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ABSTRACT

Large language models (LLMs) trained on web-scale data can produce toxic out-
puts, raising concerns for safe deployment. Prior defenses, based on applications
of DPO, NPO, and similar algorithms, reduce the likelihood of harmful continua-
tions, but not robustly so: they are vulnerable to adversarial prompting and easily
undone by fine-tuning–based relearning attacks. Indeed, research has shown that
these edits to the model are superficial: linear probing reveals that harmful “direc-
tions” remain present in representations. Motivated by these findings, we propose
Representation Erasure-based Preference Optimization method (REPO), which
builds on SURE (Sepahvand et al., 2025), an unlearning algorithm originally de-
veloped for classification. Our core strategy is to preserve the representations of
benign (safe, nontoxic) generations while forcing the representations of toxic gen-
erations to converge toward their benign counterparts. This alignment is achieved
through a coupled objective, which combines a retain loss on non-toxic samples
with a domain-adversarial loss on both toxic and non-toxic samples, enforced by
a gradient reversal layer. Comprehensive evaluations show that REPO not only
significantly reduces in-distribution and out-of-distribution toxicity compared to
baselines like DPO, NPO, and RMU, but also achieves best-in-class robustness
against sophisticated attacks, including relearning on forget and retain samples,
and adversarial prompt injection, via an enhanced variant of GCG.

1 INTRODUCTION

LLMs trained on massive, uncurated corpora can exhibit undesirable behaviors, including the mem-
orization and regurgitation of hazardous knowledge (Li et al., 2024), the generation of toxic lan-
guage (Wen et al., 2023), and the amplification of social biases engrained in large-scale web
data (Sheng et al., 2019; Gehman et al., 2020). These risks have motivated the development of align-
ment algorithms aimed at reducing these behaviors. However, the application of existing alignment
algorithms has proven fragile: while they can mitigate such behaviors, models remain vulnerable to
jailbreak attacks that bypass safeguards and elicit harmful generations (Singh et al., 2025; Schwinn
et al., 2024). For example, Greedy Coordinate Gradient (GCG), an adversarial attack that appends
optimized suffixes to harmful queries, achieves high jailbreak success rates in eliciting harmful out-
puts across a variety of aligned models (Zou, Wang, et al., 2023; Jia et al., 2024).

Unlearning has emerged as a complementary strategy for mitigating problematic content in pretrain-
ing data, including private information and toxic language (Liu et al., 2025; Xu et al., 2023). Unlike
safety training approaches that suppress harmful outputs, unlearning aims to removing hazardous
capabilities from models altogether, making them inaccessible even to adversaries (Singh et al.,
2025; Liu et al., 2025) with white or blackbox access. Early results indicate that unlearning can be
effective against certain attacks; for example, methods such as RMU (Li et al., 2024) were observed
to be resistant to linear probing of internal activations (Burns et al., 2023) and to classic forms of
adversarial prompting like GCG (Zou, Wang, et al., 2023; Huu-Tien et al., 2025). Latent adversarial
training can strengthen robustness by perturbing intermediate activations, thereby suppressing un-
desirable behaviors (Sheshadri et al., 2024). However, unlearning is not a panacea, as more adaptive
jailbreaks have been shown to succeed (Łucki et al., 2025; Singh et al., 2025; Hu, Fu, et al., 2024).
Among the most effective attacks are relearning attacks, which recover supposedly removed capa-
bilities through lightweight fine-tuning on as few as ten unrelated examples (Hu, Fu, et al., 2024),
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Figure 1: A schematic representation of REPO. Its regressor can be attached to any transformer
block M targeted for unlearning; here, M is taken as the final transformer block before the linear
unembedding layer. For each prompt, the retain (nontoxic) continuation xr and the forget (toxic)
continuation xf are fed into the network, and the discriminator is trained to distinguish between
toxic and nontoxic inputs.

and enhanced versions of GCG, which substantially improve attack success against RMU and NPO
with only small modifications to the original GCG loss function (Łucki et al., 2025).

Motivated by these vulnerabilities, recent work has increasingly explored representation-based
approaches that intervene directly on hidden representations rather than on the outputs of the
model. Embedding-based unlearning, for instance, has been shown to be more resilient to para-
phrasing attacks, preventing forgotten knowledge from resurfacing under semantic variations of
prompts (Spohn et al., 2025). Mechanistic localization of unlearning to factual recall pathways like-
wise improves robustness against relearning by preventing capabilities from being restored through
lightweight fine-tuning (Guo et al., 2025). Representation-level interventions also resist membership
inference and inversion attacks, offering stronger privacy guarantees for forgotten data (Hu, Huang,
et al., 2025). Overall, these results suggest that targeting hidden features can enable more durable
forgetting, improving stability and resistance to knowledge recovery compared to output-level or
gradient-based approaches (Muhamed et al., 2025; Jung et al., 2025; Wang, Li, et al., 2025).

Building on these findings, we propose the Representation Erasure-based Preference Optimization
(REPO) method to detoxify large language models. REPO adapts the Selective Unlearning via Rep-
resentation Erasure (SURE) method (Sepahvand et al., 2025), which was originally developed for
the classification setting to erase the influence of a “forget set” by adjusting a model’s represen-
tations. In our adaptation, REPO aligns the representations of toxic continuations with those of
non-toxic ones, which reduces the model’s tendency to exhibit toxic behavior while preserving its
ability to generate helpful and appropriate responses.

Our main contributions are as follows:

• We introduce REPO as a representation-based preference optimization method for detoxifying
LLMs, providing a novel approach to removing toxic behaviors.

