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Abstract

Reparameterized diffusion models (RDMs) have recently matched autoregressive1

methods in protein generation, motivating their use for challenging design tasks2

such as membrane proteins, which possess interleaved soluble and transmem-3

brane (TM) regions. We introduce the MeMbrane Diffusion Language Model4

(MeMDLM), a fine-tuned RDM-based protein language model that enables con-5

trollable membrane protein sequence design. MeMDLM-generated sequences6

recapitulate the TM residue density and structural features of natural proteins,7

achieving comparable biological plausibility and outperforming state-of-the-art8

diffusion baselines in motif scaffolding tasks by producing lower perplexity, higher9

BLOSUM-62 scores, and improved pLDDT confidence. To enhance controllability,10

we develop Per-Token Guidance (PET), a novel classifier-guided sampling strategy11

that selectively solubilizes residues while preserving conserved TM domains, yield-12

ing sequences with reduced TM density but intact functional cores. Importantly,13

MeMDLM designs validated in TOXCAT β-lactamase growth assays demonstrate14

successful TM insertion, distinguishing high-quality generated sequences from15

poor ones. Together, our framework establishes the first experimentally validated16

diffusion-based model for rational membrane protein generation, integrating de17

novo design, motif scaffolding, and targeted property optimization.18

1 Introduction19

Membrane proteins play a crucial role in biological systems, regulating molecular transport, signal20

transduction, and cellular communication [Jelokhani-Niaraki, 2022]. Their capacity to bind specific21

ligands or undergo conformational changes renders them essential targets for drug development and22

therapeutics for various diseases [Sanganna Gari et al., 2021]. Even more interestingly, de novo23

design and engineering of membrane proteins offers a powerful therapeutic modality by enabling the24

creation of highly-specific and stable proteins that can precisely modulate cell signaling pathways,25

transport processes, and immune responses, making them ideal for targeting diseases such as cancer26

and neurological disorders [Jelokhani-Niaraki, 2022]. Current methods for designing new protein27

sequences or scaffolds rely on pre-trained structure prediction networks [Wang et al., 2022, Yin et al.,28

2007, Elazar et al., 2022], which remains a particularly challenging prerequisite for membrane protein29

targets. The scarcity of high-resolution structures hinders the training of high-fidelity deep learning30

structure prediction models for membrane proteins: only ∼1% of the current PDB structures are31

annotated as membrane proteins. Further, energy functions underlying physics-based computational32

models are suboptimal because they often require iterative optimizations to design analogs of33

membrane proteins [Vorobieva et al., 2021]. As a result, current methods in de novo membrane34

protein design are limited to simple helical barrel or beta-barrel folds with low sequence complexity.35
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Figure 1: MeMDLM Schematic. A) RDM-based model training diagram. B) AlphaFold3 visualizations of
unconditional samples. C) Token-level classifier guided diffusion sampling with PET algorithm.

While deep learning-based topology predictors (e.g., DeepLoc, AllesTM) aid in identifying helix36

regions and subcellular localization, they primarily analyze existing sequences and do not support37

de novo generation for function-specific design [Thumuluri et al., 2022] [Hönigschmid et al., 2020].38

Prior computational design efforts have achieved impressive results by designing zinc-transporting39

helices, yet they are often limited to fixed scaffolds, small proteins, or require extensive intervention40

[Joh et al., 2014]. What remains missing is a generative modeling framework that can autonomously41

produce membrane protein sequences with controllable structural features, including TM helices,42

soluble domains, and higher-order topologies, without relying on predetermined scaffolds or manual43

adjustments [Goverde et al., 2024].44

In this work, we introduce MeMDLM, a discrete diffusion protein language model for rational45

membrane protein design (Figure 1). At the core of our approach is PEr-Token Guidance (PET), a46

novel classifier-guided sampling algorithm that combines attention scores and classifier rewards to47

optimize specific sequence tokens during inference. Unlike traditional classifier-guidance methods48

([Gruver et al., 2024], [Li et al., 2024], [Vignac et al., 2022], [Dhariwal and Nichol, 2021], [Tang et al.,49

2025], [Chen et al., 2025]), PET ensures the retention of targeted tokens, an essential requirement50

in membrane protein design, where highly conserved transmembrane (TM) domains are critical to51

maintaining structural topology. We demonstrate that MeMDLM generates biologically relevant52

proteins with structual features resembling membrane proteins (e.g. α-helices) and show that PET53

solubilizes natural membrane proteins while retaining key functional TM domains. Overall, our54

integrated pipeline serves as a versatile, end-to-end platform for designing and optimizing membrane55

protein sequences, with potential applications spanning therapeutics, drug delivery, and synthetic56

biology.57

Our key contributions are as follows:58

• We introduce MeMDLM, a discrete diffusion protein language model specifically fine-tuned59

for de novo generation of membrane protein sequences with controllable structural features.60

• We develop PET, a novel classifier-guided sampling algorithm to optimize specific sequence61

tokens during inference, ensuring the retention of targeted amino acid tokens like conserved62

TM domains.63

• We demonstrate that MeMDLM enables controllable sequence generation through token-64

level editing. In practice, we show MeMDLM effectively solubilizes existing natural65

membrane protein sequences while preserving crucial functional TM regions.66

• We motivate MeMDLM’s utility in real-world therapeutic design by showing it (i) outper-67

forms existing state-of-the-art models by achieving improved sequence-specific computa-68

tional benchmarks in de novo generation and sequence scaffolding tasks, and (ii) produces69
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experimentally validated membrane protein designs that exhibit favorable growth curves70

under antibiotic selection.71

2 Methods72

Language Modeling Preliminaries Let x = (x1, x2, . . . , xL) ∈ {0, 1}L×|V| denote a discrete73

sequence of length L, where each token is represented as a one-hot vector over the vocabulary74

V = {0, 1, . . . , 32}. The vocabulary includes 25 canonical and non-canonical amino acids, along75

with several special tokens [Lin et al., 2023]. Language modeling aims to estimate the underlying data76

distribution x ∼ q(x) using a parameterized probabilistic model pθ(x). Since the true distribution77

q(x) is typically intractable, we approximate it using a neural network with parameters θ. In Sup-78

plementary A.1, we lay out the foundation for RDM-based protein language models by considering79

related modeling paradigms.80

2.1 MeMDLM81

Modeling MeMDLM is built on the Reparameterized Diffusion Model (RDM) framework [Zheng82

et al., 2023]. We define CAT(x;p) as the categorcial distribution on the discrete sequence x83

governed by the vector p ∈ ∆|V|−1, where ∆|V|−1 denotes the (|V| − 1)-dimensional proba-84

bility simplex. Given a stationary noise distribution qnoise, we define the unconditional prior as85

q(xt) =
∏L

i=1 CAT(xi
t;qnoise). We can then write the forward diffusion process as a transition kernel86

defined in closed-form as a convex combination of clean data and noise:87

q(xt|xt−1) = αtx0 + (1− αt)qnoise (1)

where αt =
∏t

i=1 βi = 1 − t/T is a linear noise schedule. This transition distribution in Eq. 188

shows that the forward process is ultimately a convex combination of αt, the probability of clean89

data x0 remaining unchanged, and 1− αt, the probability of x0 transitioning to the [MASK] token.90

By sampling t ∼ U(0, T = 500), we can determine the identity of a token at the given timestep of91

the forward process:92

xi
t =

{
[MASK] if ui <

t
T , ui ∼ Uniform(0, 1)

xi
0 otherwise

(2)

Importantly, the forward noising process is characterized by an absorbing state: lim
t→T

