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ABSTRACT

Fine-grained temporal action segmentation plays a vital role in comprehensive
human behavior understanding, with skeleton-based approaches (STAS) gaining
prominence for their privacy and robustness. A core challenge in STAS arises
from the conflicting feature requirements of action classification (demanding tem-
poral invariance) and boundary localization (requiring temporal sensitivity). Ex-
isting methods typically adopt decoupled pipelines, unfortunately overlooking the
inherent semantic complementarity between these sub-tasks, leading to informa-
tion silos that prevent beneficial cross-task synergies. To address this challenge,
we propose CurvSeg, a novel approach that synergizes classification and local-
ization within the STAS domain through a unique geometric curvature guidance
mechanism. Our key innovation lies in exploiting curvature properties of well-
learned classification representations on skeleton sequences. Specifically, we ob-
serve that high curvature within action segments and low curvature at transitions
effectively serve as geometric priors for precise boundary detection. CurvSeg
establishes a virtuous cycle: localization predictions, guided by these curvature
signals, in turn dynamically refine the classification feature space to organize into
a geometry conducive to clearer boundaries. To compute stable curvature signals
from potentially noisy skeleton features, we further develop a dual-expert weight-
ing mechanism within a Mixture of Experts framework, providing task-adaptive
feature extraction. Comprehensive experiments demonstrate that CurvSeg signif-
icantly enhances STAS performance across multiple benchmark datasets, achiev-
ing superior results and validating the power of geometric-guided task collabora-
tion for this specific problem. Code is available at <YOUR_CODE_URL>.

1 INTRODUCTION

Temporal Action Segmentation (TAS), which precisely assigns action labels to every frame in
untrimmed videos, is a fundamental task for fine-grained human behavior understanding. While
video-based methods (Farha & Gall, 2019; Li et al., 2023a; Yi et al., 2021; Du et al., 2022; Zhao &
Song, 2022; Ren et al., 2025; Liu et al., 2023b) have achieved great progress, they often face chal-
lenges in scenarios demanding high privacy and robustness to varying appearances or visual noise.
Skeleton-based TAS (STAS) thus emerges as a vital alternative, modeling pure motion dynamics
to inherently ensure privacy and decouple from visual confounders, making it crucial for sensitive
domains like healthcare.

A central challenge in STAS is the fundamental tension between its two sub-tasks: action classifi-
cation and boundary localization. Classification requires temporally invariant, abstract features to
ensure consistent recognition within a segment. In contrast, localization demands temporally sen-
sitive, fine-grained features to pinpoint the exact moment of transition. The prevailing paradigm to
resolve this conflict is task decoupling, which employs separate decoders for each task atop a shared
spatio-temporal encoder (e.g., GCNs and TCNs) (Filtjens et al., 2022; Ghosh et al., 2020; Li et al.,
2023c;b; Yan et al., 2018; Chai et al., 2024), as shown in Fig. 1(a). However, we argue this popu-
lar strategy is a critical over-simplification. While the features may compete, the tasks themselves
are highly complementary at a semantic level; knowing what action is occurring provides powerful
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priors for where its boundaries lie, and vice versa. By isolating the two, current methods create
“information silos” that preclude beneficial cross-task synergies and artificially limit performance.

Recent refinements include decoupling spatio-temporal modeling to mitigate feature over-
smoothing (Li et al., 2023c) and integrating language priors for enhanced representation learn-
ing (Ji et al., 2024) but these improvements do not address the fundamental limitation of insufficient
cross-task collaboration. To address this limitation, we introduce Curvature-Guided Task Synergy
(CurvSeg) for STAS, which restores the intrinsic synergy between decoupled tasks through two key
innovations: curvature-based synergy and adaptive feature extraction, as shown in Fig. 1(b).
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Figure 1: (a) Existing STAS approaches. (b)
The proposed method. (c) Classification repre-
sentations create compact clusters, forcing high
trajectory curvature within action segments. (d)
Curvature-guided task collaboration.

Our approach is inspired by a profound geo-
metric insight, recently explored in representa-
tion learning (Shin et al., 2024), as shown in
Fig. 1(c): in a well-learned feature space, tra-
jectories of a continuous data sequence (like
skeleton frames) are spatially confined within
their respective class clusters. This confine-
ment naturally induces high curvature through-
out an action segment as the feature path con-
tinuously turns to avoid crossing the cluster’s
boundary. Conversely, the path straightens out
during transitions between actions, resulting in
low-curvature ”valleys”.Consequently, we first
exploit this geometric property for cross-task
collaboration in STAS, establishing a synergis-
tic loop between feature learning and tempo-
ral localization.The curvature of classification
features serves as a geometric prior to guide
boundary detection, with curvature valleys indicating likely transition points. Reciprocally, lo-
calization predictions supervise the classification feature space by penalizing low curvature within
predicted action segments. This symbiotic relationship encourages the generation of more discrim-
inative, compact clusters, which yield more precise geometric priors, creating a synergistic training
strategy of improvement.

However, the effectiveness of this curvature-based synergy depends on the quality of the underlying
features. Current approaches of using a single, shared encoder output for both tasks creates a com-
promised representation, failing to optimally serve either classification or localization. To overcome
this limitation, we introduce a dual-expert weighting mechanism within a Mixture of Experts (MoE)
framework that enables task-adaptive feature extraction from the shared encoder outputs. Specifi-
cally, we deploy a separate expert module: the classification expert extracts semantic-oriented rep-
resentations optimized for action recognition, while the localization expert focuses on fine-grained
temporal details essential for boundary detection. This dual-expert mechanism operates across both
temporal and spatial dimensions, enabling task-specific feature refinement that optimizes representa-
tions for their respective objectives. By providing task-specific feature distillation rather than shared
representations, our MoE framework ensures that each decoder head receives optimally tailored
inputs, creating an ideal foundation for the curvature-based task collaboration strategy.

The contributions of this work are threefold: First, it proposes a novel curvature-based task syn-
ergy mechanism that exploits the geometric properties of feature sequences to establish effective
collaboration between decoupled classification and localization sub-tasks. Second, it introduces a
dual-expert weighting mechanism within a MoE framework that provides task-adaptive feature ex-
traction, with separate experts extracting semantic representations for classification and fine-grained
temporal details for localization to improve the performance of synergy mechanism. Third, compre-
hensive experiments demonstrate that our curvature-based synergy mechanism effectively enhances
action segmentation performance across multiple benchmark datasets.