• We demonstrate that REPO achieves state-of-the-art performance, significantly reducing toxicity
while preserving model utility, and showing superior robustness to a suite of adversarial attacks.

• We provide a detailed mechanistic analysis comparing REPO to both output-space and other
representation-space methods. We show that representation-based objectives induce deeper
changes in the network and that REPO ’s modifications are uniquely localized to toxic tokens
and the specific neurons that encode toxicity.

• Through targeted ablations, we identify the causal factors behind this behavior, showing that
the representation-level objective is responsible for the depth of the edits, while the token-level
granularity is critical for their surgical precision.

2 BACKGROUND

We begin by defining the preference optimization setting in terms of unlearning terminology. Each
prompt xp is paired with two continuations: a retain continuation xr (nontoxic) and a forget contin-
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uation xf (toxic). The goal is to modify the model such that it erases information tied to the forget
continuations while preserving its ability to generate fluent retain continuations.

Formally, we define a dataset of triples {(xp, xr, xf )}Ni=1. Each continuation is assigned a binary
domain label d ∈ {0, 1}, where d = 0 for retain continuations and d = 1 for forget continuations.
This framing allows us to cast preference optimization as a domain-adversarial problem: the model
must maintain generation quality while ensuring that forget continuations cannot be distinguished
from retain continuations in representation space.

Our method, which we present in Section 3, builds on the adversarial learning principle introduced
in Domain-Adversarial Neural Networks (DANN) (Ganin et al., 2016). In DANN, the objective is to
learn representations that are discriminative for the main classification task while being indiscrimi-
nate with respect to domain (source vs. target). This is achieved by training a domain regressor to
separate domains, while the feature extractor is updated through a gradient reversal layer (GRL) so
that domain membership becomes harder to detect.

SURE (Sepahvand et al., 2025) applies this idea to the problem of unlearning in classification mod-
els. Instead of distinguishing source from target domains, the regressor is trained to separate forget
samples from a held-out validation set drawn from the same distribution. The feature extractor is
updated adversarially, erasing parts of the representation that distinguish the forget set, while still
preserving performance on the retain set. This enforces representation erasure, enabling selective
unlearning with utility comparable to an oracle model retrained from scratch without the forget set.

Both DANN and SURE employ Representation Erasure (RE), i.e., an additional term on the objec-
tive that seeks to erase certain prescribed differences in representation. In DANN, RE is used to
erase the difference in representation between source and target. In SURE, RE is used to erase the
difference between forget and (a held out copy of) retained data.

3 INTRODUCING REPO FOR DETOXIFYING LLMS

In this work, we combine RE with preference optimization to detoxify large language models. In
particular, we study a pretrained LLM, consisting of a stack of transformer blocks Gf (·; θf ), each
mapping tokenized inputs (prompt + continuation) into hidden representations, that are then trans-
formed by linear unembedding layers Gy(·; θy) to produce next-token distributions. For detoxifica-
tion, we attach the regressor Gd(·; θd) via a gradient reversal layer (GRL) at the final transformer
block, as illustrated in Figure 1. This regressor is trained to separate retain (nontoxic) from forget
(toxic) continuations of the same prompt, while the feature extractor is updated adversarially to erase
this distinction. This seeks to erase the difference in hidden representations of toxic and nontoxic
continuations, while preserving the structure needed for fluent generation.

Training combines two coupled objectives. The first is the retain loss, which preserves the behavior
of the original model on nontoxic continuations. We minimize the KL divergence between the output
distributions of the unlearned model Gy(·; θ) and the frozen reference model Gy(·; θref) (the original
model prior to unlearning) on retain samples:

Lretain =
1

|Dr|
∑

(xp,xr)∈Dr

Ly

(
Gy(Gf (xp, xr; θf ); θy), Gy(Gf (xp, xr; θ

ref
f ); θref

y )
)
, (1)

where Ly denotes the KL divergence between the token-level predictive distributions of the two
models.

The second objective is the domain-adversarial loss, which encourages the model to make retain and
forget continuations indistinguishable in representation space:

Ladv =
1

|Dr|+ |Df |
∑

(xp,x)∈Dr∪Df

Ld

(
Gd(R(Gf (xp, x; θf )); θd),1[x ∈ Df ]

)
, (2)

where Ld is the binary cross-entropy loss, R is the gradient reversal layer, and 1[x ∈ Df ] is the
domain label.

The overall training objective, L = αLretain + (1 − α)Ladv, interpolates between the retain and
adversarial losses, with α ∈ [0, 1] controlling the trade-off between preserving the original model
behavior and enforcing unlearning.

3
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Figure 2: Detoxified models vs reference. (Left) Perplexity vs. toxicity ratios on PairToxicity (in-
distribution); (Middle) Perplexity vs. toxicity ratios on WikiText/RealToxicity (out-of-distribution);
(Right) F1 ratio on WikiText vs. out-of-distribution toxicity. Each point is a model–method pair. The
green gradient highlights lower toxicity and ratios near 1, darkest at the ideal point (x=1, y=0).
Dashed gray lines mark ratio = 1 for easy comparison to the reference.

3.1 EVALUATION METRICS

We evaluate our approach along two complementary dimensions: (i) its effectiveness in removing
toxic behaviors while preserving general capabilities; this is often referred to as unlearning-utility
trade-off, and (ii) its robustness against adaptive attacks aimed at reactivating toxic behaviors. Below
we describe the metrics used in each case.

3.1.1 EFFECTIVENESS

Toxicity Score. Following prior work (Geva et al., 2022; Lee et al., 2024), we evaluate toxicity
using the Perspective API1, an automated tool for toxicity detection that estimates the probability a
continuation would be perceived as toxic.

