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ABSTRACT

Federated Learning (FL) enables collaborative model training across multiple
clients without sharing clients’ private data. However, the diverse and often con-
flicting biases present across clients pose significant challenges to model fairness.
Current fairness-enhancing FL solutions often fall short, as they typically mitigate
biases for a single, usually binary, sensitive attribute, while ignoring the heteroge-
neous fairness needs that exist in real-world settings. Moreover, these solutions
often evaluate unfairness reduction only on the server side, hiding persistent un-
fairness at the individual client level. To support more robust and reproducible
fairness research in FL, we introduce a comprehensive benchmarking framework
for fairness-aware FL at both the global and client levels. Our contributions are
three-fold: (1) We introduce FeDa4Fair, a library to create tabular datasets tailored
to evaluating fair FL methods under heterogeneous client bias; (2) we release
four bias-heterogeneous datasets and corresponding benchmarks to compare fair-
ness mitigation methods in a controlled environment; (3) we provide ready-to-use
functions for evaluating fairness outcomes for these datasets.

1 INTRODUCTION

With the increasing application of Machine Learning (ML) in all economic and societal sectors,
the demand for its responsible use is becoming more prominent. This led to the introduction of
several Artificial Intelligence (AI) regulations (Roberts et al., 2021} |Biden, 2023 |Commission, |2019;
Madiegal [2021)) and the emergence of new research fields such as explainability (Bodria et al.| [2023)),
fairness (Caton & Haas|,[2024)), and user privacy (Liu et al.|[2021]).

One solution which is commonly adopted to mitigate users’ privacy risk is Federated Learning
(FL) (McMabhan et al.,|2017). FL enables a collaborative training of an ML model without requiring
users, commonly called clients, to share their raw data. A significant challenge in FL is handling
non-independent and identically distributed (non-i.i.d.) data across clients. Training an FL. model in
these settings degrades model utility and decreases its fairness guarantees. While progress has been
made in addressing the utility degradation problem under non-i.i.d. conditions (Lu et al.,[2024}), efforts
to mitigate the resulting unfairness remain limited. Existing fair FL approaches (Papadaki et al.| [2022;
Corbucci et al.| 2024;Abay et al., 2020) typically aim to reduce unfairness for underrepresented groups
using group-level metrics such as Demographic Disparity or Equalized Odds Difference (Barocas
et al.,[2017).

Notably, current FL. methodologies operate under the simplified assumption that the bias distribution
in terms of sensitive attributes and their most vulnerable groups is uniform across all clients. This
assumption can lead to a dangerous illusion of fairness, neglecting the inherent heterogeneous bias
distribution of real-world data, where clients may operate under differing political, cultural, or
socioeconomic environments, legal and regulatory frameworks, data collection pipelines, or fairness
objectives, leading to non-uniform biases. Consequently, having a single global model evaluated on
the server using a single metric can result in a model that, while appearing globally fair, is unfair for
a few individual clients or specific demographic groups due to unaddressed attributes. While some
clients may benefit from the fairer model, others do not. This can lead to bias propagation across the
federation (Chang & Shokri, [2023)) and result in global models that are less fair and accurate than
locally trained ones (Corbucci et al., [2025]).
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Figure 1: A pictorial representation of the FL scenarios tackled by FeDa4Fair. Clients exhibit varying
levels of unfairness, here depicted as a high value of Demographic Disparity. FeDa4Fair creates data
where fairness metrics reveal inequalities across attribute values (e.g., Black, Asian), across attributes
(e.g., race vs. gender), or both.

In this work, we argue that a more granular client-level evaluation is necessary to address the current
limitations. We identify two scenarios that current fair FL solutions do not capture: (I) value bias,
where clients have data biased toward different values of the same sensitive attribute; and (II) attribute
bias, where clients have data biased toward different sensitive attributes than those mitigated by the
federation-level intervention. We visualize these scenarios in Figure[T] As an illustrative hypothetical
example, value bias can arise in a race-fair facial recognition FL. model trained on user photos. Since
individuals typically possess more photos of themselves, an individual’s local dataset is naturally
biased toward their own race. When the federation consists of a majority (e.g., “Asians”) and a
minority group (e.g., “African-American”), the majority’s data inevitably skews the fairness objective.
This can create an illusion of fairness when the model is evaluated with a single global metric on the
server, while it remains unfair for individual clients who receive a model that fails to meet their needs.
As a result, conflicting client interests can make it difficult, if not impossible, to achieve meaningful
fairness in the resulting federated model, even if a federation-level mitigation was implemented.
Similarly, attribute bias may occur when clients’ data are biased with respect to different attributes
(e.g., gender vs. race). Such disparities complicate efforts to ensure fairness across multiple attributes
in FL.

To fill this gap, we introduce FeDa4Fair, the first framework and library for creating benchmarking
datasets tailored for the evaluation of fair FL. methods in these realistic, bias-heterogeneous scenarios.
By enabling systematic and reproducible experimentation, FeDa4Fair addresses the absence of
standardized datasets available to researchers developing and evaluating fairness-aware FL methods.
We summarize our contributions below:

(1) We introduce FeDa4Failﬂ a library for creating benchmarking datasets to assess fair FL approaches
in diverse fairness scenarios, enabling comprehensive client-level fairness assessments.

(2) We release four benchmarking datasets incorporating heterogeneous bias distributions across
clients for different FL settings.

(3) We provide results for two baseline unfair (non-mitigated) and fair (mitigated) FL. methods on
these four datasets, highlighting the limitations of current approaches and the need for a shift in the
fair-FL evaluation pipeline.

