6.83 26.54 83.94 87.15 85.35 60.40
ChatGPT-one-shot 25.74 15.45 9.24 5.38 27.24 28.25 10.19 26.15 86.83 87.24 87.02 63.39

ChatGLM2-6B 54.60 45.21 38.38 33.16 55.08 57.36 40.57 49.02 92.20 91.36 91.75 74.79
Llama2-7B 59.34 49.22 42.15 36.73 54.93 58.04 40.84 51.88 92.13 92.01 92.05 73.35

LLaVA1.5-7B 60.05 50.11 43.12 37.65 57.70 59.29 42.58 53.67 92.41 92.24 92.30 78.41
ShareGPT4V-7B 59.64 49.11 41.83 36.05 56.59 58.89 41.12 53.37 92.26 92.38 92.30 79.68

MDSD (LLaVA) 60.72† 51.29† 44.70† 39.49† 59.44† 61.83† 44.94† 54.91† 92.83† 92.51† 92.65† 79.92†

MDSD (ShareGPT4V) 60.65† 51.15† 44.56† 39.29† 59.87† 62.15† 45.24† 55.40† 92.93† 92.59† 92.74† 80.17†

OCR samples

PGN 17.19 6.08 2.49 1.79 15.55 16.92 6.76 14.64 84.90 84.90 84.90 49.53
Transformer 10.68 4.01 1.49 0.71 15.04 17.25 5.32 8.99 83.20 84.70 83.90 53.94
MFFG-RNN 12.18 4.92 1.73 0.88 14.01 15.18 4.56 10.64 81.20 83.70 82.40 45.91
MFFG-Transf 12.87 4.12 1.69 0.62 14.20 15.54 3.53 9.70 81.00 83.60 82.30 41.13

M-Transf 14.06 6.25 3.22 2.28 18.42 21.04 7.01 12.06 86.20 86.10 86.10 55.66
ExMore 19.40 11.31 6.83 4.76 25.66 28.02 12.10 19.15 88.20 87.50 87.90 60.82

TEAM-w/o-Know 51.91 41.51 34.85 29.85 47.53 49.00 32.77 47.94 90.50 91.00 90.70 71.43
TEAM 52.88 43.08 36.81 32.34 48.46 49.68 33.83 49.25 90.90 90.00 90.80 71.93

ChatGPT-zero-shot 12.56 6.78 4.35 2.90 18.54 18.90 6.63 24.68 83.61 86.49 85.01 61.55
ChatGPT-one-shot 25.58 14.85 9.24 5.38 27.24 28.25 10.19 26.15 86.83 87.24 87.02 63.39

ChatGLM2-6B 52.70 43.65 37.74 33.36 51.62 54.11 37.43 44.90 91.81 90.60 91.18 75.32
Llama2-7B 56.19 46.08 39.53 34.72 52.36 55.84 38.69 47.92 91.65 91.06 91.33 77.98

LLaVA1.5-7B 56.46 46.24 39.89 35.17 52.21 54.96 37.40 47.70 91.67 91.27 91.44 77.86
ShareGPT4V-7B 58.72 48.48 42.01 37.14 53.14 56.57 39.41 48.93 91.87 91.54 91.68 77.30

MDSD (LLaVA) 57.63† 48.24† 42.13† 37.58† 54.53† 57.73† 40.88† 49.95† 92.18† 91.59† 91.86† 78.51†

MDSD (ShareGPT4V) 56.75 48.03 42.24† 37.96† 54.92† 57.67† 41.46† 49.71† 92.24† 91.43 91.81† 78.14†

Table 3: Experimental results on MORE. † means our method outperforms the base MLLM (LLaVA, ShareGPT4V)
significantly with p < 0.05. The best results are highlighted in bold, and the second-best results are underlined.