Utility. Utility is evaluated using perplexity and F1 score on WikiText (Merity et al., 2017) , a
neutral dataset excluded from unlearning. Perplexity, defined as the exponentiated average negative
log-likelihood of the ground-truth continuation, measures how well a model predicts reference text.
We report perplexity for both the unlearned and the reference model, i.e. the original model before
unlearning, which is regarded as a high-utility reference point; differences between them provide
a proxy for divergence from the distribution of the original pretrained model. F1 is defined as the
harmonic mean of precision and recall, where precision is the fraction of generated tokens appearing
in the ground-truth continuation, and recall is the fraction appearing in the model’s generation.

3.1.2 ROBUSTNESS

A key challenge in unlearning is robustness: even if a model forgets toxic behavior initially, ad-
versaries may attempt to recover it. We consider three attack strategies studied in the unlearning
literature (Wang, Zhang, et al., 2025; Łucki et al., 2025; Hu, Fu, et al., 2024): relearning, orthogonal-
ization, and enhanced GCG. For the latter two, model weights remain frozen and only inference-time
manipulations are applied, whereas relearning modifies the model via fine-tuning. Attack effective-
ness is quantified by comparing the toxicity of generations from the unlearned model before and
after the attack: an increase in toxicity indicates recovery of toxic behavior.

Relearning Attack. Prior studies have shown that fine-tuning can easily reverse alignment or un-
learning, even when the fine-tuning data is small or consists of datasets with low mutual information
with the forget set (Wang, Zhang, et al., 2025; Łucki et al., 2025; Hu, Fu, et al., 2024; Siddiqui et al.,
2025). As in prior work (Łucki et al., 2025), we fine-tune unlearned models under two configura-
tions: (i) on 10 examples from the forget set, and (ii) on 1000 examples from the retain set. The

1https://github.com/conversationai/perspectiveapi

4

https://github.com/conversationai/perspectiveapi


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

former evaluates recovery under minimal direct exposure, while the latter tests recovery using data
with low mutual information with the forgotten knowledge.
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Figure 3: Average toxicity after the Relearning Attack for
different subset sizes across methods on GPT2-small. (Top)
Out-of-distribution toxicity (RealToxicity); (Bottom) In-
distribution toxicity (pairwise set). Dashed horizontal lines
indicate each method’s baseline toxicity before the attack.

Orthogonalization Attack. Previ-
ous work demonstrated that safety re-
fusals can often be attributed to a di-
rection in activation space (Arditi et
al., 2024). Łucki et al. (2025) ex-
tended this idea to the unlearning set-
ting. Following their approach, we
compute an unlearned direction for
each transformer block as the differ-
ence in mean activations between the
reference and unlearned models on
the forget set (Łucki et al., 2025; Bel-
rose, 2023). At inference time, this
direction is projected out of the hid-
den representations, thereby remov-
ing the offset introduced by unlearn-
ing and restoring toxic capabilities.

Enhanced GCG Attack. GCG at-
tacks have been reported ineffective
against representation-based unlearn-
ing methods such as RMU (Li et al.,
2024; Łucki et al., 2025). To in-
crease their strength, we adopt an en-
hanced variant that specifically tar-
gets unlearning defenses (Łucki et al., 2025). Rather than minimizing the standard attacker loss
toward generating a fixed affirmative target string (Zou, Wang, et al., 2023), the attack leverages the
reference model as a malicious teacher. Concretely, adversarial prefixes are optimized with a dis-
tillation loss that aligns the unlearned model’s hidden representations at selected layers with those
of the reference model (Thompson and Sklar, 2024). This adaptation enables recovery of harmful
behaviors that classic GCG cannot elicit.

4 EXPERIMENTAL DETAILS

Data and Models. Our evaluation relies on three datasets serving complementary purposes: a
carefully crafted pairwise toxicity dataset for unlearning (Lee et al., 2024), WikiText-2 (Merity et
al., 2017) for measuring generation quality, and RealToxicityPrompts (Gehman et al., 2020) for
assessing out of distribution toxicity. We evaluate our approach on GPT-2 Small, GPT-2 Medium
(Radford et al., 2019) and Gemma 2B (base) (Team et al., 2024). See Section D for further details.

Baselines. We compare REPO against two main families of alignment methods: steering-based
and fine-tuning–based, the latter being further subdivided into representation- and output-based.

Steering-based methods act directly on hidden representations at inference time, modifying acti-
vations to suppress toxic behaviors without retraining, or even finetuning, the model. As a rep-
resentative baseline, we adopt Toxic Vector Intervention (TVI) (Lee et al., 2024), which operates
by subtracting identified toxic vectors from the model’s activations during generation, providing a
lightweight steering-style approach.

Fine-tuning–based methods explicitly retrain the model to remove undesired behaviors. We fur-
ther divide them into two categories. Output-space methods operate directly on the model’s output
probabilities. Among them, we include preference-based objectives such as Direct Preference Op-
timization (DPO) and Negative Preference Optimization (NPO)(Wang, Zhang, et al., 2025; Łucki
et al., 2025), which fine-tune the model to increase the likelihood of preferred continuations and
decrease the relative likelihood of undesired ones. Representation-space methods operate on hid-
den activations. Examples include Representation Misdirection for Unlearning (RMU)(Huu-Tien
et al., 2025; Kadhe et al., 2024) and Circuit Breakers (CB) (Zou, Phan, et al., 2024), which were

5
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Figure 4: Layer–token distance heatmaps for different methods (columns) on a sample prompt.
Columns left to right: REPO, NPO, DPO for the top two rows, and REPO, CB, RMU for the bottom
row. (Top) 1−cosine similarity between hidden states of the unlearned model and the reference
model across GPT-2 small layers (vertical axis) and tokens (horizontal axis. Darker = more similar,
yellow = larger difference. (Middle) 1−cosine similarity between attention submodule outputs
(before residual addition) of the unlearned model and the reference model across layers and tokens.
(Bottom) Same as the top row, but for representation-based methods.