2 BACKGROUND AND RELATED WORK

2.1 FEDERATED LEARNING

FL (McMahan et al., |2017) is a distributed training framework that enables K clients to train a
shared ML model without exposing their private datasets Dy. A central server S orchestrates training
by selecting a subset y of available clients for r € [0, R] rounds and aggregating their model
updates. At round r = 0, the server shares a model 6y with random weights. The training procedure
depends on the chosen aggregation method. A frequently used approach is Federated Averaging
(FedAvg) (McMahan et al.,|2017)). In this case, clients update 6, locally for F epochs before sending

updates to S, which aggregates them as 6,1 < > 4, 0%, where 0" are the parameters updated
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locally by client k. FedAvg minimizes communication overhead while preserving performance,
making it widely applied in FL. Based on the number and the availability of the clients involved in the
training, we can distinguish between cross-silo and cross-device FL. In the cross-silo scenario, there
are typically tens to hundreds of clients, such as hospitals or companies, that are always available
during the training and possess large volumes of data. On the contrary, the cross-device scenario
involves a larger number of clients, each holding a small number of data samples. In this case, the
clients are only available under specific circumstances, e.g., a client could be a smartphone and
could be available while charging. Several frameworks are available to simulate model training using
FL (Riviera et al.l |2023)). One of the most well-known frameworks is Flower (Beutel et al., [2020)),
which we adopted for all the FL experiments presented in this paper. Additionally, the FeDa4Fair
library we introduce is fully compatible with Flower, ensuring a seamless integration for researchers
and practitioners.

2.2 FAIRNESS IN MACHINE LEARNING AND FEDERATED LEARNING

Fairness in ML refers to the principle that models’ predictions should not systematically disadvantage
individuals or groups based on sensitive attributes such as gender or race. To quantify how much
an ML model is biased, multiple fairness metrics are available in the literature (Mehrabi et al.
2021; |Caton & Haas| [2024). In this paper, we measure fairness using Demographic Disparity (DD)
and Equalized Odds Difference (EOD) (Hardt et al.| 2016). The former builds upon Demographic
Parity (Barocas et al.,[2017), which requires that the likelihood of a particular prediction outcome
must not depend on the membership of a sensitive group. Formally, Demographic Parity can be
expressed as: P(Y =y | Z = z) = P(Y = y | Z # z) where y is one of the possible targets
predicted by the model and z is one of the possible values of the sensitive attribute. DD then evaluates
the maximum difference between the Demographic Parity of the different sensitive groups. Equalized
odds difference instead demands equality of both the true positive and false positive rates across
groups. Formally, it is defined as: P(Y =y | Y =4, Z = 2) —P(Y =y | Y =y, Z +# ) for each
ye€Yandz e Z.

Additionally, intersectional fairness captures forms of discrimination and societal effects that emerge
from the intersection of multiple sensitive features (Crenshawl 2013). For instance, young Black
people may experience bias not because of age or race alone, but from their intersection. While each
group may not be disadvantaged independently, their intersection can be. Addressing intersectional
fairness is challenging, as these subgroups are often small and difficult to identify within the data.

Fairness is also a concern when training models using FL (Salazar et al.|[2024; |Vucinich & Zhul [2023)).
In this context, it is not only important to ensure fairness across the different groups represented
in the federation but also to understand the benefits individual clients gain from participating in
training (Diising & Cimiano, [2022; Yu et al.| 2020). These benefits are usually measured in terms
of model utility. However, prior work did not investigate participation benefits from a fairness
perspective, despite proofs that FL is particularly vulnerable to bias propagation (Fontana et al.| 2022}
Chang & Shokri, [2023)). These gaps are significant in federations where mitigation strategies reduce
unfairness with respect to a specific sensitive attribute (Papadaki et al., 2022; |Corbucci et al.| [2024;
Abay et al., [2020). In such cases, the choice of which sensitive attribute to mitigate can benefit
the clients who are unfair toward that attribute while potentially damaging others who experience
unfairness toward different attributes.

2.3 FEDERATED LEARNING DATASETS

Despite the growing popularity of FL research, the field lacks standardized benchmarking practices.
This is particularly evident in two areas: the absence of a gold standard in terms of datasets that
should be experimented onE]and the inconsistent methodologies for data partitioning used to simulate
realistic FL scenarios (Gutierrez et al.,[2024b)).

LEAF (Caldas et al.,|2019) was the first attempt to establish a benchmarking dataset for FL. However,
this benchmark only contains a dataset originally designed for the centralized context, which was
then adapted to work for FL. Therefore, it does not effectively capture the different client-level
distributions that could be present in an inherently federated dataset. To address this limitation,

?Federated Datasets in Research: https:/flower.ai/blog/2024-12-02-federated-datasets-in-research/
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researchers have proposed various approaches for simulating non-IID data distributions across clients
(Gutierrez et al, [2024b). The use of the Dirichlet distribution emerged as a popular partitioning
method to simulate the non-1ID split. Solutions like NIID-Bench (Li et al., [2022) proposed a first
benchmarking suite to compare different approaches and evaluate the impact on the model quality.
More recently, FedArtML (Gutierrez et al.l [2024a) proposed a similar solution to simulate and
evaluate how data heterogeneity impacts the quality of the FL model.

A similar problem appears when fairness is taken into account during the FL process. Here, most of
the datasets used in the literature are originally designed for a centralized context, and only contain a
low number of samples, which makes training in a federated context difficult (Salazar et al.,|2024).
Beyond data heterogeneity concerns, to the best of our knowledge, no consensus exists on benchmark
datasets or libraries designed to create data distributions with specific unfairness properties. As also
pointed out by Taik et al.|(2025)), the existence of such datasets would benefit the evaluation of FL
models, especially, when dealing with clients with varying fairness preferences and objectives. Not
only researchers working on methods to mitigate model unfairness, but also those evaluating existing
approaches in an FL environment, would profit from a standardized benchmarking dataset.

3 FEDA4FAIR

Meaningful comparison of fair FL. methods requires a shift in the evaluation pipeline: from evaluating
single global models on the server in simplified client settings to individual-level evaluation in diverse,
bias-heterogeneous client settings. To facilitate this, we introduce “Client-Level Federated Datasets
for Fairness Evaluation” (FeDa4Fair), a library designed to create datasets for this purpose and help
researchers to investigate fairness across a wide range of FL scenarios. Unlike existing evaluation
pipelines for FL. models’ fairness evaluation, FeDa4Fair provides data with a natural client-level
split guaranteeing a non-i.i.d. distribution of the data and enabling systematic client-level fairness
evaluation.

