
su
bm

itte
d

ISSN 2824-7795

Model-Based Clustering and Variable
Selection for Multivariate Count Data

Julien Jacques1 Laboratoire ERIC, Université de Lyon
Thomas Brendan Murphy School of Mathematics & Statistics, University College Dublin

Institut d’Études Avancées, Université de Lyon

Date published: 2025-03-27 Last modified: 2025-03-27

Abstract

Model-based clustering provides a principled way of developing clustering methods. We
develop a new model-based clustering methods for count data. The method combines clustering
and variable selection for improved clustering. The method is based on conditionally independent
Poisson mixture models and Poisson generalized linear models. The method is demonstrated on
simulated data and data from an ultra running race, where the method yields excellent clustering
and variable selection performance.
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1 Introduction18

Multivariate count data is ubiquitous in statistical applications, as ecology (Chiquet, Mariadassou,19

and Robin 2021), genomics (Rau et al. 2015; Silva et al. 2019). These data arise when each observation20

consists of a vector of count values. Count data are often treated as continuous data and therefore21

modeled by a Gaussian distribution, this assumption is particularly poor when the measured counts22

are low. Instead, we use the reference distribution for count data which is the Poisson distribution23

(Agresti 2013; Inouye et al. 2017a).24

When a data set is heterogeneous, clustering allows to extract homogeneous subsets from the whole25

data set. Many clustering methods, such as 𝑘-means (Hartigan and Wong 1979), are geometric in26

nature, whereas many modern clustering approaches are based on probabilistic models. In this work,27

we use model-based clustering which has been developed for many types of data (Bouveyron et al.28

2019; McLachlan and Peel 2000; Frühwirth-Schnatter, Celeux, and Robert 2018).29

Modern data are often high-dimensional, that is the number of variables is often large. Among30

these variables, some are useful for the task of interest, some are useless for the task of interest and31

some others are useful but redundant. There is a need to select only the relevant variables, and32

that whatever is the task. Variable selection methods are widespread for supervised learning tasks,33

in particular to avoid overfitting. However, variable selection methods are less well developed for34

unsupervised learning tasks, such as clustering. Recently, several methods have been proposed for35

selecting the relevant variables in model-based clustering; we refer to Fop and Murphy (2018) and36

McParland and Murphy (2018) for recent detailed surveys.37

The goal of the present work is to provide a clustering and variable selection method for multivariate38

count data, which, to the best of our knowledge, has not yet been studied in depth. A methodology39

based on a conditionally independent Poisson mixture is developed to achieve this goal. The method40

yields a final clustering model which is a conditionally independent Poisson mixture model for a41

subset of the variables.42

2 Motivating Example43

The International Association of Ultrarunners (IAU) 24 hour World Championships were held in44

Katowice, Poland from September 8th to 9th, 2012. Two hundred and sixty athletes representing45

twenty four countries entered the race, which was held on a course consisting of a 1.554 km looped46

route. An update of the number of laps covered by each athlete was recorded approximately every47

hour (White and Murphy 2016). Figure 1 plots the number of loops recorded each hour for the three48

medalists.49

We can see among these three runners different strategies, the second placed runner lapped at a50

regular rate, the first placed runner had a fast start but slowed later, and the third placed runner also51

started fast but slowed more than the first place runner.52

Our first goal will be, to analyze the whole data set to identify the different running strategies and to53

evaluate which strategies are the best ones. The second goal is to identify which variables allows to54

distinguish between the clusters, in order to identify which hour is essential in the management of55

this endurance race.56

3 Independent Poisson Mixture57

Let 𝑋𝑛 = (𝑋𝑛1, 𝑋𝑛2, … , 𝑋𝑛𝑀) be a random vector of counts for 𝑛 = 1, 2, … , 𝑁. The goal is to clusters58

theses 𝑁 observations into 𝐺 clusters. Let 𝑍𝑛 = (𝑍𝑛1, 𝑍𝑛2, … , 𝑍𝑛𝐺) be the latent cluster indicator59
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Figure 1: Number of loops per hour for the three medalists.
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vector, where 𝑍𝑛𝑔 = 1 if observation 𝑛 belongs to cluster 𝑔 and 𝑍𝑛𝑔 = 0 otherwise. We assume that60