REPO NPO DPO RMU CB

GPT-2

Relearning Forget (PairToxicity) .169(.116) .202(.143) .200(.144) .253(.215) .438(.120)
Relearning Retain (PairToxicity) .119(.116) .148(.143) .148(.144) .204(.215) .124(.120)
Relearning Forget (RealToxicity) .294(.206) .377(.230) .357(.224) .463(.363) .678(.332)
Relearning Retain (RealToxicity) .207(.206) .245(.230) .237(.224) .362(.363) .314(.332)
Enhanced-GCG (RealToxicity) .208(.206) .347(.230) .660(.224) .389(.363) .393(.332)
Orthogonalization (RealToxicity) .308(206) .335(.230) .315(.224) .525(.363) .335(.332)

Gemma-2B

Relearning Forget (PairToxicity) .108(.083) .255(.247) .169(.146) .329(.206) .161(.160)
Relearning Retain (PairToxicity) .089(.083) .249(.247) .169(.146) .212(.206) .162(.160)
Relearning Forget (RealToxicity) .257(.215) .461(.439) .304(.244) .579(.356) .402(.412)
Relearning Retain (RealToxicity) .216(.215) .453(.439) .304(.244) .344(.356) .421(.412)
Enhanced-GCG (RealToxicity) .217(.215) .472(.439) .269(.244) 358(356) .428(.412)
Orthogonalization (RealToxicity) .217(.215) .442(.439) .248(.244) .357(.356) .415(.412)

Table 1: Robustness of unlearning methods on GPT-2 (Medium) and Gemma-2B across PairTox-
icity and RealToxicity. REPO dominates. Rows show evaluation setups; columns show methods.
Each cell reports the toxicity score after the robustness attack, with parentheses showing the score
immediately after unlearning but before any attack. Baseline toxicity scores (before unlearning):
GPT-2 – 0.281 (PairToxicity), 0.513 (RealToxicity); Gemma-2B – 0.208 (PairToxicity), 0.486 (Re-
alToxicity).

originally proposed to erase hazardous knowledge but here are adapted to the detoxification setting.
While RMU maps toxic directions in representation space to random directions, CB severs identified
causal pathways associated with harmful behavior.
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Figure 5: Layer–token residual-stream drift (1−cosine similarity) between the reference and REPO
models for the same negative prompt. (Top) Differences in residual contributions (post-activation
keys multiplied by value vectors); (Bottom) Differences in key activations. Within each row: (Left)
Top-10 “toxic” dimensions (i.e., value vectors most aligned with the learned toxicity direction
Wtoxic); (Right) 10 non-toxic dimensions. Rows correspond to GPT-2 Small layers and columns
to prompt tokens; darker colors indicate greater similarity and yellow larger drift.
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Figure 6: Layer–token representation drift (1−cosine similarity) for the same negative prompt under
two discriminator input strategies in REPO: Left — individual tokens; Right — non-overlapping
averaged segments. Darker colours indicate greater similarity, yellow larger drift.

5 PERFORMANCE EVALUATION

Our initial analysis focuses on several key performance aspects. As standard, we first examine the
trade-offs between unlearning quality and model utility. This evaluation covers both in-distribution
performance on the pairwise dataset used for unlearning, and out-of-distribution generalization on
RealToxicityPrompts and wikitext-2. Here we see that REPO has superior performance across the
board. We then evaluate robustness to various attacks, observing REPO’s competitive performance.

On the Trade-off of Mitigating Toxicity vs Preserving Utility. Figure 2 reports results on the
pairwise dataset. REPO achieves the lowest toxicity on negative (forget) samples, with a score of
0.0961, substantially outperforming NPO (0.1392), DPO (0.1506), and RMU (0.1527). Importantly,
REPO also maintains comparable toxicity levels on positive (retain) samples, showing that the in-
tervention does not degrade nontoxic generations. Perplexity results indicate that REPO increases
the uncertainty of the model on toxic continuations (70.8 vs. 18.1 for the baseline), consistent with
the goal of erasing toxic information, while leaving perplexity on retain samples largely unchanged
relative to other methods. These findings suggest that REPO effectively targets toxic continuations
without impairing general language modeling ability.
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Figure 7: Mean absolute activation difference as a func-
tion of neuron toxicity alignment. Each curve shows the
average absolute change in neuron activation between the
unlearned model and the reference model, plotted against
the neuron’s cosine similarity to the learned toxicity di-
rection Wtoxic (x-axis). (Solid lines) top 2 000 neurons
aligned with Wtoxic. (Dashed lines) bottom 2 000 (anti-
aligned) neurons. (Dotted lines) 2 000 random remaining
neurons. Colours indicate unlearning methods (REPO,
DPO, NPO). Higher y-values indicate a larger mean ab-
solute activation difference from the reference model; the
plot is smoothed with a moving window of 20 for read-
ability.

Figure 2 evaluates the methods on ex-
ternal benchmarks in order to assess out
of distribution performance. On Re-
alToxicityPrompts, REPO again yields
the largest reduction in toxicity (0.2071
vs. 0.5062 for the baseline and 0.2374
for the next-best method, NPO). On
wikitext-2, REPO achieves the best per-
plexity (23.6) and F1 score (0.226), indi-
cating that detoxification is not obtained
at the cost of reduced fluency or predic-
tive accuracy. Overall, across both in-
distribution and out-of-distribution eval-
uations, REPO demonstrates more ef-
fective unlearning and stronger robust-
ness than competing baselines.