4 Analysis359

4.1 Multidimensional Sample Difficulty360

Benefit361

Taking LLaVA as the base MLLM, we also calcu-362

late the BLEU-4 scores based on different difficul-363

ties to further validate the effectiveness of MDSD.364

As shown in Figure 4, both MDSD (LLaVA) and365

LLaVA significantly outperform TEAM, indicat-366

ing the promising performance of simply adopting367

MLLMs. Furthermore, MDSD can especially en-368

hance MLLMs to learn difficult samples, e.g., the369

samples of 50%-80% difficulty level, demonstrat-370

ing the effectiveness of MDSD. It is worth noting371

that the test set of the MORE dataset has a relatively372

small sample size. When samples are divided ac-373

cording to difficulty level, the number of samples374

for each difficulty level is different, which will lead375

to fluctuations in the calculated BLEU score curve,376

as shown in 4. However, the trend of the curve still377

allows us to draw the conclusions.378

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Difficulty Level

25

30

35

40

45

B
LE

U
-4

Hard

TEAM
LLaVA
MDSD (LLaVA)

Figure 4: The average BLEU-4 score of our method,
LLaVA (Liu et al., 2023a) and TEAM (Jing et al., 2023)
at different difficulties on the MORE test set.

4.2 Non-OCR and OCR Settings 379

Following previous works (Desai et al., 2022; Jing 380

et al., 2023), we also conduct the performance com- 381

parison of different methods across three dataset 382

settings: all samples (as shown in Table 2), Non- 383

OCR samples, and OCR samples. OCR samples de- 384

note the samples whose images contain embedded 385

texts, while Non-OCR samples do not. As shown 386
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Model BLEU ROUGE METEOR BERTScore SentBERT
B1 B2 B3 B4 RL R1 R2 Pre Rec F1 (Cosine)

All samples

MDSD (LLaVA) 58.82 49.43 43.16 38.38 56.65 59.63 42.77 52.26 92.49 92.03 92.24 79.32
w/o Dself 57.51 48.18 41.91 37.17 56.09 59.19 42.12 51.93 92.01 92.62 91.98 79.85
w/o DTIS 57.74 47.19 41.75 36.84 55.78 58.11 41.33 51.81 92.44 91.98 92.19 78.89
w/o Dppl 58.13 49.22 43.03 38.12 56.45 59.44 42.48 52.15 92.44 92.02 92.21 79.23

w/o Dppl, DTIS , Dself 57.92 47.83 41.21 36.18 54.63 56.95 39.72 50.54 92.01 91.74 91.85 78.43

Non-OCR samples

MDSD (LLaVA) 60.72 51.29 44.70 39.49 59.44 61.83 44.94 54.91 92.83 92.51 92.65 79.92
w/o Dself 59.14 49.59 42.90 37.71 58.60 61.35 44.32 54.84 92.95 92.55 92.73 80.68
w/o DTIS 59.58 49.67 42.78 37.40 57.91 60.56 42.55 54.33 92.60 92.41 92.48 79.13
w/o Dppl 59.96 51.13 44.58 39.16 59.19 61.22 44.19 54.78 92.73 92.58 92.64 80.14

w/o Dppl, DTIS , Dself 60.05 50.11 43.12 37.65 57.70 59.29 42.58 53.67 92.41 92.24 92.30 78.41

OCR samples

MDSD (LLaVA) 57.63 48.24 42.13 37.58 54.53 57.73 40.88 49.95 92.18 91.59 91.86 78.51
w/o Dself 56.76 47.66 41.69 37.25 54.19 57.67 40.78 49.85 92.38 91.52 91.93 78.79
w/o DTIS 56.75 47.44 41.28 36.68 54.31 57.41 40.53 49.81 92.30 91.58 91.92 78.26
w/o Dppl 56.99 47.78 42.74 38.27 54.39 57.90 41.02 50.15 92.16 91.53 91.82 78.30

w/o Dppl, DTIS , Dself 56.46 46.24 39.89 35.17 52.21 54.96 37.40 47.70 91.67 91.27 91.44 77.86

