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ABSTRACT

As Large Language Models (LLMs) gain stronger multilingual capabilities, their
ability to handle culturally diverse entities becomes crucial. Prior work has shown
that LLMs often favor Western-associated entities in Arabic, raising concerns
about cultural fairness. Due to the lack of multilingual benchmarks, it remains
unclear if such biases also manifest in different non-Western languages. In this
paper, we introduce Camellia, a benchmark for measuring entity-centric cultural
biases in nine Asian languages spanning six distinct Asian cultures. Camellia in-
cludes 19,530 entities manually annotated for association with the specific Asian
or Western culture, as well as 2,173 naturally occurring masked contexts for enti-
ties derived from social media posts. Using Camellia, we evaluate cultural biases
in four recent multilingual LLM families across various tasks such as cultural
context adaptation, sentiment association, and entity extractive QA. Our analy-
ses show a struggle by LLMs at cultural adaptation in all Asian languages, with
performance differing across models developed in regions with varying access to
culturally-relevant data. We further observe that different LLM families hold their
distinct biases, differing in how they associate cultures with particular sentiments.
Lastly, we find that LLMs struggle with context understanding in Asian languages,
creating performance gaps between cultures in entity extraction.
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19,530 manually annotated cultural entities for 6 entity types

3,709 Western-centric Entities (parallel in all languages)
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Culturally-Grounded contexts

한국도시 [MASK]에서제일긴케이블카야
(It's the longest cable car in the Korean city of [MASK])

Culturally-Neutral contexts

这里的这道菜为什么比隔壁卖的 [MASK] 贵？
(Why is this dish here more expensive 

than the [MASK] sold next door?)

Extractive QA contexts

Lúc sáng vừa mới đăng bài …. hơn 3 tỷ tiền 

USDT chút xíu a giao về [MASK] giúp em được 

không ? … sâu vùng xa nào cũng được

(Just this morning, I posted ... a little over 3 billion 
USDT. Could you help me transfer it to [MASK]? ... 

Anywhere in a remote area is fine)

… …
93%

88%

Figure 1: We construct Camellia, a benchmark to measure cultural biases for six Asian cultures,
covering nine languages. Camellia provides 2,173 naturally-occurring masked contexts categorized
into: culturally-grounded, culturally-neutral, and extractive QA. Camellia also provides 19,530 cul-
turally relevant entities that contrast the respective Asian cultures vs. Western culture across six
different entity types that exhibit cultural variation. The masked contexts and entities in Camellia
enable the measurement of cultural biases in LLMs via versatile task setups.
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1 INTRODUCTION

Large Language Models (LLMs) have rapidly integrated into modern technology, serving users from
diverse cultures (Adilazuarda et al., 2024). Among the vast range of text they process, LLMs fre-
quently encounter entities such as people’s names, locations, or food dishes, which are pervasive
in text corpora (Wolfe & Caliskan, 2021; Pawar et al., 2025a) and often appear in user prompts (Li
et al., 2024a; Wang et al., 2025). Importantly, entities carry cultural associations, making it essen-
tial for LLMs to handle culturally diverse entities fairly. However, past work has shown that these
cultural associations can significantly influence LLMs, leading to biased behaviors (An et al., 2024;
Wan et al., 2023). The recent study of Naous et al. (2024) demonstrated how such biases manifest
when testing LLMs in Arabic, where models showed better performance on entities associated with
Western culture compared to those linked to Arab culture. A natural question is whether similar
LLM cultural biases would also manifest in other non-Western languages.

To this end, we introduce Camellia (Cultural Appropriateness Measure Set for LLMs in Asian
Languages), a benchmark for measuring entity-centric cultural biases in 9 non-Western languages
spoken in the Asian continent: Chinese (zh), Japanese (ja), Korean (ko), Vietnamese (vi), Urdu
(ur), Hindi (hi), Malayalam (ml), Marathi (mr), and Gujarati (gu), covering 6 distinct cultures in
Asia (see Figure 1). Following the data curation process outlined in CAMeL (Naous et al., 2024),
we undertook a year-long collaboration with native speakers to collect and annotate 19,530 cultural
entities across six entity types contrasting Asian and Western cultures (§2.1). We also curate 2,173
naturally occurring masked contexts for entities spanning all nine languages (§2.2). Moreover, we
provide English translations for each entity and masked context in Camellia, enabling direct cross-
lingual comparisons for testing LLMs in English vs the respective Asian language.

Using Camellia, we examine cultural biases in four recent multilingual LLM families (Llama,
Qwen, Aya, Gemma) across diverse evaluation setups (§3). Our experiments show how LLMs
can struggle to adapt to Asian cultural contexts in all languages, assigning higher likelihood
for Western-associated entities in 30-40% of cases, even when inappropriate to the context (§3.1).
Further, we find that different model families display their own distinct biases. When analyz-
ing cultural sentiment associations in LLMs, Qwen shows a higher tendency of associating Asian
entities with positive sentiment compared to Western entities, whereas the Llama and Gemma mod-
els show the opposite trend (§3.2). Lastly, we show how LLMs still lack the ability to efficiently
grasp context in Asian languages, impacting their cultural fairness in entity extraction. When
tasked with extracting entities from paragraphs, we observed large accuracy gaps in LLMs when en-
tities in the same text were associated with different cultures. In contrast, these gaps were minimal
when testing LLMs on the English translations of contexts and entities, where performance is stable
regardless of an entity’s cultural association (§3.3).

2 CONSTRUCTING CAMELLIA

This section describes the process of constructing the Camellia benchmark. First, we outline our
methodology for collecting culturally-relevant entities across nine different Asian languages (§2.1).
We then describe how we collect naturally-occurring masked contexts for entities, which enable
testing for entity-centric cultural biases in LLMs across versatile setups (§2.2).