2 RELATED WORK

Temporal Action Segmentation. Video-based TAS methods primarily utilize RGB or optical flow
features for action understanding. Early RNN-based approaches focused on sequential model-
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Figure 2: Overview of CurvSeg. Our model processes video features through EDD to capture de-
coupled classification and localization representations utilizing task-specific experts. Subsequently,
CGS leverages geometric curvature principles to guide task collaboration, enhancing both action
boundary detection and classification performance.

ing (Ding & Xu, 2017; Singh et al., 2016), followed by TCN-based methods to capture long-range
dependencies (Lea et al., 2017; Farha & Gall, 2019; Li et al., 2020; 2021). Recent TCN variants
have incorporated advanced strategies including receptive field optimization (Gao et al., 2021; 2022),
boundary-aware mechanisms (Ishikawa et al., 2021; Wang et al., 2020), multi-scale fusion (Singha-
nia et al., 2023), and diffusion models (Liu et al., 2023a). Meanwhile, Transformer-based architec-
tures have emerged as powerful alternatives, leveraging attention mechanisms for adaptive context
modeling (Bahrami et al., 2023; Behrmann et al., 2022; Du et al., 2023; Wang et al., 2024; Yi et al.,
2021). However, limitations in privacy and robustness to appearance variance hinder video-based
methods, necessitating alternative modalities such as skeleton sequence.

Skeleton-based Temporal Action Segmentation. STAS methods leverage skeleton data to capture
motion dynamics while remaining decoupled from visual appearance. Traditional approaches typi-
cally adopt a two-stage pipeline combining Graph Convolutional Networks (GCNs) for spatial mod-
eling and Temporal Convolutional Networks (TCNs) for long-range temporal dependencies (Filtjens
et al., 2022; Ghosh et al., 2020). Recently, significant advancements have focused on refining this
architecture to handle complex motion patterns. DeST (Li et al., 2023c) decouples spatio-temporal
modeling to mitigate feature over-smoothing, while LAC (Yang et al., 2023) explores latent motion
primitives. Most recently, LaSA (Ji et al., 2024) integrates language priors for enhanced represen-
tation learning. However, these methods primarily address architectural or semantic aspects, often
overlooking the intrinsic synergy between tasks. Unlike current decoupled paradigms, we explicitly
construct a geometric bridge to restore cross-task collaboration within the feature space.

Task Decoupling in STAS. The conflict between classification and regression tasks, initially ob-
served in object detection, has led to a widespread adoption of decoupled classification and localiza-
tion heads in object detectors (Wu et al., 2020; Ge et al., 2021). Similar to object detection, existing
STAS methods (Li et al., 2023c; Ji et al., 2024) employ separate heads for action classification and
boundary localization with shared input feature. However, task decoupling paradigm suffers from
two critical limitations: the separate decoder heads fail to enable explicit cross-task collaboration,
and the shared encoder with identical input features leads to suboptimal trade-offs between compet-
ing task requirements. To address these limitations, we propose a framework that simultaneously
maintains task-specific feature adaptation and enables effective synergies through curvature-based
geometric collaboration and dual-expert feature enhancement.
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3 METHOD

3.1 PROBLEM SETTING

Given a skeleton sequence Fs ∈ RDin×T×V obtained from motion capture systems or pose esti-
mation algorithms, where Din, T , and V represent the number of channels(where Din is 3 for 3D
coordinates), frames, and joints respectively. The goal of skeleton-based temporal action segmenta-
tion is to predict the action label for each frame, with ground truth labels Y ∈ {1, 2, ..., C}T , where
C denotes the number of action classes.

3.2 FOUNDATION FRAMEWORK

The STAS task can be decomposed into two sub-tasks: action classification and boundary localiza-
tion. We follow the typical backbone architecture from DeST (Li et al., 2023c) and LaSA (Ji et al.,
2024), which employs spatial-temporal modeling with dual decoders for classification and localiza-
tion.
Spatial Modeling. Given an input skeleton sequence Fs, spatial feature Fgcn extraction is per-
formed by a multi-scale graph convolution network (MS-GCN), which captures joint correlations
at different receptive fields. For each hop k, an adjacency matrix Ak ∈ {0, 1}V×V is constructed
based on the shortest joint distance, and normalized multi-scale adjacency AMS ∈ {0, 1}V×KV is
formed by concatenating all K hops. The multi-scale spatial features are computed as:

Fgcn = ReLU [(AMS +B)FsWs], (1)

where B ∈ RV×(K·V ) is a trainable matrix for adaptive joint relationships and Ws ∈
R1×1×(K·D)×D handles channel adjustment. Based on DeST, we integrate the joint-wise skele-
tal features Fgcn into the global frame-wise feature FST through spatio-temporal attention fusion
with joint embeddings. This module yields spatially enhanced frame-wise joint representations.

Temporal Modeling. For temporal modeling, as in DeST and LaSA, Linear Transformer is adopted
to achieve global temporal dependencies with O(n) complexity. The l-th linear transformer layer is
computed as:

Fl+1
ST = ReLU [ϕ(Qt)(ϕ(K

⊤
t )Vt)Wt + Fl

ST ], (2)

where Qt, Kt, Vt are query, key, value matrices derived from frame feature FST ∈ RD×T , and
ϕ(·) denotes the sigmoid activation function.
Decoder Head. The final spatio-temporal features FL

ST ∈ RD×T from the last layer of encoder
are fed into two distinct heads to obtain class prediction logits Ŷcl ∈ RC×T and boundary pre-
diction logits Ŷb ∈ R1×T . The predictions are further refined by a segmentation branch (Linear
Transformer) and a boundary branch (TCN).

Frame-level cross-entropy loss and segment-level smoothness loss are applied to the class predic-
tions:

Lc = −
1

T

T∑
t=1

log(ŷclt,c) +
1

TC

T∑
t=1

C∑
c=1

[
log

(
ŷclt−1,c/ŷ

cl
t,c

)]2
, (3)

where ŷclt,c denotes the predicted probability of ground truth label c at time t. For boundary localiza-
tion, binary logistic regression loss is utilized:

Lb = −
1

T

T∑
t=1

[
ybt log

(
ŷbt
)
+
(
1− ybt

)
log

(
1− ŷbt

)]
, (4)

where ybt is the boundary ground truth (1 for boundary frames, 0 otherwise).

where

3.3 CURVATURE-GUIDED SYNERGY

Motivation. Existing STAS methods suffer from limited cross-task collaboration, treating classifi-
cation and localization as independent processes despite their inherent correlations. To address this
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limitation, we leverage a fundamental geometric principle from representation learning (Parulekar
et al., 2023; Wang et al., 2022b) when classification representations successfully separate differ-
ent action classes, they confine action sequence trajectories within compact, class-specific regions.
As formally derived in Appendix B, this geometric constraint implies that the average curvature of
a random walk is inversely proportional to the radius of its bounding hyper-sphere. This spatial
confinement creates a fundamental geometric phenomenon: intra-segment points must frequently
change direction to remain within their class-specific boundary, resulting in high curvature, while
inter-segment points exhibit low curvature as they move between class regions. This geometric prin-
ciple establishes a natural bridge between classification quality and boundary detection, creating a
synergistic relationship that enhances both tasks simultaneously.
Curvature Calculation. We define the representational trajectories using the frame-wise classi-
fication features Fcls ∈ RD×T . Specifically, Fcls is obtained by decoupling the global encoder
output FST through the Expert Decoupling (EDD) module (refer to Sec. 3.4 for details). Note that
since spatial pooling is performed within the encoder, Fcls represents global frame-level features,
implying that curvature is computed globally per frame rather than per joint.