αt =93

lim
t→T

(1 − t/T ) = 0, indicating all tokens are guaranteed to be replaced by noise. During infer-94

ence, MeMDLMθ must denoise a fully masked sequence xT = {[MASK]}Li=1, rendering the95

absorbing state a necessary ingredient of the forward noising process. In Section 2.2, we formally96

outline a generalized denoising framework from [Peng et al., 2025] to obtain samples from masked97

diffusion models (e.g., RDMs).98

Loss Function Following the proof in [Wang et al., 2024] (Appendix A), the RDM framework99

simplifies the ELBO (Eq. 12) by breaking down the KL-divergence term to yield a simplified training100

objective:101

LRDM = −Eq(x0) KL [q(xt−1 | xt,x0) ∥ pθ(xt−1 | xt)]

= Eq(x0)

[
λt

L∑
i=1

bi(t) · log pθ(xi
0 | xt)

]
(3)

where λt := T − (t − 1) represents a linear, time-dependent coefficient and bi(t) = 1xi
t ̸=xi

0
. In102

practice, LRDM can easily be computed using the cross-entropy loss between logits and sequence103

labels. In Supplementary B.2, we detail the specific architectural and training schemes used to104

construct MeMDLM.105
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2.2 Path-Planning Sampling106

To generate realistic membrane-like protein sequences from a trained MeMDLM, we adopt the Path-107

Planning (P2) paradigm introduced by [Peng et al., 2025], a novel sampling framework for masked108

discrete diffusion language models. Notably, P2 breaks the assumption of uniform unmasking109

probabilities and enhances generative quality compared to stochastic sampling from a Gumbel-110

Softmax distribution or greedy decoding of softmax logits. We follow the self-planner variant of P2,111

where the denoiser itself provides a planning signal used to identify and resample low-value tokens.112

Here and in Algorithm 2, we outline the key steps of self-planning in P2 but direct the reader to [Peng113

et al., 2025] for a complete background.114

Initial Token Sampling Beginning with a fully masked sequence xt = {[MASK]}Li=0, MeMDLM115

predicts denoised logits zt−1 ∈ RL×|V| via zt−1 = pθ(xt) at each timestep. Candidate tokens are116

sampled from the logits using Gumbel-softmax decoding with temperature parameter τ :117

xi
t−1 = argmax

v

(
log softmax

(
zi,vt−1

τ
+ gi,v

))
, gi ∼ Gumbel(0, 1) (4)

Self-Planning An important requirement of self-planning is resampling low-value tokens using the118

predictions of the denoising model. Accordingly, we use MeMDLM’s log probabilities to compute119

sit = log pθ(x
i
t), a per-position score, andRt = x\Mt−1 , the set of unmasked positions \M eligible for120

remasking. We select the top-K tokens fromRt with the lowest log-probability scores sit and remask121

them. Specifically, we dynamically compute K = ⌊(1−κt) · |Rt|⌋ as a fixed proportion of unmasked122

positions controlled by the monotonic scheduling function κt = κ (i/N), where i ∈ {1, 2, . . . , N}123

and κ : [0, 1]→ [0, 1]. This update forces the token predictions MeMDLM was not confident about124

(low sit) to be remasked.125

Token Resampling We sample new tokens at the remasked positions by copying the most recent126

denoised tokens from the previous timestep xt−1 into the current sequence xt at positions that were127

masked but are no longer among the K lowest-scoring tokens. This step progressively commits128

high-confidence tokens while leaving low-confidence regions available for further refinement in future129

steps, a key advantage over ancestral and greedy sampling schemes. By following the self-planning130

scheme of P2, no additional model training or overhead is required, providing a lightweight inference131

mechanism for membrane protein design tasks.132

2.3 Per-Token Classifier Guided Sampling133

While generating arbitrary membrane proteins is valuable, it is insufficient for downstream applica-134

tions, as unconditional samples are unlikely to exhibit the functional properties required for their135

use as therapeutic modalities [Jelokhani-Niaraki, 2022]. Classifier-guided sampling has recently136

introduced controllability to deep generative models by following a gradient signal from a pre-trained137

classifier model [Gruver et al., 2024], [Li et al., 2024], [Vignac et al., 2022], [Dhariwal and Nichol,138

2021], [Tang et al., 2025], [Chen et al., 2025]. Although these methods bias the model’s sampling139

trajectory towards the desired class label, there is no guarantee that specific sequence tokens are140

preserved during inference.141

To this end, we introduce Per-Token Guidance (PET), a novel classifier-guided sampling algorithm142

that selects and replaces specific sequence tokens with optimized analogues, moving the overall143

sequence towards the desired property (Figure 1C). In the case of membrane protein design, PET144

can readily be used to replace noncritical TM residues with soluble analogues to guarantee overall145

sequence solubility while maintaining biologically conserved TM domains. Solubilizing membrane146

proteins without disrupting these critical TM residues is essential for ensuring functional foldability147

and membrane localization, as TM residues often mediate key structural and biophysical interactions.148

Below, we carefully outline our PET algorithm and refer the reader to Supplementary A.2 for a149

background on discrete classifier guidance.150

Setup Given a sequence consisting of only amino acid tokens, x = {xi ∈ Canonical}Li=1, PET first151

identifies a dynamic subset of editable positions E ⊆ {1, . . . , L} using existing residue annotations152
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or a trained per-token solubility classifier vϕ : RB×L×D −→ RB×L. This classifier operates over153

the hidden states h derived from the ESM-2-650M protein language model [Lin et al., 2023] and is154

trained on fully unmasked sequences. See Section B.3 for full training details regarding vϕ.155

Determining Editable Residues PET first constructs a set of conserved, non-editable token indices156

C based on solubility annotations or predictions:157

1. If soluble residue annotations S ⊆ {1, 2, . . . , L} are provided (e.g. experimentally-derived158

labels for known membrane protein sequences), initialize C = S.159

2. If no annotations are provided, initialize C = {i ∈ {1, . . . , L} | vϕ(ht)i ≥ 0.5}. Inherently,160

it is assumed that some vϕ(ht)i < 0.5.161

Next, we consider low-value tokens, i.e., insoluble amino acids with TM-like character. It is critical162

to maintain the most conserved TM regions during optimization to maintain the biological plausibility163

of the membrane protein. Thus, we guide the selection of unimportant TM residues under LaMBO-164

2’s (Supplementary A.2) definition of a token’s saliency si(h), a score that quantifies a token’s165

importance relative to the classifier vϕ [Gruver et al., 2024]. Given a sequence’s latent representation,166

we construct a saliency map s = (s1, s2, . . . , sL) ∈ RL:167

s(h) := max
{( D∑

d=1

∣∣∇hvϕ(h)d
∣∣)1/τ

, ϵ

}
, ŝi :=

si −min s
max s−min s + δ

(5)

using temperature τ = 2.0 and a ceiling ϵ = e−4 to stabilize gradient noise. Although LaMBO-2168

normalizes the saliency map to the probability distribution Pedit(xt) = s/
∑

i si ([Gruver et al., 2024],169

Eq. 5), PET opts for min-max scaling (Eq. 5) to prevent vanishing probabilities for large L. If vθ is170

well-trained, high values of s should correlate with low-value (TM-like) residues. To finalize C, PET171

selects the top-K most salient tokens:172

C = C ∪ top-K
(
ŝ,K = max

{
1, 1

10 · (L− |C|)
})

, E = {1, . . . , L} \ C (6)