FeDa4Fair is built on top of the fairness-relevant Income and Employment prediction tasks,
ACSIncome and ACSEmployment (Ding et al.l|2021)), which are based on data from the American
Community Survey’s Public Use Microdata Sample (ACS PUMS). Our framework prioritizes tabular
datasets and specifically leverages the ACS datasets because of their prevalence in fair FL research.
According to a recent survey (Salazar et al.,|2024), only 11 out of 47 fairness-aware FL. methods
support image data (out of these, 7 work both on image and tabular datasets), 1 out of 47 supports
video data, and none support text data. With the majority (66%) of fair FL. methods supporting
exclusively tabular data, focusing on this data type ensures FeDa4Fair has the highest immediate
research impact. Furthermore, the ACS datasets offer a unique natural horizontal partitioning (by 50
U.S. states + Puerto Rico), providing a realistic simulation of a cross-silo FL setting, which can be
further partitioned to simulate realistic cross-device settings.

While our primary focus is on tabular datasets, FeDa4Fair also offers a dataset-agnostic approach to
evaluating existing biases and exacerbating them to achieve a wide range of bias-heterogeneous client
scenarios. This is possible because we built on top of the Flower FederatedDataset clasﬂ
ensuring straightforward integration with Flower (Beutel et al., [2020), one of the most common
FL frameworks used both in research and industry. Moreover, thanks to the integration of Flower
with the HuggingFace datasets Hub (Lhoest et al., 2021)), FeDa4Fair can also be applied with other
datasets regardless of their modalities. To use this FeDa4Fair feature, practitioners provide a dataset
and specify the sensitive features and the target they want to consider during the process to obtain a
federated dataset for their experiments. As the capability to exacerbate and evaluate biases represents
the core focus and novelty of FeDa4Fair, we detail its functionality here, while we refer readers to
Appendix [A]for an overview of the library’s general setup.

Recognizing recent concerns regarding the availability and reliability of FL research datasets, we
have designed FeDa4Fair to make all parameter choices to create the dataset straightforward to
disclose. To further support this goal, we have implemented a datasheet generation feature that semi-
automatically provides documentation of the parameters employed to create any dataset, inheriting
broader information about FeDa4Fair from a fixed template. With this, we aim for reproducibility
and to ensure robust validation of fair FL research.

3https://flower.ai/docs/datasets/
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3.1 FAIRNESS SPECIFICATIONS

At its core, FeDa4Fair analyzes bias distribution
at the client level and allows for data modifica-
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Figure 3: Attribute value bias measured with DD
on XGBoost for value benchmark datasets.

In Figure ] we present a more detailed analysis of fairness distributions for two states, now also
partitioned into 5 clients each. Comparing Figures [da] and il we observe distinct bias patterns across
the SEX and RACE attributes. Notably, SEX consistently shows lower bias than RACE across the
clients. Thus, we can easily identify the dominant bias toward specific attribute values for each client.
As shown in Figure 4c| the highest level of DD spans a broad range of attribute values. For instance,
in the state of “LA”, the maximum DD for RACE occurs between z = 4 and z = 8 where z denotes
the sensitive attribute RACE and 4 and 8 are two of its possible values.

To address scenarios where the created datasets do not exhibit the desired bias distributions across
clients, FeDa4Fair offers targeted bias exacerbation features. This feature provides researchers
with fine-grained control over data manipulation, allowing them to tailor dataset properties for a
wider range of fair FL research scenarios. Specifically, the bias exacerbation supports two types
of manipulations: (I) label flipping and (II) datapoint dropping, both applied to data instances with
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Figure 4: Attribute and attribute value bias measured with DD on the true labels and partitioning data
from “LA” and “WY”. These plots are generated for any dataset created with FeDa4Fair.

negative labels within selected data splits. This focus ensures these interventions amplify potential
imbalances that usually impact model performance on underrepresented negative classes. To use this
feature, practitioners indicate the type of manipulation to be applied to a specific combination of data
splits, the sensitive attributes considered (e.g., “gender”, “race”), and the attribute values to which
the manipulation should apply (e.g., “female”, “African American”). Furthermore, more granular
control is possible by defining an extra attribute and value, e.g., only flip labels for “female” instances
within the “African American” group, to enable intersectional bias manipulation. Label flipping and
datapoint dropping can be applied independently or combined: for instance, flipping a percentage
of negative labels for the “African American” subgroup while dropping a different percentage of
datapoints with negative labels for the “Asian” subgroup.

This flexibility allows FeDa4Fair to create datasets reflecting realistic and complex bias patterns,
facilitating the development and the evaluation of fair FL solutions. However, we stress that manipu-
lated data is, of course, no longer representative of the state-level distributions and demographics in
the U.S. and Puerto Rico; we strongly advise against employing data manipulated with FeDa4Fair for
anything but the testing and development of federated bias mitigation strategies.

4 BENCHMARK DATASETS

To offer practitioners an easy access to the functionalities of FeDa4Fair, we release four benchmark
datasets with realistic bias conditions constructed with FeDa4Fair: (I) an attribute-level biased
dataset for the cross-silo setting (attribute-silo); (II) a value-level biased dataset for the cross-silo
setting (value-silo); (III) a attribute-level biased dataset for the cross-device setting (attribute-
device); (IV) a value-level biased dataset for the cross-device setting (value-device). These datasets
enable a comprehensive evaluation of fair FL. methods under diverse bias conditions.

All four datasets are based on the 2018 “ACSIncome” dataset (Ding et al.| 2021)) (see Section @,
and pre-partitioned to simulate the FL clients. The cross-silo datasets (attribute-silo and value-silo)
use the original 51 state-wise division. For the cross-device setting (attribute-device and value-
device), we increased the number of splits to 100 and 111 to reflect larger participant numbers. To
quantify bias within each client of the benchmark datasets, we evaluated performance on two ML
models trained for each client dataset: Logistic Regression (Cox} [1958) and XGBoost (Chen &
Guestrin, [2016), in line with experimentation from (Ding et al., 2021). We measured DD as our
primary fairness metric, but also reported EOD results for completeness. We consider a dataset biased
toward a specific attribute or attribute value if both models exhibited the maximum DD value for the
same attribute/value, and the minimum of these maximum DD values exceeded 0.09. To maintain
consistency across all datasets, we iteratively increased the percentage of datapoints to be dropped
through our bias exacerbation features as explained in Section[3.1] In the following, we describe
each publishe(ﬂ dataset’s key characteristics. Additional bias-heterogeneous client settings can be
subsampled from these published datasets.

