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Abstract

We propose an on-policy algorithm, Expectation–Maximization Policy Optimiza-
tion (EMPO), for offline reinforcement learning that leverages an EM-based clus-
tering algorithm to recover the behaviour policies used to generate the dataset. By
improving each behaviour policy via proximal policy optimization and learning a
high-level policy that chooses the optimal cluster at each step, EMPO outperforms
existing offline RL algorithms on multiple benchmarks.

1 Introduction

The significant achievements of deep learning in various areas, notably image classification [1], have
led to the integration of reinforcement learning (RL) with deep learning, a combination known as deep
RL. This approach is seen as a promising method for addressing complex tasks such as mastering
simple computer games using raw pixel data [2], achieving super-human performance in complex
board games such as Go [3], and enhancing control in robotics [4–8]. In particular, using deep neural
networks as function approximators enabled the representation of complex policies and state-action
value functions across large state-action spaces.

However, most RL algorithms tend to have notoriously high sample complexity, which led to the
birth of a new problem called offline RL. Unlike conventional RL, where an agent learns an optimal
policy through trial and error within the environment, in offline RL, environmental interactions are
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(a) A simple navigation environment. (b) Behavior cloning policy behaviour

Figure 1: The agent receives a reward of −1 until it reaches the goal and an additional penalty of
−1 when it is inside the penalty area. The offline dataset consists of trajectories sampled using two
behaviour policies β0 (Behavior 0) and β1 (Behavior 1). From (b) we can see that behaviour cloning
fails in the shaded region where the two behaviours conflict.

forbidden. Instead, a set D of trajectories is provided, and the agent has to search for a competent
policy only using samples in D.

One of the major obstacles for direct application of online off-policy RL algorithms on offline RL is
the extrapolation error of the critic network [9]. As the agent cannot perform an over-estimated out-
of-distribution (OOD) action and inspect its outcome, the extrapolation error will never be corrected.
Moreover, these errors are propagated through the trajectory causing the errors to accumulate. Policy
regularization is a popular approach to mitigate the issue [9–15], where the agent aims to search
for a policy with a high estimated expected return in the vicinity of the behaviour policy. Since
extrapolation error would be small for actions that are similar to those in the dataset, the agent may
anticipate that the estimated expected return is fairly accurate.

Although simple divergence metrics, such as the mean squared error between policy output and
actions in the dataset [11], perform surprisingly well in a lot of cases, offline RL algorithms tend to
underperform when the dataset comprises multiple behaviours that conflict with each other [14, 16].
Consider a simple navigation environment shown in Figure 1a and an offline dataset that consists
of trajectories sampled using either β0 or β1, where β0 and β1 behaves like “Behavior 0” and
“Behavior 1”, respectively. Simple behaviour cloning produces a policy depicted in Figure 1b. The
policy fails to model the actions in the shaded region, where the two behaviours conflict with each
other. As we will later discuss in Section 4.1, this prevents the offline RL algorithms from entering
the region, causing them to take the sub-optimal route that passes the penalty area instead.

To overcome this challenge, this paper proposes a novel Expectation–Maximization (EM) based
clustering algorithm that can successfully recover the behaviour policies used to create an offline RL
dataset. A high-level policy that selects the best behaviour policy to perform at the given state is
learned using the clustered dataset. Finally, each cluster is improved via PPO [6], which is known to
be robust and stable.

2 Background

Notation For a set X , we denote the family of probability distributions supported on X by P(X).
And for an integer N , we denote the set {0, 1, . . . , N − 1} by [N ]. We also define a clipping function
clip(x ; y, z) = max{y,min{x, z}}. We will also the use the same notation for dimension-wise
clipping, that is, for x ∈ Rd and y, z ∈ R, the i-th coordinate of clip(x ; y, z) is clip(xi ; y, z).