ℙ{𝑍𝑛𝑔 = 1} = 𝜏𝑔 for 𝑔 = 1, 2, … , 𝐺. Let denote 𝜏 = (𝜏1, … , 𝜏𝐺). The conditionally independent Poisson61

mixture model (Karlis 2018, sec. 9.4.2.1) assumes that the elements of 𝑋𝑛 are independent Poisson62

distributed random variables, conditional on 𝑍𝑛. That is,63

𝑍𝑛 ∼Multinomial(1, 𝜏 )
𝑋𝑛𝑚|(𝑍𝑛𝑔 = 1) ∼ Poisson(𝜆𝑔𝑚), for 𝑚 = 1, 2, … ,𝑀.

Alternative modelling frameworks exist, either to introduce some dependence between variables64

or to normalize the variables. We refer the interested reader to (Karlis 2018; Bouveyron et al. 2019,65

chap. 6) for more details.66

Denoting themodel parameters by 𝜃 = (𝜏 , 𝜆)where 𝜆 = (𝜆𝑔𝑚)1≤𝑔≤𝐺,1≤𝑚≤𝑀, and where𝑋 = (𝑥𝑛)1≤𝑛≤𝑁67

denotes the observations, the observed likelihood is68

𝐿(𝜃) =
𝑁
∑
𝑛=1

𝐺
∑
𝑔=1

𝜏𝑔
𝑀
∏
𝑚=1

𝜙(𝑥𝑛𝑚, 𝜆𝑔𝑚),

where 𝜙(𝑥, 𝜆) = exp(−𝜆)𝜆𝑥/𝑥!, the Poisson probability mass function.69

Due to form of the mixture distribution, there are no closed form for the maximum likelihood70

estimators, and an iterative EM algorithm needs to be used (Dempster, Laird, and Rubin 1977) to71

maximize the likelihood. The EM algorithm consists, starts from an initial value 𝜃(0) for the model72

parameter, and alternates the two following steps until convergence of the likelihood.73

At the 𝑞th iteration of the EM algorithm, the E-step consists of computing for all 1 ≤ 𝑛 ≤ 𝑁 and74

1 ≤ 𝑔 ≤ 𝐺:75

𝑡(𝑞)𝑛𝑔 =
𝜏 (𝑞)𝑔 ∏𝑀

𝑚=1 𝜙(𝑥𝑛𝑚, 𝜆𝑔𝑚)

∑𝐺
ℎ=1 𝜏

(𝑞)
ℎ ∏𝑀

𝑚=1 𝜙(𝑥𝑛𝑚, 𝜆ℎ𝑚)
.

In the M-step, the model parameters are updated as follows:76

𝜏 (𝑞+1)𝑔 =
∑𝑁

𝑛=1 𝑡
(𝑞)
𝑛𝑔

𝑁
and 𝜆(𝑞+1)𝑔𝑚 =

∑𝑁
𝑛=1 𝑡

(𝑞)
𝑛𝑔 𝑥𝑛𝑚

∑𝑁
𝑛=1 𝑡

(𝑞)
𝑛𝑔

.