2.1 COLLECTING CULTURAL ENTITIES

Our objective is to collect a comprehensive list of culturally-relevant entities in each language. This
includes entities tied to Asian cultures where the language is spoken (e.g., entities associated with
Pakistani culture in Urdu, Chinese culture for Chinese, etc.) and entities written in those Asian
languages but associated with Western culture (North America and Europe). We consider 6 en-
tity types that exhibit variation across cultures: authors, food dishes, beverages, first names, loca-
tions, and sports clubs. To collect entities, we follow the procedure described in the CAMeL bench-
mark (Naous et al., 2024), which leverages the multilingual Wikidata knowledge base and performs
pattern-based extraction on web-crawled data. Figure 2 shows the statistics of Asian-centric and
Western entities that we collect and annotate for each language in Camellia.
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Figure 2: Example per entity type and statistics of respective Asian entities per culture and Western
entities in Camellia. Western entities are parallel for all 9 languages while Indian entities are parallel
in all Indian languages (§2.1). Camellia also provides an English translation for each entity.

Extracting Entities from Wikidata. We started by collecting entities from Wikidata by querying
the corresponding Wikidata classes for our target entity categories in each language and extracting
all registered entities under each class. We found the coverage in Wikidata to be generally sufficient
for authors, locations, and sports clubs for all languages. However, the coverage for the other entity
types (food dishes, beverages, names) was much less extensive and varied by language. As of 2024,
we observed that higher-resource languages had a sizable amount of entities in Wikidata (e.g., 253
Indian food dishes written in Hindi) while lower-resource languages had much less representation
(e.g., only 24 Indian food dishes in Malayalam, 37 Pakistani names in Urdu, etc.).

Pattern-based Extraction from Web-Crawls. To expand on the initial lists obtained from Wiki-
data for entity types that had little coverage, we performed pattern-based extraction of entities from
web-crawled corpora in each language. We manually defined patterns in each language that typi-
cally precede entities (e.g., brother/sister named for first names, recipe of for food dishes,
etc.). Using the patterns, we scanned through each language’s partition in the mC4 web-crawl cor-
pus (Xue et al., 2021) and extracted unigrams and bigrams that appeared after a detected pattern. We
also accounted for gender inflections if required. This resulted in 5k-10k extractions in each type and
language, which were then manually filtered to remove irrelevant extractions and select culturally-
relevant entities. Since Chinese and Japanese do not use word-separating spaces, we retrieved both
the detected pattern (e.g., “喝”, which means “to drink”) and up to ten surrounding characters in
these languages, and then prompted GPT-4o-mini to extract the entity from the captured characters,
if any were mentioned. This was followed by manual filtering to remove irrelevant characters.

Annotation by Native Speakers. For each of the 9 Asian languages, one of our authors who is
a native speaker manually filtered the extractions from Wikidata and mC4 to identify culturally-
relevant entities and remove irrelevant extractions. The collected entities were then annotated for
being associated with the respective Asian culture of the language or associated with Western culture.
To ensure quality, we performed double annotation of the entities in each language. The second
annotators consisted of undergraduate or master’s students hired for zh, ja, ko, hi, ml, mr, and
gu; and native speaker volunteers for vi and ur. We achieved high inter-annotator agreements as
measured by Cohen’s Kappa (zh: 0.85, ja: 0.78, ko: 0.92, vi: 0.80, ur: 0.88, hi: 0.94, ml: 0.83,
mr: 0.93, gu: 0.97). The disagreements were then resolved in an adjudication step to decide the final
label. We report the detailed annotation guidelines for each entity type in Appendix A.

Translating Entities to English. To support comparative analyses of LLM performance when
tested in both the native language and English, we mapped each entity in Camellia to its English
translation. When possible, we retrieved the English label directly from Wikidata (available for
86.58% of Wikidata-sourced entities). For entities without an English label and ones extracted from
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mC4, we manually searched for their most commonly used English transliterated form found online,
ensuring that the translations reflect how entities appear in real-world usage.

Parallelizing Western Entities. To enable language comparisons in our experiments, we paral-
lelized the Western entities across all languages (i.e., each entity has a written version in every lan-
guage). For authors, locations, and sports clubs, we constructed their parallel Western sets directly
from Wikidata by extracting the entities of each Western country (North America and Europe) that
had a written form in at least 6 of the languages. A lot of these Western entities did not have writ-
ten versions in Wikidata in low-resource languages (ur, ml, gu, and mr). For those languages, we
manually filled in their missing translations.

For the other types of food, beverage, and names, Western entities were collected independently in
each language via pattern-based extractions mC4. We unified these language-specific sets by first
using their English translations as the common key. Specifically, when the same English translation
appeared for multiple languages, we treated it as the common “parallel” entity. This revealed large
overlaps for high-resource languages (hi, zh, ja, ko), which shared many common Western entities,
but also showed substantial gaps for low-resource languages in which data was already scarce (e.g.,
1k–1.5k food entities needed to be translated to ur). To minimize translation effort while ensuring
quality, we randomly sampled 500 unified entities per type and, with the help of annotators, manually
completed the missing entries by translating them from English into their languages.

Parallelizing Entities in Indian Languages. To enable direct comparisons between Indian lan-
guages, we also parallelized the Indian entities across the four Indian languages (hi, ml, mr, gu).
Since Indian entities were independently collected and annotated for each language, we used their
English translations as an intermediate representation to map equivalent entities across languages.
Annotators then manually translated the missing gaps from English. The majority of Indian cultural
entities were initially collected in hi, being the most resource-rich Indian language. In contrast,
manual translation efforts were mostly required to map entities into ml, mr, and gu.

2.2 COLLECTING NATURAL MASKED CONTEXTS

To evaluate whether LLMs can distinguish between entities associated with each Asian culture vs.
those associated with Western cultures, Camellia provides 2,173 naturally-occurring masked con-
texts for entities derived from natural discussions by native speakers on X (formerly Twitter).