2.1 Problem Setting

An RL problem is usually formulated as a Markov Decision Process (MDP), which is defined as
a 6-tuple M = ⟨S,A, P, r, γ, ρ0⟩, where S ∈ Rds is a state space, A ∈ Rda is an action space,
P : S×A → P(S) is a transition probability function, r : S×A → R is a reward function, γ ∈ [0, 1]
is a discount factor, and ρ0 ∈ P(S) is an initial state distribution. The objective is to find a policy
π : S → P(A) that maximizes the expected discounted return E[

∑∞
t=0 γ

tr(st, at)], where s0 ∼ ρ0
and for each t ≥ 0, at ∼ π(st) and st+1 ∼ P (st, at).
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For offline RL, interactions with the environment is prohibited, and the agent has to learn a policy
from a given dataset D of trajectories. Throughout the paper we will assume that each trajectory
τ ∈ D is sampled with a behaviour policy β ∈ {β0, β1, . . . , βK−1}, where the candidate set
{β0, β1, . . . , βK−1} is fixed but unknown to the agent.

2.2 Expectation–Maximization (EM) Algorithm

Consider a probabilistic model with observable data X and a categorical latent variable Z. Denoting
the model parameters by θ, the log-likelihood function can be written as

log p(X ;θ) = log

(∑
Z

p(X, Z ;θ)

)
.

In most cases, directly maximizing the right-hand side is difficult due to the summation inside
the logarithm. An Expectation–Maximization algorithm is a popular method that is used in such
cases [17]. The algorithm comprises two steps: the E-step and the M-step. In the E-step, we compute
the posterior probability

Qθ̂k
(Z | X) = p(Z | X ; θ̂k) =

p(X, Z ; θ̂k)∑
Z′ p(X, Z ′ ; θ̂k)

(1)

with respect to the current estimate θ̂k of θ after k iterations. In the M-step, we find θ̂k+1 that
maximizes the conditional expectation

θ̂k+1 = argmax
θ

∑
Z

Qθ̂k
(Z | X) log p(X, Z ;θ) (2)

We iterate between the two steps until θ̂k converges.

3 Proposed Method

The proposed method Expectation–Maximization Policy Optimization (EMPO) comprises of three
parts. In the first part, we apply an EM-based clustering algorithm to recover the behaviour policies
β0, β1, . . . , βK−1 that were used to generate the dataset D. The algorithm also tells us the βz that
was used to generate each trajectory τ ∈ D. Based on this information, we improve each βz by
PPO [6] to obtain πz . Finally, we learn a high-level policy that selects the best πz given the current
state. We will discuss the three parts in the following three subsections 3.1, 3.2, and 3.3.

3.1 Policy Clustering via Expectation–Maximization

We have assumed in Section 2.1 that each trajectory in D is sampled with one of the K behaviour
policies β0, β1, . . . , βK−1. Suppose each behaviour policy βi can be parametrized using the same
neural network but with different parameters, that is, there are parameters θ0, θ1, . . . , θK−1 such that
βi(a | s) = β(a | s ; θi) for all s ∈ S, a ∈ A, and i ∈ [K]. Let Θ = {θ0, θ1, . . . , θK−1}. Slightly
abusing the notation, we may write β(a | s ; θz) as β(a | s, Z = z ; Θ), where Z is a categorical
latent variable supported on [K]. This leads us to the probabilistic model in Figure 2. The joint
probability distribution can be written as

p(τ, Z ; Θ) = ρ0(s0)p(Z)

[
T−1∏
t=0

(β(at | st, Z ; Θ)P (at+1 | st, at))

]
β(aT | sT , Z ; Θ),

where we have denoted (s0, a0, s1, a1, . . . , sT , aT ) by τ . Unless additional information is available,
we set the prior p(Z) to be a uniform distribution.

Our goal is to find the optimal parameter Θ, which will allow us to compute the posterior probability

p(Z | τ ; Θ) ∝
T∏
t=0

β(at | st, Z ; Θ).
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Figure 2: A graphical model of an offline RL dataset.

This can be done by applying an EM algorithm. The E-step equation (1) can be rewritten as

QΘ̂k
(Z | τ) = p(Z | τ ; Θ̂k) =

∏T
t=0 β(at | st, Z; Θ̂k)∑K−1

z=0

∏T
t=0 β(at | st, z; Θ̂k)

. (3)

Similarly, the M-step equation (2) can be rewritten as

Θ̂k+1 = argmax
Θ

∑
τ∈D

K−1∑
z=0

QΘ̂k
(z | τ) log β(τ, z ; Θ).