The EM algorithm steps are iterated until convergence, where convergence is determined when77

log 𝐿(𝜃(𝑞+1)) − log 𝐿(𝜃(𝑞)) < 𝜖.78

The number of clusters 𝐺 is selected using the Bayesian information criterion (BIC) (Schwarz 1978),79

𝐵𝐼𝐶 = 2 log 𝐿( ̂𝜃) − {(𝐺 − 1) + 𝐺𝑀} log(𝑁 ),

where ̂𝜃 is the maximum likelihood estimate of the model parameters; models with higher BIC are80

prefered to models with lower BIC.81

4 Variable selection82

We develop a model-based clustering method with variable selection for multivariate count data.83

The method follows the approach of (Raftery and Dean 2006; Maugis, Celeux, and Martin-Magniette84

2009) for continuous data and (Dean and Raftery 2010; Fop, Smart, and Murphy 2017) for categorical85

data. It consists in a stepwise model comparison approach where variables are added and removed86

from a set of clustering variables.87
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4.1 Model setup88

The clustering and variable selection approach is based around partitioning 𝑋𝑛 = (𝑋𝐶
𝑛 , 𝑋 𝑃

𝑛 , 𝑋𝑂
𝑛 ) into89

three parts:90

• 𝑋𝐶
𝑛 : The current clustering variables,91

• 𝑋 𝑃
𝑛 : The proposed variable to add to the clustering variables,92

• 𝑋𝑂
𝑛 : The other variables.93

For simplicity of notation, 𝐶will be used to denote the set of indices of the current clustering variables,94

𝑃 the indices of the proposed variable and 𝑂 the indices of the other one. Then (𝐶, 𝑃, 𝑂) is a partition95

of {1, … ,𝑀}.96

The decision onwhether to add the proposed variable to the clustering variables is based on comparing97

two models:98

𝑀1 (Clustering Model), which assumes that the proposed variable is useful for clustering:99

(𝑋𝐶
𝑛 , 𝑋 𝑃

𝑛 ) ∼
𝐺
∑
𝑔=1

𝜏𝑔 ∏
𝑚∈{𝐶,𝑃}

Poisson(𝜆𝑔𝑚).

The 𝑀1 model is fitted for different values of 𝐺 between 1 and 𝐺𝑚𝑎𝑥 to achieve the best clustering100

model.101

𝑀2 (Non-Clustering Model) which assumes that the proposed variable is not useful for clustering,102

but is potentially linked to the clustering variables through a Poisson GLM, that is,103

𝑋𝐶
𝑛 ∼

𝐺
∑
𝑔=1

𝜏𝑔 ∏
𝑚∈𝐶
Poisson(𝜆𝑔𝑚)

𝑋 𝑃
𝑛 |(𝑋𝐶

𝑛 = 𝑥𝐶𝑛 , 𝑍𝑛𝑔 = 1) ∼ PoissonGLM(𝑥(𝐶)𝑛 ),

where Poisson GLM states that104

log𝔼[𝑋 𝑃
𝑛 |𝑋𝐶

𝑛 = 𝑥𝐶𝑛 , 𝑍𝑛𝑔 = 1] = 𝛼 + 𝛽⊤𝑥𝐶𝑛 .

In order to avoid non significant terms in the Poisson GLM model, a standard stepwise variable105

selection approach (using BIC as the variable selection criterion) is considered. Thus, the proposed106

variable 𝑋 𝑃
𝑛 will be dependent on only a subset 𝑋𝑅

𝑛 of the clustering variables 𝑋𝐶
𝑛 . We note that 𝐺 is107

fixed in the non-clustering model, because an optimal value for 𝐺 is previously chosen.108

The clustering and non-clustering models are represented as graphical models in Figure 2.109

Thus, there is two reasons forwhich𝑀2 can be preferred to𝑀1: either𝑋 𝑃
𝑛 does not contain information110

about the latent clustering variable at all (ie. 𝑋𝑅
𝑛 = ∅), or 𝑋 𝑃

𝑛 does not add further useful information111

about the clustering given the information already contained in the current clustering variables.112

In the first situation, we say that 𝑋 𝑃
𝑛 is an irrelevant variable, because it contains no clustering113

information. In the second situation, we say that 𝑋 𝑃
𝑛 is a redundant variable because it contains no114

extra information about the clustering beyond the current clustering variables (𝑋𝐶
𝑛 ).115