For each timestamp t, we select three consecutive points Fcls,t−w, Fcls,t, and Fcls,t+w along the tra-
jectory, where the window size w is set to ensure stability and adaptability across different temporal
scales. The turning angle θt between two consecutive difference vectors is computed as:

θt = arccos
(Fcls,t − Fcls,t−w) · (Fcls,t+w − Fcls,t)

||Fcls,t − Fcls,t−w|| · ||Fcls,t+w − Fcls,t||
, (5)

where θt ∈ [0, π] quantifies the instantaneous direction change at timestamp t. The curvature κt is
defined as the turning angle normalized by the sum of difference vectors:

κt = θt/(||Fcls,t − Fcls,t−w|| · ||Fcls,t+w − Fcls,t||+ ϵ), (6)

where ϵ is set to avoid division by zero. Subsequently, we compute the curvature-based boundary
change metric from the obtained curvature sequence. We apply moving average smoothing to the
raw curvature sequence to reduce noise and enhance temporal consistency, noted as κ̄.The smoothed
curvature sequence is then normalized to ensure scale invariance κ̂t = κ̄t−min(κ̄t)

max(κ̄t)−min(κ̄t)
, and we

obtain the boundary change metric by inverting the normalized curvature values, Ct = 1− κ̂t.
Curvature-Based Task Collaboration. To enable explicit collaboration between classification and
localization tasks, we impose a bidirectional consistency constraint between the boundary prediction
probabilities:

Lcurv = − 1

T

T∑
t=1

MSE(ŷbt , φ(Ct)) +MSE(Ct, φ(ŷbt )), (7)

where MSE(·, ·) denotes mean squared error distance and φ(·) denotes the gradient stop function.
This bidirectional constraint creates a synergistic training strategy where the localization branch
aligns with geometric properties from classification features, while classification learning benefits
from boundary-aware supervision, resulting in mutually enhanced performance.

3.4 EXPERT-DRIVEN DECOUPLING

While our curvature-guided synergy mechanism establishes effective cross-task collaboration, its
effectiveness depends critically on the quality of features used for curvature computation. However,
both decoder heads currently receive identical shared encoder outputs, which are inherently com-
promised representations that may not fully serve the distinct requirements of classification and lo-
calization tasks. To this end, inspired by recent multi-modal perception tasks (Kim et al., 2025), our
approach introduces an expert-driven decoupling mechanism, where the experts process the same
encoder features but focus on different task-specific aspects. Specifically, we build two specialized
spatio-temporal expert modules: classification experts and localization experts, which adaptively
weight and refine encoder features according to their respective task requirements. Then, we use
experts specializing in classification tasks as an example to illustrate this. For spatio modeling,
given the skeleton feature sequence FST ∈ RD×T×V in the spatio-temporal encoder, we capture
task-relevant spatial features to recalibrate each joint by computing a joint attention vector via an
SE-style block(Hu et al., 2018):

FST = FST + Sigmoid
(
MLP(zst)

)
FST ∈ RD×T×V , (8)
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Table 1: Comparison of methods on PKU-MMD and LARa datasets

Model PKU-MMD (X-sub) PKU-MMD (X-view) LARa
Acc Edit F1@{10, 25, 50} Acc Edit F1@{10, 25, 50} Acc Edit F1@{10, 25, 50}

MS-TCN++ (Li et al., 2023a) 66.0 66.7 69.6 65.1 51.5 58.4 56.7 58.7 53.2 38.7 71.7 58.6 60.1 58.6 47.0
ETSN (Li et al., 2021) 68.4 67.1 70.4 65.5 52.0 60.7 57.6 62.4 57.9 44.3 71.9 58.4 64.3 60.7 48.1
ASRF (Ishikawa et al., 2021) 67.7 67.1 72.1 68.3 56.8 60.4 59.3 62.5 58.0 46.1 71.9 63.0 68.3 65.3 53.2
MS-GCN (Filtjens et al., 2022) 70.0 65.8 68.5 63.9 50.1 66.5 64.0 67.1 62.4 49.9 73.7 58.6 63.8 59.4 47.6
MTST-GCN (Chai et al., 2024) 70.0 65.8 68.5 63.9 50.1 66.5 64.0 67.1 62.4 49.9 73.7 58.6 63.8 59.4 47.6
ME-ST (Ji et al., 2025) 74.1 70.5 76.6 73.2 62.4 68.5 67.2 72.3 68.8 58.1 74.2 65.0 71.0 68.2 57.1
DeST-TCN (Li et al., 2023c) 67.6 66.3 71.7 68.0 55.5 62.4 58.2 63.2 59.2 47.6 72.6 63.7 69.7 66.7 55.8

DeST (Li et al., 2023c) 70.3 69.3 74.5 71.0 58.7 67.3 64.7 69.3 65.6 52.0 75.1 64.2 70.3 68.0 57.7
+Ours 71.8 69.9 75.4 71.8 59.2 67.9 65.4 69.9 66.3 52.4 76.1 65.6 71.7 68.8 58.7

LaSA (Ji et al., 2024) 73.5 73.4 78.3 74.8 63.6 69.5 67.8 72.9 69.2 57.0 75.3 65.7 71.6 69.0 57.9
+Ours 74.3 74.4 79.3 76.3 65.5 71.0 68.9 74.4 70.7 58.0 76.6 66.2 72.5 70.0 59.0

where zst is obtained by globally pooling FST over its temporal dimension. Then, we apply decou-
pled spatio-temporal interaction (DSTI) layer(Li et al., 2023c; Ji et al., 2024), yielding the feature
map FST ∈ RD×T . For temporal modeling, we deploy a series of Gaussian experts to extract task-
relevant information across the global temporal distribution. Given that untrimmed videos contain
multiple action segments, our approach systematically processes temporal information through the
following steps: For a T -frame video, we first uniformly divide it into M segments, where M > N
(the number of action segments in the video). Each segment contains S = ⌊T/M⌋ frames, and the
m-th segment feature F(m) ∈ RD×S can be divided from the spatio-temporal feature FST ∈ RD×T .
This segment-based approach allows the Gaussian experts to learn relative temporal patterns (e.g.,
”the start of an event”) within a normalized local context, rather than absolute positions in a long
video, which significantly simplifies learning and enhances generalization.