4Datasets and the code they were generated with can be found at https://anonymous.4open.science/r/FeDad4Fair-AEB3/


https://anonymous.4open.science/r/FeDa4Fair-AEB3/

Under review as a conference paper at ICLR 2026

RACE SEX RACE SEX
z 2030 = ° 20.25 ® .
Sos 5 . 5025 5 o
a a oo o a %
oe 0.20 &8 : ﬂ, 2015 Be
§ g @oe® So1s o T8 £ 12°
¢
004 Q0.15 ® o a] (ﬂg: O o.10 e
o K p o® +0.10 T < I 0'!‘
802 8% o S0.10 o8eod® S & S 005 e
e} o‘ ') m o &o m 0.05 ° [vs]
G} ol © ® Q ° Q
X 0.0 O X 0.05 ¢ X 0.00 X< 0.00
000 025 050 0.75 0.1 02 03 00 01 0.2 0.0 0.1 02
FedAVG Dem. Disparity FedAVG Dem. Disparity FedAVG Dem. Disparity FedAVG Dem. Disparity
(a) Attribute-silo dataset FedAvg. (b) Attribute-silo dataset PUFFLE.

I Race-Biased State I Sex-Biased State

Figure 5: Attribute bias toward RACE and SEX measured with DD on the XGBoost model vs. the
FedAvg model and vs. PUFFLE for the attribute-silo dataset.

Attribute-silo dataset. In the attribute bias-heterogeneous cross-silo setting, we leverage the natural
distribution of data across the 50 states and Puerto Rico, focusing on the RACE and SEX attributes.
To align with binary-focused fair FL. methods (Corbucci et al., [2024} |Papadaki et al., [2022} |Abay
et al.| 2020), we binarize RACE into “White” and “Others”. To meet the defined bias threshold,
we iteratively increase the drop rate of the more biased class between RACE and SEX. Figure [2a]
illustrates the resulting bias distributions after these modifications. In our evaluation, 21 states exhibit
a higher DD value for SEX, while 30 states show a higher DD value for RACE across both models.
Further details, including the list of affected states, EOD statistics, and applied data modifications,
are provided in Table|[T] and Table[3]in Appendix

Attribute-device dataset. This dataset is derived from the attribute-silo dataset by splitting each
state into six subsets. We then sample from these subsets to create datasets satisfying our bias
constraints. As a result, the modifications applied to these datasets are directly inherited from the
corresponding parent state dataset in the attribute-silo setting (Table[I)). Across these subsets, we
observe that 55 states exhibit stronger bias toward SEX and 56 toward RACE. These patterns are
visualized in Figure 2bland summarized in Table 4]

Value-silo dataset. As with the Attribute-silo dataset, the value-silo is built on the natural distribution
of the “ACSIncome” dataset across 50 U.S. states and Puerto Rico. However, in this case, to better
reflect real-world patterns and to induce different distributions of attribute value unfairness, we
avoided binarizing the sensitive attribute. This choice is motivated by the observation that bias
is often present in only a subset of the attributes’ values. Moreover, introducing bias into groups
that are historically not affected would be inappropriate and undesirable. Instead, we considered
multiple classes for the RACE attribute (“White”, “Black”, “Asian”, “Alaska Native/American Indian”,
“Others”) as a basis for analysis. Within these, we identify the attribute values exhibiting the highest
DD values and apply datapoint dropping to amplify existing biases where necessary (see Table [2]in
Appendix [B). The resulting value-level bias distribution can be found in Figure [3a]in Appendix
In our analysis, we observe the most biased group is “Black” in 9 states, “Asian” in 2 states,
“Alaska/Indian” in 16 states, and “Others” in 24 states (see Table[5]in Appendix [).

Value-device dataset. This dataset is derived by partitioning the value-silo dataset into four subsets
per state and sampling from those that satisfy our bias constraints. The resulting client-level value
bias distribution includes 1 state with predominant “White” bias, 15 states with “Black” bias, 6 with
“Asian” bias, 31 with “Alaska Native/American Indian” bias, and 47 with “Others” biases as shown in
Figure[3b] Further details can be found in Table[2]and [6]in Appendix [B]

5 BENCHMARK EXPERIMENTS

To contextualize our benchmark datasets, we present experiments on all four of them in the FL
context by training two models: (I) a vanilla FedAvg (McMahan et al., |2017)) baseline without
fairness mitigation, and (II) a FedAvg model with PUFFLE (Corbucci et al.,[2024) as a baseline
that incorporates fairness mitigation. By comparing these scenarios, we illustrate how standard and
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Figure 6: Individual, per attribute, bias differences in DD between the local XGBoost models vs. the
FedAvg model and vs. PUFFLE.

fairness-mitigated FL behave differently across our bias-controlled scenarios. Our aim is not to
exhaustively evaluate all fair FL solutions, but to provide an example of how our benchmark dataset
can be applied.

For the baseline model, we apply the FedAvg algorithm, simulating the FL training with Flower, as
discussed in Section 2.1} When training the fair-mitigated FL model, we rely on PUFFLE (Corbucci
et al} 2024), an in-process method to reduce model unfairness measured with DD. Specifically,
during training, selected clients compute the gradient and model fairness on a given batch. The
computed fairness metric is then incorporated as an additional regularization term in the model
update to mitigate unfairness, by summing and weighting using a hyperparameter A indicating the
importance of the model’s utility and its fairness. Here, a A closer to 1 prioritizes fairness. In our
experiments, we treat \ as a hyperparameter; more details about this are reported in Appendix [C] For
PUFFLE, we apply unfairness mitigation for the SEX sensitive attribute with target DD=0.05. This
choice allows us to evaluate two distinct scenarios. In the attribute-silo and attribute-device datasets,
where SEX is one of the biased attributes, we assess how mitigation affects the disparity for both
SEX-biased clients and RACE-biased clients. In contrast, in the value-silo and value-device datasets,
we show how mitigating unfairness for SEX influences value bias shifts across the clients.