Additionally, both models assume the same form for the conditional distribution for 𝑋𝑂
𝑛 |(𝑋𝐶

𝑛 , 𝑋 𝑃
𝑛 )116

and whose form doesn’t need to be explicitly specified because it doesn’t affect the model choice.117

Variable 𝑃 is added to 𝐶 if the clustering model (𝑀1) is preferred to the non-clustering model (𝑀2). In118

order to compare 𝑀1 and 𝑀2, following (Dean and Raftery 2010), we consider the Bayes Factor:119

𝐵1,2 =
𝑝(𝑋 |𝑀1)
𝑝(𝑋 |𝑀2)

5
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Figure 2: Graphical model representations of the clustering and non-clustering models.

which is asymptotically approximated (Fop, Smart, and Murphy 2017; Kass and Raftery 1995) using120

the difference of the BIC criteria for both models:121

2 log𝐵1,2 ≃ 𝐵𝐼𝐶𝑀1 − 𝐵𝐼𝐶𝑀2 .

The same modelling framework can be used for removing variables from the current set of clustering122

variables.123

4.2 Interpretation124

Comparing 𝑀1 and 𝑀2 is equivalent to comparing the following 𝑋 𝑃
𝑛 |(𝑋𝐶

𝑛 = 𝑥𝐶𝑛 ) structures.125

The 𝑀1 (Clustering Model) assumes that,126

𝑋 𝑃
𝑛 |(𝑋𝐶

𝑛 = 𝑥𝐶𝑛 ) ∼
𝐺
∑
𝑔=1

ℙ{𝑍𝑛𝑔 = 1|𝑋𝐶
𝑛 = 𝑥𝐶𝑛 }Poisson(𝜆𝑔𝑚),

where127

ℙ{𝑍𝑛𝑔 = 1|𝑋𝐶
𝑛 = 𝑥𝐶𝑛 } =

𝜏𝑔∏
𝑀
𝑚=1 𝜙(𝑥𝑛𝑚, 𝜆𝑔𝑚)

∑𝐺
ℎ=1 𝜏ℎ∏

𝑀
𝑚=1 𝜙(𝑥𝑛𝑚, 𝜆ℎ𝑚)

.

Whereas, the 𝑀2 (Non-Clustering Model) assumes that,128

𝑋 𝑃
𝑛 |(𝑋𝐶

𝑛 = 𝑥𝐶𝑛 ) = PoissonGLM(𝑥𝐶𝑛 ).

The method contrasts which of conditional model structures is better describing the distribution of129

the proposed variable 𝑋 𝑃. The clustering model (𝑀1) uses a mixture model, with covariate dependent130

weights, for the conditional model whereas the non-clustering model (𝑀2) is a Poisson generalized131

linear model. The model selection criterion chooses the model that best models this conditional132

distribution.133

4.3 Stepwise selection algorithm134

4.3.1 Screening variables: Initialization135

We start with an initial choice of 𝐶 by first screening each individual variable by fitting a mixture of136

univariate Poisson distributions (eg. Everitt and Hand 1981, chap. 4.3),137

𝑋𝑛𝑚 ∼
𝐺
∑
𝑔=1

𝜏𝑔Poisson(𝜆𝑔𝑚), for 𝐺 = 1, 2, … , 𝐺𝑚𝑎𝑥.
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The initial set of variables is set to be those variables where any model with 𝐺 > 1 is preferred to the138

𝐺 = 1 model.139

4.3.2 Stepwise algorithm: Updating140

We consider a stepwise algorithm which alternates between adding and removing steps. In the141

removal step, all the variables in 𝑋𝐶 are examined in turn to be removed from the set. In the adding142

step, all the variables in 𝑋𝑂 are examined in turn to be added to the clustering set.143