For each segment m, we generate G Gaussian functions to assign adaptive weights to the S frames
within that segment. Each Gaussian expert is parameterized by learnable center µ(m)

i and variance
σ
(m)
i , G(m)

i = N (µ
(m)
i , (σ

(m)
i )2). For simplicity, the normalized center µ(m)

i and variance σ(m)
i are

computed by a multilayer perceptron with nonlinear activation layers.

Instead of discrete expert selection, our model uses Gaussian experts as soft temporal masks that
adaptively weight their contributions based on task-specific requirements. Then the router assigns
routing values for each expert based on segment features F(m):

τ (m) = Sigmoid(MLP(Avg(F(m)) ·Wg) ∈ RG, (9)

where Avg(·) denotes average pooling at temporal dimension, and Wg ∈ RD×G is a learnable
weight matrix that dynamically controls the influence of each expert. Subsequently, outputs from all
experts are combined through weighted summation, the integration is expressed as:

F̃(m) =

G∑
i=1

τ
(m)
i G(m)

i F(m), (10)

The resulting expert weights enable the model to more effectively emphasize task-relevant informa-
tion, capturing task-specific insights.

3.5 OVERALL OPTIMIZATION OBJECTIVE

Based on the proposed scheme, the overall optimization objective of the STAS model can be de-
signed as follows:

L = Lc + Lb + λLcurv, (11)

where λ is a hyper-parameter for balance loss functions.
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Table 2: Comparison of methods on MCFS-22 and MCFS-130 datasets

Model MCFS-22 MCFS-130
Acc Edit F1@{10, 25, 50} Acc Edit F1@{10, 25, 50}

MS-TCN (Farha & Gall, 2019) 75.6 74.2 74.3 69.7 59.5 65.7 54.5 56.4 52.2 42.5
ASTFormer (Yi et al., 2021) 78.7 82.3 82.8 77.9 66.9 67.5 69.1 68.3 64.0 55.1
MS-GCN (Filtjens et al., 2022) 75.5 72.6 75.7 70.5 57.9 64.9 52.6 52.4 48.8 39.0
ID-GCN+ASRF (Filtjens et al., 2022) 78.1 81.6 86.4 83.4 73.0 67.1 68.2 68.7 65.6 56.9
DeST (Li et al., 2023c) 80.4 85.2 87.4 84.5 75.0 71.4 75.8 75.8 72.2 63.0
LaSA (Ji et al., 2024) 80.8 86.7 89.3 86.2 76.3 72.6 79.3 79.3 75.8 66.6
Ours 81.2 87.7 89.7 86.6 76.7 73.1 79.8 80.0 76.6 66.7

4 EXPERIMENT

4.1 DATASET AND EVALUATION METRICS

Datasets. Following DeST (Li et al., 2023c) and LaSA (Ji et al., 2024), we evaluate on four stan-
dard temporal action segmentation datasets: MCFS-22/MCFS-130 (Liu et al., 2021) (22/130 figure
skating actions), PKU-MMD (Liu et al., 2017) (52 daily activities with X-sub/X-view splits), and
LARa (Niemann et al., 2020) (8 warehouse activities). We follow standard protocols with 5-fold
cross-validation for MCFS and single-split evaluation for PKU-MMD and LARa.
Evaluation Metrics. We report three standard metrics: (1) Frame-wise Accuracy (Acc), (2) Seg-
mental Edit Score (Edit), and (3) Segmental F1 Score (F1@10, 25, 50) at IoU thresholds of
10%, 25%, and 50%. Segmental metrics provide comprehensive evaluation by penalizing over-
segmentation errors.

4.2 IMPLEMENTATION DETAILS

All experiments are conducted on a single 3090 GPU with Adam optimizer. We set batch size
to 1 and learning rate to 0.0005 for MCFS-22/130, training for 300 epochs. For PKU-MMD and
LARa datasets, we use batch size 4 and 3 with learning rate 0.001, training for 300 and 40 epochs
respectively. Besides, we use a temporal window size of w = 10 for curvature computation. The
loss balancing coefficient λ is set to 4 for the PKU-MMD dataset, 2.5 for the LARa dataset, and 2
for the MCFS datasets. In the temporal Mixture-of-Experts network, each video is divided into 64
segments, and 2 Gaussian experts are generated for each segment.

4.3 COMPARISONS WITH THE STATE-OF-THE-ART.

We benchmark our method against state-of-the-art approaches, surpassing current methods’ perfor-
mance across all evaluated datasets (Tab. 1 and Tab. 2). Notably, the most substantial gains are
observed in segmental F1 scores, directly validating that our method enhances temporal boundary
precision. Crucially, this is not a one-way benefit. The concurrent improvement in frame-wise ac-
curacy demonstrates the reciprocal nature of our design: refining boundaries leads to purer feature
representations, which in turn benefits the classification task, confirming a truly synergistic loop.

Table 3: Ablation Study Results on PKU and LARa dataset

Model PKU-MMD (X-sub) PKU-MMD (X-view) LARa
Acc Edit F1@{10, 25, 50} Acc Edit F1@{10, 25, 50} Acc Edit F1@{10, 25, 50}

base 73.5 73.4 78.3 74.8 63.6 69.5 67.8 72.9 69.2 57.0 75.3 65.7 71.6 69.0 57.9
CGS 74.0 74.3 78.7 76.0 64.7 70.9 69.1 74.5 70.3 57.6 76.2 65.9 72.1 69.4 58.7
EDD 73.8 73.8 78.3 75.3 64.0 69.9 68.2 74.2 69.6 57.4 76.2 65.8 72.0 69.4 58.4
Ours 74.3 74.4 79.3 76.3 65.5 71.0 68.9 74.4 70.7 58.0 76.6 66.2 72.5 70.0 59.0
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Figure 3: Hyper-parameters analysis. ‘w’: window size; ‘λ’: the CGS loss weigt; ‘M ’:the granular-
ity of EDD analysis;‘G’: the number of Gaussian experts.

4.4 ABLATION STUDIES

We conduct ablation studies on the LaSA Ji et al. (2024) baseline to dissect the contribution of our
two core components: Expert-Driven Decoupling (EDD) and Curvature-Guided Synergy (CGS). As
shown in Tab. 3, each component is both independently effective and mutually reinforcing.

