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Abstract

Reparameterized diffusion models (RDMs) have recently matched autoregressive
methods in protein generation, motivating their use for challenging design tasks
such as membrane proteins, which possess interleaved soluble and transmem-
brane (TM) regions. We introduce the Membrane Diffusion Language Model
(MemDLM), a fine-tuned RDM-based protein language model that enables con-
trollable membrane protein sequence design. MemDLM-generated sequences
recapitulate the TM residue density and structural features of natural proteins,
achieving comparable biological plausibility and outperforming state-of-the-art
diffusion baselines in motif scaffolding tasks by producing lower perplexity, higher
BLOSUM-62 scores, and improved pLDDT confidence. To enhance controllability,
we develop PEr-Token Guidance (PET), a novel classifier-guided sampling strategy
that selectively solubilizes residues while preserving conserved TM domains, yield-
ing sequences with reduced TM density but intact functional cores. Importantly,
MemDLM designs validated in TOXCAT S-lactamase growth assays demonstrate
successful TM insertion, distinguishing high-quality generated sequences from
poor ones. Together, our framework establishes the first experimentally validated
diffusion-based model for rational membrane protein generation, integrating de
novo design, motif scaffolding, and targeted property optimization.

1 Introduction

Membrane proteins play a crucial role in biological systems, regulating molecular transport, signal
transduction, and cellular communication [Jelokhani-Niaraki, |2022]]. Their capacity to bind specific
ligands or undergo conformational changes renders them essential targets for drug development and
therapeutics for various diseases [[Sanganna Gari et al.| |2021]]. Even more interestingly, de novo
design and engineering of membrane proteins offers a powerful therapeutic modality by enabling the
creation of highly-specific and stable proteins that can precisely modulate cell signaling pathways,
transport processes, and immune responses, making them ideal for targeting diseases such as cancer
and neurological disorders [Jelokhani-Niaraki, [2022]]. Current methods for designing new protein
sequences or scaffolds rely on pre-trained structure prediction networks [Wang et al.| 2022} |Yin et al.|
2007, |[Elazar et al.| [2022], which remains a particularly challenging prerequisite for membrane protein
targets. The scarcity of high-resolution structures hinders the training of high-fidelity deep learning
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Figure 1: MemDLM Schematic. A) RDM-based model training diagram. B) AlphaFold3 visualizations of
unconditional samples. C) Token-level classifier guided diffusion sampling with PET algorithm.

structure prediction models for membrane proteins: only ~1% of the current PDB structures are
annotated as membrane proteins. Further, energy functions underlying physics-based computational
models are suboptimal because they often require iterative optimizations to design analogs of
membrane proteins [[Vorobieva et al.| [2021]]. As a result, current methods in de novo membrane
protein design are limited to simple helical barrel or beta-barrel folds with low sequence complexity.

While deep learning-based topology predictors (e.g., DeepLoc, AllesTM) aid in identifying helix
regions and subcellular localization, they primarily analyze existing sequences and do not support
de novo generation for function-specific design [Thumuluri et al., 2022] [Honigschmid et al., 2020].
Prior computational design efforts have achieved impressive results by designing zinc-transporting
helices, yet they are often limited to fixed scaffolds, small proteins, or require extensive intervention
[Joh et al.l 2014]]. What remains missing is a generative modeling framework that can autonomously
produce membrane protein sequences with controllable structural features, including TM helices,
soluble domains, and higher-order topologies, without relying on predetermined scaffolds or manual
adjustments [[Goverde et al., 2024]).

In this work, we introduce MemDLM, a discrete diffusion protein language model for rational
membrane protein design (Figure|[I). At the core of our approach is PEr-Token Guidance (PET), a
novel classifier-guided sampling algorithm that combines attention scores and classifier rewards to
optimize specific sequence tokens during inference. Unlike traditional classifier-guidance methods
([Gruver et al.,[2024]], [Li et al., 2024]], [Vignac et al.,2022]], [Dhariwal and Nicholl [2021]], [Tang et al.,
2025]), [Chen et al.}2025]]), PET ensures the retention of targeted tokens, an essential requirement
in membrane protein design, where highly conserved transmembrane (TM) domains are critical to
maintaining structural topology. We demonstrate that MemDLM generates biologically relevant
proteins with structual features resembling membrane proteins (e.g. a-helices) and show that PET
solubilizes natural membrane proteins while retaining key functional TM domains. Overall, our
integrated pipeline serves as a versatile, end-to-end platform for designing and optimizing membrane
protein sequences, with potential applications spanning therapeutics, drug delivery, and synthetic
biology.

Our key contributions are as follows:

* We introduce MemDLM, a discrete diffusion protein language model specifically fine-tuned
for de novo generation of membrane protein sequences with controllable structural features.

* We develop PET, a novel classifier-guided sampling algorithm to optimize specific sequence
tokens during inference, ensuring the retention of targeted amino acid tokens like conserved
TM domains.
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* We demonstrate that MemDLM enables controllable sequence generation through token-
level editing. In practice, we show MemDLM effectively solubilizes existing natural
membrane protein sequences while preserving crucial functional TM regions.

* We motivate MemDLM’s utility in real-world therapeutic design by showing it (i) outper-
forms existing state-of-the-art models by achieving improved sequence-specific computa-
tional benchmarks in de novo generation and sequence scaffolding tasks, and (ii) produces
experimentally validated membrane protein designs that exhibit favorable growth curves
under antibiotic selection.

2 Methods

Language Modeling Preliminaries Let x = (2!, 2%,... 2%) € {0,1}*V| denote a discrete

sequence of length L, where each token is represented as a one-hot vector over the vocabulary
V ={0,1,...,32}. The vocabulary includes 25 canonical and non-canonical amino acids, along
with several special tokens [Lin et al.,|2023]]. Language modeling aims to estimate the underlying data
distribution x ~ ¢(x) using a parameterized probabilistic model py(x). Since the true distribution
q(x) is typically intractable, we approximate it using a neural network with parameters 6. In Sup-
plementary [A.T] we lay out the foundation for RDM-based protein language models by considering
related modeling paradigms.

2.1 MemDLM

Modeling MemDLM is built on the Reparameterized Diffusion Model (RDM) framework [Zheng
et al} 2023|]. We define CAT(z;p) as the categorcial distribution on the discrete sequence x
governed by the vector p € AIVI=! where AIVI=! denotes the (|V| — 1)-dimensional proba-
bility simplex. Given a stationary noise distribution qpeise, We define the unconditional prior as
q(x¢) = Hle CAT(x%; Quoise)- We can then write the forward diffusion process as a transition kernel
defined in closed-form as a convex combination of clean data and noise:

q(x¢|x¢—1) = arxo + (1 — %) qnoise (D

where a; = szl B; = 1 —t/T is a linear noise schedule. This transition distribution in Eq.
shows that the forward process is ultimately a convex combination of «, the probability of clean
data x( remaining unchanged, and 1 — oy, the probability of X transitioning to the [MASK] token.
By sampling t ~ (0, T = 500), we can determine the identity of a token at the given timestep of
the forward process:

(@)

o {[MASK] ifu; < %, wu; ~ Uniform(0,1)
=

) otherwise

Importantly, the forward noising process is characterized by an absorbing state: thrr% o =
—

thnjl“ (1 —¢/T) = 0, indicating all tokens are guaranteed to be replaced by noise. During inference,

—

MemDLMj must denoise a fully masked sequence xp = {[MASK]}Z_ |, rendering the absorbing
state a necessary ingredient of the forward noising process. In Section we formally outline a
generalized denoising framework from [Peng et al.l 2025]] to obtain samples from masked diffusion
models (e.g., RDMs).