The algorithm also performs the selection of the number 𝐺 of clusters finding at each stage the144

optimal combination of clustering variables and number of clusters. The procedure stops when no145

change has been made to the set 𝑋𝐶 after consecutive exclusion and inclusion steps.146

With the present stepwise selection algorithm, it can occur that during the process, we get back on a147

solution (a set of clustering variable) already explored. Since our algorithm is not stochastic, we fall148

into an infinite cycle. In this situation the algorithm is stopped, and the best solution according to149

BIC among the solution of the cycle is kept.150

The following pseudo-code summarizes our stepwise algorithm:151

ALGORITHM Stepwise152

BEGIN153

initialize 𝑋𝐶
154

WHILE 𝑋𝐶 changes:155

- for all variable 𝑋𝑗 which are not in 𝑋𝐶
156

- estimate 𝑀1 on 𝑋𝐶 ∪ 𝑋𝑗 and select the best 𝐺157

- estimate 𝑀2 with the model for 𝑋𝐶 (with G selected at the previous step) and a Poisson regression158

for 𝑋𝑗 given 𝑋𝐶
159

- add 𝑋𝑗 in 𝑋𝐶 if 𝐵𝐼𝐶𝑀1 > 𝐵𝐼𝐶𝑀2160

- for each 𝑋𝑗 in 𝑋𝐶
161

- estimate 𝑀2 on 𝑋𝐶 ∖ 𝑋𝑗, select the best 𝐺 and use a Poisson regression for 𝑋𝑗 given 𝑋𝐶 ∖ 𝑋𝑗162

- estimate 𝑀1 on 𝑋𝐶 (with G selected at the previous step)163

- remove 𝑋𝑗 from 𝑋𝐶 if 𝐵𝐼𝐶𝑀2 > 𝐵𝐼𝐶𝑀1164

- test for infinite loop165

ENDWHILE166

return 𝑋𝐶 and 𝑀1 estimate167

END168

5 Simulation study169

In this section, we evaluate the proposed variable selection method through three different simulation170

scenarios. We start with an illustrative example in which, using a data set simulated according to the171

proposed model, we show how to perform the variable selection.172

Then, simulation studies are performed to evaluate the behavior of the proposed selection method,173

when the data are simulated according to the proposed model (Scenario1) and when the model174

assumptions are violated. In Scenario2, the link between 𝑋𝑅 and 𝑋𝐶 is no longer a Poisson GLM but a175

more complex model. In Scenario3, the clustering variables are no longer conditionally independent.176
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5.1 Illustrative example177

In the first simulation setting we consider 10 Poisson random variables. Variables 𝑋1, 𝑋2, 𝑋3 and178

𝑋4 are the clustering variables, distributed according to a mixture of 𝐺 = 3 independent Poisson179

mixture distributions with mixing proportions 0.4, 0.3, 0.3. Variables 𝑋5, 𝑋6 and 𝑋7 are redundant180

variables, each one generated dependent on the clustering variables. These three variables are linked181

to the four first ones through a Poisson GLM. The last three variables, 𝑋8, 𝑋9 and 𝑋10 are irrelevant182

variables not related to the previous ones. Table 1 shows the parameter of the Poisson distribution183

for each variable and each cluster.184

Table 1: True values of component parameters (Scenario 1)

𝜆𝑔1 𝜆𝑔2 𝜆𝑔3 𝜆𝑔4 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 𝜆𝑔8 𝜆𝑔9 𝜆𝑔10

𝑔 =
1

1 1 1 1 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 4 2 1

𝑔 =
2

2 2 1 4 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 4 2 1

𝑔 =
3

4 4 4 4 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 4 2 1

with 𝜆𝑔5 = exp(0.2𝑋2), 𝜆𝑔6 = exp(0.2𝑋1 − 0.1𝑋2) and 𝜆𝑔7 = exp(0.1(𝑋1 + 𝑋3 + 𝑋4)).185