Evaluation. We assess our methodology around two principles: quantifying fairness both at the
individual client level and analysing how bias distribution shifts across clients, both before and after
the application of a fair FL method. In our analysis, we distinguish between cross-silo and cross-
device FL scenarios. In cross-silo settings, typically, clients possess sufficient data to perform a local
train/test split. Therefore, we train individual client-specific models and compare their performance
to that of the global FL. model. Doing so, we can assess whether participation in FL mitigates bias
for specific demographic groups or individuals or conversely, if the existing bias is propagated or
even exacerbated. In contrast, the cross-device setting involves clients with limited local data, which
is insufficient for training robust local models. Here, FL represents the only feasible way to obtain
a usable model. In these scenarios, a common practice is to partition clients into a train and a test
group. However, a challenge arises: local fairness metrics can only be computed on true labels or
external model predictions. A potential solution is to compare the fairness metrics on test clients
using the FL model against those obtained from a set of external models trained on similar datasets,
possibly provided by the FL orchestrator. However, we leave this for future discussion and choose to
evaluate the cross-device settings using the same approach as the cross-silo settings. Specifically, we
evaluate fairness on the test clients, using the model trained during the FL process.

Attribute bias benchmarks. The group-level results for the attribute-silo dataset are illustrated in
Figure[5] Each dot represents a client, showing its DD value with the local XGBoost model (Y axis)
and FedAvg model or PUFFLE model (X axis). Points below the diagonal line indicate an increase in
DD, i.e., an increase in unfairness after FL training. On the contrary, dots above the diagonal suggest
greater unfairness with the local XGBoost model. As shown in Figure [5a] training with FedAvg
leads to an increase in DD for both RACE and SEX across most clients, highlighting the issue of bias
propagation (Chang & Shokri, [2023)) in FL. In contrast, Fi gure@ shows how PUFFLE effectively
enforces fairness constraints on the SEX attribute, resulting in a SEX disparity reduction for all clients.
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Figure 7: Attribute value bias toward RACE as well as value changes measured with DD on the
XGBoost model vs. the FedAvg model and vs. PUFFLE for the value-silo dataset.

However, this comes at the cost of increased RACE disparity compared to the local XGBoost model.
Thus, states biased towards the RACE attribute profit less, in terms of bias reduction on their most
biased attribute, from participating in PUFFLE. Figure[6a shows a client-level evaluation comparing
the XGBoost local model with the FedAvg model. Here, FedAvg always increases the unfairness of
the individual clients. In contrast, when using PUFFLE (Figure [6b), all clients benefit in terms of SEX
unfairness mitigation and some, such as “AK”, “VT”, also in terms of RACE unfairness mitigation.
This trend remains consistent when using Logistic Regression as the local model (Figure [0} [T6]in
Appendix [E.T). Additional results for the attribute-device dataset are detailed in Appendix [E.1]

Value bias benchmarks. For the value-silo dataset, Figure [/| shows not only how DD changes
when training the model with FL but also how the distribution of the attribute value associated with
the maximum DD shifts. We observe a clear trend: underrepresented groups (in this case, “Alaska
Native/American Indian” and “Others”) tend to be disproportionately harmed from FL participation.
Clusters, corresponding to “Others”, grow in density when training the FL model, indicating how this
group becomes more often associated with the highest DD. Under PUFFLE, this effect becomes more
pronounced: with clients increasingly reporting “Others” as the highest DD value. The overall RACE
disparity only slightly improves on a global visualization (for the individual level see Figure[I9]in
Appendix[E.Z). The same patterns hold when using Logistic Regression as local models (Figure[15] 20|

in Appendix [E.2).

Overall, we observe consistent results across both cross-silo and cross-device experiments for each
type of bias-heterogeneous client setting. However, the specific bias distribution, i.e., attribute or
attribute value, led to substantially different outcomes. This highlights the importance of evaluating
fair FL solutions across diverse scenarios to ensure robust and fair performance.

6 CONCLUSION

Current fairness evaluation in FL is usually based on the assumption of a uniform bias distribution
across the clients. This often creates an illusion of fairness at the global level while ignoring the
complex, heterogeneous biases that exist at the individual client’s level. Current state-of-the-art
solutions and evaluations are insufficient in realistic scenarios involving value and attribute bias.

To address this, we introduced FeDa4PFair, the first library designed to create datasets for FL experi-
mentation with heterogeneous client bias. By providing a reproducible and extensible framework,
FeDa4Fair is a crucial first step towards enabling more robust and systematic evaluation of fair FL
methodologies.

Thanks to its extensibility, FeDa4Fair is designed to support the continual expansion and diversifi-
cation of the fairness evaluation landscape in FL. This facilitates two critical directions for future
research: first, the inclusion of even more complex real-world scenarios and second, the investigation
of fairness in cross-device settings where clients possess only limited data.
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ETHICS STATEMENT

FeDa4Fair allows for manipulating datasets such that they reflect more complex bias patterns to
facilitate fair FL method evaluation and to improve bias mitigation development. However, we stress
that manipulated data is, of course, not anymore representative of the state-level distributions and
demographics in the U.S. and Puerto Rico. We strongly advise against employing data manipulated
with FeDa4Fair for anything but the testing and development of federated bias mitigation strategies.

REPRODUCIBILITY

We provide our implementation at |https://anonymous.4open.science/r/
FeDa4Fair—-AEB3/. The benchmark datasets can be found in the data file provided there
including the code for their generation https://anonymous.4open.science/r/
FeDa4Fair-AEB3/src/FeDad4Fair/creating_datasets.py. A well-documented ex-
ample is also provided at https://anonymous.4open.science/r/FeDadFair-AEB3/
src/FeDa4Fair/example. ipynbl Hyperparameters are detailed in Section|C| Furthermore,
generation of the datasets and model training should be possible on most commercial laptops.

LLM USAGE

LLMs were used to aid non-native speakers with grammar and word corrections.
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A FEDA4FAIR GENERAL SETUP

We rely on several parameters as a general setup, which are independent of fairness specifications.
Specifically, this implies that FeDa4Fair can also create data for analyzing standard FL. methods
without focus on fairness. Therefore, FeDa4Fair can provide datasets for a wide range of FL. methods.