As the exact optimization of neural network parameters is intractable, we perform gradient descent
with respect to the following loss function:

ℓ
(k)
M (s, a ; Θ) = −

K−1∑
z=0

QΘ̂k
(z | τ(s, a)) log β(a | s ; θz), (4)

where τ(s, a) is the trajectory containing the state-action pair (s, a).

We adopt three heuristics to improve the clustering performance further. The first is to use the
exponential moving average of the conditional probability QΘ̂k

to stabilize the M-step. Inspired by
on-line EM [18], we introduce a momentum parameter µ and define

Q(k+1)(Z | τ) = µQ(k)(Z | τ) + (1− µ)QΘ̂k
(Z | τ). (5)

and Q(0)(Z | τ) = 1/K for all Z ∈ [K] and τ ∈ D. The M-step loss (4) becomes

ℓ̃
(k)
M (s, a ; Θ) = −

K−1∑
z=0

Q(k)(z | τ(s, a)) log β(a | s ; θz). (6)

We train Θ for NE epochs, where at the start of epoch k, we compute Q(k) for all τ ∈ D, and then
apply gradient descent with respect to the loss function ℓ̃(k)M . Secondly, we pretrain each β(a | s ; θz)
using the entire dataset. This is equivalent to setting

Q(0)(z | τ) = 1

K
(7)

for each τ and repeating the M-step for Np epochs without performing the E-step. Introducing the
two heuristics results in a reasonable clustering performance, but in some rare cases where the initial
Θ̂0 is biased towards a particular θi, that is, QΘ̂0

(i | τ) > QΘ̂0
(z | τ) for all z ̸= i, every trajectory

is clustered into a single group. To forestall this skewness, we apply another heuristic, which is to
divide the trajectories into K groups randomly and train each policy βi to be biased towards the i-th
group. This is equivalent to randomly sample zτ ∈ [K] for each τ , set

Q(−1)(z | τ) =
{
1 if z = zτ
0 otherwise,

(8)
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Algorithm 1 EM-based Clustering

1: Initialize Θ̂0

2: Compute Q(−1) for all τ according to (8) ▷ Heuristic III
3: for Nb epochs do
4: Sample a mini-batch B = {(s0, a0), (s1, a1), . . . , (sB−1, aB−1)}
5: Θ̂0 ← Θ̂0 − 1

B

∑
(s,a)∈B α∇Θℓ̂

(−1)
M (s, a; Θ̂0) ▷ (6)

6: end for
7: Compute Q(0) according to (7) ▷ Heuristic II
8: for Np epochs do
9: Sample a mini-batch B = {(s0, a0), (s1, a1), . . . , (sB−1, aB−1)}

10: Θ̂0 ← Θ̂0 − 1
B

∑
(s,a)∈B α∇Θℓ̂

(0)
M (s, a; Θ̂0) ▷ (6)

11: end for
12: for k ← 1, 2, . . . , NE do
13: Compute Q(k) according to (5) ▷ Heuristic I
14: Θ̂k ← Θ̂k−1

15: for 1 epoch do
16: Sample a mini-batch B = {(s0, a0), (s1, a1), . . . , (sB−1, aB−1)}
17: Θ̂k ← Θ̂k − 1

B

∑
(s,a)∈B α∇Θℓ̂

(k)
M (s, a; Θ̂k) ▷ (6)

18: end for
19: end for
20: Θ̂∗ ← Θ̂NE

21: Compute QΘ̂∗ according to (3)
22: For each (s, a) ∈ D, compute A(s, a) according to (9)

and applying the M-step for Nb epochs while skipping the E-step.

After we finish training, we find each state-action pair (s, a)’s assignment through computing the arg
max of QΘ̂∗(z | τ(s, a)), where Θ̂∗ is the final parameter. We will denote the assignment by A(s, a),
that is,

A(s, a) = argmax
z∈[K]

QΘ̂∗(z | τ(s, a)). (9)

The EM-based clustering method is summarized in Algorithm 1.