Robustness to Attacks. Table 1 ex-
amines robustness under adversarial at-
tack settings. We evaluate three types
of attacks: relearning, where the forget
set is reintroduced through lightweight
fine-tuning; enhanced GCG, which im-
proves the success rate of adversar-
ial prompting; and orthogonalization.
REPO achieves the best overall ro-
bustness, consistently outperforming or
matching the strongest baselines. In the relearning setting, REPO shows stronger robustness on
retain samples, with toxicity at 0.207 compared to 0.270 for NPO and 0.289 for DPO. On forget
samples, it achieves the second-best robustness, with toxicity remaining lower than most baselines
after the attack and close to the strongest baseline RMU. Against enhanced-GCG, REPO achieves
the lowest toxicity, at 0.252 compared to 0.295 for RMU and 0.379 for NPO. This demonstrates
that REPO maintains robustness by resisting the recovery of toxic behaviors under this stronger
adversarial attack.

6 THE EFFECTS ON REPRESENTATIONS AND WEIGHTS

The analysis in this section is focused on studying the mechanisms behind REPO’s performance.
We demonstrate that REPO has larger magnitude weight edits (Section E), but these edits result in
more localized edits on conditional distributions of toxic words, and affect representations deeper in
the network. Building on the analysis by Lee et al. (2024), we then inspect the changes in value and
key vectors, observing that the biggest shift happens in dimensions most and least aligned with toxic
directions. Our ablations reveal that these differences between REPO and other methods are due to
two key algorithm design choices: (1) edits on the representations instead of output, resulting in
bigger changes deeper in the network, and (2) REPO’s optimization objective being at a token-level
granularity – this ensures more localized shifts on the toxic word distribution.

Changes in the intermediate states. In Section E we show that REPO makes larger edits in
weight space. Having observed that, we now examine how these changes affect the model’s in-
termediate representations. Fig. 4 visualizes this by plotting the representational drift (1-cosine
similarity) between the unlearned and reference models’ hidden states across all layers for a sample
toxic continuation. The heatmaps for REPO show that modifications are highly localized. Signif-
icant drift is concentrated in the network’s deeper layers, and is confined almost exclusively to the
columns corresponding to the toxic tokens, while the representations for adjacent tokens show min-
imal change. In stark contrast, DPO and NPO induce more diffuse, lower-magnitude changes that
are spread across a broader set of tokens and layers. This analysis provides an intuition for REPO ’s
good utility-unlearning trade-off: it achieves effective unlearning by making targeted modifications
to the representations of specific toxic inputs while preserving the integrity of non-toxic ones.
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7 ABLATIONS OF ALGORITHMIC COMPONENTS

We conduct a series of ablations to dissect REPO’s design and identify the sources of its effective-
ness: representation-space edits, and token-level objective. We then provide evidence that REPO
more aggressively targets the specific neurons most aligned with toxicity compared to baselines.

Changing the token-level objective. To isolate REPO’s components responsible for the localized
edits, we conduct an ablation study on the granularity of REPO’s adversarial objective. We com-
pare our standard approach, where the discriminator evaluates each token’s representation individu-
ally, with a variant where representations are averaged over non-overlapping segments before being
passed to the discriminator. The results are visualized in Fig. 6. The left panel, showing the standard
token-level objective, exhibits the highly localized representational drift previously discussed. In
contrast, the right panel shows that using averaged segments causes this localization to vanish. The
representational drift becomes diffuse, spreading across multiple tokens rather than being confined
to specific ones. This diffusion in representation space correlates with a degradation in unlearning
performance, yielding a worse utility-unlearning trade-off. This ablation provides strong evidence
that the token-level granularity of REPO ’s adversarial loss is a key mechanism responsible for the
precision of its edits, which in turn contributes to its strong performance.

The role of representation-based objective. Our analysis has shown that REPO’s interventions
are concentrated in deeper layers compared to output-space methods like DPO and NPO. To de-
termine if this is a general property of representation-based unlearning, we now compare REPO
with two other representation-based methods: Circuit Breakers (CB) and Representation Misdirec-
tion (RMU). The heatmaps in Fig. 4 (bottom row) confirm that this is indeed the case. All three
representation-based methods predominantly alter the model in its later layers, suggesting that the
depth of modification is a feature of targeting internal representations directly. However, the figure
also reveals a critical distinction in the precision of these deep edits. While REPO ’s changes are
localized to specific toxic tokens, the interventions from CB and RMU are not. CB’s edits appear to
impact entire layers indiscriminately, and RMU’s are scattered broadly across both tokens and lay-
ers. This comparison yields a key insight: while targeting representations helps focus unlearning on
deeper parts of the network, it is REPO’s specific token-level adversarial objective that provides the
localization necessary for effective detoxification, a property that these other representation-based
methods lack.

Changes in neuron activations. Finally, we investigate how each method alters the activations
of individual neurons based on their semantic roles. Following prior work, we first identify a toxic
direction, Wtoxic, using linear probing on the reference model’s representations. We then measure
the mean absolute change in neuron activations post-unlearning as a function of their value vectors’
alignment with this direction. Fig. 7 reveals a consistent U-shaped pattern for all methods: the
largest changes in activation occur in neurons that are most aligned or anti-aligned with W toxic,
while neutrally-aligned neurons are minimally affected. However, the key distinction lies in the
magnitude of this effect. For the neurons most aligned with the toxic direction, REPO induces
a substantially larger change in activation compared to DPO and NPO. This finding suggests that
REPO not only localizes edits to toxic tokens in the sequence but also concentrates its interventions
on the very neurons most responsible for representing toxic concepts.