Together, these token selection strategies define E , the set of editable token indices. This set excludes173

soluble and highly salient residues to preserve membrane protein character (TM-like residues) while174

optimizing for sequence solubility.175

Neighborhood Construction. For each editable token i ∈ E , PET constructs a context-aware176

neighborhood N (i) based on attention scores. Let A ∈ RL×L be the final-layer attention matrix ex-177

tracted from pθ. The neighborhoodN (i) is formed using top-p nucleus sampling over the normalized178

attention weights Norm(Ai,: /τ), excluding special tokens and the self-position i; we set τ = 1/log L179

to ensure neighborhood selection is neither overly diffuse in long sequences nor overly narrow in180

short sequences. Thus, the final neighborhood contains all tokens j such that the cumulative attention181

probability
∑

j′∈N (i) Aij′ exceeds the threshold p = 0.9. The construction of an attention-informed182

neighborhood is necessary to propagate long-range residue information to avoid blindly modifying183

individual tokens.184

Context-Aware Saliency PET then refines a token’s raw saliency score si with contributions from185

the token’s attention-weighted neighborhoodN (i). The context-aware saliency score s̃i is defined as:186

s̃i := ŝi + γ
∑

j∈N (i)

Aij∑
j′∈N (i) Aij′

· ŝj (7)

where γ = 0.5 controls the influence of the neighborhood saliency. Overall, the context-aware187

saliency blends both the intrinsic importance of the token xi with the contributions of tokens it188

attends to most strongly, creating a holistic representation of an individual residue’s contribution to189

sequence-level solubility.190
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Mixture Distribution Let log pθ(x
i
t) be the log-probability distribution across the vocabulary for191

a singular token by the language model at timestep t, and let π(xi
t) be a prior token distribution in192

log-space. To update a token, PET defines a mixture distribution log P (xi
t) for each editable position193

i ∈ E :194

log P (xi
t) = (1− wi) · log pθ(x

i
t) + wi · π(xi

t) (8)

By construction, P (xi
t) remains a valid probability distribution, as it is a convex combination of two195

normalized distributions. The mixture weight wi can be computed as:196

wi = σ(α · s̃i) (9)

with σ(·) denoting the sigmoid function and α = 5.0 controlling the sharpness of the transition. Eq. 8197

ensures that an updated token’s distribution is biased towards the prior when s̃i is large since si → 1198

when vθ(h
i
t)→ 0. Biologically, this corresponds to a residue with high TM-like character that is thus199

conserved and should remain fixed. Conversely, when s̃i is small, PET favors the model’s default200

prediction, allowing more flexibility in low-saliency (non-critical) positions.201

Prior Distribution In order to consutrct the mixture distribution, we define a temporal prior202

π(xi
t) := log pθ(x

i
t−1) in PET sampling that leverages the denoising model’s log probabilities from203

a previous diffusion timestep. This formulation maintains the likelihood of the original sequence204

while encouraging updates from the mixture weighting in Eq. 8.205

Token Sampling and Preservation. A new token x̂i is sampled from P (xi) for each position206

i ∈ E . By design, PET will not update positions j /∈ E , resulting in an optimized sequence that207

preserves soluble and conserved TM regions while refining low-saliency, TM positions. To produce208

optimized amino acid tokens, we sample from a categorical distribution parameterized by the updated209

token probabilities at each position, x̂i ∼ CAT(log P (xi)).210

2.4 TOXCAT-β-Lactamase Growth Assay211

The TOXCAT-β-lactamase assay was used to evaluate membrane insertion and TM association of212

MeMDLM-generated sequences [Russ and Engelman, 1999, Lis and Blumenthal, 2006]. Candidate213

designs were cloned between an N-terminal ToxR transcriptional activator and a C-terminal periplas-214

mic β-lactamase in the pMAL_dstβL vector, and transformed into E. coli Cloni cells. Single colonies215

were used to inoculate LB cultures with spectinomycin, diluted to OD600 = 0.05, and normalized216

to 1.95 × 105 cells per well in 96-well plates. Cultures were grown in LB supplemented with217

spectinomycin (50 µg/mL) and subjected to different selective pressures: carbenicillin (300 µg/mL)218

to report on membrane insertion, or combined carbenicillin (100 µg/mL) and chloramphenicol219

(100–120 µg/mL) to report on TM-mediated oligomerization. Plates were incubated at 37◦C with220

continuous shaking in a BioTek Synergy H1 plate reader, and growth was monitored by OD600 every221

10 minutes for 24 hours. Successful insertion positions β-lactamase in the periplasm to hydrolyze222

carbenicillin, while oligomerization activates the ctx promoter via ToxR dimerization, conferring223

chloramphenicol resistance.224

3 Results225

3.1 De Novo Generation226

Given the limited availability of experimentally verified membrane structures, we focused on227

sequence-based metrics (Supplementary B.4). Notably, we computed the TM Residue Density228

of the generated sequences by predicting TM and soluble residue regions with DeepTMHMM [Hall-229

gren et al., 2022]. To realize this comparison, we utilized all 1,098 sequences from the MeMDLM230

model test set as the basis for our experiments, yielding a realistic evaluation of sequence plausability231

and membrane character.232
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PLDDT (↑) TM RESIDUE DENSITY PPL (↓) ENTROPY (↑)

Test Set 76.637 0.294 5.707 3.918
MeMDLM 67.410 0.311 6.344 3.743

Table 1: Computational validation of generated and experimentally validated membrane proteins

Table 1 compares various metrics of experimentally annotated membrane proteins with de novo-233

generated sequences. The results show that MeMDLM generates sequences with a soluble residue den-234

sity closely matching that of experimentally verified membrane proteins, indicating that MeMDLM235

has successfully learned their underlying distribution (Supplementary A1).236

Figure 2: Growth curves of MeMDLM-generated TM sequences under
carbenicillin (300 µg/mL).

To fully validate MeMDLM’s237

de novo generative capabili-238

ties, we selected three gener-239

ated sequences considered to be240

single-pass membrane proteins241

("GoodTM") from the top-100242

and two from the bottom-22243

("PoorTM") set of MeMDLM-244

generated sequences for experi-245

mental validation in Escherichia246

coli (E. coli) using TOXCAT-β-247

lactamase bacterial growth as-248

says [Lis and Blumenthal, 2006],249

which employ a dual-reporter250

system for evaluating membrane251

insertion and oligomerization of252

single-pass peptides and proteins253

[Russ and Engelman, 1999, Lis254

and Blumenthal, 2006, Ottemann255

and Mekalanos, 1995, Armstrong and Senes, 2016, Elazar et al., 2016] (Supplementary B.5, C.3).256

In these constructs, the design of interest is inserted between an N-terminal ToxR cytoplasmic do-257

main and a C-terminal periplasmic β-lactamase. E. coli survival under different antibiotic selection258

pressures then provides a direct functional readout: survival in carbenicillin indicates successful259

membrane insertion, which positions the β-lactamase in the periplasm to degrade the antibiotic, while260

growth in carbenicillin and chloramphenicol demonstrates TM-mediated oligomerization, where261

multimerization of the ToxR transcription factors activates the downstream ctx promoter that confers262

resistance to chloramphenicol.263

Figure 2 shows the TOXCAT growth curves for poor and high-quality MeMDLM sequences alongside264

the positive insertion controls GpA and CLS (Supplementary A5). Under carbenicillin selection265

(300 µg/mL), GpA, CLS, GoodTM4, GoodTM5, and GoodTM8 all achieved similar growth kinet-266

ics and reached the midpoint of log-phase growth at ∼4 hours, demonstrating similar membrane267

insertion efficiencies. PoorTM4 showed no growth in carbenicillin, much like our negative controls268