L
Q(Xt) = H CAT(SUi; qnoise) 3)
i=1
¢ t
Q(Xt | Xt71) = a4 X + (1 - Oét) Qnoise s ap = 1:[151' =1- T @
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; [MASK], ifu; < %, u; ~ Uniform(0, 1)
Ti=9 . Q)
zp, otherwise
. . t L
th_)rrjlﬂ o = th—>H’11“ <1 — T) =0 = x7 = {[MASK]};.; (6)

Loss Function Following the proof in [Wang et al., [2024]] (Appendix A), the RDM framework
simplifies the ELBO (Eq. by breaking down the KL-divergence term to yield a simplified training
objective:

Lrpm = _Eq(xo) KL [Q(Xt—l | %1, %o0) || po(xi-1 \ Xt)]

- 7 % (7)
= Ey(xo) [Nt Zb (t) - logpe(zg | x¢)
i=1
L .
Lrom = Ey(xo) l/\t Z Loisei - log po(z | Xt)‘| ®)
=1

where \; := T — (t — 1) represents a linear, time-dependent coefficient and b*(t) = Loize; - In
practice, Lrpym can easily be computed using the cross-entropy loss between logits and sequence
labels. In Supplementary [B.2] we detail the specific architectural and training schemes used to
construct MemDLM.

2.2 Path-Planning Sampling

To generate realistic membrane-like protein sequences from a trained MemDLM, we adopt the Path-
Planning (P2) paradigm introduced by [Peng et al.,[2025]], a novel sampling framework for masked
discrete diffusion language models. Notably, P2 breaks the assumption of uniform unmasking
probabilities and enhances generative quality compared to stochastic sampling from a Gumbel-
Softmax distribution or greedy decoding of softmax logits. We follow the self-planner variant of P2,
where the denoiser itself provides a planning signal used to identify and resample low-value tokens.
Here and in Algorithm[2] we outline the key steps of self-planning in P2 but direct the reader to [Peng
et al.| 2025] for a complete background.

Initial Token Sampling Beginning with a fully masked sequence x; = {[MASK]}% ,, MemDLM
predicts denoised logits z;_; € RLxIVI viaz, | = pe(x¢) at each timestep. Candidate tokens are
sampled from the logits using Gumbel-softmax decoding with temperature parameter 7:

K

xi_l = arg max <log softmax <Zt_1 + g“’)) ,  g; ~ Gumbel(0, 1) )
v T

Self-Planning An important requirement of self-planning is resampling low-value tokens using the
predictions of the denoising model. Accordingly, we use MemDLM'’s log probabilities to compute
st = log pg(xt), a per-position score, and Ry = x}f/ll, the set of unmasked positions \ M eligible for
remasking. We select the top-K tokens from R; with the lowest log-probability scores si and remask
them. Specifically, we dynamically compute K = [(1 — ;) - |R¢|| as a fixed proportion of unmasked
positions controlled by the monotonic scheduling function x; =  (i/N), where ¢ € {1,2,..., N}
and « : [0,1] — [0, 1]. This update forces the token predictions MemDLM was not confident about
(low s) to be remasked.

Token Resampling We sample new tokens at the remasked positions by copying the most recent
denoised tokens from the previous timestep x;_; into the current sequence x; at positions that were
masked but are no longer among the K lowest-scoring tokens. This step progressively commits
high-confidence tokens while leaving low-confidence regions available for further refinement in future
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steps, a key advantage over ancestral and greedy sampling schemes. By following the self-planning
scheme of P2, no additional model training or overhead is required, providing a lightweight inference
mechanism for membrane protein design tasks.

2.3 Per-Token Classifier Guided Sampling

While generating arbitrary membrane proteins is valuable, it is insufficient for downstream applica-
tions, as unconditional samples are unlikely to exhibit the functional properties required for their
use as therapeutic modalities [Jelokhani-Niaraki, 2022]|. Classifier-guided sampling has recently
introduced controllability to deep generative models by following a gradient signal from a pre-trained
classifier model [Gruver et al.,|2024], [Li et al.| 2024], [Vignac et al.,[2022], [Dhariwal and Nichol,
2021]], [Tang et al.} 2025], [Chen et al., |2025]]. Although these methods bias the model’s sampling
trajectory towards the desired class label, there is no guarantee that specific sequence tokens are
preserved during inference.

To this end, we introduce Per-Token Guidance (PET), a novel classifier-guided sampling algorithm
that selects and replaces specific sequence tokens with optimized analogues, moving the overall
sequence towards the desired property (Figure[T[C). In the case of membrane protein design, PET
can readily be used to replace noncritical TM residues with soluble analogues to guarantee overall
sequence solubility while maintaining biologically conserved TM domains. Solubilizing membrane
proteins without disrupting these critical TM residues is essential for ensuring functional foldability
and membrane localization, as TM residues often mediate key structural and biophysical interactions.
Below, we carefully outline our PET algorithm and refer the reader to Supplementary [A.2] for a
background on discrete classifier guidance.

Setup Given a sequence consisting of only amino acid tokens, x = {z; € Canonical}%_, PET first
identifies a dynamic subset of editable positions £ C {1,..., L} using existing residue annotations
or a trained per-token solubility classifier v, : RE*EXP — RB*L This classifier operates over
the hidden states h derived from the ESM-2-650M protein language model [Lin et al.l 2023|] and is
trained on fully unmasked sequences. See Section for full training details regarding v.

Determining Editable Residues PET first constructs a set of conserved, non-editable token indices
C based on solubility annotations or predictions:

1. If soluble residue annotations S C {1,2,..., L} are provided (e.g. experimentally-derived
labels for known membrane protein sequences), initialize C = S.

2. If no annotations are provided, initialize C = {¢ € {1,..., L} | vg4(h¢); > 0.5}. Inherently,
it is assumed that some vy (h); < 0.5.

Next, we consider low-value tokens, i.e., insoluble amino acids with TM-like character. It is critical
to maintain the most conserved TM regions during optimization to maintain the biological plausibility
of the membrane protein. Thus, we guide the selection of unimportant TM residues under LaMBO-
2’s (Supplementary definition of a token’s saliency s'(h), a score that quantifies a token’s
importance relative to the classifier vy [Gruver et al., [2024]]. Given a sequence’s latent representation,
we construct a saliency map s = (s',s°,...,s%) € Rl

D 1/7 i .
; S"—mins
= st = 1
S(h) max{( E ’Vh’l)qg(h)d!) s 6}, S — mins 5 ( O)

d=1

using temperature 7 = 2.0 and a ceiling ¢ = e~* to stabilize gradient noise. Although LaMBO-2
normalizes the saliency map to the probability distribution Pegii(x;) = s/ >, s; ([Gruver et al., 2024,
Eq. 5), PET opts for min-max scaling (Eq. [T0) to prevent vanishing probabilities for large L. If vg is
well-trained, high values of s should correlate with low-value (TM-like) residues. To finalize C, PET
selects the top- K most salient tokens:

C=CUtop-K(8 K =max {1, - (L-[C))}), €={1,...,L}\C (11)
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Together, these token selection strategies define £, the set of editable token indices. This set excludes
soluble and highly salient residues to preserve membrane protein character (TM-like residues) while
optimizing for sequence solubility.