Table 4: CGS ablation studies on LARa dataset.

Metric Acc Edit F1@{10, 25, 50}
Base 75.3 65.7 71.6 69.0 57.9
Euclid 76.0 65.1 71.7 68.9 57.8
Cosine 75.2 65.2 71.5 68.6 57.0
Grad. Saliency 74.4 64.3 70.7 67.9 57.1
Curv 76.2 65.9 72.1 69.4 58.7

Effectiveness of Expert-Driven Decou-
pling (EDD). Adding only the EDD module
(base+EDD) yields a consistent performance
boost across all metrics. This confirms our
hypothesis that providing specialized features
via task experts creates a superior foundation
for both classification and localization, over-
coming the inherent compromises of a shared
feature representation.

Effectiveness of Curvature-Guided Synergy
(CGS). Independently adding the CGS module
(base+CGS) brings the most substantial gains to the segmental F1 scores. This directly validates that
our curvature-guided loop is highly effective at enhancing boundary precision. The concurrent rise
in accuracy further demonstrates the mechanism’s reciprocal benefit: better boundary priors lead to
better-clustered features for classification.

Synergy of the Full Model. Finally, our full model, combining both components, achieves the best
results and demonstrates a clear synergistic effect—its performance gain significantly surpasses the
simple sum of the individual modules’ contributions. This validates our core design philosophy:
EDD provides the high-quality, specialized features that act as an optimal foundation, allowing
the CGS module to then leverage these refined inputs to its full geometric potential for precise
segmentation. We note that on PKU-MMD (X-view), CGS-only marginally leads in Edit and loose
F1@10 scores. This implies that under drastic view shifts, the smoother shared representations of
CGS favor prediction continuity. However, the full model dominates on strict metrics (F1@{25,
50}) and Accuracy, verifying that EDD’s specialized features are indispensable for sharpening
boundaries and distinguishing fine-grained semantics.

4.5 COMPONENT ANALYSIS

4.5.1 CURVATURE-GUIDED SYNERGY ANALYSIS.

Analysis of Synergy. Our ablation study (Tab. 6) dissects the CGS module within the overall
framework. Isolating the forward path (C→L) primarily boosts F1 scores by refining boundaries,
while the backward path (L→C) enhances accuracy by regularizing features. Crucially, the full
CGS module yields a synergistic gain significantly larger than the sum of its parts, confirming that
boundary guidance and feature refinement are mutually reinforcing.

Superiority of Curvature-based Guidance. We validate our approach against traditional distance
metrics (Euclidean, Cosine) and learned boundary detectors ( e.g. gradient-based saliency) in Ta-
ble 4. Results demonstrate that curvature consistently provides the best guidance. Existing baselines
show limitations: distance metrics are sensitive to feature magnitude, while saliency maps tend to
highlight discriminative action centers (e.g., peak motion) rather than temporal boundaries. In con-
trast, curvature explicitly captures the directional evolution of the feature manifold. This geometric
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prior serves as a precise, parameter-free proxy for state transitions, remaining robust to both subtle
drifts and abrupt changes.

Table 5: Refine with different boundary predic-
tion.

Boundary Acc Edit F1@{10, 25, 50}
Pred 76.6 66.2 72.5 70.0 59.0
Curv 75.4 64.6 72.3 69.4 55.1

Curvature as a Direct Boundary Proxy. To
further validate our premise, we use the in-
verted curvature values directly as boundary
predictions on Lara dataset. This simple
threshold-based method achieved remarkably
as shown in Tab. 12. This strongly confirms
that low-curvature points in the feature trajec-
tory are a highly effective proxy for temporal
boundaries, validating the foundational princi-
ple of our CGS module.

Table 6: Task synergy ablation study on LARa

Metric Acc Edit F1@{10, 25, 50}
Base 75.3 65.7 71.6 69.0 57.9
C→L 76.1 65.3 71.7 68.8 58.2
L→C 75.9 65.4 71.6 69.1 58.1
CGS 76.6 66.2 72.5 70.0 59.0

Table 7: EDD ablation study on LARa dataset.

Metric Acc Edit F1@{10, 25, 50}
Base 75.3 65.7 71.6 69.0 57.9
Indep. Enc. 75.7 64.5 71.6 68.3 57.7
Pyr. Decoupling 75.6 64.7 71.2 68.4 57.9
EDD 76.2 65.8 72.0 69.4 58.4

4.5.2 EXPERT-DRIVEN DECOUPLING ANALYSIS

Advantage of Dynamic Decoupling. We benchmarked our EDD against alternative decoupling
strategies in Tab. 7 on Lara dataset. Our approach is superior because it avoids two common
pitfalls: it neither compromises features through forced sharing (Base model) nor loses valuable
signals through complete isolation (Indep. Enc.). Unlike static allocation (Pyr. Decoupling), our
expert routing mechanism dynamically creates specialized features tailored to each task’s needs.
This allows the model to achieve the best of both worlds: generating highly discriminative, task-
specific representations while still enabling beneficial, selective information exchange.

4.6 HYPERPARAMETER ANALYSIS

We conduct a brief analysis on key hyper-parameters in Fig. 3, including curvature window size w,
the CGS loss weight λ, the granularity of EDD analysis M , and the number of Gaussian experts G.

The hyperparameter λ balances the contribution of our Curvature Guidance Synergy (CGS) loss.
Empirically, the performance peaks at λ=2. A smaller value provides insufficient guidance, while a
larger value overly constrains the model and hurts performance. Segment CountM controls the tem-
poral resolution. The model achieves the best results with M = 64, striking an optimal balance. A
smaller M offers poor temporal precision, whereas a larger M causes context loss within each short
segment. Gaussian Expert CountG sets the modeling capacity within each segment. Performance is
optimal at G = 2, while more experts (G > 2) lead to diminishing returns and potential overfitting.
Hyper-parameter w controls the temporal receptive field. We found w=10 optimal, balancing noise
suppression and boundary sensitivity. Smaller windows (w=5) capture insufficient context, while
larger ones (w >= 40) over-smooth the sharp directional changes that define action boundaries.
Detailed hyperparameter analysis is provided in Appendix C.