3.2 Improving Each Policy Cluster

Given that the proposed EM algorithm has clustered the dataset accurately, we are left with a bunch
of smaller datasets whose trajectories are sampled using a single policy. This allows us to apply
on-policy RL algorithms such as TRPO [4] or PPO [6]. We selected PPO as it is well-known to
be robust and stable. PPO utilizes the generalized advantage estimator (GAE) [19] to compute the
advantage function in a Monte Carlo manner, but with additional variance reduction techniques. One
downside of using a GAE in the offline setting is that we can only compute the advantage estimates
for actions in the dataset. When the learned behaviour policy is erroneous, the samples in the dataset
may have low likelihoods and thus be clipped away during the training process. To mitigate this issue,
sampling from the learned behaviour policy is necessary. Therefore, following Zhuang et al. [15],
we train an action-value function network through the SARSA [20] algorithm and a value function
network through regression with the sample return.

The detailed algorithm is as follows. We define an action-value network Q(·, · ;ψ) : Rds ×
Rda → RK and a value network V (· ;φ) : Rds → RK . The i-th coordinate of Q(s, a ;ψ)
and V (s ;ψ) corresponds to the Qβi(s, a) and V βi(s), respectively. For every trajectory
(s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT ), in D, we compute the sample return of each state

R(si) =

T−i∑
t=0

γtrt. (10)
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Algorithm 2 Policy Improvement

1: Initialize ψ, φ, and Θ′

2: ψ̄ ← ψ and Θ′ ← Θ̂∗

3: for k ← 1, 2, . . . , NQ do
4: Sample a mini-batch B = {(si, ai, ri, s′i, a′i)}

B−1
i=0

5: ψ ← ψ − 1
B

∑
(s,a,r,s′,a′)∈B α∇ψℓQ(s, a, r, s′, a′;ψ) ▷ (11)

6: if k ≡ 0 (mod nQ) then
7: Update ψ̄ according to (13)
8: end if
9: end for

10: Compute R(s) for all s ∈ D according to (10)
11: for NV epochs do
12: Sample a mini-batch B = {(s0, a0), (s1, a1), . . . , (sB−1, aB−1)}
13: φ← φ− 1

B

∑
(s,a)∈B α∇φℓV (s, a;φ) ▷ (12)

14: end for
15: for Nπ epochs do
16: Θ′ ← Θ′ − 1

|D|
∑

(s,a)∈D α∇Θ′ℓπ(s, a; Θ
′) ▷ (14)

17: end for

Based on this return we can define the following loss functions:

ℓQ(s, a, r, s
′, a′ ;ψ) =

[
Q(s, a ;ψ)⊺eA(s,a) −

(
r + γQ(s′, a′ ; ψ̄)⊺eA(s′,a′)

)]2
(11)

ℓV (s, a ;φ) =
[
V (s ;φ)⊺eA(s,a) −R(s)

]2
, (12)

where ψ̄ is the target network parameter and ei ∈ RK is the i-th standard basis vector. The target
network parameter ψ̄ is updated every nQ time-steps according to the following equation

ψ̄ ← (1− τQ)ψ̄ + τQψ, (13)
where 0 < τQ ≤ 1 is a hyperparameter. We train the action-value network for NQ steps and the value
network for NV epochs. For the policy network πL(· | s, z ; Θ′), we adopt the same architecture we
used for clustering in Section 3.1. The PPO loss can be written as

ℓπ(s, a ; Θ
′) = min {ρ(s, a′)A(s, a′), clip (ρ(s, a′)1− εc, 1 + εc)A(s, a

′)} , (14)

where a′ ∈ A is an action sampled from β(· | s,A(s, a) ; Θ̂∗), 0 < ϵc < 1 is a clipping hyperparame-
ter, and

ρ(s, a′) =
πL(a

′ | s,A(s, a) ;Θ′)

β(a′ | s,A(s, a) ; Θ̂∗)
, A(s, a′) = (Q(s, a′ ;ψ)− V (s ;φ))

⊺
eA(s,a).

We train the policy network for Nπ epochs. PPO tends to perform well with extremely large mini-
batch sizes [21]. We observed that instead of the conventional mini-batch gradient descent, batch
gradient descent greatly improves the training process in terms of performance and stability. Refer to
Section 4.3.2 for the corresponding results. The overall policy improvement method is summarized
in Algorithm 2.