8 DISCUSSION

In this work, we introduced REPO, a novel method for detoxifying large language models by di-
rectly intervening on their internal representations. Our approach adapts the principles of domain-
adversarial unlearning to force the representations of toxic generations to align with their benign
counterparts. Experimental results demonstrate that REPO achieves a state-of-the-art reduction in
toxicity while preserving model utility, and is highly robust to adversarial attacks, outperforming es-
tablished baselines. A key finding from our mechanistic analysis is that REPO’s representation-level
objective induces deeper and more localized edits, focusing on toxic tokens and the specific neurons
responsible for encoding toxicity. While highly effective for detoxification, the generalizability of
REPO to unlearning other complex and undesirable behaviors, such as subtle social biases or factual
inaccuracies, remains an important area for future investigation.
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A QUESTIONS WE ANTICIPATE

1. Why did you choose models like GPT-2 and Gemma-2B base for evaluation? Our choice
was deliberate: these models are lightweight enough to support detailed layer- and token-level
mechanistic analysis, which is central to the paper’s contribution. Importantly, REPO is model-
agnostic and scales naturally: the method only requires access to intermediate representations
and a discriminator. Our experiments offer a compelling proof-of-concept with deep mechanistic
evidence. Importantly, REPO’s behavior is consistent across two distinct architectures (GPT-
2, Gemma), suggesting architectural generality. Many unlearning methods (e.g., RMU, CB)
were first validated on smaller scales before scaling up; we view our work as establishing the
mechanistic foundation for future large-scale extensions.

2. Why did you not test REPO on larger instruction-tuned models like Llama-2-7B or Mix-
tral? Our experiments deliberately focus on smaller open models (GPT-2, Gemma-2B) to al-
low exhaustive mechanistic analysis (layer–token drift, neuron activation shifts, weight-space
distances). These analyses would have not been feasible on 13B+ models due to cost and re-
producibility barriers. Our goal is to provide a controlled, mechanistic demonstration. Scaling
REPO is conceptually straightforward: it requires only a discriminator on hidden states. We are
releasing code so the community can apply it to larger aligned models.

3. Why are there no human evaluations or alternative detectors for toxicity? We agree that
multiple evaluators would enrich the results. For this submission, we prioritized comparability
with prior ICLR/NeurIPS papers by using Perspective API, ensuring our baselines are on equal
footing. Crucially, REPO does not optimize against Perspective, so it is detector-agnostic. Our
mechanistic evidence (localized neuron edits, deeper layer shifts) shows that REPO changes the
model itself, not just a metric. We view this as a stronger and more general guarantee than
detector-specific scores.

4. Why are ablations focused on token- vs segment-level? We prioritized the ablation most cen-
tral to REPO’s novelty: token-level discrimination. Other knobs (loss weighting, discriminator
depth) have standard effects and do not alter the mechanistic story. Our weight- and neuron-level
analyses already show that REPO’s behavior differs qualitatively from prior methods, and these
structural differences (not hyperparameter sweeps) are what account for its robustness. Further
ablations are left to future work due to space constraints.

5. Does the use of synthetic toxic/non-toxic pairs introduce bias or limit generalization? Syn-
thetic pairs (via PPLM and greedy decoding) allow us to control for semantic similarity while
isolating toxicity, which is essential for training a representation-level discriminator. This setup
minimizes confounds such as topic or length, ensuring that REPO learns to erase toxic features
rather than spurious correlations. Importantly, REPO’s robustness evaluations (orthogonaliza-
tion, relearning, GCG jailbreaks) demonstrate generalization to settings far outside the synthetic
training distribution. In addition, REPO achieves strong performance on naturally occurring toxic
continuations (RealToxicityPrompts), indicating that it transfers beyond synthetic contrasts.
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6. Are the baseline comparisons (to DPO, NPO, CB, and RMU) fair, and why not include
RLHF-tuned models? We implemented DPO and NPO using standard hyperparameters from
their original papers, verifying that our implementations match reported performance. For
representation-level baselines (e.g., CB, RMU), we reproduced them faithfully to ensure apples-
to-apples comparison. We did not include RLHF-tuned models because REPO is not intended
as a competitor to RLHF; rather, it is complementary. RLHF requires extensive preference data
and large-scale tuning, while REPO can be applied post-hoc as a lightweight safety repair that
directly edits hidden states. Thus, our focus is on representation-level methods, which are the
most natural comparators—but REPO can also be layered on top of RLHF-trained systems.

7. Is the enhanced GCG attack too unrealistic as a threat model? We agree that access to the
reference model is not always realistic, but we deliberately stress-tested REPO under worst-case
white-box assumptions. The fact that REPO resists these extreme attacks strengthens confidence
in its robustness to weaker, more realistic black-box jailbreaks. Our framing follows the crypto-
graphic principle of testing against the strongest adversary available.

8. Where can I find hyperparameters and training details? See Section C.

9. Why do the experiments focus only on toxicity, rather than other unlearning tasks? We
chose toxicity as a representative and socially urgent case study. The method, however, is gen-
eral: REPO only requires a binary discriminator on hidden states. In principle, it can be applied
to any capability removal (e.g., memorized data, unsafe skills). We see our toxicity experiments
as a first demonstration, with generalization left for follow-up work.