(Supplementary A6), indicating that the sequence is not membrane-inserting. However, PoorTM2,269

which contains six charged residues within the predicted TM span, also grew in carbenicillin but270

with a noticeable delay, suggesting weaker membrane insertion propensity. The survival of GoodTM271

designs under carbenicillin selection demonstrates that MeMDLM can generate de novo TM-inserting272

sequences and that filtering generated sequences with computational metrics effectively ranks TM-like273

sequences. The poor survivability of PoorTM2 and PoorTM4, both ranked among the bottom 22274

sequences by MeMDLM, compared to the GoodTM designs further supports MeMDLM’s ability to275

distinguish TM-like sequences.276

3.2 Motif Scaffolding277

As a natural extension of de novo design, we scaffolded around TM and soluble motifs of experi-278

mentally annotated membrane proteins. We take the entire test set, comprising 1,098 experimentally279

verified membrane protein sequences with annotated TM and soluble motifs, and mask out all residues280

except those in the TM or soluble motif(s). We use these partially masked sequences as input to the281
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models to assay their capability to generate scaffolds conditioned on known TM or soluble motifs.282

We focused on these domains due to their distinct hydrophilic and hydrophobic regions that govern283

the folding and thus function of the overall protein.284

PLDDT (↑) PPL (↓) BLOSUM-62 (↑) ENTROPY (↑)

INSOL SOL INSOL SOL INSOL SOL INSOL SOL

Test Set 76.637 76.637 5.707 5.707 – – 3.918 3.918
EvoDiff 64.058 64.036 9.841 4.632 2.176 -0.188 3.841 3.841
MeMDLM 62.762 70.112 8.748 3.242 2.964 0.512 3.876 3.803

Table 2: Reconstruction quality comparison of models scaffolding around TM and soluble motifs of 1,098
experimental membrane protein sequences that represent the MeMDLM model test set.

Our results (Table 2, Supplementary A2, A3) show that MeMDLM-inpainted sequences achieve lower285

average pseudo-perplexities and higher pLDDT and BLOSUM-62 scores relative to EvoDiff-based286

([Alamdari et al., 2023]) scaffolds. These results suggest that MeMDLM scaffolds functional motifs287

with greater confidence while preserving biological relevance compared to SOTA diffusion models.288

3.3 Solubilizing Targeted Residues289

Finally, we apply PET to optimize specific residues spanning the insoluble regions of the test set290

proteins, observing a decrease in TM Residue Density while still preserving critical TM domains291

(Table 3, Supplementary A4).292

PLDDT (↑) TM RESIDUE
DENSITY (↓)

PPL (↓) BLOSUM-
62 (↑)

ENTROPY (↑)

Test Set 76.637 0.294 5.707 – 3.918
MeMDLM 62.979 0.181 8.472 0.495 3.870

Table 3: Computational validation of membrane proteins solubilized under the PET sampling strategy.

As a final validation, we visualize MeMDLM-generated sequences with AlphaFold3 (Supplementary293

D) and confirm the presence of hallmark membrane protein structures, including α-helical bundles294

and distinct TM and soluble regions [Zhang et al., 2015].295

4 Discussion296

In this work, we introduce MeMDLM, the first classifier-guided masked diffusion language model297

designed specifically for de novo membrane protein generation. By leveraging the strengths of298

masked diffusion over traditional structure-based models, MeMDLM effectively captures long-range299

dependencies critical to the structural and functional integrity of membrane proteins – an area where300

structure-based models often fall short due to their reliance on pre-defined structural templates and301

limited generation across diverse topologies. Furthermore, our integration of Per-Token Guidance302

(PET) for classifier-guided sampling further enables property-guided optimization, enabling us to303

generate soluble residues over existing TM domains while retaining an initial sequence scaffold.304

MeMDLM also outperforms existing models at demonstrating a robust capability in scaffolding305

functional motifs, maintaining biological relevance, and achieving high similarity to natural proteins.306

Moving forward, we aim to generate diverse membrane topologies, including β-barrel and higher-307

order states and continue to experimentally characterize MeMDLM-generated membrane proteins.308

By evaluating the structural and functional properties of scaffolded TM domains and testing the309

solubility and stability of membrane proteins generated through classifier-guided optimization, we310

will validate MeMDLM’s potential for advancing rational membrane protein design and expanding311

its applications in therapeutic development.312
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A Extended Background426

A.1 Language Modeling427

Masked Language Models Masked Language Models (MLMs) employ Transformer-based archi-428

tectures to learn bi-directional sequence context, distant token relationships, and predict the identity429

of corrupted (masked) amino acid tokens. The model is trained under a sequence-recovery training430

objective:431

LMLM = −
∑
i∈M

log pθ(x
i|x\M) (10)

where the set of masked positions M is a fraction of the sequence tokens. MLMs are strong432

representation-learners and excel at understanding both protein and natural languages. However,433

training these models to reconstruct only a minor fraction of tokens (15-40%) across a sequence434

makes complete de novo sequence generation difficult. [Devlin, 2018] [Lin et al., 2023] [Vincoff435

et al., 2025].436

Autoregression AR language models apply the chain rule to obtain a sequential factorization.437

These models are trained to maximize the log-likelihood of the data:438

Eq(x)log pθ(x) = Eq(x)

L∑
i=1

log pθ(xi|x1:L) (11)

New samples can be drawn ancestrally in L steps (x1 ∼ pθ(x
1), . . . , xL ∼ pθ(x

L|x1:L−1) ) following439

a strictly left-to-right unidirectional protocol. These models are a viable choice for natural language440

modeling schemes where a linear relationship between past and present values is inherently assumed.441

However, in biological contexts, such as protein sequences, AR models are limited by their inability442

to capture non-linear and long-range dependencies. For example, multi-pass membrane proteins443

consist of interleaved TM and soluble regions that are spatially and functionally coupled but may be444

separated by long sequence distances.445

Denoising Diffusion Models Diffusion models are a class of generative models defined by446

Markov processes [Ho et al., 2020] [Sohl-Dickstein et al., 2015]. The forward diffusion steps447

q(x1:T |x0) =
∏T

t=1 q(xt|xt−1) progressively corrupt an initial data sample x0 ∼ q(x0) into a noisy448

prior xT ∼ qnoise across T timesteps. The noise distribution qnoise typically corresponds to an449

isotropic Gaussian, N (0, I), in continuous latent spaces, or a uniform categorical distribution over450

the vocabulary, Cat(|V|), in the discrete case. During inference, the learned backward process451

pθ(x0:T ) = p(xt)
∏T

t=1 pθ(xt−1|xt) gradually denoises the corrupted data sample to obtain samples452

from the true data distribution. Diffusion models are trained to maximize the evidence lower bound453

(ELBO):454

Eq(x0) [log pθ(x0)] ≥ Eq(x0:T )

[
log

pθ(x0:T )

q(x1:T | x0)

]

= Eq(x0)

log pθ(x0 | x1) + const.−
T∑

t=2

KL (q(xt−1 | xt,x0) ∥ pθ(xt−1 | xt))︸ ︷︷ ︸
Ft


(12)

New data samples can be drawn by sampling from qnoise(xT ) and iteratively applying the learned455

denoising process pθ(xt−1) = pθ(xt−1|xt). Various authors ([Sahoo et al., 2024], [Zheng et al.,456

2023]) have made simplifying assumptions about the reverse process to derive a computationally457

inexpensive loss function that reduces to a weighted negative log-likelihood, akin to a weighted form458

of Eq. 10.459
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A.2 Classifier-Guided Sampling460

Preliminaries Given a property y, guided diffusion aims to maximize q(y|x) by sampling from the461

joint distribution x ∼ q(x0, y). Therefore, the reverse transition can be conditioned on the property462

value y and prior sequence samples. Using Bayes theorem, the conditional joint distribution can be463

decomposed:464

q(xt−1|xt, y) =
q(y|xt−1, xt)

q(y|xt)
(13)