3.3 Training a High-Level Policy

Policy clustering provides us with K different policies, but we can only use one at test time. Which
one should we use? To choose the optimal βz to execute at each step, we train a high-level Q network
QH(s, z ;ψH) and a V network VH(s, z ;φH) through implicit Q-learning [13]. The loss function
for each network is

ℓ
(Q)
H (s, a, r, s′ ;ψH) = [QH(s,A(s, a) ;ψH)− (r + γVH(s′ ;φH))]

2

ℓ
(V )
H (s, a ;φH) = Lτ2(QH(s,A(s, a) ; ψ̄H)− VH(s ;φH)),

where ψ̄H is the target network parameter that is updated every nH steps, τ is the expectile hyperpa-
rameter, and

Lτ2(x) =

{
τx2 if x ≥ 0

(1− τ)x2 otherwise.
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Table 1: Comparisons of the test returns for the simple navigation task.

BC TD3+BC PPO Ours

−854.14± 214.85 −739.94± 214.60 −606.16± 329.08 −345.94 ± 171.46

(a) BC (b) TD3+BC

(c) PPO (d) Ours

Figure 3: Simplified trajectories of the final policies learned by each algorithm.

ψH and φH are updated simultaneously for NH steps. We also adopted the n-step return [22]
technique to further stabilize the training process.

argmaxz QH(s, z ;ψH) may result in an erroneous high-level action due to extrapolation errors of
out-of-distribution clusters. Hence, while we learn the behaviour policies, we also train a classifier
q(z | s ;ϕ) to determine the in-distribution clusters given a state s. The classifier is trained using the
KL divergence loss between the predicted distribution and Q(k)(z | τ(s, a)), that is,

ℓ
(k)
C (s, a ;ϕ) = KL(Q(k)(· | τ(s, a)) ∥ q(· | s ;ϕ)).

Unlike continuous action spaces, defining in-distribution actions for discrete action spaces is unam-
biguous; an action is in-distribution if its probability mass function is positive. In practice, an output
of the softmax function can never be zero, so we define the set ID(s) of in-distribution clusters for a
given state s as

ID(s) =

{
z : q(z | s ;ϕ) ≥ 1

b
max
z′

q(z′ | s ;ϕ)
}
,

where b > 0 is a hyperparameter. The high-level policy πH would then be

πH(s ;ψH) = argmax
z∈ID(s)

QH(s, z ;ψH).

The resulting policy is π(· | s) = πL(· | s, πH(s ;ψH) ;Θ′).

4 Experiments

4.1 Didactic Experiments

To show the importance of policy clustering, we first evaluated our algorithm on a simple navigation
environment shown in Figure 1. The agent should output a two-dimensional velocity vector as an
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Table 2: Averaged normalized score on D4RL tasks.

Dataset BC DT AWAC Onestep RL TD3+BC CQL IQL Ours

halfcheetah-m-e* 55.2 86.8 42.8 93.4 90.7 91.6 86.7 92.6

hopper-m-e 52.5 107.6 55.8 103.3 98.0 105.4 91.5 110.2

walker2d-m-e 107.5 108.1 74.5 113.0 110.1 108.8 109.6 108.4

* m-e stands for medium-expert. All of the experiments were conducted on the v2 dataset.

Table 3: Comparison of the rand index [28].

Dataset No Heuristics Heuristic I Heuristic I, II Ours

halfcheetah-m-e* 59.98 100.00 100.00 100.00

hopper-m-e 69.54 100.00 100.00 100.00

walker2d-m-e 77.07 98.42 99.89 99.93

* m-e stands for medium-expert. All of the experiments were conducted
on the v2 dataset.

action based on the two-dimensional position vector given as state. The episode terminates when
the agent reaches the goal, and until then, it receives a reward of −1. When the agent is inside the
penalty area, it receives an additional penalty of −1, that is, the reward is −2 every time-step. We
created an offline dataset that consists of trajectories sampled using either β0 or β1, where β0 and β1
behaves like “Behavior 0” and “Behavior 1” in Figure 1a, respectively.