Neighborhood Construction. For each editable token 7 € £, PET constructs a context-aware
neighborhood N (i) based on attention scores. Let A € RE*L be the final-layer attention matrix ex-
tracted from pg. The neighborhood A/ (7) is formed using top-p nucleus sampling over the normalized
attention weights Norm(A; . /7), excluding special tokens and the self-position 4; we set 7 = 1/log L
to ensure neighborhood selection is neither overly diffuse in long sequences nor overly narrow in
short sequences. Thus, the final neighborhood contains all tokens j such that the cumulative attention
probability > JEN () A;j» exceeds the threshold p = 0.9. The construction of an attention-informed
neighborhood is necessary to propagate long-range residue information to avoid blindly modifying
individual tokens.

Context-Aware Saliency PET then refines a token’s raw saliency score s; with contributions from
the token’s attention-weighted neighborhood N (7). The context-aware saliency score §* is defined as:

=23 (12)
JEN (D) Z]’GN(Z) AU/

§ =8+~

where v = 0.5 controls the influence of the neighborhood saliency. Overall, the context-aware
saliency blends both the intrinsic importance of the token x* with the contributions of tokens it
attends to most strongly, creating a holistic representation of an individual residue’s contribution to
sequence-level solubility.

Mixture Distribution Let log pg (%) be the log-probability distribution across the vocabulary for
a singular token by the language model at timestep ¢, and let 7(x}) be a prior token distribution in
log-space. To update a token, PET defines a mixture distribution log P(x%) for each editable position
1€e&:

log P(x}) = (1 —w') - log pg(x}) + w’ - w(x}) (13)

By construction, P(z}) remains a valid probability distribution, as it is a convex combination of two
normalized distributions. The mixture weight w* can be computed as:

w; = ola-§) (14)

with o(+) denoting the sigmoid function and o = 5.0 controlling the sharpness of the transition. Eq.
ensures that an updated token’s distribution is biased towards the prior when 5’ is large since
s; — 1 when vg(hi) — 0. Biologically, this corresponds to a residue with high TM-like character
that is thus conserved and should remain fixed. Conversely, when §% is small, PET favors the model’s
default prediction, allowing more flexibility in low-saliency (non-critical) positions.

Prior Distribution In order to consutrct the mixture distribution, we define a temporal prior
7(2%) := log pg(xi_,) in PET sampling that leverages the denoising model’s log probabilities from
a previous diffusion timestep. This formulation maintains the likelihood of the original sequence
while encouraging updates from the mixture weighting in Eq.

Token Sampling and Preservation. A new token £° is sampled from P(z*) for each position
1 € &. By design, PET will not update positions j ¢ &, resulting in an optimized sequence that
preserves soluble and conserved TM regions while refining low-saliency, TM positions. To produce
optimized amino acid tokens, we sample from a categorical distribution parameterized by the updated
token probabilities at each position, ¢ ~ CAT(log P(x?)).

2.4 TOXCAT-3-Lactamase Growth Assay

The TOXCAT-/3-lactamase assay was used to evaluate membrane insertion and TM association of
MemDILM-generated sequences [Russ and Engelman, [1999| |Lis and Blumenthal, [2006]. Candidate
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designs were cloned between an N-terminal ToxR transcriptional activator and a C-terminal periplas-
mic [-lactamase in the pMAL_dstSL vector, and transformed into E. coli Cloni cells. Single colonies
were used to inoculate LB cultures with spectinomycin, diluted to ODggg = 0.05, and normalized
to 1.95 x 10° cells per well in 96-well plates. Cultures were grown in LB supplemented with
spectinomycin (50 ug/mL) and subjected to different selective pressures: carbenicillin (300 pg/mL)
to report on membrane insertion, or combined carbenicillin (100 pug/mL) and chloramphenicol
(100-120 pg/mL) to report on TM-mediated oligomerization. Plates were incubated at 37°C with
continuous shaking in a BioTek Synergy H1 plate reader, and growth was monitored by ODgqg every
10 minutes for 24 hours. Successful insertion positions 3-lactamase in the periplasm to hydrolyze
carbenicillin, while oligomerization activates the czx promoter via ToxR dimerization, conferring
chloramphenicol resistance.

3 Results

3.1 De Novo Generation

Given the limited availability of experimentally verified membrane structures, we focused on
sequence-based metrics (Supplementary [B.4). Notably, we computed the TM Residue Density
of the generated sequences by predicting TM and soluble residue regions with DeepTMHMM [Hall+
gren et al., [2022]. To realize this comparison, we utilized all 1,098 sequences from the MemDLM
model test set as the basis for our experiments, yielding a realistic evaluation of sequence plausability
and membrane character.

PLDDT (1) TM RESIDUE DENSITY PPL () ENTROPY (1)

Test Set 76.637 0.294 5.707 3.918
MemDLM 67.410 0.311 6.344 3.743

Table 1: Computational validation of generated and experimentally validated membrane proteins

Table [T] compares various metrics of experimentally annotated membrane proteins with de novo-
generated sequences. The results show that MemDLM generates sequences with a soluble residue
density closely matching that of experimentally verified membrane proteins, indicating that MemDLM
has successfully learned their underlying distribution (Supplementary [AT).

To fully validate MemDLM'’s

ol o Carbenicillin (300 pg/mL) de novo generative capabili-

' o Gosatia ties, we selected three gener-

o o aFed sequences considered to.be

1.2 PoorTM2 : single-pass membrane proteins
—e— PoorTM4

R ("GoodTM") from the top-100

88 and two from the bottom-22

08 ("PoorTM") set of MemDLM-

generated sequences for experi-

04 mental validation in Escherichia

coli (E. coli) using TOXCAT-(-
lactamase bacterial growth as-
0 says [Lis and Blumenthal, [2006],
0 S 10 15 2 which employ a dual-reporter

Time (Hours) system for evaluating membrane

insertion and oligomerization of
single-pass peptides and proteins
[Russ and Engelmanl, [1999, |Lis
and Blumenthal, 2006, |Ottemann
and Mekalanos| [1995] [Armstrong and Senes| 2016} [Elazar et al., 2016] (Supplementary [B.3] [C.3).
In these constructs, the design of interest is inserted between an N-terminal ToxR cytoplasmic do-
main and a C-terminal periplasmic 3-lactamase. E. coli survival under different antibiotic selection
pressures then provides a direct functional readout: survival in carbenicillin indicates successful
membrane insertion, which positions the $-lactamase in the periplasm to degrade the antibiotic, while

Figure 2: Growth curves of MemDLM-generated TM sequences under
carbenicillin (300 pug/mL).
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growth in carbenicillin and chloramphenicol demonstrates TM-mediated oligomerization, where
multimerization of the ToxR transcription factors activates the downstream ctx promoter that confers
resistance to chloramphenicol.

Figure 2]shows the TOXCAT growth curves for poor and high-quality MemDLM sequences alongside
the positive insertion controls GpA and CLS (Supplementary [A3)). Under carbenicillin selection
(300 pg/mL), GpA, CLS, GoodTM4, GoodTMS5, and GoodTMS all achieved similar growth kinet-
ics and reached the midpoint of log-phase growth at ~4 hours, demonstrating similar membrane
insertion efficiencies. PoorTM4 showed no growth in carbenicillin, much like our negative controls
(Supplementary [A6)), indicating that the sequence is not membrane-inserting. However, PoorTM2,
which contains six charged residues within the predicted TM span, also grew in carbenicillin but
with a noticeable delay, suggesting weaker membrane insertion propensity. The survival of GoodTM
designs under carbenicillin selection demonstrates that MemDLM can generate de novo TM-inserting
sequences and that filtering generated sequences with computational metrics effectively ranks TM-like
sequences. The poor survivability of PoorTM2 and PoorTM4, both ranked among the bottom 22
sequences by MemDLM, compared to the GoodTM designs further supports MemDLM’s ability to
distinguish TM-like sequences.