In practice, the true distribution of q(y|xt) is unknown and can be learned with a neural network465

pϕ(y|xt). To yield a tractable marginal reverse transition from Eq. 13, we can substitute the true466

distribution q(·) with our learned neural networks:467

pθ,ϕ(xt−1|xt, y) =
pθ(y|xt−1, xt)

pϕ(y|xt)
(14)

The normalization term in the denominator pϕ(y|xt) can be safely dropped since the model’s param-468

eters learn the normalized distribution. We can update the parameters θ, ϕ at each iteration in the469

direction given by the gradient470

∇xt−1
log pθ,ϕ(xt−1|xt, y) = ∇xt−1

log pϕ(y|xt−1) +∇xt−1
log pθ(xt−1|xt) (15)

With this formulation, we can steer the denoising trajectory of the unconditional diffusion model to471

maximize the target attribute y using gradients from an external classifier [Dhariwal and Nichol, 2021].472

Unlike classifier-free guidance, classifier-guidance prevents expensive retraining of existing denoising473

network on high-quality, task-specific labeled data and opens avenues for flexible, plug-and-play474

conditioning for various downstream applications.475

Discrete Classifier Guidance While classifier guidance is well-formulated for diffusion models476

that operate over continuous data in Euclidean space [Dhariwal and Nichol, 2021], applying it to477

discrete spaces requires additional approximation. One common approach treats discrete tokens as478

continuous relaxations on the probability simplex and uses a first-order Taylor expansion around479

xt to approximate log pϕ(y|xt−1) by making ∇xt(·) a valid operator. However, this approximation480

can be inaccurate when the local linearization poorly captures the classifier’s behavior over discrete481

transitions, especially in regions with sharp decision boundaries. To remedy this, several methods482

([Li et al., 2024], [Vignac et al., 2022]) have been proposed to circumvent the lack of continuous483

representations in discrete gradient guidance; most relevant to our work is LaMBO-2 introduced by484

[Gruver et al., 2024].485

LaMBO-2 To realize classifier-guidance for discrete sequences, LaMBO-2 first conducts sequence486

optimization using a Langevin process over a property-informed latent space. We begin with the487

discrete Langevin dynamics used in score-based models:488

x′
t = xt − η∇x log pθ(y | xt) +

√
2ητ , ϵ, ϵ ∼ N (0, I), (16)

and generalize this update to the continuous latent space h′
t ∈ R1×D guided by a differentiable489

surrogate of the discrete generative model. The batch size dimension B is set to 1 for simplicity. The490

latent update step is defined as:491

h′
t ←− h′

t − η∇h′
t
[λKL(pθ(xt|h′

t) || pθ(xt|ht))− σ(vθ(h
′
t)d)] +

√
2ητϵ, ϵ ∼ N (0, I) (17)

with step size η, temperature τ , and regularization strength λ, where the sigmoid operator σ(·) can492

be applied to produce a sequence-level binary class probability from the classifier’s unnormalized493

logit. The explore-exploit loss LEE := λ[KL(pθ(xt|h′
t) || pθ(xt|ht)]− σ(vθ(h

′
t)d) guides the latent494

representation towards high values of the property with the gradient ∇hσ(vθ(h)), while the KL495

13



term ensures the transition distribution maximizes the original sequence likelihood. Given a discrete496

sequence xt and its corresponding latent representation ht, one can take N Langevin steps of Eq. 17497

to realize optimized sequence latent representations before using the language-modeling head of the498

denoising network to project continuous embeddings to the discrete logit space ([Gruver et al., 2024],499

Appendix B.2). However, this construction does not guarantee the retention of specific tokens during500

inference because even if gradients are suppressed for particular positions, the subsequent projection501

through the language modeling head back into discrete logits does not ensure that the tokens with502

minimal gradient updates will be preserved.503

B Extended Methods504

B.1 Dataset Curation505

MeMDLM Bioassembly structures from X-ray scattering or electron microscopy with better than506

3.5 Å resolution, annotated by PDBTM1, mpstruc2, OPM3, or MemProtMD4, were used to curate507

membrane protein sequences for fine-tuning. de novo designed membrane proteins were added508

manually to the database. The proteins were culled at 100% sequence identity and 30% sequence509

identity to result in a non-redundant set and a sequence-diverse set, respectively. Integral membrane510

residues, defined as residues with at least one atom within the bilayer, were parsed from the resulting511

bioassembly structures using the membrane boundaries predicted by PPM 3.0 [Lomize et al., 2021].512

From the dataset of integral membrane residues, only structures with at least one TM chain spanning513

the entire membrane bilayer were included in the dataset. Additionally, chains without integral514

membrane residues were removed from the structure. All peripheral membrane proteins, defined as515

proteins with no TM chain, were filtered out. The TM protein sequences at the two sequence identity516

cut-offs and the Python script that parses the sequences from the PPM predictions are included in517

the SI. After these steps, 9,329 sequences with corresponding per-residue annotations remained. To518

augment this set of sequences, we obtained 2,579 unique PDB IDs from the Orientations of Proteins519

in Membranes (OPM) database with the provided "subunits" file [Lomize et al., 2006]. PDB IDs were520

converted to corresponding protein sequences and per-residue labels (TM or soluble) were assigned521

using the subunits file. The final set of 11,908 TM sequences were then split using the MMSeqs2522

easy clustering module with a minimum sequence identity of 80% and a coverage threshold of 50%.523

The resulting clusters were split to an 80-10-10 ratio into the training set (9,802 sequences, 82.31%),524

the validation set (1,008 sequences, 8.47%), and the testing set (1,098 sequences, 9.22%).525

PET Sampling Classifier We leveraged the same train/test/val set of 11,908 membrane sequences526

from the MeMDLM dataset to develop a binary classifier that predicts the solubility of each amino527

acid within a protein sequence. Each sequence was annotated on a per-residue basis, with TM (class528

1) and soluble (class 0) labels assigned according to the sequence’s uppercase and lowercase residues,529

respectively.530

B.2 Modeling MeMDLM531

Model Architecture EvoFlow is a protein language model consisting of 33 Transformer-532

encoder layers and a language modeling head that is capable of de novo generating protein se-533

quences. More formally, it can denoise a protein sequence consisting of all [MASK] tokens,534

making it a natural choice for a discrete diffusion-based protein language model. We use the535

pre-trained EvoFlow protein language model checkpoint (https://huggingface.co/fredzzp/536

EvoFlow-650M-context-3070) as the basis of our neural network pθ since EvoFlow was trained537

under the RDM framework (forward process as defined by Eq. 1 and loss computation defined by Eq.538

3). The Diffusion Protein Language Model (DPLM) was also trained under the RDM framework by539

[Wang et al., 2024] and is thereby an alternative choice for pθ. However, we opt for EvoFlow over540

DPLM as the architecture for pθ as DPLM is restricted by its shorter context length of 1,024 tokens,541

compared to EvoFlow’s extended context length of 3,070 tokens.542

Training To achieve membrane protein-specific generation, we fine-tuned EvoFlow by selectively543

updating a subset of the encoder’s attention layers. Specifically, the final N = 3 Transformer encoder544

layers {LM−N+1, . . . ,LM} are partially unfrozen, where M = 33 is the total number of encoder545

layers. Within each layer, we enable gradient updates to only the key, query, and value projection546
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matrices (WK , WQ, and WV ) of the self-attention mechanism and keep all other weights frozen. With547

this training recipe, we bias the pre-existing EvoFlow latent space with physicochemical features of548

membrane proteins without overfitting on the new sequences. MeMDLM was trained to minimize the549

objective in Eq. 3 on a 4xA6000 NVIDIA DGX server with 200 GB of shared VRAM for 3K steps550

using the AdamW optimizer (betas=(β1 = 0.99, β2 = 0.98), weight decay λ = 0.01), a learning rate551