Table 4: Ablation study of MDSD (LLaVA) on MORE dataset. Dself , DTIS , Dppl are the difficulties in Sec 2.2.

in Table 3, most methods exhibit a performance387

decline on the OCR setting, indicating that the em-388

bedded text in the image poses a greater challenge389

for MuSE models to understand the image inputs,390

thereby increasing the difficulty of MuSE. Never-391

theless, our proposed MDSD still achieves improve-392

ments on the majority of metrics in both Non-OCR393

and OCR settings, with the enhancements being394

particularly significant in the non-OCR setting.395

4.3 Ablation Study396

We also choose MDSD (LLaVA) to conduct the ab-397

lation study, as shown in Table 4. Without our mul-398

tidimensional sample difficulty, i.e. pure LLaVA,399

the model performs the worst, which demonstrates400

the effectiveness of our method. Among the three401

different dimensions of difficulty, the impact of402

DTIS is the greatest, while the impact of Dppl is403

the smallest. This indicates that although adapters404

are introduced to align image and text representa-405

tions, enabling MLLMs to understand multimodal406

data. For samples with low text-image consistency,407

MLLMs require more knowledge and analysis to408

understand the image and text to figure out the cor-409

rect result. Therefore, allowing MLLMs to learn410

from easy samples with high image-text consis-411

tency can better facilitate the understanding of sar-412

casm in image-text pairs. Furthermore, allowing413

MLLMs to perform the self-assessment of sam-414

ple difficulty Dself and requiring MLLMs to learn415

gradually can also boost MLLMs performance. As416

for Dppl, given that the widely used loss of LLMs417

pre-training is already perplexity and that LLMs 418

have been trained on a large number of unsuper- 419

vised samples, focusing solely on perplexity in 420

MuSE may have minimal impact. 421

4.4 Case Study 422

To further demonstrate that ordering samples by 423

difficulty level helps in training, we also conduct 424

a case study, as shown in Figure 5. We select 425

ShareGPT4V (Liu et al., 2023a) as the base MLLM 426

and select cases from different difficulty levels. 427

From the perspective of MDSD difficulty levels, 428

the low-level case just requires recognizing that 429

“the baby” in the image is unhappy to explain the 430

sarcasm. The medium-level case needs to infer 431

that the image depicts a babysitting scenario and 432

that the job is “tiring” rather than “great”. The 433

High-level case further requires analyzing that the 434

windshield is covered with ice, which causes incon- 435

venience for the author, and better integrating the 436

textual description to infer that the author “hates 437

winter”. The difficulty of explaining the sarcasm 438

of the sample is consistent with our difficulty level, 439

demonstrating the effectiveness of MDSD. 440

For the analysis of output results, our method 441

is closer to the target explanation compared to the 442

base MLLM. At the low level, our result accurately 443

identifies “the baby” to explain the sarcasm. At 444

the mid level, our result correctly recognizes that 445

babysitting is “exhausting”. At the high level, our 446

result also accurately identifies “hates the winter”. 447

This indicates that enabling MLLMs to learn from 448
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Input Text:
We were so happy in this 
picture!!!  

Difficulty: Low

Ours:
the baby wasn't happy in this picture.

Target Explanation:
the baby is crying in this picture.

MLLM:
they weren't so happy in this picture.

Input Text:
Babysitting is just great

Difficulty: Mid

Ours:
Babysitting is exhausting.

Target Explanation:
babysitting can be tiring.

MLLM:
the author is babysitting and it's 
not great.

Input Text:
Thank you winter i love you so 
much, I wish you'd stay for 10 
more years!! 

Difficulty: High

Ours:
the author hates the winter and wishes it 
would end.

Target Explanation:
the author hates winter, her windshield is 
covered with ice.

MLLM:
the author wishes it'd stay for just 10 
more years.