3.2 Motif Scaffolding

As a natural extension of de novo design, we scaffolded around TM and soluble motifs of experi-
mentally annotated membrane proteins. We take the entire test set, comprising 1,098 experimentally
verified membrane protein sequences with annotated TM and soluble motifs, and mask out all residues
except those in the TM or soluble motif(s). We use these partially masked sequences as input to the
models to assay their capability to generate scaffolds conditioned on known TM or soluble motifs.
We focused on these domains due to their distinct hydrophilic and hydrophobic regions that govern
the folding and thus function of the overall protein.

PLDDT (1) PPL ({) BLOSUM-62 (1) ENTROPY (1)
INSOL SoL INsoOL SoL INsoL SoL INSsOL SoL
Test Set 76.637 76.637 5.707 5.707 - - 3918 3918

EvoDiff 64.058 64.036 9.841 4.632 2.176 -0.188 3.841 3.841
MemDLM  62.762 70.112 8.748 3.242 2.964 0.512 3.876 3.803

Table 2: Reconstruction quality comparison of models scaffolding around TM and soluble motifs of 1,098
experimental membrane protein sequences that represent the MemDLM model test set.

Our results (Table 2} Supplementary[A2] show that MemDLM-inpainted sequences achieve lower
average pseudo-perplexities and higher pPLDDT and BLOSUM-62 scores relative to EvoDiff-based
([Alamdari et al., [2023]]) scaffolds. These results suggest that MemDLM scaffolds functional motifs
with greater confidence while preserving biological relevance compared to SOTA diffusion models.

3.3 Solubilizing Targeted Residues

Finally, we apply PET to optimize specific residues spanning the insoluble regions of the test set
proteins, observing a decrease in TM Residue Density while still preserving critical TM domains

(Table[3} Supplementary [Ad).

PLDDT (1) TM RESIDUE PPL () BLOSUM-  ENTROPY (1)
DENSITY ({) 62 (1)
Test Set 76.637 0.294 5.707 - 3918
MemDLM 62.979 0.181 8.472 0.495 3.870

Table 3: Computational validation of membrane proteins solubilized under the PET sampling strategy.
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As a final validation, we visualize MemDLM-generated sequences with AlphaFold3 (Supplementary
[D) and confirm the presence of hallmark membrane protein structures, including o-helical bundles
and distinct TM and soluble regions [Zhang et al., 2015].

4 Discussion

In this work, we introduce MemDLM, the first classifier-guided masked diffusion language model
designed specifically for de novo membrane protein generation. By leveraging the strengths of
masked diffusion over traditional structure-based models, MemDLM effectively captures long-range
dependencies critical to the structural and functional integrity of membrane proteins — an area where
structure-based models often fall short due to their reliance on pre-defined structural templates and
limited generation across diverse topologies. Furthermore, our integration of Per-Token Guidance
(PET) for classifier-guided sampling further enables property-guided optimization, enabling us to
generate soluble residues over existing TM domains while retaining an initial sequence scaffold.
MemDLM also outperforms existing models at demonstrating a robust capability in scaffolding
functional motifs, maintaining biological relevance, and achieving high similarity to natural proteins.
Moving forward, we aim to generate diverse membrane topologies, including S-barrel and higher-
order states and continue to experimentally characterize MemDLM-generated membrane proteins.
By evaluating the structural and functional properties of scaffolded TM domains and testing the
solubility and stability of membrane proteins generated through classifier-guided optimization, we
will validate MemDLM’s potential for advancing rational membrane protein design and expanding
its applications in therapeutic development.
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A Extended Background

A.1 Language Modeling

Masked Language Models Masked Language Models (MLMs) employ Transformer-based archi-
tectures to learn bi-directional sequence context, distant token relationships, and predict the identity
of corrupted (masked) amino acid tokens. The model is trained under a sequence-recovery training
objective:

Lyim = — Y, log po(a']2M) (15)
ieM

where the set of masked positions M is a fraction of the sequence tokens. MLMs are strong
representation-learners and excel at understanding both protein and natural languages. However,
training these models to reconstruct only a minor fraction of tokens (15-40%) across a sequence
makes complete de novo sequence generation difficult. [Devlin, [2018] [Lin et al.| 2023]] [[Vincoff
et al.,[2025].

Autoregression AR language models apply the chain rule to obtain a sequential factorization.
These models are trained to maximize the log-likelihood of the data:

L
Eq(x)log po(x) = Eqx) Z log pg (x*|x*1) (16)

i=1
New samples can be drawn ancestrally in L steps (x! ~ pg(x!), ..., 2L ~ po(xl|zHE~1) ) following

a strictly left-to-right unidirectional protocol. These models are a viable choice for natural language
modeling schemes where a linear relationship between past and present values is inherently assumed.
However, in biological contexts, such as protein sequences, AR models are limited by their inability
to capture non-linear and long-range dependencies. For example, multi-pass membrane proteins
consist of interleaved TM and soluble regions that are spatially and functionally coupled but may be
separated by long sequence distances.

Denoising Diffusion Models Diffusion models are a class of generative models defined by
Markov processes [Ho et al., 2020|] [Sohl-Dickstein et al., 2015[]. The forward diffusion steps
q(x1.7|X0) = Hthl q(x¢|x—1) progressively corrupt an initial data sample Xy ~ ¢(X() into a noisy
prior X7 ~ @noise across 1" timesteps. The noise distribution gyeise typically corresponds to an
isotropic Gaussian, A (0, I), in continuous latent spaces, or a uniform categorical distribution over
the vocabulary, Cat(]V|), in the discrete case. During inference, the learned backward process
po(Xo0.7) = p(Xt) Hle po(X¢—1|X¢) gradually denoises the corrupted data sample to obtain samples
from the true data distribution. Diffusion models are trained to maximize the evidence lower bound
(ELBO):

pe(Xo:T)
Eq(xo) [1 >E log %)
a(x0) 108 P0(X0)] = Eq(xo.r) {og q(x1.7 | Xo)]

T

= Eyxo) |108P0(x0 | 1) + const. — > KL (q(x;1 | x4,%0) || po(xs1 | x1))
t=2

Fi
a7

New data samples can be drawn by sampling from ¢eise (X7) and iteratively applying the learned
denoising process pp(X:—1) = po(X¢—1|X¢). Various authors ([Sahoo et al., 2024]], [Zheng et al.,
2023]]) have made simplifying assumptions about the reverse process to derive a computationally
inexpensive loss function that reduces to a weighted negative log-likelihood, akin to a weighted form

of Eq.
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A.2 Classifier-Guided Sampling

Preliminaries Given a property y, guided diffusion aims to maximize ¢(y|x) by sampling from the
joint distribution x ~ ¢(Xo, y). Therefore, the reverse transition can be conditioned on the property
value y and prior sequence samples. Using Bayes theorem, the conditional joint distribution can be
decomposed:

q(y|x;—1,%¢)

18
a(ulxe) (19

q(xe—1|Xe,y) =

In practice, the true distribution of ¢(y|x;) is unknown and can be learned with a neural network
Pe(y|x¢). To yield a tractable marginal reverse transition from Eq. we can substitute the true
distribution ¢(-) with our learned neural networks:

- pe(ylxtq,xt)

S(Xe—1|xt,y) = (19)
Do ¢( t 1| t y) p¢(y|xt)

The normalization term in the denominator p, (y|X;) can be safely dropped since the model’s param-
eters learn the normalized distribution. We can update the parameters 6, ¢ at each iteration in the
direction given by the gradient

Vx,_,log p9,¢(Xt—1|Xt, y) = Vy,_,log P¢(y|Xt—1) + Vx,_, log po(xt—1%¢) (20)

With this formulation, we can steer the denoising trajectory of the unconditional diffusion model to
maximize the target attribute y using gradients from an external classifier [Dhariwal and Nichol, 2021].
Unlike classifier-free guidance, classifier-guidance prevents expensive retraining of existing denoising
network on high-quality, task-specific labeled data and opens avenues for flexible, plug-and-play
conditioning for various downstream applications.