Underlying dataset. For dataset customization, users can specify the underlying dataset to load,
currently supporting ACSIncome and ACSEmployment (Ding et al.| [2021). Both datasets are
extracted from the Public Use Microdata Sample of the American Community Survey (ACS) across
all 50 states of the USA and Puerto Rico between 2014 and 2018. For ACSIncome, the task involves
predicting if an individual’s income is above 50, 000 or not. In ACSEmployment, the task involves
predicting an individual’s employment status. While loading these datasets, it is possible to specify
the year of the collected data (2014-2018) and the time horizon of the ACS sample (*1-Year” or
“5-Year”). Furthermore, users may define a list of U.S. states to include; if none are specified, all
available states will be loaded. Here, specifically, we keep the natural division of the dataset into 51
entities to exploit the natural non-i.i.d. distribution of the samples.

Preprocessing. For preprocessing, users may optionally provide a remapping dictionary to modify
categorical features or labels. Also, this provides the possibility to create datasets with binarized
sensitive attributes. The latter is of importance, as many fair FL. methods only consider binary
sensitive attributes (Salazar et al., [2024).

FL setting. As introduced in Section[2.1] FL scenarios can be categorized into cross-silo and cross-
device settings. To account for the different client numbers and train/test settings, we implemented
the following. Firstly, the framework allows users to partition data from each state into multiple
subsets in a custom way. For this, a user-defined Partitioner object defines the partitioning
strategy and number of partitions for each state. This stems from the Flower framework (Beutel et al.|
2020), and a vast range of partitioning strategies are supported here (e.g., Dirichlet Partitioner, Linear
Partitioner). If, instead of a Partitioner object, only the number of partitions is provided, this
defaults to splitting the state data into IID partitions. Secondly, the framework supports different
strategies to split the data into training and testing subsets. In the cross-silo setting, each client
receives its partition of the dataset, which is further divided into training, validation, and test sets.
Additionally, users can define the proportion of data allocated to each subset in the cross-silo scenario.
For the cross-device setting, we recommend generating the dataset first and then partitioning the
clients into separate groups for training and testing. If no splitting strategy is specified, the entire
dataset remains intact, and train/test splitting can be managed externally.

B BENCHMARKING DATASETS

In the scope of this paper, we publish four datasets covering different bias scenarios to explore the
behavior of fair FL methods:

(D an attribute-silo dataset: attribute-level biased dataset for the cross-silo setting;
(I) a value-silo dataset: value-level biased dataset for the cross-silo setting;
(III) an attribute-device dataset: attribute-level biased dataset for the cross-device setting;
(IV) a value-device dataset: value-level biased dataset for the cross-device setting.

We provide the concrete modifications applied for bias exacerbation in Table[I]for datasets (I) and
(1I1) and in Table 2] for datasets (IT) and (IV). Furthermore, for each of these four datasets, we listed
the counts and states sorted by where they take on the maximal bias in Tablq3} 5} @} and|[6]respectively.
Additionally, in Figures[8]and 0] we report the Demographic Disparity distribution for each of the
four datasets on Logistic Regression models.

C HYPERPARAMETER TUNING

To perform hyperparameter tuning when training the FedAvg baseline, we performed a Bayesian
optimization to maximize the model validation accuracy. The parameters that we optimised are:
Learning Rate, Batch Size, Optimiser, and number of local epochs. When training the FL. model with
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PUFFLEE], we followed the suggestions reported in the paper by |Corbucci et al.| (2024). Therefore,
we performed a Bayesian optimisation to minimise the model validation accuracy while keeping the
model unfairness under 7" = 0.05. In this case, we optimised Learning Rate, Batch Size, optimiser,
number of local epochs, and the value of the A used for the unfairness mitigation.

D HARDWARE

For all model-fitting experiments presented in this paper, we used a NVIDIA DGX H100 with 224
CPU Intel(R) Xeon(R) Platinum 8480CL, 8 GPUs Nvidia H100 (80GB) and 2TB of RAM. We
employed this machine for convenience while fitting models: a single CPU will suffice, no GPU
is necessary, and the memory requirements are in line with what is available on most commercial
laptops. We here include the machine’s characteristics for reproducibility purposes, but we believe
that most resource-constrained laboratories will be able to create data with FeDa4Fair. Model fitting
on our tabular datasets is similarly cheap. Moreover, to avoid the need to create the dataset, we also
provide 4 datasets to download. In the direction of reducing the computational needs and testing the
fairness-aware FL in resource-constrained scenarios, it is possible to reduce the size of these fixed
datasets by only subsampling a set of client datasets. We provide extensive statistics on each client
dataset so that users may make well-founded decisions on which datasets to sample. Additionally, if
restrictions on computation exist and practitioners want to create their dataset, it is not necessary to
download the full ACS datasets, but only, e.g., preselected states.

E ADDITIONAL EXPERIMENTS

In line with Section[5] we provide additional experiments here on the cross-device datasets as well as
on Logistic Regression as an additional local model.

E.1 ADDITIONAL ATTRIBUTE BIAS BENCHMARK EXPERIMENTS

Group-level results for the attribute-device dataset are shown in Figures [I1] and [[2] Each point
represents a dataset, plotting its Demographic Disparity (DD) value with local and FL models with
either the global FedAvg model or PUFFLE. Points below the diagonal indicate increased DD after
training (higher unfairness), while those above show higher unfairness before training. For PUFFLE,
unfairness mitigation was applied specifically to the SEX attribute.

Figures and demonstrate that FedAvg training often propagates bias, with DD increasing for
both RACE and SEX across most datasets. In contrast, Figures [[1b|and [I2b|reveal that PUFFLE’s
fairness constraints on SEX lead to reductions in SEX disparity across all clients. While some clients
experience an increase in RACE disparity with PUFFLE, it’s unclear whether there exists a specific
client group that benefits from improvements across both attributes. PUFFLE’s performance on the
RACE attribute is comparable to FedAvg training without fairness constraints.

For client-level evaluation, Figures[I7)and [I8|show that PUFFLE improves fairness on both SEX and
RACE for some clients, and on SEX alone for others, highlighting the impact of the chosen sensitive
attribute within the PUFFLE pipeline.

E.2 ADDITIONAL VALUE BIAS BENCHMARK EXPERIMENTS

For the value-device dataset, Figures [I3]and[T4]show results obtained when comparing FedAvg and
PUFFLE models, respectively, with XGBoost and Logistic regression local models. In particular,
the plots highlight changes in Demographic Disparity (DD), and also how the distribution of values
with maximal DD shifts. The trend indicates that underrepresented groups (here, values “Alaska
Native/American Indian” and “Others”) experience a greater disadvantage from federated training.
Their clusters grow, particularly for value “Others”, while others shrink.