Following CAMeL (Naous et al., 2024), we collected short contexts that are uniquely suited for the
entities associated with each Asian culture, enabling us to assess LLM cultural adaptation. We also
collected neutral contexts where entities from any culture were appropriate, helping determine the
default inclinations of models in the absence of clear cultural cues. Additionally, we constructed
longer contexts that reference entities more implicitly, presenting a challenging setup for testing
models at entity identification in an extractive QA format. Accordingly, the masked contexts in
Camellia are split into three types: (1) culturally-grounded (Camellia-Grounded), (2) culturally-
neutral (Camellia-Neutral), and (3) extractive QA contexts (Camellia-QA).

Contexts for Evaluating Cultural Adaptation. To construct Camellia-Grounded, we searched
X using two types of search queries: randomly sampled Asian entities (e.g., [Indian entity],
[Japanese entity]), and manually designed patterns that mention a culturally-relevant entity (e.g.,
the [Chinese] city of, the [Indian] dish, etc.). We then manually inspected the retrieved tweets to
identify ones that provide suitable cultural contexts. From these, we constructed our masked con-
texts by replacing the entity mentioned in the tweet with a [MASK] token. Similarly, to construct
neutral contexts (Camellia-Neutral), we identified tweets where entities from any culture would
be appropriate as [MASK]. Further, we annotated each context with one of three sentiment labels:
positive, negative, or neutral. This helps evaluate whether substituting the [MASK] token with the
respective Asian or Western entities changes the sentiment predicted by LLMs (§3.2).

Contexts for Extractive QA. In addition to the contexts used to evaluate cultural adaptation in
LLMs, we constructed longer, paragraph-level contexts in which entities are mentioned implicitly.
These longer contexts enable a challenging evaluation setup for entity extraction, as they require
understanding the underlying context to identify the entity. We follow the same keyword search
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Figure 3: Average Cultural Bias Score (CBS) (↓) across entity types achieved by LLMs on culturally-
grounded contexts (Camellia-Grounded) for each Asian language. LLMs can struggle to generate
the appropriate Asian entities in each culture, assigning better likelihood to Western entities 30-40%
of the time. See results per entity type in Appendix C.1.

strategy to identify such contexts on the X platform, and replace the mentioned entity with the
[MASK] token. Camellia-QA provides ∼8-10 of such contexts for each entity type in each language.

Parallelizing Indian Contexts. The contexts in hi, ml, mr, and gu were originally collected inde-
pendently for each language. To enable comparisons across these Indian languages, we parallelized
them by first translating the contexts into English and then into the other Indian languages.

3 ARE CULTURAL BIASES CONSISTENT ACROSS LANGUAGES AND LLMS?

We leverage the cultural entities and masked contexts in Camellia to investigate whether cultural
biases in LLMs are persistent across languages and LLMs. We experiment with four recent LLMs
with multilingual capabilities: Llama3.3-70b (Grattafiori et al., 2024), Qwen2.5-72b (Yang et al.,
2025), Aya-expanse-32b (Dang et al., 2024), and Gemma3-27b (Team et al., 2025). We test LLMs
in three setups: cultural adaptation (§3.1), sentiment association (§3.2), and extractive QA (§3.3).

3.1 CULTURAL CONTEXT ADAPTATION

We first analyze the ability of LLMs to adapt to different Asian cultural contexts by analyzing their
assigned likelihood for the respective Asian vs Western entities as [MASK] token fillings.

Cultural Bias Score (CBS). We use the CBS designed by Naous et al. (2024) to measure the level
of Western bias in an LLMθ. CBS is a likelihood-based measure that computes the percentage of an
LLM’s preference for Western entities over Asian ones within the same cultural context. Given an
entity type D, two type-specific sets of respective Asian entities A = {ai}Ni=1 and Western entities
B = {bj}Mj=1, and a masked context ck, we compute CBSD(LLMθ, A,B, ck) per language as:

1

N ×M

N∑
i=1

M∑
j=1

1[P[MASK](bj |ck) > P[MASK](ai|ck)], (1)

where P[MASK] is the LLM’s probability of an entity filling the [MASK] token. For entities tokenized
into multiple tokens, we take the product of the conditional probabilities of each token. For a set
of prompts C = {ck}Kk=1, the CBS per entity type for an LLM is computed by averaging over all
ck ∈ C. An LLM is considered more Western-biased as its CBS gets close to 100%.

Results. Figure 3 shows the average CBS across entity types achieved on the culturally-grounded
contexts of each culture when tested in each language. We observe the following key insights:

LLMs can struggle to distinguish Asian vs. Western entities in Asian languages. Since the
contexts we test on are grounded in each Asian culture (only entities associated with the specific
Asian culture are appropriate for filling the [MASK]), the CBS is expected to be low (closer to the 0-
5% range). However, in most cases, we observe the CBS to be in the 30-40% range. This highlights
many situations where LLMs struggle to differentiate between Asian and Western entities, assigning
a better likelihood to Western entities despite being inappropriate to the context.
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Figure 4: Average CBS across entity types on culturally-grounded contexts vs culturally-neutral
contexts. LLMs show more preference towards Western entities in culturally-neutral contexts (higher
CBS). CBS scores are lower in culturally-grounded contexts, yet remain close to the neutral case.

Are models sensitive to cultural grounding? We further analyze if performance changes when
testing on the contexts that are culturally neutral (i.e., any entity is an appropriate [MASK] filling
in the context). The results are summarized in Figure 4, which shows that CBS scores are higher
when contexts are neutral, with LLMs becoming more likely to generate Western entities. However,
in the majority of cases, the scores still remain very close to when contexts are culturally grounded.
This suggests a lack of sensitivity to cultural contexts in LLMs, whereby their ability to select the
appropriate entities at generation time is not greatly impacted by cultural grounding.

Adaptation performance can vary by LLM family. Noticeable differences can be seen in the
performance of LLM families developed in different regions. Specifically, we find that the Qwen2.5-
72b model that is developed by China-based Alibaba performs the best on Chinese, Japanese, and
Korean, compared to the rest of the models. Such a gap likely reflects more access to culturally
relevant pre-training data in those languages, enabling the model to learn cultural associations that
others would miss. This highlights the importance of data provenance in shaping the cultural com-
petence of LLMs. Moreover, this corroborates the results of past work that shows a better ability of
Qwen models at answering questions specific to Chinese culture (Guo et al., 2025).