Below is the result obtained for one data set of size 𝑁 = 400. The evaluation criteria is the selected186

features (true one are 𝑋1 to 𝑋4) and the Adjusted Rand Index (Rand 1971; Hubert and Arable 1985)187

obtained with the selected variables in comparison to those obtained with the full set of variables188

and with the true clustering variables.189

The independent Poisson mixture model was fitted to the simulated data with 𝑁 = 400 rows and 𝑃 =190

10 columns. Models with 𝐺 = 1 to 𝐺 = 10 were fitted using the EM algorithm.191

The values of BIC for the independent Poisson mixture model are plotted in Figure 3.192

The model with the highest BIC has 𝐺 = 3 components and the resulting estimates of 𝜏 and 𝜆 are193

given as:194

Table 2: Estimates of the mixing proportions and component parameters.

𝜏𝑔 𝜆𝑔1 𝜆𝑔2 𝜆𝑔3 𝜆𝑔4 𝜆𝑔5 𝜆𝑔6 𝜆𝑔7 𝜆𝑔8 𝜆𝑔9 𝜆𝑔10

𝑔 =
1

0.29 4.09 4.00 4.15 4.34 2.51 1.87 3.95 4.04 1.85 1.12

𝑔 =
2

0.42 2.04 2.11 1.34 3.74 1.64 1.27 2.00 3.91 2.06 0.96

𝑔 =
3

0.29 0.93 0.88 1.08 0.96 1.13 1.01 1.16 3.82 2.02 1.00

A look at Table 1 of true values allows us to say that these estimates are correct (except for label195

switching).196

Let start by initializing the stepwise algorithm.197

fit_screen <- poissonmix_screen(x, G = 1:Gmax)
jchosen <- fit_screen$jchosen

8
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Figure 3: Bayesian Information Criterion (BIC) for the independent Poisson mixture model.
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The variables selected by the screening procedure are {1, 2, 3, 4, 6, 7}.198

Now, we execute the stepwise selection algorithm:199

fit <- poissonmix_varsel(x, jchosen=jchosen, G = 1:Gmax)

[1] "Initial Selected Variables: 1,2,3,4,6,7"200

[1] "Iteration: 1"201

[1] "Add Variable: NONE 10 BIC Difference: -13.2"202

[1] "Remove Variable: 6 BIC Difference: 83.7"203

[1] "Current Selected Variables: 1,2,3,4,7"204

[1] "Iteration: 2"205

[1] "Add Variable: NONE 9 BIC Difference: -10.6"206

[1] "Remove Variable: 7 BIC Difference: 50.1"207

[1] "Current Selected Variables: 1,2,3,4"208

[1] "Iteration: 3"209

[1] "Add Variable: NONE 10 BIC Difference: -10.5"210

[1] "Remove Variable: NONE 3 BIC Difference: -26.8"211

[1] "Current Selected Variables: 1,2,3,4"212

Note that the computing time is about 5 minutes on a laptop with 2.3 GHz Intel Core i7 processor213

and 32Go of RAM.214

The final chosen variables are {1, 2, 3, 4}.215

Finally, the ARI obtained with the selected variables, which turn out to be the true clustering variable,216

is 0.594 whereas it is 0.432 with all the variables.217

5.2 Scenarios of simulation218

In this section the three scenario of simulation are described. The first scenario is similar to the219

previous illustrative example.220

The second scenario is similar to the first one, except for variables 𝑋5, 𝑋6 and 𝑋7 which are still221

redundant but linked to the true clustering variables through linear, quadratic and exponential222

term in an identity link function, respectively, and not a Poisson GLM with logarithm link function.223

More precisely, 𝑋5, 𝑋6 and 𝑋7 have Poisson distribution of respective parameter 𝜆𝑔5 = exp(2𝑋2),224

𝜆𝑔6 = exp(𝑋 2
1 + 𝑋3) and 𝜆𝑔7 = exp(exp(0.1(𝑋1 + 𝑋3 + 𝑋4))). Thus, the data are simulated from a225

model which does not satisfy assumptions of model 𝑀2.226

The third scenario is similar to the second one, but some dependence between the clustering variables227