(LR) of 4× 10−5 with a cosine schedule (150 warmup steps, LR minimum = 1× 10−5).552

B.3 Per-Token Solubility Classifier553

Let vϕ : RB×L×D → RB×L be a neural network trained to predict per-token solubility scores554

from continuous latent representations ht. The model is trained using clean protein sequences x555

with corresponding binary per-residue solubility labels y ∈ {0, 1}L (0 = insoluble, 1 = soluble).556

Each input sequence is first embedded using the pretrained ESM-2-650M protein language model557

checkpoint (https://huggingface.co/facebook/esm2_t33_650M_UR50D) [Lin et al., 2023].558

The resulting contextualized token embeddings are passed through a lightweight classifier vϕ with559

the following architecture: (i) trainable 2-layer Transformer encoder Transformerϕ; (ii) LayerNorm560

and dropout (p = 0.5); and (iii) a trainable 2-layer projection head MLPϕ outputs a scalar logit for561

each token position. All parameters in ESM-2 are frozen, and only the transformer encoder and MLP562

layers are updated during training. The classifier is optimized using a per-token binary cross-entropy563

loss with logits:564

LBCE(ϕ) = − [y · log σ(z) + (1− y) · log(1− σ(z))] (18)

where σ(z) is the sigmoid activation function and z = vϕ(h) is a vector of per-token logit predictions.565

The loss is computed without reduction to allow for masking padded positions and is averaged over566

all valid tokens in the batch. vϕ is trained on a 1xA6000 NVIDIA DGX server with 50 GB of shared567

VRAM for 50K steps using the AdamW optimizer (betas=(β1 = 0.99, β2 = 0.98), weight decay568

λ = 0.01), a learning rate (LR) of 3e−5 with a cosine schedule (5000 warmup steps, LR minimum =569

1e−5). The PET classifier was trained using the same train, test, and validation sequence splits as570

MeMDLM pre-training.571

B.4 Computational Metrics572

Sequence generation quality was computationally verified using the following metrics:573

Pseudo Perplexity The model’s generation quality was assessed using the ESM-2 [Lin et al.,574

2023] pseudo-perplexity metric. Typically, a lower pseudo-perplexity value indicates higher confi-575

dence. Specifically, the pseudo-perplexity is computed as the exponential of the negative pseudo-576

loglikelihood of a sequence. This metric yields a deterministic value for each sequence but necessitates577

L forward passes for computation, where L represents the input sequence length. It is formally defined578

as PPL(x) = exp(− 1
L )
∑L

i=1 log p(xi | x\i).579

pLDDT The structural confidence of generated sequences was assessed using predicted Local580

Distance Difference Test (pLDDT) scores from ESMFold v1 with chunk size of 128 [Lin et al.,581

2023], a protein language model-based tool to predict protein structures from amino acid sequences582

alone. Higher pLDDT indicates ESMFold is more confident in the produced structure, suggesting the583

initial input sequence is biologically plausible.584

Shannon Entropy To measure the diversity and uncertainty of the model’s token predictions, we585

compute the average Shannon entropy across the sequence. Let p(xi) denote the model’s probability586

distribution over the vocabulary V at position i. Higher entropy values indicate greater diversity in587

the model’s predictions, while lower values suggest more repetitive distributions. The entropy is588

defined as: Entropy(x) = − 1
L

∑L
i=1

∑
v∈V p(xi = v) · log p(xi = v).589

BLOSUM62 Substituion Score The average BLOSUM62 score is a quantitative approach to590

determining whether an amino acid substitution is conservative or nonconservative. This value591

becomes an important computational metric for protein sequence infilling tasks (both unconditional592

and PET-based solubilization) to determine if the model is introducing non-conserved residue changes.593

For each aligned position between a generated sequence x̂ and reference sequence x, we extract the594

substitution score B(x̂i, xi) from the BLOSUM62 matrix [Henikoff and Henikoff, 1992]. Higher595
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scores indicate greater biochemical similarity to the native sequence, while lower scores suggest596

more divergent or potentially deleterious substitutions. The final score is computed as the mean over597

all aligned residues BLOSUM(x̂,x) = 1
L

∑L
i=1 B(x̂i, xi).598

TM Residue Density To estimate the membrane-localizing potential of generated sequences,599

we used DeepTMHMM v1.0 tool (https://services.healthtech.dtu.dk/services/600

DeepTMHMM-1.0/) [Hallgren et al., 2022] to produce per-residue topology annotations. Each residue601

is classified into one of six categories: signal peptide (S), inside cell/cytosol (I), alpha membrane602

(M), beta membrane (B), periplasm (P), or outside cell/lumen (O). For our analysis, we consider603

residues labeled as alpha membrane (M) to be “soluble” in the membrane context, and all other604

classes, including beta membrane (B), to be “insoluble.” We explicitly exclude B-labeled residues605

from the soluble category due to the structural and biophysical differences between beta-barrel and606

alpha-helical transmembrane domains, the latter being dominant in our training set. Using these607

annotations, we define the TM Residue Density of a sequence as the number of residues predicted to lie608

within alpha membrane ("M" predictions) regions divided by the sequence length as a normalization609

factor.610

B.5 Wet-Lab Experiments611

B.5.1 Cloning and Plasmid Construction612

DNA sequences of our MeMDLM-designed and control peptides were cloned. Target sequences613

derived from MeMDLM were cloned into the pMAL_dstβL vector (Addgene plasmid #73805)614

between the genes encoding for ToxR and β-lactamase using blunt-end ligation. The resulting615

constructs were initially transformed into E. coli XL-10 Gold cells. Transformants were selected616

on Luria Broth (LB) agar plates containing spectinomycin and sequences were verified by Sanger617

sequencing. Confirmed plasmids were subsequently transformed into E. coli Cloni cells for the assay.618

Cell lines:619

REAGENT CATALOG INFORMATION

E. Cloni 10G DUOs Chemically Competent Cells Cat. No. 60107-1 (BioSearch Technologies)
XL 10-Gold Ultracompetent Cells Cat. No. 200315 (Agilent)

Table 4: Competent cell reagents used in this study.

Genes inserted into the pMAL_dstβL plasmid vector:620

• Human CLS:621

– Uniprot: UPI000007083D622

– Amino acid sequence: PLFIPVAVMVTAFSGLAFIIWLA623

– Gene: CCGCTGTTCATCCCGGTTGCAGTTATGGTTACCGCTTTTAGTGGATTG-624

GCGTTTATCATCTGGCTGGCT625

• GpA-TM Region:626

– Uniprot: UPI000012B75E627

– Amino acid sequence: LIIFGVMAGVIGTILI628

– Gene: TTAATTATTTTCGGAGTGATGGCCGGAGTTATCGGCACAATTTTAATC629

• ErbB2 TM Region:630

– Uniprot: P04626-1631

– Amino acid sequence: SIISAVVGILLVVVLGVVFGIL632

– Gene: TCCATTATCTCCGCTGTCGTAGGAATCTTGTTAGTTGTCGTC-633

CTTGGGGTTGTGTTTGGAATTTTA634

• Qsox2 TM Region:635

– Uniprot: Q6ZRP7636

– Amino acid sequence: SLCVVLYVASSLFMVMYFF637
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– Gene: AGTCTTTGCGTCGTACTTTACGTCGCATCTTCACTGTTTATGGTGATG-638