Adaptation ability for the same culture can vary by resource availability. In the Indian setting,
performance varied based on the resource availability of languages. Models performed relatively bet-
ter when tested in Hindi but struggled more when tested in lower-resource languages as Malayalam,
Marathi, and Gujarati. Notably, this trend is consistent across all models, reflecting similar access to
training data proportions for those languages. In practice, this makes the adaptation ability of LLMs
to Indian contexts skewed towards Hindi, privileging one linguistic community over others.

3.2 SENTIMENT ASSOCIATION

We examine whether LLMs subtly associate entities from Asian or Western cultures with specific
sentiments by analyzing their behavior on sentiment analysis.

Setup. We leverage the masked contexts in Camellia-Grounded and Camellia-Neutral that
were manually annotated for sentiment to create a test set in each language. For each context, we re-
place the [MASK] token with 50 randomly sampled culture-specific Asian and Western entities. This
results in two separate evaluation sets of ∼20k sentences per language: one with culture-specific
Asian entities and the other with Western entities. Importantly, the contexts remain the same across
both sets, allowing us to isolate the effect of entity cultural association on changes in the LLMs’ pre-
dictions. We prompt LLMs to predict the sentiment of each sample and compare their false negative
sentiment and false positive sentiment predictions between sentences containing Asian entities vs.
Western entities. Fair LLMs should have near-zero false negative or false positive differences since
their sentiment prediction should be based on the sentence’s context and not the swap of entities.

Results. Figure 5 shows the average differences in false negative and false positive predictions by
LLMs for each language. We observe that sentiment associations vary significantly across dif-
ferent LLMs. For instance, Llama and Gemma exhibit a stronger tendency to associate Western
entities with negative sentiment, whereas Qwen and Aya often associate Asian entities with posi-
tive sentiment, particularly in Indian languages. These results highlight how current LLMs can be
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Figure 5: Differences in False Negative (FN) and False Positive (FP) sentiment predictions by LLMs
on Camellia contexts filled with Asian vs Western entities. Results are averaged across 3 runs of 50
randomly sampled Asian vs Western entities in each language. Llama and Gemma tend to associate
Western entities with negativity, while Qwen and Aya tend to associate Asian entities with positivity.

sensitive to cultural associations of entities when used as classifiers - a critical consideration for
different use cases of LLMs, such as content moderation, where these biases can lead to unfair deci-
sions (Garg et al., 2023). LLM-specific sentiment biases are likely a reflection of differences in their
training data, where models can learn spurious associations when cultural entities appear frequently
in positive or negative contexts.

3.3 EXTRACTIVE QA

We now analyze the ability of LLMs to extract entities from paragraph-long contexts. We compare
their performance when these entities are associated with Asian vs. Western cultures.

Setup. Using the contexts from Camellia-QA, we construct Asian and Western test sets in each
language. For each context, we replace the [MASK] with 50 randomly sampled entities, in a similar
manner to our earlier experiment for sentiment association (§3.2). We then prompt LLMs to extract
the entity from each context and compute their accuracy on the Asian vs Western test sets.

Results. Figure 6 shows the average accuracy achieved by LLMs for each Asian language. We
observe a consistent trend where LLMs generally achieve higher accuracy in extracting entities
associated with each Asian culture rather than Western-associated entities. There are a few
cases showing the opposite behavior, specifically in Vietnamese and Urdu, where the Llama and
Qwen models achieve better accuracy on Western entities than Pakistani and Vietnamese entities.

To compare whether these gaps are also observed in English, we test all models on the parallel
English data for each culture. Table 1 compares the QA accuracy difference between Asian and
Western entities when testing models in the respective Asian language of each culture vs. English.
We find that gaps between cultures in English are much smaller, ranging mostly between 1% and
5%, with no clear trend of superior performance on one culture. Yet, gaps in Asian languages are
much larger, reaching a 12%-20% range in most cases, with the exception of Chinese, where gaps
were minimal. These results show that LLMs still lack a robust ability to grasp implicit contexts
in most non-English languages, creating large performance gaps between different cultures.
As noted in past work, these gaps may be due to a lack of representation of certain cultural entities
in pre-training, where models may get lost when encountering entities as rarely seen tokens (Li
et al., 2024a). This may also be a result of linguistic phenomena where LLMs struggle to distinguish
multi-sense words that overlap with cultural entities (Naous & Xu, 2025).
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Figure 6: Extractive QA accuracy by LLMs on Camellia-QA contexts containing Asian vs Western
entities when tested in each Asian language. LLMs generally achieve higher accuracy on extracting
entities associated with each Asian culture rather than Western-associated entities.

4 ENTITY-SPECIFIC CHALLENGES IN MULTILINGUAL MULTICULTURAL
BENCHMARK CONSTRUCTION

We now discuss some of the entity-specific challenges we encountered while constructing Camellia.
These challenges stem from diverse linguistic and cultural factors that shaped several of our dataset
design choices. Because each culture introduces unique nuances in certain entity types, a uniform
data collection strategy across all languages proved difficult, requiring tailored adaptations instead.

Llama3.3-70b Qwen2.5-70b Aya-expanse-32b Gemma3-27b
Culture Asian English Asian English Asian English Asian English
Chinese -1.32 0.30 0.43 -2.84 2.84 -5.83 -1.36 -5.63
Japanese 7.55 2.72 18.87 4.53 8.84 -0.73 16.40 -3.22
Korean 9.69 0.66 16.47 -2.49 13.94 1.43 7.94 2.54
Vietnamese -13.53 1.95 -14.33 -3.61 2.83 -1.88 4.15 1.65
Pakistani -4.71 10.54 -4.99 12.16 0.12 4.54 21.11 4.54
Indian (hi) 10.05 6.71 3.63 10.67 11.54 1.07 6.81 3.25
Indian (ml) 13.15 — 4.22 — 10.93 — 9.01 —
Indian (mr) 11.07 — 1.68 — 12.64 — 3.50 —
Indian (gu) 14.44 — 6.02 — 12.89 — 6.54 —

Table 1: ∆Accuracy on extractive QA between Western and
Asian entities when testing models on parallel data in the re-
spective Asian language of each culture vs. in English. Gaps
between cultures are generally much smaller in English,
while gaps in Asian languages are larger, falling mostly in
the range of 10-20%. See detailed results in Appendix C.3.