𝑋1 and 𝑋2 is introduced, in order to create some redundancy among the true clustering variables.228

For this, 𝑋1 and 𝑋2 are simulated as in the previous setting, and a same term is added to both of229

these variables (simulated according a Poisson distribution of parameter 2) .230

5.3 Results231

Table 3 shows the number of times, among the 100 simulated data sets, that each variable is selected.232

For Scenario 1, the model selection procedure perform perfectly, selecting each time only the true233

clustering variables. For Scenario 2, due to the fact the link between the redundant and the true234

clustering variables is not a standard Poisson GLM, the variable selection is perturbed and variables235

𝑋5 is sometimes selected. For Scenario 3, the results is that the dependency between 𝑋1 and 𝑋2236

perturb the variable selection, and only one of them is selected (and even sometimes none of them).237

Redundant variables 𝑋5 and 𝑋6, which are linked to the clustering variables but with a linear link,238

are also sometimes selected.239
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Table 3: Number of selection for each variable, simulation setting number 3.

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10

Scenario
1

100 100 100 100 0 0 0 0 0 0

Scenario
2

97 100 90 98 44 0 0 0 0 0

Scenario
3

48 35 89 88 65 34 3 0 0 0

Figure 4 plots the distribution of the ARI differences between the model with either the selected240

variables or all the variables, and the one with the true clustering variables. These plots shows that241

for all scenarios, the ARI of the model with the selected variables (left boxplot of each plot) are always242

closest to the optimal ARI (obtained with the true clustering variables).243
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Figure 4: Distribution of the ARI differences with the model with the true clustering variables, for
the model with the selected variables and the model with all variables.

Finally Figure 5 plots the histogram of the difference of ARI with the selected variables and with244

all the variables. This plot illustrates the interest of variable selection on the clustering results, and245

indeed, for all the scenarios, the ARI is better with the selected variables than when using all the246

variables.247
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Figure 5: Distribution of the ARI differences for the model with the selected variables and the model
with all variables.
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6 International Ultrarunning Association Data248

We apply the proposed procedure to the data from the 2012 International Ultrarunning Association249

World 24H Championships.250

We start by initializing the stepwise algorithm, and find the variables selected by the screening251

procedure:252

fit_screen <- poissonmix_screen(x, G = 1:Gmax)
jchosen <- fit_screen$jchosen
jchosen

[1] 3 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24253

We then execute the proposed stepwise selection algorithm (the computing time is about 26 minutes254

on a laptop with 2.3 GHz Intel Core i7 processor and 32Go of RAM):255

fit <- poissonmix_varsel(x, jchosen = jchosen, G = 1:Gmax)

The final chosen variables found by the algorithm are:256

[1] 9 10 11 12 14 15 16 17 18 19 20 21 22 24257

The optimal number of clusters 6 has been chosen inside the stepwise selection algorithm. The same258

choice is obtained when looking for the best 𝐺 with the conditionally independent Poisson mixture259

on the selected variables (Figure 6).260

In order to illustrate the results, we plot the cluster means according to the 24 variable mean261

parameters per cluster. For each variable not in the chosen variable set, a Poisson regression model262

is fitted with the chosen variables as predictors. Forward and backwards variable selection is263

conducted on this regression, if the regression model has any predictor variables, then the variable264

is called “redundant” and if the regression model has no predictor variables, then the variable is265

called “irrelevant”. Figure 7 shows the cluster mean for each variable, where the label indicates if266

the variable is irrelevant for clustering (“I”), redundant (“R”) or useful (the label is then the cluster267

number).268

The variables discriminate the clusters pacing strategies of the runners are the number of laps covered269

during the last two thirds of the race (except during the 13th and 23rd hours). The number of laps270

covered during the first eight hours does not provide any additional clustering information, and even271

no information at all for the number of laps covered during the first hour.272

Figure 8 plots the density map per clusters. Area of high density (red) indicates the hours and the273

corresponding average number of laps specific of each cluster.274

Cluster 5 are clearly the most efficient runners. Looking at the running strategy in Figure 7 and275