4.7 ERROR ANALYSIS AND LIMITATIONS

Our analysis identifies two scenarios where geometric priors face intrinsic challenges. First, low-
dynamic actions (e.g., Step Sequences) exhibit continuous feature evolution without abrupt shifts.
This results in shallower curvature valleys compared to high-dynamic actions (e.g., Jumps), making
boundary localization physically more ambiguous Additionally, skeleton sequences inevitably con-
tain sensor noise or estimation jitter. This can introduce high-frequency fluctuations in the feature
trajectory, creating spurious curvature peaks (false positives) in non-boundary regions, as shown in
Fig. 4. However, despite these geometric constraints, quantitative results (Tab. 8) demonstrate
that our method remains highly robust. Notably, we achieve a larger relative improvement over the
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GT

Ours

(a) Layback Spin internal transition.
GT

Ours

(b) Transition: NONE → Step Seq.

Figure 4: Visualization of Limitation Cases. (a) Internal
spin variations cause noise. (b) Gradual step transitions
lack deep curvature valleys.

Category Metric Base Ours

High-Dynamic F1@10 71.18 72.86
Edit 58.44 61.61

Low-Dynamic F1@10 49.62 52.86
Edit 21.81 27.83

Table 8: Performance on High vs.
Low Dynamic Actions. Low-dynamic
actions show lower absolute scores but
higher relative gains from our method.

baseline on these challenging low-dynamic actions (+6.02% Edit Score) compared to high-dynamic
ones (+3.17%). This indicates that even weak curvature signals act as effective differential cues,
providing structural constraints that guide the model to resolve ambiguities where pure semantic
baselines typically fail.

4.8 QUALITATIVE COMPARISON

Fig. 5 shows qualitative comparisons with previous methods, the top row shows the curvature vi-
sualization results of the skeleton sequence features. Our approach utilizes curvature-based task
collaboration and Expert-driven adaptive feature extraction to achieve more accurate action predic-
tion and boundary detection. The curvature mechanism enables effective cross-task synergy through
geometric feature properties, while specialized experts provide task-specific representations for clas-
sification and localization. These improvements result in segmentation outputs that closely match
ground truth annotations.

Ours

LaSA

DeST

GT

(a) PKU-MMD (X-sub)

Ours

LaSA

DeST

GT

(b) LARa

Ours

LaSA

DeST

GT

(c) MCFS-130

Figure 5: Qualitative comparison of segmentation results on PKU-MMD (X-sub), LARa, MCFS-
130. Our method alleviates over-segmentation and achieves more precise action boundary local-
ization, demonstrating better temporal consistency and robustness compared to baseline methods.

5 CONCLUSION

In this work, we propose a novel framework for skeleton-based temporal action segmentation that
addresses the fundamental limitation of insufficient cross-task collaboration. Our approach intro-
duces a curvature-based task synergy mechanism that exploits geometric properties of feature se-
quences to establish effective collaboration between classification and localization sub-tasks, cou-
pled with a dual-expert weighting mechanism within a Mixture of Experts framework for task-
adaptive feature extraction. However, our method still faces limitations in handling extremely noisy
skeleton data and complex multi-person scenarios, leaving room for further improvement. Future
work should explore more robust geometric priors and investigate the integration of multi-modal
information to enhance the framework’s applicability in real-world deployment scenarios. See Ap-
pendix D for reproducibility statement and Appendix E for our statement on LLM usage.
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Algorithm 1 Curvature-Guided Synergy (CGS)

Require: Mini-batch B = {(X,Y,yb)}; encoder/backbone E ; classification head Hcls; boundary
headHb; window size w; smoothing window m; weight λ; small ϵ; stop-gradient φ(·)

Ensure: CGS loss Lcurv and total loss Ltotal
1: for each sequence (X,Y,yb) ∈ B do
2: FST ← E(X) ▷ Spatial-temporal encoding (Sec. Foundation)
3: Ŷcl ← Hcls(FST ), ŷb ← Hb(FST ) ▷ Dual heads
4: Fcls ← frame-wise classification features from encoder/class head

5: Curvature construction on classification trajectory
6: for t = w, . . . , T − w do
7: ut ← Fcls,t − Fcls,t−w; vt ← Fcls,t+w − Fcls,t

8: θt ← arccos

(
⟨ut,vt⟩

∥ut∥ ∥vt∥+ ϵ

)
▷ Turning angle, cf. Eq. (7)

9: κt ←
θt

∥ut∥ ∥vt∥+ ϵ
▷ Curvature, cf. Eq. (8)

10: end for
11: κ̄← MovingAverage(κ,m) ▷ Noise suppression

12: κ̂t ←
κ̄t −min(κ̄)

max(κ̄)−min(κ̄) + ϵ
▷ Min–max normalization

13: Ct ← 1− κ̂t ▷ Boundary-change metric from curvature

14: Losses
15: Lc ← frame CE + segment smoothness (Eq. (5))
16: Lb ← binary logistic loss for boundaries (Eq. (6))

17: Lcurv ←
1

T

∑T
t=1

[
MSE(ŷbt , φ(Ct)) + MSE(Ct, φ(ŷbt ))

]
▷ Bidirectional consistency, cf.

Eq. (9)
18: end for
19: Ltotal ← Lc + Lb + λLcurv
20: return Lcurv, Ltotal

A APPENDIX: ALGORITHM OF THE PROPOSED GURVSEG

A.1 CURVATURE-GUIDED SYNERGY

Algorithm 1 converts the frame-wise classification features into a geometry-derived boundary prior
and enforces bidirectional consistency with the boundary head. Specifically, we (1) build a tempo-
ral trajectory from classification features, (2) compute a k-step turning-angle curvature per frame,
followed by smoothing and min–max normalization to obtain a boundary-change metric, and (3)
align this metric with the predicted boundary probabilities using a stop-gradient operator in both
directions. The resulting curvature-based consistency loss is combined with the standard classifica-
tion and boundary losses, yielding an self-supervised signal that couples classification quality and
boundary localization while preserving model plasticity.

A.2 EXPERT-DRIVEN DECOUPLING

Algorithm 2 disentangles task-specific evidence for classification and localization while sharing a
common encoder. Two specialist expert stacks refine the encoder outputs in a complementary man-
ner: (i) a spatial recalibration module applies SE-style joint attention to emphasize task-relevant
joints and then uses a decoupled spatio-temporal interaction (DSTI) layer to form sequence fea-
tures; (ii) a temporal mixture of Gaussian experts operates on uniformly partitioned segments of the
sequence, where each expert produces a soft temporal mask parameterized by learnable centers and
variances. A lightweight router predicts routing scores for all experts from segment descriptors, and
the masked expert outputs are aggregated by a weighted sum. The resulting expert-refined features
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Algorithm 2 Expert-Driven Decoupling (EDD)

Require: Encoder spatial features Fs,t∈RV×T ; segment count M ; experts G; small ϵ
Ensure: Expert-refined sequence F̃ST ∈RD×T for a target head (cls or loc)