Entity naming conventions can be
subject to temporal change. In
Korea, China, and Japan, modern
names differ significantly from older
ones (Barešová & Janda, 2023).
For instance, many Korean femi-
nine names in the mid-20th cen-
tury included elements like ‘suk’ (숙)
or ‘mi’ (미), which symbolize pu-
rity and beauty, respectively. In con-
trast, contemporary names like ‘Seo-
yun’ (서윤) or ‘Ji-woo’ (지우) re-
flect trend-driven preferences. Chi-
nese names have similarly shifted
over the last century, becoming
shorter and more unique due to po-
litical and social factors (Ogihara, 2023). Such temporal changes can make it challenging to collect
entities that are representative today. For example, the Korean, Chinese, and Japanese first names
listed on Wikidata are mostly outdated names with little to no contemporary usage. To more accu-
rately reflect modern naming conventions, we used recent governmental statistical reports in Korea1

and China2. For Japanese, due to a lack of similar reports, we used a popular name generator3 to
generate Japanese first names. All names were then verified to be valid by our native annotators.

Entity types can persist in everyday use in some cultures but not in others. The CAMeL
benchmark (Naous et al., 2024) initially included a clothing entity type contrasting traditional Arab
clothing with Western attire. However, extending this to other non-Western cultures proves challeng-
ing. For instance, in Pakistani culture, traditional garments such as the “shalwar kameez” remain a
common part of everyday attire (Ranavaade & Karolia, 2017). In contrast, in many other Asian soci-
eties, including China and Japan, traditional clothing like the “hanfu” is now generally reserved for
special occasions. This limited daily relevance makes it difficult to collect natural discussions about
clothing in some languages; therefore, we excluded it from our benchmark.

1https://efamily.scourt.go.kr
22021 National Name Report
3https://namegen.jp
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The same entity type may need to be tailored to local cultural popularity. The same entity
type can carry different meanings depending on the culture, reflecting what people care about and
commonly discuss. This is illustrated by the sports clubs category in Camellia. We focused on sports
that have a strong imprint in each culture. In Pakistan and India, for example, cricket holds significant
importance and even influences political discourse between the two countries (Chakraborty, 2022);
accordingly, we collected cricket clubs as the sports club entities for these cultures. In contrast,
across much of East and Southeast Asia, we focused on football as one of the most widely followed
sports (Connell, 2018). For these regions, we thus collected football clubs as the sports club entities.

5 RELATED WORK

LLM biases in Asian languages. There exist various studies that introduce multilingual resources
for measuring biases in LLMs, which cover languages spoken in the Asian continent. Much of the
prior work probe LLMs for demographic biases using manually written templates (e.g.; Everyone
hates {attribute}) (Levy et al., 2023), focusing on attributes such as gender (Ding et al., 2025;
Vashishtha et al., 2023; Kaneko et al., 2022), race (Costa-jussà et al., 2023), religion (Rinki et al.,
2025), age (Zhao et al., 2023), and more (Lan et al., 2025; Hsieh et al., 2024). Another line of
research measures the reflection of culture-specific stereotypes (Sahoo et al., 2024) by introduc-
ing resources of stereotype pairs (Bhutani et al., 2024) or natural language statements that reflect
stereotypes (Mitchell et al., 2025). Other works have adapted existing English benchmarks (Parrish
et al., 2021) for measuring stereotypes in QA model outputs into Chinese (Huang & Xiong, 2023),
Japanese (Yanaka et al., 2025), and Korean (Jin et al., 2024). Monolingual resources have been intro-
duced to measure moral bias in Chinese (Hämmerl et al., 2022), and political bias in Urdu (Nadeem
et al., 2025). Different from existing research, our work focuses on measuring biases in LLMs when
handling Asian vs Western-centric entities, covering 6 Asian cultures and 9 Asian languages.

Multilingual cultural evaluation benchmarks. The rapid deployment of LLMs has sparked re-
cent interest from the research community in their cultural evaluation (Qadri et al., 2025a;b; Singh
et al., 2025), resulting in the release of various benchmarks (Pawar et al., 2025b). Past work has
introduced several English question-answering datasets that evaluate models on open-ended culture-
specific questions (Chiu et al., 2024b;a; Myung et al., 2024) or specific knowledge in domains such
as culinary practices (Palta & Rudinger, 2023; Zhou et al., 2024) or cultural norms (Rao et al.,
2024; Fung et al., 2024). Multilingual resources have also been introduced to evaluate LLMs on
geo-diverse facts (Yin et al., 2022; Keleg & Magdy, 2023; Dammu et al., 2024), regional exam
questions (Romanou et al., 2024; Singh et al., 2025), and questions on local norms sourced from
native speakers (Guo et al., 2025; Alwajih et al., 2025). A few studies have also introduced bench-
marks for multilingual multimodal cultural evaluations, such as the recognition of culture-specific
traditions (Romero et al., 2024) or food dishes (Winata et al., 2024; Lavrouk et al., 2025; Li et al.,
2024b). Less work has evaluated the sensitivity of LLMs to entities that exhibit cultural variation
(Naous & Xu, 2025; Naous et al., 2024; An et al., 2024; Nghiem et al., 2024; Arora et al., 2025). Our
work introduces Camellia, a benchmark to measure entity-centric cultural biases in 6 non-Western
cultures in Asia and 9 diverse Asian languages. Camellia includes 2,173 natural masked contexts
constructed from social media posts and 19,530 cultural entities extracted from Wikidata and mC4
web-crawls with manual annotation.