Figure 8, we can see that they start as runners of Cluster 1 and Cluster 2, but they managed to keep a276

constant pace on the second part of the race, unlike those of the other two clusters which faltered.277

Runners of Cluster 3 has covered the fewest number of laps. Indeed, looking at their running strategy,278

we can see that most of these runners stop after the first third of the race. Cluster 6 is relatively279

similar to Cluster 3, but runners manage to continue running until half of the race is completed.280

Finally, Cluster 4 obtains slightly better results than Cluster 6, starting more carefully, and managing281

to run until the end of the race, even if the pace of the last hours is not very constant.282

Finally, Figure 9 shows boxplots of the total number of loops covered by the runners in each of the283

clusters.284
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Figure 6: Bayesian Information Criterion (BIC) for the independent Poisson mixture model with the
seleceted variables.

14



su
bm

itte
d

1 1 1
1

1 1
1 1

1 1 1
1

1

1

Hours

N
um

be
r 

of
 la

ps 2 2
2 2

2
2 2

2

2
2 2 2 2 23 3 3 3 3 3 3 3 3 3 3 3 3

3

4 4
4

4

4 4
4

4
4

4
4

4

4

4

5 5 5
5 5 5

5 5 5 5 5 5 5
5

6
6

6

6

6 6 6 6 6 6 6 6 6 6

6 12 18 24

0
1

2
3

4
5

6
7

8
9

1 1 1
1

1 1
1 1

1 1 1
1

1

1

2 2
2 2

2
2 2

2

2
2 2 2 2 23 3 3 3 3 3 3 3 3 3 3 3 3

3

4 4
4

4

4 4
4

4
4

4
4

4

4

4

5 5 5
5 5 5

5 5 5 5 5 5 5
5

6
6

6

6

6 6 6 6 6 6 6 6 6 6

II
II

II RR

R
R

RR RR

R

R

R
R

R
R

R

R

R
R

R
R

R

R

R

R R
R

R

R

R

R R
R

R

R

R

R
R
R

R

R

R

R
R

R

R

R

R

R

R

RR

R

R

R

Figure 7: Cluster means and usefulness of the variables.
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7 Discussion285

A method for clustering and variable selection for multivariate count data has been proposed. The286

method is shown to give excellent performance on both simulated and real data examples. The287

method selects set of relevant variables for clustering and other variables are not selected if they are288

irrelevant or redundate for clustering purposes.289

The proposed method is shown to give interesting insights in the application domain, where some290

clusters members are shown to perform better overall to others and the benefits of constant (or near291

constant pacing) are shown.292

The level of variable selection is determined by the relative performance of the two models (as shown293

in Section 4.2) is compared. Alternative models to the Poisson GLM model which have greater294

flexibility could lead to a smaller set of selected variables than the proposed method achieves. This is295

a topic for future research.296

The proposed method is based on a conditionally independent Poisson mixture model for the297

selected variables. It could be argued that the conditional independence assumption is unrealistic in298

the application. Hand and Yu (2001) consider the implication of incorrectly assuming conditional299

independence in a classification setting and show that it can make the group membership probabilities300

over confident. Furthermore, in the conditional independent Poisson mixture model, the number of301

clusters can be upwardly biased, where extra clusters are included to model dependence in the data.302

The approach taken in the paper could be extended to use other multivariate count distributions,303

including multivariate distributions without the conditional independence assumption (eg. Karlis304

2018; Karlis and Meligkotsidou 2007; Inouye et al. 2017b).305

The code for the proposed approach is available as an R package at https://github.com/JuJacques/306

MultivariateCountData.307
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