B ON THE NOVELTY OF REPO AND HOW IT DIFFERS FROM SURE

The primary novelty of our proposed method, REPO, lies in its adaptation and extension of the
representation erasure concept, originally developed for unlearning in classification models, to the
domain of preference optimization for large language models. While it builds on the foundation of
SURE, REPO introduces several key innovations in its framework, objective function, and mecha-
nistic application that are specifically tailored for detoxifying generative models.

First, REPO reframes the unlearning problem as a preference optimization task. Unlike SURE,
which aims to make a “forget set” of samples indistinguishable from a general held-out dataset,
REPO leverages a pairwise data structure. Each prompt is associated with both a desired (non-
toxic) and an undesired (toxic) continuation. This allows for a more targeted intervention: instead
of matching a general distribution, the goal is to specifically align the representations of toxic outputs
with their benign counterparts for the exact same context.

Another core REPO’s design choice is its coupled training objective, which is designed to balance
effective erasure with utility preservation. This objective combines two distinct components:

• A retain loss that explicitly preserves the model’s behavior on non-toxic inputs. This is achieved
by minimizing the KL divergence between the output distributions of the unlearned model and
a frozen reference model on the retain samples. This component acts as a strong regularizer
against degrading the model’s general language capabilities.

• A domain-adversarial loss that drives the representation erasure. It uses a discriminator and a
Gradient Reversal Layer (GRL) to adversarially train the model, making the hidden represen-
tations of toxic and non-toxic continuations indistinguishable.

Finally, a crucial mechanistic novelty in REPO is the token-level granularity of the adversarial ob-
jective. Our ablations reveal that applying the discriminator to individual token representations is
responsible for the precision of REPO’s edits. This design choice ensures that representational
changes are highly localized to specific toxic tokens, preventing the diffuse, widespread modifica-
tions seen in other methods and contributing directly to REPO’s strong performance and robustness.

C REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide in Table 2 the exact hyper-parameters used for each method
and model evaluated in this paper, together with their definitions. We also detail in Table 3 the
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Table 2: Hyper-parameters used for each method and model. A dash (–) indicates the parameter is
not applicable. For parameters listed as arrays in the configuration (e.g., two runs with 5× 10−6 for
NPO on Gemma-2B), the table specifies this explicitly.

Model Method Learning Rate (lr) α β c

GPT-2-Small

REPO 2× 10−6 0.2 – –
DPO 1× 10−6 – 0.5 –
NPO 1× 10−6 0.2 0.5 –
RMU 5× 10−6 0.95 – 500
CB 1× 10−5 100.0 – –

GPT-2 Medium

REPO 5× 10−6 0.2 – –
DPO 1× 10−6 – 0.5 –
NPO 1× 10−6 0.4 0.5 –
RMU 5× 10−6 0.95 – 500
CB 5× 10−5 100.0 – –

Gemma-2B

REPO 5× 10−5 0.5 – –
DPO 1× 10−5 – 0.2 –
NPO 5× 10−6 0.8 0.5 –
RMU 5× 10−5 0.95 – 500
CB 1× 10−5 1000.0 – –

training settings used across models, including the number of unlearning or relearning epochs, batch
sizes, weight decay values, and other implementation choices. In addition, we describe the setup of
our relearning attack experiments and the sampling procedures used for forget and retain sets. The
full training and evaluation code will be released upon acceptance of the paper to enable independent
verification and extension of our results.

Hyper-parameter definitions. Below we explain the roles of the hyper-parameters as used in our
implementations (consistent with the original formulations when applicable):

• lr: learning rate used for parameter updates by the optimizer.

• REPO — α: weight on the adversarial (discriminator) loss relative to the KL/reference-
matching loss. It controls the trade-off between preserving similarity to the reference model
and aligning the forget representations toward the retain representations in the shared space.

• DPO — β: scaling factor applied to the difference in log probabilities between the model and
reference (∆ log p); it sharpens or flattens the preference logit before the log-sigmoid. Higher
β yields more aggressive preference gradients.

• NPO — β: scaling factor in the negative-preference term; α weights the forget loss relative
to the standard LM loss on retain examples. Together they govern how strongly the model is
pushed to forget and how much it is anchored to the retain examples.

• RMU — α: interpolation weight between forgetting and retaining representations. The hyper-
parameter c defines the norm of the random “control” vector used to specify the forgetting
direction against which the representation is aligned.

• CB — α: coefficient on the circuit-breaker loss relative to the retain loss, determining how
strongly the model is penalized when inner-product activations associated with forget features
deviate from the desired retain alignment.

Training and implementation details. Beyond the hyper-parameters in Table 2, Table 3 sum-
marises the key training settings we used across models and methods. These include the number
of unlearning epochs, batch sizes, weight decay values, and learning rates used for the “relearning
attack” experiments. All unlearning runs used a linear learning-rate warm-up of 100 steps. For DPO
and NPO, we additionally clamped the logits to a fixed range (-30 to +30) to prevent numerical
overflow and applied gradient-norm clipping to improve training stability.
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Table 3: Training settings and implementation details for unlearning and relearning experiments.
Model Setting Value Notes

GPT-2 Small

Unlearning epochs 10 for all methods
Batch size 128 for unlearning
Weight decay 0.001 for all methods
Relearning attack wd = 1×10−5, lr = 1×10−5

Gradient clipping max_norm = 10.0 DPO & NPO

GPT-2 Medium

Unlearning epochs 10 for all methods
Batch size 64 for unlearning
Weight decay 0.01 for all methods
Relearning attack wd = 1×10−5, lr = 1×10−5

Gradient clipping max_norm = 10.0 DPO & NPO

Gemma-2B

Unlearning epochs 5 for all methods
Batch size 16 for unlearning
Weight decay 0.01 for all methods
Relearning attack wd = 1×10−4, lr = 5×10−5

Gradient clipping max_norm = 10.0 DPO & NPO

Relearning attack. For the relearning attack experiments, we fine-tuned the models for three
epochs. We conducted two separate attack variants: (i) relearning on forget samples and (ii) relearn-
ing on retain samples. For the forget-based attack, we report the average over three independent
runs, each using 10 randomly selected samples from the ToxicityPair dataset. For the retain-based
attack, we likewise report the average over three runs using 100 randomly selected retain samples
from the same dataset. In Figure 3 we show trends as we vary the set sizes; specifically, forget sizes
{10, 20, 30, 40, 50} and retain sizes {100, 200, 300, 400, 500}. All reported values are averages
over three independent runs.