Discrete Classifier Guidance While classifier guidance is well-formulated for diffusion models
that operate over continuous data in Euclidean space [Dhariwal and Nichol, [2021]], applying it to
discrete spaces requires additional approximation. One common approach treats discrete tokens as
continuous relaxations on the probability simplex and uses a first-order Taylor expansion around
x; to approximate log p, (y|x;—1) by making Vy, (-) a valid operator. However, this approximation
can be inaccurate when the local linearization poorly captures the classifier’s behavior over discrete
transitions, especially in regions with sharp decision boundaries. To remedy this, several methods
([Li et al., |2024], [[Vignac et al.,|2022]) have been proposed to circumvent the lack of continuous
representations in discrete gradient guidance; most relevant to our work is LaMBO-2 introduced by
[Gruver et al., [2024]].

LaMBO-2 To realize classifier-guidance for discrete sequences, LaMBO-2 first conducts sequence
optimization using a Langevin process over a property-informed latent space. We begin with the
discrete Langevin dynamics used in score-based models:

X, =X¢ —nVxlogpe(y | x¢) + /2n7,€, €~ N(0,1), (21)

and generalize this update to the continuous latent space h, € R'*P guided by a differentiable
surrogate of the discrete generative model. The batch size dimension B is set to 1 for simplicity. The
latent update step is defined as:

hi <= hy = Vi [NKL(p (xe|1p) || po(x¢|he)) — o (va(hi)a)] + /2n7€, € ~N(0,1)  (22)

with step size ), temperature 7, and regularization strength A\, where the sigmoid operator o(-) can
be applied to produce a sequence-level binary class probability from the classifier’s unnormalized
logit. The explore-exploit loss Lgg := A[KL(pg(x¢|h}) || po(X¢|ht)] — o(ve(h})q) guides the latent
representation towards high values of the property with the gradient Vo (vg(h)), while the KL
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term ensures the transition distribution maximizes the original sequence likelihood. Given a discrete
sequence X; and its corresponding latent representation h;, one can take N Langevin steps of Eq. [22]
to realize optimized sequence latent representations before using the language-modeling head of the
denoising network to project continuous embeddings to the discrete logit space ([Gruver et al., 2024]],
Appendix B.2). However, this construction does not guarantee the retention of specific tokens during
inference because even if gradients are suppressed for particular positions, the subsequent projection
through the language modeling head back into discrete logits does not ensure that the tokens with
minimal gradient updates will be preserved.

B Extended Methods

B.1 Dataset Curation

MemDLM Bioassembly structures from X-ray scattering or electron microscopy with better than
3.5A resolution, annotated by PDBTM1, mpstruc2, OPM3, or MemProtMD4, were used to curate
membrane protein sequences for fine-tuning. de novo designed membrane proteins were added
manually to the database. The proteins were culled at 100% sequence identity and 30% sequence
identity to result in a non-redundant set and a sequence-diverse set, respectively. Integral membrane
residues, defined as residues with at least one atom within the bilayer, were parsed from the resulting
bioassembly structures using the membrane boundaries predicted by PPM 3.0 [Lomize et al., 2021].
From the dataset of integral membrane residues, only structures with at least one TM chain spanning
the entire membrane bilayer were included in the dataset. Additionally, chains without integral
membrane residues were removed from the structure. All peripheral membrane proteins, defined as
proteins with no TM chain, were filtered out. The TM protein sequences at the two sequence identity
cut-offs and the Python script that parses the sequences from the PPM predictions are included in
the SI. After these steps, 9,329 sequences with corresponding per-residue annotations remained. To
augment this set of sequences, we obtained 2,579 unique PDB IDs from the Orientations of Proteins
in Membranes (OPM) database with the provided "subunits" file [Lomize et al.|[2006]. PDB IDs were
converted to corresponding protein sequences and per-residue labels (TM or soluble) were assigned
using the subunits file. The final set of 11,908 TM sequences were then split using the MMSeqs2
easy clustering module with a minimum sequence identity of 80% and a coverage threshold of 50%.
The resulting clusters were split to an 80-10-10 ratio into the training set (9,802 sequences, 82.31%),
the validation set (1,008 sequences, 8.47%), and the testing set (1,098 sequences, 9.22%).

PET Sampling Classifier We leveraged the same train/test/val set of 11,908 membrane sequences
from the MemDLM dataset to develop a binary classifier that predicts the solubility of each amino
acid within a protein sequence. Each sequence was annotated on a per-residue basis, with TM (class
1) and soluble (class 0) labels assigned according to the sequence’s uppercase and lowercase residues,
respectively.

B.2 Modeling MemDLM

Model Architecture EvoFlow is a protein language model consisting of 33 Transformer-
encoder layers and a language modeling head that is capable of de novo generating protein se-
quences. More formally, it can denoise a protein sequence consisting of all [MASK] tokens,
making it a natural choice for a discrete diffusion-based protein language model. We use the
pre-trained EvoFlow protein language model checkpoint (https://huggingface.co/fredzzp/
EvoFlow-650M-context-3070) as the basis of our neural network py since EvoFlow was trained
under the RDM framework (forward process as defined by Eq. |1|and loss computation defined by Eq.
[8). The Diffusion Protein Language Model (DPLM) was also trained under the RDM framework by
[Wang et al.,[2024] and is thereby an alternative choice for py. However, we opt for EvoFlow over
DPLM as the architecture for pg as DPLM is restricted by its shorter context length of 1,024 tokens,
compared to EvoFlow’s extended context length of 3,070 tokens.

Training To achieve membrane protein-specific generation, we fine-tuned EvoFlow by selectively
updating a subset of the encoder’s attention layers. Specifically, the final N = 3 Transformer encoder
layers {Lar— N1, - .., Lar} are partially unfrozen, where M = 33 is the total number of encoder
layers. Within each layer, we enable gradient updates to only the key, query, and value projection
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matrices (W, Wq, and Wy ) of the self-attention mechanism and keep all other weights frozen. With
this training recipe, we bias the pre-existing EvoFlow latent space with physicochemical features of
membrane proteins without overfitting on the new sequences. MemDLM was trained to minimize the
objective in Eq. [§lon a 4xA6000 NVIDIA DGX server with 200 GB of shared VRAM for 3K steps
using the AdamW optimizer (betas=(8; = 0.99, 52 = 0.98), weight decay A = 0.01), a learning rate
(LR) of 4 x 10~° with a cosine schedule (150 warmup steps, LR minimum = 1 x 107?).