We trained four algorithms on this dataset: naive behaviour cloning, TD3+BC [11], our algorithm
with K = 1, which is equivalent to PPO, and our algorithm with K = 2. Table 1 compares
the performance and Figure 3 depicts the behaviour of each algorithm. Our algorithm is the only
algorithm that successfully found the optimal trajectory. Other algorithms failed to enter the shaded
region in Figure 1b, where behaviour cloning fails, and had to take a detour.

4.2 Comparisons on Offline RL Benchmarks

Table 2 reports the performance of of our algorithm evaluated on three different datasets in the
D4RL benchmark [23]: halfcheetah-medium-expert-v2, hopper-medium-expert-v2, and
walker2d-medium-expert-v2. These are the three datasets that satisfy the assumption that each
trajectory is sampled using a single behaviour policy. Following Kostrikov et al. [13], we compared it
to the performance of following baselines: DT [24], AWAC [25], Onestep RL [26], TD3+BC [11],
CQL [27], and IQL [13]. The baseline results were extracted from Kostrikov et al. [13].

4.3 Ablation Studies

4.3.1 Clustering Algorithm

Recall that our clustering algorithm adopted three heuristics to improve the final performance.
To investigate the effect of each heuristic, we conducted an ablation study by comparing the
rand index [28] of four algorithms: plain EM (No Heuristics), plain EM with the momentum
heuristic(Heuristic I), plain EM with the momentum heuristic and pretraining(Heuristic I, II),
and ours. Table 3 reports the mean and standard deviation over 10 seeds on the three datasets
of the D4RL benchmark: halfcheetah-medium-expert-v2, hopper-medium-expert-v2, and
walker2d-medium-expert-v2.1 We can see that the momentum heuristic has the largest impact on
the clustering performance. Refer to Table 5 in Appendix C for the standard deviations and additional
ablation study results.

1medium-expert datasets of the D4RL benchmark were created by concatenating the corresponding medium
and expert datasets, so we have access to the ground truth labels.
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Figure 4: Comparison between min-batch gradient descent and batch gradient descent

4.3.2 Policy Improvement Algorithm

We also analyzed the effect of batch gradient descent on our algorithm using the hopper-medium-
expert-v2 dataset. Figure 4 shows how the performance changes as we increase Nπ , the number of
policy training epochs. We can see that batch gradient descent not only outperforms the mini-batch
gradient descent in terms of normalized return but also is more robust with respect to the choice of
Nπ. We believe that this phenomena is caused by clipping in the policy loss function (14). When
training with mini-batches, the number of unclipped samples inside a min-batch varies from one
mini-batch to another. In some mini-batches, the number of unclipped samples would be very low
resulting in noisy gradients. By computing the gradient using the entire dataset, we can prevent this
from happening.

5 Related Work

There are multiple prior work concerned with offline RL datasets with heterogeneous behaviours.
Wang et al. [14] utilizes a diffusion model [29, 30] to capture the multi-modality of the true behaviour
policy. They update the policy using a loss function similar to TD3+BC [11], where they replaced the
L2 regularizer with the diffusion loss. Li et al. [31] trains a mixture of Gaussian policy on the dataset
via likelihood maximization and then obtains a closed-form estimate of the best possible action near
the behaviour policy. Unlike EMPO, these two work do not explicitly cluster the trajectories.

Mao et al. [32] incorporates an EM based algorithm to learn diverse policies from a given offline
RL dataset. Wang et al. [16] proposes a sophisticated trajectory clustering algorithm that can also
automatically determine the cluster size. In contrast to these two works, we also discuss how to find
an optimal policy through carefully stitching the learned behaviour policies.

6 Conclusion

In this work we introduced the Expectation–Maximization Policy Optimization (EMPO) algorithm
that can recover the behaviour policies used to create the offline RL dataset and can interleave them
into a one competent policy. Future work could explore cases where trajectories are sampled from
continuously changing behaviour policies. Additionally, we could incorporate model-based planing
on the cluster space that could enable long-term planning.
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A Navigation Environment Details

The observation space is S = [0, 30]× [0, 30], the action space is A = [−0.2, 0.2]× [−0.2, 0.2], and
the penalty area is Sp = [15, 30]× [0, 10]. The starting location of the agent is sampled uniformly at
random from [0, 0.1]× [0, 0.1] and the goal position is fixed to g = (30, 30). If the current state is
s = (s0, s1) ∈ S and the action is a = (a0, a1) ∈ A, the next state s′ = (s′0, s

′
1) ∈ S is

s′ = clip(s+ a ; 0, 30).