D EXPERIMENTAL DETAILS

Data. The pairwise dataset, introduced in Lee et al. (2024), contains 24,576 prompt–continuation
pairs constructed from sentences in Wikitext-2. For each prompt, we generate two continuations:
a nontoxic continuation via greedy decoding, which forms the retain set, and a toxic continuation
using PPLM (Dathathri et al., 2020) guided by a toxicity probe, which forms the forget set. This
construction yields a pairwise dataset in which every prompt is associated with both a toxic and a
nontoxic continuation, providing aligned examples for unlearning.

To measure preservation of generation capabilities, we use Wikitext-2, a standard language modeling
benchmark consisting of Wikipedia articles, for evaluating perplexity and F1. To measure toxicity
reduction, we use the RealToxicityPrompts challenge set, which contains 1,199 prompts designed
to elicit toxic outputs from language models.

Models. GPT-2 Medium is an autoregressive transformer trained on OpenAI’s WebText corpus
without any subsequent alignment or safety tuning. For Gemma 2B, we use the publicly available
base checkpoints, which are pretrained models not fine-tuned for instruction following or safety;
the aligned variants of these families (e.g., Gemma-Instruct) are deliberately excluded to ensure that
detoxification is evaluated from raw pretrained models. For optimization, we apply full-parameter
finetuning to GPT-2 (Small and Medium) given their smaller sizes, while for Gemma 2B we employ
parameter-efficient LoRA finetuning.

E CHANGES IN THE WEIGHT SPACE

We examine the magnitude of modifications each unlearning method imparts on the model’s pa-
rameters. Fig. 8 plots the average relative L2 distance between the weights of the unlearned and
reference models at each Transformer block. A clear pattern emerges: REPO induces substan-
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Figure 8: Average relative ℓ2 distance between unlearned models and the reference model at each
Transformer block for REPO, NPO, and DPO.

tially larger weight-space edits compared to both DPO and NPO. While all methods tend to modify
later layers more than earlier ones, REPO’s updates are significantly greater, particularly from the
middle to the final blocks of the network. Siddiqui et al. (2025) recently showed that unlearning
algorithms that yield a larger L2 distance from the original model exhibit increased robustness to
relearning attacks, which is consistent with our observation that REPO is significantly more robust
against those attacks compared to DPO and NPO. For REPO, the larger weight-space edits are due
to the method’s design, which applies adversarial pressure directly to the hidden representations of
the final transformer block. This architectural choice concentrates the learning signal in the deeper
layers, compelling more significant parametric adjustments to align toxic and non-toxic represen-
tations. In contrast, DPO and NPO, which operate on output probabilities, distribute their updates
more diffusely. While seemingly more disruptive, we will show in the following section that these
larger weight-space modifications enable more precise, localized changes in the model’s internal
representations.

F CHANGES IN KEY AND VALUE VECTORS

Plots in Figure 9 illustrate how each method affects the value and key vectors of the model across
the top 2 000 neurons most aligned with the toxic vector WTOXIC. Across all three methods (SURE,
DPO, and NPO), the changes in both the value and key vectors are minimal, with cosine similarities
between the pre- and post-unlearning weights remaining very close to one. For the most toxic neu-
rons, our method induces a slightly larger reduction in cosine similarity, but this difference remains
very subtle compared to the other two methods.

Despite the very subtle differences in key and value weight changes between our method and
DPO/NPO, these small adjustments produce a markedly larger shift in the corresponding activations.
Specifically, SURE yields a greater change in the key activations of those same neurons compared to
DPO and NPO. In other words, even minor adjustments to the key and value weights, when guided
by our adversarial alignment objective, are sufficient to shift the internal representations so that ac-
tivations associated with toxic features are suppressed. This effect can be seen most clearly in the
bottom row of Figure 9, where the mean absolute activation difference increases sharply for neurons
most strongly aligned with toxicity. This demonstrates that SURE achieves detoxification primarily
through targeted changes in the internal activations, rather than large weight updates, resulting in a
more precise and controlled unlearning effect.

G USE OF LARGE LANGUAGE MODELS

Large language models were employed as an auxiliary tool during the preparation of this paper. In
particular, they were used to (i) critique and suggest improvements to draft sections, (ii) assist in
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Figure 9: Comparison of how unlearning methods affect model internals. Top: cosine similarity
between pre- and post-unlearning value vectors for the top 2000 toxic-aligned neurons. Middle:
cosine similarity for key vectors of the top 2000 globally toxic-aligned neurons. Bottom: mean
absolute activation difference vs. cosine similarity for the same neurons. Each curve shows REPO,
DPO, and NPO behaviour as a function of cosine similarity with Wtoxic (left = least toxic, right =
most toxic).

polishing the language of drafts or selected passages, and (iii) offer tips and guidance on how to
improve the clarity and appearance of figures and plots.
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