However, overall RACE disparity appears to improve slightly in the group visualization. Further
analysis at the individual level in Figures 21| and [22) underline this, as we can see a clear indication
that RACE disparity slightly improves for some clients and stays stable for others.

PUFFLE GitHub repository: https://github.com/lucacorbucci/PUFFLE
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Table 1: Attribute-silo, attribute-device dataset: Applied Modifications.

State | Drop Rate | Attribute | Value

WY 0.1 SEX 2
WI 0.1 RACIP 2
ND 0.1 SEX 2
CA 0.1 RACIP 2
MT 0.1 RACIP 2
LA 0.1 SEX 2
KY 0.1 RACIP 2
ME 0.1 RACIP 2
AL 0.2 RAC1P 2
IN 0.2 SEX 2
MS 0.2 RACIP 2
GA 0.2 RACIP 2
VT 0.2 RACIP 2
IL 0.3 SEX 2
WA 0.3 SEX 2
NH 0.3 SEX 2
PA 0.4 SEX 2
'A% 0.4 SEX 2
AR 0.4 SEX 2
KS 0.4 SEX 2
OR 0.4 RACIP 2
X 0.4 SEX 2
DE 0.4 RACIP 2
OK 0.4 SEX 2
ID 0.4 SEX 2
MI 0.5 SEX 2
VA 0.5 SEX 2
TN 0.5 SEX 2
OH 0.5 SEX 2
MO 0.6 SEX 2
PR 0.6 SEX 2

Table 2: Value-silo, value-device dataset: Applied Modifications.

State | Drop Rate | Attribute | Value

AZ 0.1 RACIP 5
OH 0.1 RACIP 4
AR 0.2 RACIP 4
MN 0.2 RACIP 5
OR 0.2 RACIP 2
VA" 0.2 RACIP 5
DE 0.3 RACIP 4
LA 0.3 RAC1P 5
NE 0.3 RACIP 4
AK 0.5 RACIP 4
MS 0.5 RACIP 4
PR 0.6 RACIP 4
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Table 3: Attribute-silo dataset: Counts and states for which the maximum Demographic Dispar-
ity/Equalized Odds Difference across all evaluated models is reached for the stated sensitive attribute.
States where bias is distributed the same for both Demographic Disparity/Equalized Odds Difference
are marked in bold.

. Demographic Disparity Equalized Odds Difference
Sensitive att.
Count | States Count | States

SEX 21 AR, ID, IL, IN, KS, LA, MI, 0
MO, ND, NH, OH, OK, PA,
SD, TN, TX, UT, VA, WA,
WV, WY

RACE 29 AK, AL, AZ, CA, CO, CT, 17 AK, AL, AZ, HI, MN, MS,
DE, FL, GA, HI, IA, KY, ND, NE, NM, NV, NY, OK,
MA, MD, ME, MN, MS, RI, SC, VT, WI, WY
MT, NC, NE, NJ, NM, NV,
NY, OR, RI, SC, VT, WI
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Figure 10: Attribute bias toward RACE and SEX measured with Demographic Disparity on the
Logistic Regression model vs. the FedAvg model and vs. PUFFLE for the attribute-silo dataset.
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Figure 11: Attribute bias toward RACE and SEX measured with Demographic Disparity on the
XGBoost model vs. the FedAvg model and vs. the PUFFLE model for the attribute-silo dataset.
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Table 4: Attribute-device dataset: Counts and states for which the maximum Demographic Dispar-
ity/Equalized Odds Difference across all evaluated models is reached for the stated sensitive attribute.
States where bias is distributed the same for both Demographic Disparity/Equalized Odds are marked
in bold.

. Demographic Disparity Equalized Odds Difference
Sensitive att.
Count | States Count | States
SEX 55 ID_0, IL_2, IL_3, IL_4, 3 KS_2,ND_4, NH_4,
IN_O, IN_2, IN_3, KS_2,
KS_4, LA_4, MI_0, MI_1,
MI_2, MI_3, MI_4, MO _1,
MO_4,ND_1,ND_4, NE_5,
NH_O, NH_1, NH_4, NH_5,
OH_0, OH_1, OH_2, OH_3,
OH_4, OK_0, OK_2, OK_3,
PA_O, PA_1, PA_2, PA_3,
PA_S5, TN_2, TN_4, TN_5,
TX_ 0, TX_1, TX 3, TX_4,
TX_5, UT_O, UT_4, UT_5,
VA_O, VA_1, VA_3, VA_4,
WA_3, WA_5, WV_0
RACE 56 AL_2, AL_3, AL_4, AZ_0, 39 AL_2,AZ_0,AZ_5,CO_0,
AZ_5,CA_1,C0O_0,CO_3, CO_3,CT 2, HI 0, IA_O,
CT_ 2, CT_5, FL_5, HI_0, IA_1,ID_2, MA_4, ME _1,
IA_0, TA_1, ID_2, LA_2, MI_2, MN_O, MN_3,
MA_0, MA_4, MA_3, MN_4, MS_4, MS_5,
ME_1, MN_0, MN_3, NE_3,NE_4,NH_0, NH_5,
MN_4, MN_5, MS_4, NM_1, NM_5, NV_1,
MS_5,NC_1,NE_3,NE_4, NY_1,NY_3,NY_5, OK_3,
NJ_1, NJ_3, NJ_4, NM_1, OR_3, OR_4, PA_3, RI_2,
NM_5,NV_0,NV_1,NV_3, SC_0, SD_3, TN_2, UT_5,
NY_O,NY_1,NY_2,NY_3, WI_3, WV_5
NY_4,NY_5,0R_1, OR_3,
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SC_2, SC_4, SD_3, UT_1,
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Figure 12: Attribute bias toward RACE and SEX measured with Demographic Disparity on the
Logistic Regression model vs. the FedAvg model and vs. the PUFFLE model for the attribute-silo
dataset.
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Table 5: Value-silo dataset: Counts and states for which the maximum Demographic Dispar-
ity/Equalized Odds Difference across all evaluated models is reached for RACE and the stated value.
States where bias is distributed the same for both Demographic Disparity/Equalized Odds Difference

are marked in bold.