B.3 Per-Token Solubility Classifier

Let vy : REXIXD — RBXL pe a neural network trained to predict per-token solubility scores

from continuous latent representations s;. The model is trained using clean protein sequences x
with corresponding binary per-residue solubility labels y € {0,1}* (0 = insoluble, 1 = soluble).
Each input sequence is first embedded using the pretrained ESM-2-650M protein language model
checkpoint (https://huggingface.co/facebook/esm2_t33_650M_UR50D) [Lin et al., 2023].
The resulting contextualized token embeddings are passed through a lightweight classifier vy with
the following architecture: (i) trainable 2-layer Transformer encoder Transformers; (ii) LayerNorm
and dropout (p = 0.5); and (iii) a trainable 2-layer projection head MLP outputs a scalar logit for
each token position. All parameters in ESM-2 are frozen, and only the transformer encoder and MLP
layers are updated during training. The classifier is optimized using a per-token binary cross-entropy
loss with logits:

Lece(¢) = — [y -logo(z) + (1 —y) - log(1 — 0(2))] (23)
where o (z) is the sigmoid activation function and z = vg4(h) is a vector of per-token logit predictions.
The loss is computed without reduction to allow for masking padded positions and is averaged over
all valid tokens in the batch. vy, is trained on a 1xA6000 NVIDIA DGX server with 50 GB of shared
VRAM for 50K steps using the AdamW optimizer (betas=(8; = 0.99, B2 = 0.98), weight decay
A = 0.01), a learning rate (LR) of 3e~ with a cosine schedule (5000 warmup steps, LR minimum =
le~®). The PET classifier was trained using the same train, test, and validation sequence splits as
MemDLM pre-training.

B.4 Computational Metrics

Sequence generation quality was computationally verified using the following metrics:

Pseudo Perplexity The model’s generation quality was assessed using the ESM-2 [Lin et al.,
2023 pseudo-perplexity metric. Typically, a lower pseudo-perplexity value indicates higher confi-
dence. Specifically, the pseudo-perplexity is computed as the exponential of the negative pseudo-
loglikelihood of a sequence. This metric yields a deterministic value for each sequence but necessitates
L forward passes for computation, where L represents the input sequence length. It is formally defined

as PPL(x) = exp(—1) Y7 log p(z* | 2\1).

pLDDT The structural confidence of generated sequences was assessed using predicted Local
Distance Difference Test (pLDDT) scores from ESMFold v1 with chunk size of 128 [Lin et al.,
2023]], a protein language model-based tool to predict protein structures from amino acid sequences
alone. Higher pLDDT indicates ESMFold is more confident in the produced structure, suggesting the
initial input sequence is biologically plausible.

Shannon Entropy To measure the diversity and uncertainty of the model’s token predictions, we
compute the average Shannon entropy across the sequence. Let p(x?) denote the model’s probability
distribution over the vocabulary V at position <. Higher entropy values indicate greater diversity in
the model’s predictions, while lower values suggest more repetitive distributions. The entropy is

defined as: Entropy(x) = f% Zle Zvevp(:vi =) -logp(a = v).

BLOSUMG62 Substituion Score The average BLOSUMS62 score is a quantitative approach to
determining whether an amino acid substitution is conservative or nonconservative. This value
becomes an important computational metric for protein sequence infilling tasks (both unconditional
and PET-based solubilization) to determine if the model is introducing non-conserved residue changes.
For each aligned position between a generated sequence X and reference sequence x, we extract the
substitution score B(#?, z%) from the BLOSUM62 matrix [Henikoff and Henikoff, 1992]. Higher
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scores indicate greater biochemical similarity to the native sequence, while lower scores suggest
more divergent or potentially deleterious substitutions. The final score is computed as the mean over

all aligned residues BLOSUM(x,x) = L S°F | B(#%, 2%).

TM Residue Density To estimate the membrane-localizing potential of generated sequences,
we used DeepTMHMM v1.0 tool (https://services.healthtech.dtu.dk/services/
DeepTMHMM-1.0/) [Hallgren et al.,2022] to produce per-residue topology annotations. Each residue
is classified into one of six categories: signal peptide (S), inside cell/cytosol (I), alpha membrane
(M), beta membrane (B), periplasm (P), or outside cell/lumen (O). For our analysis, we consider
residues labeled as alpha membrane (M) to be “soluble” in the membrane context, and all other
classes, including beta membrane (B), to be “insoluble.” We explicitly exclude B-labeled residues
from the soluble category due to the structural and biophysical differences between beta-barrel and
alpha-helical transmembrane domains, the latter being dominant in our training set. Using these
annotations, we define the TM Residue Density of a sequence as the number of residues predicted to lie
within alpha membrane ("M" predictions) regions divided by the sequence length as a normalization
factor.

B.5 Wet-Lab Experiments

B.5.1 Cloning and Plasmid Construction

DNA sequences of our MemDLM-designed and control peptides were cloned. Target sequences
derived from MemDLM were cloned into the pMAL_dst3L vector (Addgene plasmid #73805)
between the genes encoding for ToxR and S-lactamase using blunt-end ligation. The resulting
constructs were initially transformed into E. coli XL.-10 Gold cells. Transformants were selected
on Luria Broth (LB) agar plates containing spectinomycin and sequences were verified by Sanger
sequencing. Confirmed plasmids were subsequently transformed into E. coli Cloni cells for the assay.

Cell lines:

REAGENT CATALOG INFORMATION

E. Cloni 10G DUOs Chemically Competent Cells  Cat. No. 60107-1 (BioSearch Technologies)
XL 10-Gold Ultracompetent Cells Cat. No. 200315 (Agilent)

Table 4: Competent cell reagents used in this study.

Genes inserted into the pMAL_dstSL plasmid vector:

* Human CLS:
— Uniprot: UPI000007083D
— Amino acid sequence: PLFIPVAVMVTAFSGLAFIIWLA

— Gene: CCGCTGTTCATCCCGGTTGCAGTTATGGTTACCGCTTTTAGTGGATTG-
GCGTTTATCATCTGGCTGGCT

* GpA-TM Region:
— Uniprot: UPI000012B75E
— Amino acid sequence: LHIFGVMAGVIGTILI
— Gene: TTAATTATTTTCGGAGTGATGGCCGGAGTTATCGGCACAATTTTAATC

¢ ErbB2 TM Region:

— Uniprot: P04626-1
— Amino acid sequence: SIISAVVGILLVVVLGVVFGIL

- Gene: TCCATTATCTCCGCTGTCGTAGGAATCTTGTTAGTTGTCGTC-
CTTGGGGTTGTGTTTGGAATTTTA

* Qsox2 TM Region:

— Uniprot: Q6ZRP7
— Amino acid sequence: SLCVVLYVASSLFMVMYFF
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— Gene: AGTCTTTGCGTCGTACTTTACGTCGCATCTTCACTGTTTATGGTGATG-
TATTTCTTT

EK3 Water Soluble Helix [Wolny et al., 2017

— Amino acid sequence: SAEEEKKKAEEEKKKAEEEKKKAE
— Gene: TCCGCAGAGGAAGAAAAGAAAAAAGCTGAAGAAGAAAAGAAAAAG-
GCAGAAGAAGAGAAAAAAAAGGCAGAG
* PoorTM2

— MemDLM amino acid sequence: SSLLFSYQGAKKEEERVFLDNF
- Gene: AGTTCTTTGTTATTCAGCTATCAGGGAGCCAAGAAAGAAGAA-
GAACGTGTGTTTCTGGATAACTTC
* PoorTM4

— MemDLM amino acid sequence: GTHAKDWRVTSWKRYGEIE
— Gene: GGAACACATGCTAAAGATTGGCGTGTGACATCTTGGAAGCGTTACG-
GCGAGATTGAA
GoodTM4