1: Spatial recalibration (SE-style) and DSTI
2: zs ← GAPt(Fs,t) ▷ Global average over time
3: a← σ

(
MLP(zs)

)
▷ σ is Sigmoid

4: F̂s,t ← Fs,t + a⊙ Fs,t ▷ Joint-wise attention
5: FST ← DSTI(F̂s,t) ▷ FST ∈ RD×T

6: Temporal Gaussian experts on uniform segments
7: S ← ⌊T/M⌋; partition FST into {F(m) ∈ RD×S}Mm=1
8: for m = 1 to M do
9: f̄ (m) ← Avgt(F

(m)) ∈ RD

10: for i = 1 to G do
11: (µ

(m)
i , σ

(m)
i )← MLPi(f̄

(m)) ▷ Centers and spreads
12: σ

(m)
i ← Softplus(σ(m)

i ) + ϵ ▷ Ensure positivity

13: g
(m)
i [s]← exp

(
− (s−µ

(m)
i )2

2(σ
(m)
i )2

)
for s=1 . . . S

14: g
(m)
i ← g

(m)
i /

(∑S
s=1 g

(m)
i [s] + ϵ

)
▷ Normalize mask

15: H
(m)
i ← F(m) ⊙ g(m)

i ▷ Time-wise weighted features
16: end for
17: τ (m) ← σ

(
MLP

(
f̄ (m)

)
Wg

)
∈ RG ▷ Routing scores

18: F̃(m) ←
∑G

i=1 τ
(m)
i H

(m)
i ▷ Soft aggregation across experts

19: end for
20: F̃ST ← Concatm

(
F̃(m)

)
▷ Back to length-T sequence

21: return F̃ST

emphasize relative temporal patterns within segments (e.g., onset, middle, end) rather than absolute
timestamps, yielding stable gradients, better generalization, and clean decoupling for the two heads.

B APPENDIX: THEORETICAL SUPPLEMENT

B.1 REPRESENTATIONAL TRAJECTORIES

A trajectory is the path an object in motion follows through space and time (Lee et al., 2007). In
feature spaces, a representation trajectory FT = {ft}Tt=1, {ft} ∈ RD in feature space is a curve
defined by sequential representations over time. Curvature at a point measures the instantaneous
rate of directional change, quantifying how much a curve bends from a straight line.

For three consecutive time points on a trajectory in feature space, t− 1, t, t+1, their corresponding
representations are respectively ft−1, ft−1, ft+1. Naturally, we can obtain two difference vectors,ft−
ft−1 andft+1 − ft. he turning angle θt between the two vectors is calculated similarly to Eq. 12:

θft = arccos
(ft − ft−1) · (ft+1 − ft)

||ft − ft−1|| · ||ft+1 − ft||
, (12)

Each turning angle θt lies in [0, π]. Thus, curvature is the rate at which the difference vector rotates
per unit length—i.e., the rate of change of direction between two difference vectors—and is given
by Eq. 13:

κft =
θft

(||ft − ft−1|| · ||ft+1 − ft||+ ϵ)
. (13)
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B.2 TRAJECTORY CURVATURE AND GEOMETRIC CONSTRAINTS

For an action subsequence belonging to a specific category Ci, its representation trajectory can be
assumed to be constrained within a hyper-sphere SCi

of radius Ri. This assumption stems from
a widely confirmed observation: Representation learning aims to construct a feature space with
good class separability. The learning process naturally clusters samples of the same class together,
resulting in distinct and compact class clusters. Well-embedded points within a specific category (or
segment) can be extracted from their category-specific sphere (Wang et al., 2022a). In other words,
the representation trajectory of intra-segment points can be constrained within a category sphere,
while the representation trajectory of inter-segment points cannot.

Consider a transition from a classCi to another classCj . Let SCj
be the other hyper-spheres of class

Cj with radius Rj . To simultaneously contain SCi
, SCj

, and the transition points between them, we
define a larger hyper-sphere with radius Rinter. By definition, it necessarily holds that Ri < Rinter

and Rj < Rinter.

Based on the temporal coherence inherent in time series (Shin et al., 2022; 2023),a simplifying
assumption is introduced: A representation trajectory FT is a Markov chain, the generation of the
next point ft satisfies two conditions: (1) Equal-step property: ft is sampled uniformly at random
from the unit hyper-sphere centered at ft−1; (2) Constrained-boundary property The entire trajectory
is contained within a larger hyper-sphere of radius: ||ft−1|| < R.

The significance of this assumption is that the equal-step-size property (Condition 1) greatly sim-
plifies the calculation of curvature. According to Eq. 13, when the step size (the denominator) is
constantly 1, the curvature of the trajectory is equivalent to its turning angle θt. This allows us to
focus on analyzing the expected value of the turning angle.

Based on the above model, we can define the mean curvature of a trajectory κFT (R) under specific
constraints:

κFT (R) =
1

||T ||
∑
t∈T

Eft|R[θt], (14)

where Eft|R[θt] is the expectation of the curvature at timestamp t with respect to the distribution of
the representations in the confining hyper-sphere of radius R.

In a more intuitive way, we analyze a special case in a 2-dimensional space. We define a simplified
model, ft is an arbitrary point on the border of a confining circle S. In this case, Eq. 14 can be
simplified as:

κFT (R) = π − 1

2
arccos

1

2R
(15)

Specifically, Let the confining circle be centered at the origin O with radius R > 1, and let ft lie
on its boundary, ∥ft∥ = R. Assume unit step size ∥ft − ft−1∥ = ∥ft+1 − ft∥ = 1, and choose
ft−1 on the line segment from O to ft so that the incoming direction aligns with the radial direction.
The next point ft+1 is sampled uniformly on the unit circle centered at ft, restricted to lie inside the
confining circle; equivalently, ft+1 lies on the intersection arc of the two circles.

With unit step size, the discrete curvature equals the turning angle θt ∈ [0, π]. Let C = ft and
consider triangle △OCP with P = ft+1 at the circle intersection. Then ∥OC∥ = R, ∥CP∥ =
1, ∥OP∥ = R,

cosψ =
R2 + 1−R2

2R · 1
=

1

2R
⇒ ψmax = arccos

( 1

2R

)
. (16)

and by the cosine rule, for ψ = ∠OCP , Geometrically, the turning angle and ψ satisfy θ = π − ψ,
hence the feasible range is θ ∈

[
π − arccos

(
1
2R

)
, π

]
.