Figure 5: Case study on the test set of MORE, Dtotal, Dself , DTIS , Dppl are at the same level.

easy to hard based on our proposed MDSD during449

training can significantly enhance their understand-450

ing of sarcasm, leading to better performance.451

5 Related Work452

5.1 Multimodal Sarcasm Detection and453

Explanation454

Traditional sarcasm detection aims to identify455

user sentiments and detect sarcasm in textual456

data (Zhang et al., 2016; Tay et al., 2018; Babane-457

jad et al., 2020). With the rise of multimodal data458

on social media, the focus has shifted to multi-459

modal sarcasm detection (Schifanella et al., 2016;460

Cai et al., 2019). Further research on multimodal461

sarcasm detection has explored the integration of462

visual and textual data through various methods,463

such as decomposition and relation networks (Xu464

et al., 2020b), BERT-based models with modi-465

fied attention mechanisms (Pan et al., 2020; Wang466

et al., 2020), graph neural networks (Liang et al.,467

2021, 2022), optimal transport (Pramanick et al.,468

2022), hierarchical framework with external knowl-469

edge (Liu et al., 2022), dynamic routing (Tian et al.,470

2023) and utilization of CLIP (Radford et al., 2021)471

from multi views (Qin et al., 2023).472

However, the lack of corresponding natural lan-473

guage explanations for those sarcasm samples474

makes further understanding of sarcasm and its475

applications difficult. Thus Desai et al. (2022) fur-476

ther proposes the multimodal sarcasm explanation477

with a cross-modal BART-based model. Jing et al.478

(2023) adopts the graph neural network with extra479

meta-data and knowledge bases to enhance the per-480

formance of the multimodal sarcasm explanation481

model. Compared with those methods, our pro-482

posed methods can utilize MLLMs without extra483

data resources and enable MLLMs to learn from484

easy to hard for a better understanding of multi- 485

modal sarcasm samples. 486

5.2 Multimodal Large Language Models 487

In multimodal research, applying powerful 488

LLMs (Touvron et al., 2023a,b) to multimodal tasks 489

has garnered increasing attention. Early work, such 490

as Frozen (Tsimpoukelli et al., 2021), achieved im- 491

pressive performance by training a visual encoder 492

to encode image inputs as a prefix in a frozen pre- 493

trained language model. BLIP (Li et al., 2022) pre- 494

trained a multimodal mixture of encoder-decoder 495

model to enhance vision-language tasks further, 496

while BLIP2 (Li et al., 2023) introduced a Q-former 497

to efficiently align visual features to LLMs. Other 498

studies, such as MiniGPT4 (Zhu et al., 2023; Chen 499

et al., 2023a), LLaVA (Liu et al., 2023a,b), and 500

Qwen-VL (Bai et al., 2023), utilized adapters like 501

linear layers or multi-layer perceptrons to align 502

image features extracted from visual encoders like 503

ViT (Dosovitskiy et al., 2020). ShareGPT4V (Chen 504

et al., 2023b) adopts GPT4V-distilled data to con- 505

struct a stronger MLLM based on LLaVA. 506

6 Conclusion 507

In this paper, we propose the MultiDimensional 508

Sample Difficulty (MDSD) based training strategy 509

with MLLMs for MuSE. Specifically, we develop 510

MLLM self-assessment, image-text consistency, 511

and textual difficulty as the multidimensional diffi- 512

culty. We rank the samples based on the total diffi- 513

culty and enable MLLMs to learn from easy to hard. 514

Experimental results on two open-source MLLMs 515

on a public dataset demonstrate that MDSD can 516

boost MLLMs for MuSE and outperform previous 517

SOTA methods by a large margin. 518
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Limitations519

Our method is constrained by the foundational520

performance of MLLMs themselves, such as the521

components of LLM, the visual encoder, and the522

adapter. Due to limited resources, we do not evalu-523

ate more recent larger MLLMs.524

Ethics Statement525

We affirm that our work here does not exacerbate526

the biases already inherent in the large language527

models and does not have ethics problems.528
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