— MemDLM amino acid sequence: DLSKWLGIVLLLLLAILALLLIR
- Gene: GATTTAAGCAAATGGCTGGGTATCGTACTGTTACTGTTACTGGC-
TATTTTGGCTTTATTACTGATTCGT
GoodTMS

— MemDLM amino acid sequence: SLRWLWSLVIGLLLIVAFYLLLR
— Gene: AGCCTGCGTTGGTTGTGGTCTTTAGTGATCGGCTTACTGCT-
TATCGTTGCCTTCTACCTGCTGCTTCGC
GoodTMS8

— MemDLM amino acid sequence: DFLRKAVIVLLVLVIVAGLLVIR

— Gene: GATTTTCTGCGTAAGGCAGTGATTGTATTACTTGTCTTGGTTATTGTG-
GCGGGTCTGCTGGTTATTCGC

B.5.2 TOXCAT-g-Lactamase Growth Assay

Single colonies of plasmid-containing E. coli Cloni cells were used to inoculate 6-mL LB cultures
supplemented with 50 pg/mL spectinomycin. Glycerol stocks were made and used to inoculate new
fresh LB culture tubes with 50 pg/mL spectinomycin. Cultures were incubated for ~8 h or overnight
at 370C with shaking. Optical density at 600 nm (ODggg) was measured, and cultures were diluted
with fresh LB + spectinomycin to an ODggg of 0.05. Growth was continued until an ODggq of ~0.1
was reached.

To ensure consistent inoculation density across assays, the number of cells per well was normalized
to 1.95 x 10° cells. This value was calculated using the relationship of 1 ODgoo =~ 8 x 108 cells/mL
and adjusted for the measured absorbance at ODgqq of each culture. Growth under spectinomycin
confirmed that the pMal_dsTBL plasmid was successfully introduced into E. coli Cloni cells across
all conditions. All cultures grew equally under this condition, demonstrating comparable inoculation
densities and consistent plasmid uptake.

Assays were performed in 96-well plates, with each well containing a final total volume of ~200
pL LB medium supplemented with the appropriate antibiotics in the following concentrations:
Spectinomycin (50 pg/mL), Carbenicillin (300 pg/mL), Carbenicillin (100 pg/mL) + chloramphenicol
(100 pg/mL), Carbenicillin (100 pg/mL) + chloramphenicol (120 pg/mL). Wells were inoculated
with the calculated volume of diluted culture corresponding to 1.95 x 10° cells. Each antibiotic
reporter was run in triplicate. Plates were incubated at 37°C in a pre-heated plate reader (BioTek
Synergy H1). Bacterial growth was monitored by measuring absorbance at 600 nm for 24 hours with
measurements taken every 10 minutes under continuous shaking.
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ess C Extended Results

687 C.1 Density Plots

688 We visualize the density distribution of the various computational metrics to assess membrane protein
689 sequences. When using P2 Self-Planning to generate sequences, we set 7 = 0.7 to have a slight bias
690 towards deterministic model outputs.

e91 Unconditional Generation We unconditionally generate 1,000 membrane protein sequences.
692 Lengths are randomly chosen from 50-250 residues.

A

TM Residue Density ESM-2:650M Pseudo Perplexity pLoDT

Figure A1l: De novo-generated and natural membrane protein sequences.

693 Motif Scaffolding We mask out and infill both the insoluble and soluble regions of natural mem-
694 brane proteins derived from the model’s test set.
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Figure A2: Infilling Insoluble Domain

ESM2.650M Pseudo Perplexity Entropy BLOSUME? Substitution Score

Figure A3: Infilling Soluble Domain

695 Solubilization We optimize the solubility of the proteins in the model’s test set by applying our
696 PET algorithm.
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Figure A4: Solubilizing TM Domains

C.2 Physciochemical Property Prediction

As a surrogate task, we assessed if RDM training retains physicochemical information critical to
membrane protein function by predicting per-residue solubility and membrane localization (Table 3).
We use embeddings from three models—vanilla ESM-2-650M, ESM-2-650M fine-tuned on membrane
protein sequences, and MemDLM-as inputs to a per-residue solubility and sequence-level membrane
localization classifiers. We outline the dataset, training details, and evaluation results of these models
in the following.

C.2.1 Datasests

Solubility Prediction We leveraged the same set of 11,908 membrane sequences from the
MemDLM training dataset to develop a binary classifier that predicts the solubility of each amino
acid within a protein sequence. Each sequence was annotated on a per-residue basis, with TM (class
1) and soluble (class 0) labels assigned according to the sequence’s uppercase and lowercase residues,
respectively. The same training, testing, and validation data splits used to train MemDLM were also
utilized to train and evaluate this classifier.

Membrane Localization We collected 30,020 protein sequences from DeepLoc 2.0 thumu-
luri2022deeploc to build a binary classifier that predicts a protein sequence’s cellular localization. The
authors of the dataset provided a multi-label label for each sequence indicating its localization(s). We
used the authors’ provided data splits, with training sequences having 11 labels and testing sequences
having 8 labels.

C.2.2 Models

Solubility Prediction We first predicted TM and soluble residues, a hallmark characteristic of
membrane protein sequences. We utilized embeddings from each pLM’s latent space (ESM-2-150M,
ESM-MLM, and MemDLM) as inputs to train a two-layer perceptron classifier that minimized the
standard binary cross-entropy (BCE) loss to compute the probability that each residue in the sequence
is either soluble (probability < 0.5, class 0) or TM (probability > 0.5, class 1).
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Membrane Localization Prediction Proteins originating from the endomembrane system and
localizing in the plasma membrane differ in conformation and function from those in the cytosol and
other cellular organelles. We predicted the subcellular localization of protein sequences by utilizing
embeddings from each pLM’s latent space (ESM-2-150M, ESM-MLM, and MemDLM) to train a
XGBoost classifier that minimized the standard BCE loss to compute the probability that a protein
sequence localizes in the plasma membrane (probability > 0.5, class 1) or in other regions (probability
< 0.5, class 0).

Fine-Tuning ESM-2 We fine-tune the ESM-2 pLM ([Lin et al.| [2023]]) to achieve an encoder that
produces membrane-aware protein sequence embedding used as a baseline comparison for the RDM
training task. We trained a MLM head on top of ESM-2-650M using membrane protein sequences to
force comprehension of membrane protein properties. We chose to randomly mask 40% of amino
acid tokens during training over the standard 15% to more closely resemble the dynamics of diffusion-
based (RDM) training; masking rates above 40% have been seen as detrimental during MLM training
tasks [Wettig et al.]. Corrupted sequences were passed into ESM-2-650M to retrieve their output
embeddings. During training, we unfroze the key, query, and value weights in the attention heads
of the final three encoder layers, similar to fine-tuning EvoFlow during MemDLM training. During
ESM-2 fine-tuning, the model performed a masked-prediction task over masked amino acid tokens
to minimize the NLL loss in Eq. (T3). 2xH100 NVIDIA GPUs, learning rate of 5e-3, the Adam
optimizer, and a batch size of 8 over 10 epochs were used.

C.2.3 Results

We leveraged the trained solubility prediction and membrane localization classifiers to determine
if latent spaces from RDM-based generative models are aligned with relevant membrane protein
properties. Table [5]shows that MemDLM latent embeddings achieve predictive performance that
closely parallels SOTA pLM embeddings, which are designed specifically for delivering precise
representations.