TATTTCTTT639

• EK3 Water Soluble Helix [Wolny et al., 2017]:640

– Amino acid sequence: SAEEEKKKAEEEKKKAEEEKKKAE641

– Gene: TCCGCAGAGGAAGAAAAGAAAAAAGCTGAAGAAGAAAAGAAAAAG-642

GCAGAAGAAGAGAAAAAAAAGGCAGAG643

• PoorTM2644

– MeMDLM amino acid sequence: SSLLFSYQGAKKEEERVFLDNF645

– Gene: AGTTCTTTGTTATTCAGCTATCAGGGAGCCAAGAAAGAAGAA-646

GAACGTGTGTTTCTGGATAACTTC647

• PoorTM4648

– MeMDLM amino acid sequence: GTHAKDWRVTSWKRYGEIE649

– Gene: GGAACACATGCTAAAGATTGGCGTGTGACATCTTGGAAGCGTTACG-650

GCGAGATTGAA651

• GoodTM4652

– MeMDLM amino acid sequence: DLSKWLGIVLLLLLAILALLLIR653

– Gene: GATTTAAGCAAATGGCTGGGTATCGTACTGTTACTGTTACTGGC-654

TATTTTGGCTTTATTACTGATTCGT655

• GoodTM5656

– MeMDLM amino acid sequence: SLRWLWSLVIGLLLIVAFYLLLR657

– Gene: AGCCTGCGTTGGTTGTGGTCTTTAGTGATCGGCTTACTGCT-658

TATCGTTGCCTTCTACCTGCTGCTTCGC659

• GoodTM8660

– MeMDLM amino acid sequence: DFLRKAVIVLLVLVIVAGLLVIR661

– Gene: GATTTTCTGCGTAAGGCAGTGATTGTATTACTTGTCTTGGTTATTGTG-662

GCGGGTCTGCTGGTTATTCGC663

B.5.2 TOXCAT-β-Lactamase Growth Assay664

Single colonies of plasmid-containing E. coli Cloni cells were used to inoculate 6-mL LB cultures665

supplemented with 50 µg/mL spectinomycin. Glycerol stocks were made and used to inoculate new666

fresh LB culture tubes with 50 µg/mL spectinomycin. Cultures were incubated for ∼8 h or overnight667

at 37◦C with shaking. Optical density at 600 nm (OD600) was measured, and cultures were diluted668

with fresh LB + spectinomycin to an OD600 of 0.05. Growth was continued until an OD600 of ∼0.1669

was reached.670

To ensure consistent inoculation density across assays, the number of cells per well was normalized671

to 1.95× 105 cells. This value was calculated using the relationship of 1 OD600 ≈ 8× 108 cells/mL672

and adjusted for the measured absorbance at OD600 of each culture. Growth under spectinomycin673

confirmed that the pMal_dsTBL plasmid was successfully introduced into E. coli Cloni cells across674

all conditions. All cultures grew equally under this condition, demonstrating comparable inoculation675

densities and consistent plasmid uptake.676

Assays were performed in 96-well plates, with each well containing a final total volume of ∼200677

µL LB medium supplemented with the appropriate antibiotics in the following concentrations:678

Spectinomycin (50 µg/mL), Carbenicillin (300 µg/mL), Carbenicillin (100 µg/mL) + chloramphenicol679

(100 µg/mL), Carbenicillin (100 µg/mL) + chloramphenicol (120 µg/mL). Wells were inoculated680

with the calculated volume of diluted culture corresponding to 1.95 × 105 cells. Each antibiotic681

reporter was run in triplicate. Plates were incubated at 37◦C in a pre-heated plate reader (BioTek682

Synergy H1). Bacterial growth was monitored by measuring absorbance at 600 nm for 24 hours with683

measurements taken every 10 minutes under continuous shaking.684
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C Extended Results685

C.1 Density Plots686

We visualize the density distribution of the various computational metrics to assess membrane protein687

sequences. When using P2 Self-Planning to generate sequences, we set τ = 0.7 to have a slight bias688

towards deterministic model outputs.689

Unconditional Generation We unconditionally generate 1,000 membrane protein sequences.690

Lengths are randomly chosen from 50-250 residues.691

Figure A1: De novo-generated and natural membrane protein sequences.

Motif Scaffolding We mask out and infill both the insoluble and soluble regions of natural mem-692

brane proteins derived from the model’s test set.693

Figure A2: Infilling Insoluble Domain

Figure A3: Infilling Soluble Domain

Solubilization We optimize the solubility of the proteins in the model’s test set by applying our694

PET algorithm.695
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Figure A4: Solubilizing TM Domains

C.2 Physciochemical Property Prediction696

As a surrogate task, we assessed if RDM training retains physicochemical information critical to697

membrane protein function by predicting per-residue solubility and membrane localization (Table 3).698

We use embeddings from three models–vanilla ESM-2-650M, ESM-2-650M fine-tuned on membrane699

protein sequences, and MeMDLM–as inputs to a per-residue solubility and sequence-level membrane700

localization classifiers. We outline the dataset, training details, and evaluation results of these models701

in the following.702

C.2.1 Datasests703

Solubility Prediction We leveraged the same set of 11,908 membrane sequences from the704

MeMDLM training dataset to develop a binary classifier that predicts the solubility of each amino705

acid within a protein sequence. Each sequence was annotated on a per-residue basis, with TM (class706

1) and soluble (class 0) labels assigned according to the sequence’s uppercase and lowercase residues,707

respectively. The same training, testing, and validation data splits used to train MeMDLM were also708

utilized to train and evaluate this classifier.709

Membrane Localization We collected 30,020 protein sequences from DeepLoc 2.0 thumu-710

luri2022deeploc to build a binary classifier that predicts a protein sequence’s cellular localization. The711

authors of the dataset provided a multi-label label for each sequence indicating its localization(s). We712

used the authors’ provided data splits, with training sequences having 11 labels and testing sequences713

having 8 labels.714

C.2.2 Models715

Solubility Prediction We first predicted TM and soluble residues, a hallmark characteristic of716

membrane protein sequences. We utilized embeddings from each pLM’s latent space (ESM-2-150M,717

ESM-MLM, and MeMDLM) as inputs to train a two-layer perceptron classifier that minimized the718

standard binary cross-entropy (BCE) loss to compute the probability that each residue in the sequence719

is either soluble (probability < 0.5, class 0) or TM (probability > 0.5, class 1).720
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Membrane Localization Prediction Proteins originating from the endomembrane system and721

localizing in the plasma membrane differ in conformation and function from those in the cytosol and722

other cellular organelles. We predicted the subcellular localization of protein sequences by utilizing723

embeddings from each pLM’s latent space (ESM-2-150M, ESM-MLM, and MeMDLM) to train a724

XGBoost classifier that minimized the standard BCE loss to compute the probability that a protein725

sequence localizes in the plasma membrane (probability > 0.5, class 1) or in other regions (probability726

< 0.5, class 0).727

Fine-Tuning ESM-2 We fine-tune the ESM-2 pLM ([Lin et al., 2023]) to achieve an encoder that728

produces membrane-aware protein sequence embedding used as a baseline comparison for the RDM729

training task. We trained a MLM head on top of ESM-2-650M using membrane protein sequences to730

force comprehension of membrane protein properties. We chose to randomly mask 40% of amino731

acid tokens during training over the standard 15% to more closely resemble the dynamics of diffusion-732

based (RDM) training; masking rates above 40% have been seen as detrimental during MLM training733

tasks [Wettig et al.]. Corrupted sequences were passed into ESM-2-650M to retrieve their output734

embeddings. During training, we unfroze the key, query, and value weights in the attention heads of735

the final three encoder layers, similar to fine-tuning EvoFlow during MeMDLM training. During736

ESM-2 fine-tuning, the model performed a masked-prediction task over masked amino acid tokens737

to minimize the NLL loss in Eq. (10). 2xH100 NVIDIA GPUs, learning rate of 5e-3, the Adam738

optimizer, and a batch size of 8 over 10 epochs were used.739

C.2.3 Results740

We leveraged the trained solubility prediction and membrane localization classifiers to determine741

if latent spaces from RDM-based generative models are aligned with relevant membrane protein742

properties. Table 5 shows that MeMDLM latent embeddings achieve predictive performance that743

closely parallels SOTA pLM embeddings, which are designed specifically for delivering precise744

representations.745

MODEL SOLUBILITY (↑) MEMBRANE
LOCALIZATION (↑)

ESM-2-650M 0.9383 0.6011
Fine-Tuned ESM-2 0.9375 0.6000
MeMDLM 0.9375 0.5964

Table 5: Performance comparison (AUROC) of embeddings derived from various models in predicting physico-
chemical properties of MeMDLM test set sequences.