6 CONCLUSION

We introduced Camellia, a comprehensive benchmark for evaluating entity-centric cultural biases
in 9 Asian languages across 6 distinct cultures. Through systematic analyses, we demonstrated that
current multilingual LLMs exhibit various types of cultural biases in these non-Western languages.
Models showed struggles in adapting to Asian cultural contexts when tested in their native lan-
guages. Our experiments also revealed divergent sentiment associations across model families and
performance gaps between cultures in entity extraction. Notably, these issues were greatly reduced
when testing on the parallel contexts and entities in English, highlighting the nuanced challenges
presented by different languages. We hope that Camellia will serve as a valuable resource and
testbed to support future research aimed at developing more culturally aware and fair multilingual
LLMs, improving their usability across diverse linguistic and cultural settings.
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ETHICS STATEMENT

While collecting data from naturally-occurring tweets to construct the masked contexts in Camellia,
we discarded any tweets during our search that included offensive or toxic language, hate speech,
stereotypes, or included any personally identifiable information. We do not share the raw tweets but
modified versions where cultural entities are replaced by a [MASK], which can be used for research
purposes. The Camellia benchmark is constructed for the purpose of testing cultural biases in LLMs
and enabling future research on the development of LLMs that work efficiently and fairly for all
entities regardless of the cultural associations they carry.

REPRODUCIBILITY STATEMENT

The Camellia benchmark will be made publicly available to the community, which includes the
collected entities with their annotations for cultural association and the naturally-occurring masked
contexts for all languages. We provide in Appendix A the annotation guideline we used to anno-
tate entities, and additional experimental details in Appendix B, such as the prompts and decoding
configurations that can be used to replicate our experiments for all languages.
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Ivona Barešová and Petr Janda. Tradition and change: naming practices in contemporary Japan and
Taiwan. Continuity and change in Asia, pp. 393–411, 2023.

Mukul Bhutani, Kevin Robinson, Vinodkumar Prabhakaran, Shachi Dave, and Sunipa Dev. SeeG-
ULL multilingual: a dataset of geo-culturally situated stereotypes. pp. 842–854, August 2024.
doi: 10.18653/v1/2024.acl-short.75. URL https://aclanthology.org/2024.acl-short.75/.

Suvasish Chakraborty. The politics of sports: cricket as a factor in india-pakistan relations. 2022.

Yu Ying Chiu, Liwei Jiang, Maria Antoniak, Chan Young Park, Shuyue Stella Li, Mehar Bhatia,
Sahithya Ravi, Yulia Tsvetkov, Vered Shwartz, and Yejin Choi. Culturalteaming: Ai-assisted
interactive red-teaming for challenging llms’(lack of) multicultural knowledge. arXiv preprint
arXiv:2404.06664, 2024a.

Yu Ying Chiu, Liwei Jiang, Bill Yuchen Lin, Chan Young Park, Shuyue Stella Li, Sahithya Ravi,
Mehar Bhatia, Maria Antoniak, Yulia Tsvetkov, Vered Shwartz, et al. CulturalBench: a robust,
diverse and challenging benchmark on measuring (the lack of) cultural knowledge of LLMs.
2024b.

10

https://aclanthology.org/2024.emnlp-main.882/
https://aclanthology.org/2025.acl-long.578/
https://aclanthology.org/2024.acl-short.75/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

John Connell. Globalisation, soft power, and the rise of football in China. Geographical research,
56(1):5–15, 2018.
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A CAMELLIA: ADDITIONAL DETAILS

Statistics for entities and masked contexts. Table 2 shows the number of entities for each lan-
guage and entity type that we collect and annotate in Camellia. Table 3 shows the number of
masked contexts that we constructed in each language. We note that fewer contexts could be col-
lected in Urdu due to the low-resource nature of the language, with relatively much less digital
presence on social media compared to the rest of the languages.

Wikidata Classes. Table 4 lists the Wikidata classes we used to extract cultural entities. For each
language, we identify the relevant country (e.g., India for hi, ml, gu, Pakistan for ur, Vietnam for
vi, etc.) and collect all entities that belong to the corresponding Wikidata class and are associated
with that country. For each entity, we retrieve its label in the target language as well as its English
translation, when available. To collect Western entities, we similarly extract entities for all countries
in North America and Western Europe.

#Cultural Entities
Entity Type zh ja ko vi ur hi/ml/mr/gu western

Authors 165 260 602 24 44 207 370
Beverage 189 115 107 77 11 34 497
Food 415 635 416 374 75 605 436
Locations 1,000 817 1,260 90 196 181 382
Names (M) 906 503 899 251 334 651 588
Names (F) 1,123 523 886 151 163 563 587
Sports 116 354 266 51 17 165 849

Total 3,914 3,207 4,436 1,018 840 2,406 3,709

Table 2: Number of entities for each language and entity type in Camellia. Western entities are
parallel across all languages. Each entity is also available as an English translation.

#Masked Natural Contexts
Language Camellia-Grounded Camellia-Neutral Camellia-QA

zh 131 126 64
ja 137 140 60
ko 150 208 70
vi 165 192 78
ur 70 70 58
hi/ml/mr/gu 215 192 47

Total 868 928 377

Table 3: Number of masked contexts collected for each language in Camellia. Indian contexts are
parallel across all Indian languages. Each masked context is also available as an English translation.

Entity Type Wikidata Class Class QID

Authors writer Q36180
novelist Q6625963

Beverage drink Q40050

Food food Q2095
dish Q746549

Location city Q515

Names (F) female given name Q11879590

Names (M) male given name Q12308941

Sports Clubs association football club Q476028
cricket team Q17376093

Table 4: Wikidata classes used to extracting entities for each entity type in all languages.
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Annotation Guideline Figure 7 shows our guideline for annotating cultural entities across all
entity types, focusing on Indian culture for Hindi, Malayalam, Marathi, and Gujarati. We similarly
adapted the guideline for the other cultures/languages by switching examples where necessary.