MODEL SOLUBILITY (1) MEMBRANE
LOCALIZATION (1)
ESM-2-650M 0.9383 0.6011
Fine-Tuned ESM-2 0.9375 0.6000
MemDLM 0.9375 0.5964

Table 5: Performance comparison (AUROC) of embeddings derived from various models in predicting physico-
chemical properties of MemDLM test set sequences.

In total, these results demonstrate that MemDLM accurately captures the biological features under-
pinning functional membrane proteins despite being trained on a sequence generation task rather than
a masked-prediction task.
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C.3 Wet-Lab Experiments
C.3.1 TOXCAT Assay

[ ToxR . POl | B-lactamase ]

O =B-lactamase 8

O =ToxR
AToxR-POI-BL APOI Soluble ™ ™

(monomer) (dimer)

Control Samples AToxR-POI-BL APOI EK3 CLS ErbB2, GpA,

Qsox2

Spectinomycin Growth Growth Growth Growth Growth

Carbenicillin No growth No growth No growth Growth Growth

Carbenicillin + No growth No growth No growth No growth Growth

Chloramphenicol

Figure AS: Summary of control constructs for the TOXCAT-S-lactamase assay and their expected growth
responses to antibiotics.

Schematic showing gene ToxR-POI-SL, where POl is the peptide of interest and SL is S-lactamase.
Periplasmic [S-lactamase and cytoplasmic ToxR proteins are represented by blue and yellow dots,
respectively. Expected growth phenotypes under spectinomycin and carbenicillin +/-chloramphenicol
are indicated for each control. Negative controls AToxR-POI-SL, APOI, and EK3 should not survive
in carbenicillin because they lack a TM domain. Positive controls CLS, ErbB2, GpA, and Qsox2 all
have TM domains and should survive in carbenicillin. Further, ErbB2, GpA, and Qsox2 are dimers.
Expression of these controls should also confer resistance to chloramphenicol.

C.3.2 TOXCAT Sequence Selection

From 1,000 MemDLM-generated sequences, three sequences from the top 100 predicted performers
("GoodTM") and two sequences from the bottom 22 predicted performers ("PoorTM") were selected
for screening in the TOXCAT assay. The following selection criteria was used:

CATEGORY pPLDDT PPL TM RESIDUE DENSITY SEQUENCES SELECTED
GoodTM (Top 100) > 60 <10 Non-zero 3
PoorTM (Bottom 22) < 60 <15 Non-zero 2

Table 6: Selection criteria and sequence counts for MemDLM-generated sequences screened in the TOXCAT
assay.

The top-ranked (GoodTM) sequences represented a diverse set of high-scoring designs. For example,
GoodTMS5 (SLRWLWSLVIGLLLIVAFYLLLR, rank 57) contained a small-X3-small motif known
to promote TM helix association [[Russ and Engelmanl |1999] [Li et al., 2004| [Russ and Engelman,
2000]]. This further demonstrates that MemDLM generates plausible protein sequences with TM-like
character.

C.3.3 Growth Curves

Control Plasmids Growth curves of E. coli Cloni cells containing control plasmids.
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A ~o— ErbB2 Spectinomycin (50 pg/mL)
—e— GpA
Qsox2
CLs
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EK3
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Figure A6: A) Survival in spectinomycin (50 pg/mL) confirmed plasmid uptake for all controls. B) Growth
curves of control plasmids under carbenicillin (300 pg/mL) showed that control plasmids containing TM
sequences survived selective pressure. C) Growth curves of control plasmids under combined carbenicillin (100
pg/mL) and chloramphenicol (80 pg/mL) selection, which tests both transmembrane insertion and association,
show that the dimeric Qsox2, GpA, and ErbB2 controls begin growing in chloramphenicol earlier than the
monomeric CLS control.

MemDLM-Generated Sequences Growth curves for MemDLM’s de novo-generated sequences.
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Figure A7: GpA is used as a positive control for insertion and TM association. CLS is the positive insertion
and negative TM association control. A) Growth curve of E. coli Cloni cells containing de novo MemDLM TM
sequences under spectinomycin (50 pg/mL) confirmed plasmid uptake. B) Growth curves of MemDLM peptides
under carbenicillin (300 pg/mL) show GoodTM4, GoodTMS5, and GoodTMS8 growing as expected. PoorTM4
did not survive, indicating that it is not membrane inserting. PoorTM2 showed delayed growth, suggesting
that it has lower membrane insertion propensity than the GoodTM constructs. C) Growth curves of MemDLM
plasmids under combined carbenicillin (100 pg/mL) and chloramphenicol (120 pg/mL), used to select for both
transmembrane insertion and transmembrane association, reveal that some of the TM designs may be oligomeric.
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D Visualizations

77
772 AlphaFold3 visualizations of MemDLM-generated membrane protein sequences. TM Residue
773 Density (TMRD) scores are derived from DeepTMHMM predictions. Structures and colors are from
774 AlphaFold3 predictions, and pLDDT scores are from ESMFold.
775 D.1  De novo Generation
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Figure Al: De novo-generated protein sequences from MemDLM across different lengths.
776  D.2  Solubilization
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Figure A2: Original and solubilized versions of MemDLM test set protein sequences. Grey residues were
annotated as soluble in the given sequence and were thus "fixed" during PET sampling.
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77 E

Algorithm Pseudocode

Algorithm 1 MemDLM Training

Require: Protein sequence dataset D, diffusion model pg, number of diffusion timesteps T’

1:
2:

3
4
5:
6:
7:
8:

while not converged do
Sample batch x¢g ~ D
Sample timestep t ~ U(1,T)
Corrupt sequence: x; ~ q(x¢ | X¢—1)
Compute RDM loss: Lrpm = — Ay Zle log pg () | x¢)
Take gradient descent step on: Vo Lrpm
end while
return Trained MemDLM py

Algorithm 2 MemDLM Sampling with P2 Self-Planning and Optional Sequence Refinement

Require: Fully masked sequence x7 = {[MASK]}£_,, trained MemDLM pjy, number of denoising

1:

by

AR A

10:
11:
12:
13:

steps '
fort e {T,T—1,...,0}do
Compute logits: z;—1 = pp(x:)

Sample candidate tokens: z¢_; = arg max, (zt‘l + gi’“> , g“Y ~ Gumbel(0, 1)

T

Compute per-token log-probabilities: st = log pg (%)

Identify unmasked positions: R; = {i | z;—1 # [MASK]}

Compute K = | (1 — k¢) - [R¢|]

Select top-K lowest scoring tokens from R; and remask them: x% = [MASK] for i €
top-F (5}

Copy high-confidence predictions: xi_; < x¢ for positions previously masked but not in
top-K
end for
if PET Optimization then

Perform Algorithm 3]
end if
return Final decoded sequence x

Algorithm 3 PET-based MemDLM Sampling

Require: Candidate protein sequence x, trained MemDLM pyg, trained solubility classifier v,

® AN R 2D

_—
w2

pre-trained encoder Encoderg, number of optimization steps N
Produce sequence embeddings 7 = Encoder (x)
Compute saliency map s using gradients Vv4(h)
Normalize saliency map 3% « s;
Determine editable positions £ based on soluble residues and saliency scores
for eachi € £ do
Define neighborhood N (7)
Compute 5’ = &' + 37 rr(;y Norm(A;;) - 87
Construct prior distribution 7 (z?)
Compute guidance distribution: log P(x?) = (1 — o(a3?)) - log pg(2?) + o(ad?) - w(a?)
Sample token ¢ ~ CAT(log P(z?))
Update x[i] « 2°

: end for
: return Optimized sequence X
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