Demographic Disparity

Value (RACE)

Equalized Odds Difference

Count ‘ States Count ‘ States
1 o | 0 |
2 9 FL, ME, MN, MT, ND, NH, 5 ME, MT, NH, SD, VT
OK, SD, VT
3 |2 | PRWY | 2 | ND WY
4 16 AK, AL, CO, CT, DE, GA, 17 AL, CO, CT, DE, FL, GA,
HI, ID, KY, MS, NE, NM, HI, KY, MS, NE, NJ, NM,
OH, OR, PA, UT NY, OH, OR, PA, SC
5 24 AR, AZ, CA,IA,IL, IN, KS, 13 AR, CA,ID,IL, IN, LA, MI,
LA, MA, MD, MI, MO, NC, NC, NV, RL TX, WL, WV
NJ, NV, NY, RI, SC, TN,
TX, VA, WA, WL, WV
Change in Max. Value Disparity Change in Max. Value Disparity
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(b) Value-device dataset PUFFLE.

Figure 13: Attribute value bias toward RACE as well as value changes measured with Demographic
Disparity on the XGBoost model vs. the FedAvg model and vs. PUFFLE for the value-device

datasets.
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Table 6: Value-device dataset: Counts and states for which the maximum Demographic Dispar-
ity/Equalized Odds Difference across all evaluated models is reached for race and the stated value.
States where bias is distributed the same for both Demographic Disparity/Equalized Odds Difference
are marked in bold.

Demographic Disparity Equalized Odds Difference
Value (RACE)
Count ‘ States Count ‘ States

1 1 [ wva o |

2 15 ID_1, ME_2, MI_1, MN_O0, 17 HI_2, ID_O, ID_1, KY_O,
MN_1, MN_2, MT_2, ME_1, ME_2, MN_2,
ND_0,ND_1,NH_2,SD_1, MT_2,ND_0,ND_1, NE_O0,
SD_2, VT_0, WI_0, WY_0 NH_2, PA_0, SD_1, SD_2,

VT_0, WY_0

3 6 AK_0,AR 2, MT_0, MT _1, 4 AR 2, MT_O,NE 2, VT_1
NE_1,VT_1

4 31 AK 1, AK_2,CO_1,CT_1, 35 AK_1,AZ 2,CO_1,C0O_2,
CT_2,DE_0,DE_1, GA_1, CT_1,CT_2,DE_0,DE_1,
GA_2, HI_0, HI_1, ID_2, GA_0,GA_1,GA_2, HI_ 0,
IL_O0, IL_1, KS_0, KY_2, HI_1, ID_2, IL_O, IL_1,
LA_1,MA_0,ME_1, MI_2, IN_2, KS_0, KY_2, MI_2,
MO_0, 0.2, MS_0, MO_0, MO_2, MS_0,
MS_1,NE_0, NJ_2, NM_0, MS_1,NC_1,NY_O0,NY_1,
NY_0,RI_0,SC_2,TN_2 OH_O, RI_0, SC_2, TN_O,

TN_2, VA_2, WI_0, WV_0

5 47 AL_0, AL_2, AR_0, AR_1, 17 AR _1,AZ_1,CA_1,CA_2,
AZ_0,AZ_1,AZ_2,CA_1, DE_2,IN_0, MA_0, MD_0,
CA_2,CO_2,DE_2,FL_O, MD_1,MD_2,NV_2,SC_1,
GA_O0, HI_2, ID_0, IN_O, TX_1, TX 2, WI_1, WI_2,
IN_2,KS_2,KY_0, MD_0, WV_
MD_ 1, MD_2, MO._l,
NC_0,NC_1,NC_2,NE_2,
NJ_1,NV_0,NV_2,NY_1,
NY_2, OH_O, PA_O, PA_2,
RI_2, SC_1, TN_0, TX_O,
TX_ 1, TX_ 2, VA_2, WA_1,
WA_2, WIL_1, WI_2, WV_0
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Figure 14: Attribute value bias toward RACE as well as value changes measured with Demographic
Disparity on the Logistic Regression model vs. the FedAvg model and vs. PUFFLE for the value-
device datasets.
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Figure 15: Attribute value bias toward RACE as well as value changes measured with Demographic
Disparity on the Logistic Regression model vs. the FedAvg model and vs. PUFFLE for the value-silo

dataset.
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Figure 16: Individual, per attribute, bias differences in Demographic Disparity between the local
Logistic Regression models vs. the FedAvg model and vs. PUFFLE.
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Figure 17: Individual differences in Demographic Disparity between the local XGBoost models vs.
the FedAvg model and vs. the PUFFLE model for the attribute-device dataset.
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Figure 18: Individual differences in Demographic Disparity between the local Logistic Regression
models vs. the FedAvg model and vs. the PUFFLE model for the attribute-device dataset.

24



Under review as a conference paper at ICLR 2026

XGBoost - FedAvg

0.10
.E‘ 0.05
S
. —0.05
5
8 -o0.10

-0.15

SRENSOL RS TS0=20rSSous o0t oL aE oo Tk E%&Eﬁ's;";;‘égg
State
(a) Value-silo dataset FedAvg.
XGBoost - FedAvg (Puffle)

0.15

0.10
g ool GLALACH ke L1
©
o
9 0.00] \. \I'I. Il II I| Il 1
[a)
g —0.05
[}
O -0.10

-0.15

SRS S s

State
(b) Value-silo dataset PUFFLE.

B DP SEX mmE DP_RACE

Figure 19: Individual, per attribute, bias differences in Demographic Disparity between the local

XGBoost models vs. the FedAvg model and vs. PUFFLE for the value-silo dataset.
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Figure 20: Individual, per attribute, bias differences in Demographic Disparity between the local
Logistic Regression models vs. the FedAvg model and vs. PUFFLE for the value-silo dataset.
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Figure 21: Individual differences in Demographic Disparity between the local XGBoost models vs.
the FedAvg model and vs. the PUFFLE model for the value-device dataset.
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Figure 22: Individual differences in Demographic Disparity between the local Logistic Regression
models vs. the FedAvg model and vs. the PUFFLE model for the value-device dataset.
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