Guideline for annotating entities for cultural association 

(Hindi, Malayalam, Marathi, and Gujarati version) 

 

Food entities:  

Classify the extraction according to the following labels: 

• Indian: these should be dishes, side dishes, desserts that are specific to the broad Indian culture. 

For example, the dish “dosa” should be labeled as an Indian food entity. To help decide, the 

annotator can think whether the entity would fit within a prompt that is contextualized by an 

Indian cultural context such as “I tried some Indian [MASK] yesterday, it was delicious”.  These 

should be dishes originally from India.  

 

• Western: these should be dishes, side dishes, desserts that are specific to the broad Western 

culture (North American / Western European counties). For example, the Italian dish “Lasagna” 

should be labeled as a Western food entity. 

 

• Irrelevant: these are sample that do not fit the above two categories which could be 1) dishes 

that are associated with other foreign cultures such as “Mansaf” that is associated with Arab 

culture, 2) generic food entities that do not have cultural significance (e.g., bread, butter, olives, 

etc.), ingredients (e.g., cinnamon, saffron, etc.) or brands (cheetos, kinder, etc.) or 3)  irrelevant 

noisy extractions from pattern matching on mC4 that are not food related. 

 

Beverage entities: 

The same guideline described above for food entities is applied for beverage entities. Indian and Western 

entities will be specific traditional drinks in Indian and Western societies. For example, an Indian beverage 

entity must fit within a prompt like “The Indian drink [MASK] is very nice to have in the evening”. Examples 

of non-culture specific are “milk, tea, coca-cola”, etc. 

Name entities: 

Name entities should be annotated as either “Indian” (e.g., Suraj, Naisha, etc.) or “Western” (e.g., Michael, 

Jessica, etc.). Filter out name entities that are neither Indian or Western such as names that are be 

associated with other foreign cultures (e.g., Arab, African, etc.) or irrelevant noisy extraction from pattern 

matching. 

Location / Authors / Sports Clubs entities: 

For these samples that are obtained from Wikidata using the country of origin tag, manually filter the 

entries to remove noisy samples from the database that are not associated with Indian culture (i.e., not 

an Indian city/town, not an Indian author, and not an Indian cricket club). 

Figure 7: Indian-focused version of our annotation guideline for annotating cultural entities.
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Classify the sentiment in this {LANGUAGE} sentence based on the following key:
0 = neutral
1 = positive
2 = negative

Sentence: ‘‘{SENTENCE}’’
Given the above key, the sentiment of this sentence is (0-2):

Table 6: Prompt used to classify a sentence’s sentiment in our sentiment association experiment.

Extract the {ENTITY TYPE} entity mentioned in the following {LANGUAGE} text.

Text: ‘‘{QA CONTEXT}’’

Reply only with the mentioned {ENTITY TYPE}. If nothing is found, reply ‘‘None’’.

Table 7: Prompt used to classify a sentence’s sentiment in our sentiment association experiment.

B ADDITIONAL EXPERIMENTAL DETAILS

Prompts for extractive QA and sentiment classification. We used the same prompt used by
Naous et al. (2024) for our sentiment association experiment, where models are given a key and
asked to classify the sentiment of the given sentence (see Table 6). We also used the prompt by
Naous & Xu (2025) for the extractive QA experiment, where models are given the context and
entity type we seek to extract asked to identify the entity mentioned in the text (see Table 7).

Inference Details and Parameters. We ran our experiments using 8 NVIDIA A40 GPUs. We
used the vLLM library4 (Kwon et al., 2023) for fast inference on the extractive QA and sentiment
association tasks in each language. Greedy decoding was selected by setting the following parame-
ters {temperature=0, top p=1, top k=1}. We limited the number of generated tokens by the models
by setting {max tokens=30}. We also set the context length to {max model len=4096}, which fit
all of the contexts in our benchmark.

LLM Hugging Face Repository
Llama3.3-70b meta-llama/Llama-3.3-70B-Instruct
Qwen2.5-72b Qwen/Qwen2.5-72B-Instruct
Aya-expanse-32b CohereForAI/aya-expanse-32b
Gemma3-27b google/gemma-3-27b-it

Table 5: List of LLMs used with their Hug-
ging Face repository links.

Language Models. Table 5 lists the LLMs used
in our experiments with their HuggingFace reposito-
ries. We used the largest size available for each LLM
family and included the most recent version that
mentions multilingual support. We also restricted
our experiments to open-sourced models since we
can obtain their log-probabilities, which are essen-
tial to compute the CBS scores in our cultural con-
text adaptation experiment (§3.1).

4https://docs.vllm.ai
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Figure 8: Cultural Bias Score (CBS) (↓) (§3.1) per entity type achieved by LLMs on culturally-
grounded contexts (Camellia-Grounded) for each Asian language. As contexts are grounded in the
culture of each language, CBS scores are expected to be low.
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Figure 9: Average Cultural Bias Score (CBS) (↓) across entity types achieved by LLMs on culturally-
grounded contexts (Camellia-Grounded) when tested in English for each culture.

C ADDITIONAL RESULTS

C.1 CULTURAL ADAPTATION

CBS scores per Entity Type. Figure 8 shows the CBS per entity-type achieved by LLMs when
tested on the culturally-grounded contexts. We find instances where LLMs have high favoritism of
Western entities, with CBS reaching near 75% (e.g., authors in vi and ja). There are also instances
where LLMs perform well, reaching scores near 5% (e.g., food entities in zh, and ur).