The reward function is

r(s, a, s′) =


0 if ∥s′ − g∥2 < 0.1,

−2 if s′ ∈ Sp,
−1 otherwise.

The episode terminates if either the agent has approached the goal (∥s′ − g∥2 < 0.1) or the number
of time-steps exceeded 1000.

The offline RL datasets was generated using subgoal-reaching policies. A subgoal-reaching policy
π(s ; gs) for a subgoal gs is defined as

π(s ; gs) = clip(clip(gs − s ;−0.2, 0.2) + 0.1ε ;−0.2, 0.2), (15)

were ε is a two-dimensional standard Gaussian noise. We generated the samples according to
Algorithm 3 using two different list of subgoals: [(0, 30), (10, 30), (10, 0), (20, 0), (20, 30)] and
[(10, 0), (10, 15), (20, 15), (20, 0), (30, 0)].

Algorithm 3 Dataset generation from a list of subgoals

1: Input: a list of subgoals [g(1)s , g
(2)
s , . . . , g

(N)
s ]

2: Initialize an empty dataset D
3: while D has less than 1 000 000 elements do
4: s← env.reset()
5: for gs ← [g

(1)
s , g

(2)
s , . . . , g

(N)
s ] do

6: while ∥s− gs∥2 ≥ 0.1 do
7: a← π(s ; gs) ▷ (15)
8: s′, r, d← env.step(a)
9: Add (s, a, r, d) to D

10: s← s′

11: end while
12: end for
13: while ∥s− g∥2 ≥ 0.1 do
14: a← π(s ; g) ▷ (15)
15: s′, r, d← env.step(a)
16: Add (s, a, r, d) to D
17: s← s′

18: end while
19: end while

B Experiment Details

For the didactic experiments we used a 4-layer multilayer perceptron (MLP) with hidden layers of
size 64. For the D4RL experiments we used a 4-layer MLP with hidden layers of size 256. Table 4
shows the rest of the hyperparameters used in the experiments. The algorithm was implemented upon
the JAX [33] framework using the Flax [34] library.

C Additional Experimental Results

Figure 5 shows the actual trajectories of the final polices learned by each algorithms. We trained
each algorithm for 10 different seeds and sampled 10 trajectories from each policy. Although our
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algorithm sometimes took the suboptimal route as in Figure 5d, it occurred very rarely; only twice
out of the 100 roll-outs.

Table 5 shows additional ablation study results. The rand index [28] was calculated using the
scikit-learn [35] library and the mean and standard deviation was calculated over 10 seeds.
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Table 4: Hyperparameters used in experiments

Didactic D4RL

γ 0.999 0.99

Nb 3 3

Np 20 20

NE 60 100

µ 0.9 0.9

batch size 256 256

learning rate 3× 10−4 3× 10−4

K 2 2

NQ 200 000 1 500 000

nQ 2 2

τQ 0.005 0.005

NV 10 40

Nπ 10 100

nH 500 500

NH 1 000 000 1 000 000

τ 0.9 0.7

b 5 5

n-step 3 3

(a) BC (b) TD3+BC

(c) PPO (d) Ours

Figure 5: Actual trajectories of the final policies learned by each algorithm.
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Table 5: Detailed ablation study results

Np = 0 Np = 20

Nb = 0 Nb = 3 Nb = 0 Nb = 3

halfcheetah-medium-expert-v2

µ = 0 59.98± 21.09 64.95± 24.12 99.98± 0.04 99.98± 0.04

µ = 0.9 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

hopper-medium-expert-v2

µ = 0 69.54± 21.02 95.30± 14.85 100.00± 0.00 100.00± 0.00

µ = 0.9 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

walker2d-medium-expert-v2

µ = 0 77.07± 23.49 91.85± 15.25 96.58± 4.50 95.16± 4.87

µ = 0.9 98.42± 2.35 98.71± 2.52 99.89± 0.08 99.93± 0.08
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