Because ft+1 is uniform along the intersection arc, ψ is uniform on [0, ψmax], and thus θ is uniform
on [π − ψmax, π]. Therefore, the average curvature (average turning angle) is

κFT (R) = E[θ] = π − 1

2
arccos

( 1

2R

)
. (17)
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Moreover,

d

dR
κFT (R) = −

1

2R
√
4R2 − 1

< 0 (R > 1), (18)

so κFT (R) decreases monotonically with R.

Thus, when ft lies on the boundary of the smaller constraining circle, the mean curvature at ft is
higher. As R increases, the random walk has more space, so the trajectory is less likely to hit the
boundary. Consequently, when the trajectory remains inside the smaller circle, its mean curvature
decreases. The above conclusion can be generalized to higher dimensions, and the proof of the
conclusion is provided by Diao et al. (2013).

A constraint circle’s radius for an inter-segment trajectory is always larger than that for an intra-
segment trajectory, because an inter-segment trajectory passes through two different quasi-spheres.
Since κFT (R) is a decreasing function, κFT (Rintra) > κFT (Rinter).

C APPENDIX: ADDITIONAL EXPERIMENTS

This section analyzes the impact of loss weight λ, number of segments M , number of Gaussian
experts G, and window size w on performance metrics based on the four tables in the graph (Tab.
9-12). Except for the hyperparameter being examined, all other settings are fixed at their default
values.

Hyper-Parameter λ balances the curvature/boundary-aware regularization against the primary ob-
jective. Increasing λ from 0 to 2 consistently improves all metrics; further increasing to λ ≥ 3
yields slight degradation, indicating over-smoothing. At λ = 2 we obtain the best results: Acc 76.6,
Edit 66.2, F1@10/25/50 = 72.5/70.0/59.0. A moderate curvature weight strengthens boundary
contrast while preserving intra-segment details; too large values over-regularize fine structures.

Hyper-Parameter M controls the segment-level resolution (e.g., codebook/partition capacity). Per-
formance improves steadily from M = 8 to M = 64 and slightly drops at M = 128.The best
configuration is M = 64 with the same top-line metrics as above. Small M underfits (insufficient
capacity, mixing semantics); excessively large M increases variance (data sparsity per segment).
M = 64 strikes a favorable capacity–stability balance. Besides, an adaptive strategy that dynami-
cally scales M based on action density yields only marginal improvement at the cost of significantly
higher computational complexity.

Hyper-Parameter G sets the complexity of the Mixture-of-Gaussians expert module to model multi-
modal transitions. Moving from G = 1 to G = 2 yields consistent improvements, while G ≥ 3
provides diminishing returns and slight drops. The best result is at G = 2. Two experts suffice to
capture the dominant transition modes given the dataset size; larger G introduces redundancy and
less stable estimation.

Hyper-Parameter w defines the temporal context for curvature estimation/smoothing or short-range
attention. w = 10 is optimal; a too small window (w = 5) lacks context, while large windows (w ≥
40) over-smooth and blunt boundary peaks. Boundaries typically manifest as short, sharp directional
changes. A moderate window suppresses intra-segment noise without washing out changepoints.

Table 9: Effect of hyperparameter λ on model
performance

λ Acc Edit F1@{10, 25, 50}
0 75.8 65.3 71.7 69.0 57.4
1 76.4 65.2 71.7 69.3 57.8
2 76.6 66.2 72.5 70.0 59.0
3 76.1 65.5 72.1 69.6 58.1
4 75.9 64.8 71.7 68.5 57.9

Table 10: Effect of segment countM on model
performance

M Acc Edit F1@{10, 25, 50}
8 76.3 64.9 71.5 68.3 56.7
16 75.5 64.6 71.5 68.4 56.8
32 76.4 65.9 72.2 69.7 58.3
64 76.6 66.2 72.5 70.0 59.0
128 76.0 65.5 71.6 69.0 56.9
Adaptive 76.3 64.3 70.9 68.2 58.0
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Table 11: Effect of Gaussian expert countG on
model performance

G Acc Edit F1@{10, 25, 50}
1 76.3 65.4 72.0 69.7 58.4
2 76.6 66.2 72.5 70.0 59.0
3 76.4 65.0 71.7 68.7 58.1
4 75.8 64.4 71.4 68.3 57.4
5 75.0 65.3 70.9 67.8 57.6

Table 12: Effect of window size w on model
performance

W Acc Edit F1@{10, 25, 50}
5 76.3 65.1 71.1 67.9 56.7
10 76.6 66.2 72.5 70.0 59.0
20 76.0 65.3 71.8 68.6 57.0
40 76.2 64.5 71.4 68.9 56.8
80 76.2 64.3 70.3 67.4 56.3

GT

128

64

8

2

Figure 6: Curvature Improves Throughout
Training. Early epochs (e.g., 2, 8) exhibit noisy
or flat curvature signals, while the converged
model (Epoch 64, 128) exhibits distinct low-
curvature valleys at action boundaries and high-
curvature fluctuations within segments, validat-
ing our geometric assumption.

Epoch Acc Edit F1@10 F1@25 F1@50
2 74.0 73.2 78.6 75.6 64.0
8 74.4 73.0 78.5 74.9 63.7
16 74.3 74.4 79.3 76.3 65.5
128 74.3 74.4 79.3 76.3 65.5

Table 13: Training progression on PKU-
MMD (X-Sub). Curvature-guided features gain
discriminability steadily as training proceeds.

Besides, feature quality is critical for curvature estimation. Untrained classification networks pro-
duce noisy curvature, so we use staged training: the CGS module activates only after seveal warm-up
epochs. We conducted a sensitivity analysis on to find the optimal balance between feature stabiliza-
tion and joint optimization benefits. Our analysis reveals an optimal warm up epoch for curvature
guidance. Starting CGS too early on underdeveloped features is ineffective, while a proper con-
figuration ensures the formation of robust feature clusters before curvature constraints are applied,
effectively managing this dependency. As shown in Fig. 6 and Tab. 13 (Appendix C), early curva-
ture is noisy but begins reflecting action boundaries. With continued training, feature compactness
improves, further enhancing curvature quality. The gains saturate after a certain number of warm-up
rounds.

D APPENDIX: REPRODUCIBILITY STATEMENT

We detail the model and training setup in Section 3 and present the dataset, pre-processing, and
evaluation protocol in Section 4. All hyper-parameters and computational details are reported in
Appendix C. The code is included in the supplementary material.

E APPENDIX: LLM USAGE STATEMENT

We utilized a large language model (LLM) to improve the grammar, clarity, and overall readability
of this manuscript. The LLM’s role was strictly limited to language editing and polishing. All
scientific contributions, including the core ideas, methodology, experimental design, data analysis,
and conclusions, are the original work of the human authors. The use of the LLM did not alter the
scientific content or its interpretation.
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