CBS scores when testing in English. Figure 9 shows the average CBS achieved by each model
on the culturally-grounded contexts in Camellia when tested on the English translations for each
culture. Overall, LLMs also show a struggle to assign a better likelihood to the appropriate entities
for the cultural context, with CBS values in the range of 40-70%. The larger models (Llama3.3-70b
and Qwen2.5-72b) perform better than smaller-sized models (Aya-expanse-32b and Gemma3-27b),
suggesting that scaling can improve performance on this task. We also notice that CBS scores are
generally higher in English, suggesting a lack of access to culturally-relevant data where culture-
specific Asian entities are mentioned.
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C.2 SENTIMENT ASSOCIATION

Test Set Sizes. Table 8 reports the exact size of the test sets used in our sentiment association
experiment (§ 3.2). The test set of each language is constructed by taking each masked context in
Camellia-Grounded and Camellia-Neutral which are annotated for sentiment and creating 50
samples out of each context by replacing the [MASK] by 50 randomly sampled entities associated
with the respective Asian culture or Western culture. Thus, the size of the Asian and Western test sets
for each language is the same. We obtain test sets that range from generally range from 13,000 to
24,000 samples, depending on the amount of masked contexts we obtained in each language during
data collection. We note that for Urdu the size of the test sets are smaller (2,550 samples each for
Pakistani and Western) due to the language’s low-resource nature and the limited availability of
masked contexts.

Language Test Set Size
zh 17,900
ja 13,850
ko 24,500
vi 17,550
ur 2,550
hi 19,882
ml 19,882
mr 19,882
gu 19,882

Table 8: Size of the native Asian and Western test sets used in our sentiment association experiment
for each language.
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Figure 10: Differences in False Negative (FN) and False Positive (FP) sentiment predictions by
LLMs on Camellia contexts filled with Asian vs Western entities, when tested in English. Results
are averaged across 3 runs of 50 randomly sampled Asian vs Western entities in each culture.

Results when testing in English. Figure 10 shows the result of our sentiment association exper-
iment when testing LLMs on the parallel English translations of the entities and contexts in each
culture. In certain cases, the behavior of some models such as Gemma in English is consistent to
when we tested in Asian languages, with generally more Western negativity and more positivity
towards native Asian entities of each culture. There are certain cases where trends from the same
model become different, such as for the Llama model, where it becomes more positive with native
Asian entities in English.
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C.3 EXTRACTIVE QA

Test Set Sizes. Table 9 reports the exact size of the test sets used in our entity extractive QA
experiment (§ 3.3). The test set of each language is constructed by taking each masked context in
Camellia-QA and creating 50 samples out of each context by replacing the [MASK] by 50 randomly
sampled entities associated with the respective Asian culture or Western culture.

Language Test Set Size
zh 3,200
ja 3,000
ko 3,500
vi 3,900
ur 2,900
hi 2,350
ml 2,350
mr 2,350
gu 2,350

Table 9: Size of the native Asian and Western test sets used in our extractive QA experiment.

Detailed Extractive QA Results. Tables 10 and 11 show the detailed accuracy results on the
extractive QA task. We compute accuracy based on the exact match of identifying the entity in
the context. We observe large accuracy gaps between sets containing Asian and Western entities
when testing in the respective Asian language of each culture, where LLMs mostly perform better
at extracting Asian-associated entities. In contrast, these gaps are negligible in English in nearly all
cases (2%-5% gaps). In a couple of cases, large gaps in English are observed (Pakistani vs Western
entities in Llama and Qwen, Indian vs Western entities in Qwen).

Llama3.3-70b Qwen2.5-72b
Test Lang Respective Asian English Respective Asian English

Culture Asian Western ∆Acc Asian Western ∆Acc Asian Western ∆Acc Asian Western ∆Acc

Chinese 94.81 96.13 -1.32 91.42 91.11 0.30 95.46 95.03 0.43 88.57 91.41 -2.84
Japanese 91.49 83.94 7.55 92.48 89.77 2.72 88.47 69.60 18.87 88.44 83.90 4.53
Korean 91.74 82.06 9.69 92.34 91.69 0.66 91.17 74.70 16.47 85.14 87.63 -2.49
Vietnamese 74.78 88.31 -13.53 91.70 89.75 1.95 73.67 88.00 -14.33 83.44 87.05 -3.61
Pakistani 75.42 80.13 -4.71 99.66 89.11 10.54 67.73 72.71 -4.99 99.77 87.61 12.16
Indian (hi) 95.45 85.40 10.05 98.31 91.59 6.71 70.38 66.74 3.63 98.06 87.38 10.67
Indian (ml) 76.09 62.94 13.15 — — — 55.73 51.51 4.22 — — —
Indian (mr) 94.45 83.38 11.07 — — — 48.58 46.90 1.68 — — —
Indian (gu) 87.56 73.12 14.44 — — — 50.43 44.40 6.02 — — —

Table 10: Detailed accuracy results for Llama3.3-70b and Qwen2.5-72b on the extractive QA task
when tested in the respective Asian language of each culture vs. in English.

Aya-expanse-32b Gemma3-27b
Test Lang Respective Asian English Respective Asian English

Culture Asian Western ∆Acc Asian Western ∆Acc Asian Western ∆Acc Asian Western ∆Acc

Chinese 87.08 84.24 2.84 81.08 86.91 -5.83 91.58 92.94 -1.36 84.13 89.76 -5.63
Japanese 86.96 78.12 8.84 83.77 84.51 -0.73 81.84 65.44 16.40 83.97 87.19 -3.22
Korean 93.20 79.26 13.94 95.51 94.09 1.43 92.43 84.49 7.94 96.71 94.17 2.54
Vietnamese 76.56 73.73 2.83 91.09 92.97 -1.88 93.87 89.72 4.15 97.66 96.01 1.65
Pakistani 66.66 66.53 0.12 97.61 93.08 4.54 81.75 60.64 21.11 99.53 95.00 4.54
Indian (hi) 86.39 74.85 11.54 94.62 93.55 1.07 85.72 78.91 6.81 98.52 95.26 3.25
Indian (ml) 70.46 59.52 10.93 — — — 52.87 43.85 9.01 — — —
Indian (mr) 81.84 69.20 12.64 — — — 86.80 83.29 3.50 — — —
Indian (gu) 65.19 52.30 12.89 — — — 86.30 79.76 6.54 — — —

Table 11: Detailed accuracy results for Aya-expanse-32b and Gemma3-27b on the extractive QA
task when tested in the respective Asian language of each culture vs. in English.
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