In total, these results demonstrate that MeMDLM accurately captures the biological features under-746

pinning functional membrane proteins despite being trained on a sequence generation task rather than747

a masked-prediction task.748
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C.3 Wet-Lab Experiments749

C.3.1 TOXCAT Assay750

Figure A5: Summary of control constructs for the TOXCAT-β-lactamase assay and their expected growth
responses to antibiotics.

Schematic showing gene ToxR-POI-βL, where POI is the peptide of interest and βL is β-lactamase.751

Periplasmic β-lactamase and cytoplasmic ToxR proteins are represented by blue and yellow dots,752

respectively. Expected growth phenotypes under spectinomycin and carbenicillin +/-chloramphenicol753

are indicated for each control. Negative controls ∆ToxR-POI-βL, ∆POI, and EK3 should not survive754

in carbenicillin because they lack a TM domain. Positive controls CLS, ErbB2, GpA, and Qsox2 all755

have TM domains and should survive in carbenicillin. Further, ErbB2, GpA, and Qsox2 are dimers.756

Expression of these controls should also confer resistance to chloramphenicol.757

C.3.2 TOXCAT Sequence Selection758

From 1,000 MeMDLM-generated sequences, three sequences from the top 100 predicted performers759

("GoodTM") and two sequences from the bottom 22 predicted performers ("PoorTM") were selected760

for screening in the TOXCAT assay. The following selection criteria was used:761

CATEGORY PLDDT PPL TM RESIDUE DENSITY SEQUENCES SELECTED

GoodTM (Top 100) > 60 < 10 Non-zero 3
PoorTM (Bottom 22) < 60 < 15 Non-zero 2

Table 6: Selection criteria and sequence counts for MeMDLM-generated sequences screened in the TOXCAT
assay.

The top-ranked (GoodTM) sequences represented a diverse set of high-scoring designs. For example,762

GoodTM5 (SLRWLWSLVIGLLLIVAFYLLLR, rank 57) contained a small-X3-small motif known763

to promote TM helix association [Russ and Engelman, 1999] [Li et al., 2004] [Russ and Engelman,764

2000]. This further demonstrates that MeMDLM generates plausible protein sequences with TM-like765

character.766

C.3.3 Growth Curves767

Control Plasmids Growth curves of E. coli Cloni cells containing control plasmids.768
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Figure A6: A) Survival in spectinomycin (50 µg/mL) confirmed plasmid uptake for all controls. B) Growth
curves of control plasmids under carbenicillin (300 µg/mL) showed that control plasmids containing TM
sequences survived selective pressure. C) Growth curves of control plasmids under combined carbenicillin (100
µg/mL) and chloramphenicol (80 µg/mL) selection, which tests both transmembrane insertion and association,
show that the dimeric Qsox2, GpA, and ErbB2 controls begin growing in chloramphenicol earlier than the
monomeric CLS control.

MeMDLM-Generated Sequences Growth curves for MeMDLM’s de novo-generated sequences.769
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Figure A7: GpA is used as a positive control for insertion and TM association. CLS is the positive insertion and
negative TM association control. A) Growth curve of E. coli Cloni cells containing de novo MeMDLM TM
sequences under spectinomycin (50 µg/mL) confirmed plasmid uptake. B) Growth curves of MeMDLM peptides
under carbenicillin (300 µg/mL) show GoodTM4, GoodTM5, and GoodTM8 growing as expected. PoorTM4
did not survive, indicating that it is not membrane inserting. PoorTM2 showed delayed growth, suggesting
that it has lower membrane insertion propensity than the GoodTM constructs. C) Growth curves of MeMDLM
plasmids under combined carbenicillin (100 µg/mL) and chloramphenicol (120 µg/mL), used to select for both
transmembrane insertion and transmembrane association, reveal that some of the TM designs may be oligomeric.
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D Visualizations770

AlphaFold3 visualizations of MeMDLM-generated membrane protein sequences. TM Residue771

Density (TMRD) scores are derived from DeepTMHMM predictions. Structures and colors are from772

AlphaFold3 predictions, and pLDDT scores are from ESMFold.773

D.1 De novo Generation774

Figure A1: De novo-generated protein sequences from MeMDLM across different lengths.

D.2 Solubilization775

Figure A2: Original and solubilized versions of MeMDLM test set protein sequences. Grey residues were
annotated as soluble in the given sequence and were thus "fixed" during PET sampling.
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E Algorithm Pseudocode776

Algorithm 1 MeMDLM Training

Require: Protein sequence dataset D, diffusion model pθ, number of diffusion timesteps T
1: while not converged do
2: Sample batch x0 ∼ D
3: Sample timestep t ∼ U(1, T )
4: Corrupt sequence: xt ∼ q(xt | xt−1)

5: Compute RDM loss: LRDM = −λt

∑L
i=1 log pθ(x

i
0 | xt)

6: Take gradient descent step on: ∇θLRDM
7: end while
8: return Trained MeMDLM pθ

Algorithm 2 MeMDLM Sampling with P2 Self-Planning and Optional Sequence Refinement

Require: Fully masked sequence xT = {[MASK]}Li=1, trained MeMDLM pθ, number of denoising
steps T

1: for t ∈ {T, T − 1, . . . , 0} do
2: Compute logits: zt−1 = pθ(xt)

3: Sample candidate tokens: xi
t−1 = argmaxv

(
zi,v
t−1

τ + gi,v
)
, gi,v ∼ Gumbel(0, 1)

4: Compute per-token log-probabilities: sit = log pθ(x
i
t)

5: Identify unmasked positions: Rt = {i | xt−1 ̸= [MASK]}
6: Compute K = ⌊(1− κt) · |Rt|⌋
7: Select top-K lowest scoring tokens from Rt and remask them: xi

t = [MASK] for i ∈
top-K(sit)

8: Copy high-confidence predictions: xi
t−1 ← xi

t for positions previously masked but not in
top-K

9: end for
10: if PET Optimization then
11: Perform Algorithm 3
12: end if
13: return Final decoded sequence x0

Algorithm 3 PET-based MeMDLM Sampling

Require: Candidate protein sequence x, trained MeMDLM pθ, trained solubility classifier vϕ,
pre-trained encoder Encoderϕ, number of optimization steps N

1: Produce sequence embeddings h = Encoderϕ(x)
2: Compute saliency map s using gradients∇hvϕ(h)
3: Normalize saliency map ŝi ← si
4: Determine editable positions E based on soluble residues and saliency scores
5: for each i ∈ E do
6: Define neighborhood N (i)
7: Compute s̃i = ŝi + γ

∑
j∈N (i) Norm(Aij) · ŝj

8: Construct prior distribution π(xi)
9: Compute guidance distribution: log P (xi) = (1− σ(αs̃i)) · log pθ(x

i) + σ(αs̃i) · π(xi)
10: Sample token x̂i ∼ CAT(log P (xi))
11: Update x[i]← x̂i

12: end for
13: return Optimized sequence x̂
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