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Abstract

Large Language Models (LLMs) often gener-001
ate hallucinations, producing outputs that are002
contextually inaccurate or factually incorrect.003
We introduce HICD, a novel method designed004
to induce hallucinations for contrastive decod-005
ing to mitigate hallucinations. Unlike existing006
contrastive decoding methods, HICD selects007
attention heads crucial to the model’s predic-008
tion as inducing heads, then induces hallucina-009
tions by dispersing attention of these inducing010
heads and compares the hallucinated outputs011
with the original outputs to obtain the final re-012
sult. Our approach significantly improves per-013
formance on tasks requiring contextual faithful-014
ness, such as context completion, reading com-015
prehension, and question answering. It also016
improves factuality in tasks requiring accurate017
knowledge recall. We demonstrate that our in-018
ducing heads selection and attention dispersion019
method leads to more "contrast-effective" hallu-020
cinations for contrastive decoding, outperform-021
ing other hallucination-inducing methods. Our022
findings provide a promising strategy for reduc-023
ing hallucinations by inducing hallucinations024
in a controlled manner, enhancing the perfor-025
mance of LLMs in a wide range of tasks.1026

1 Introduction027

Large language models(LLMs) have demonstrated028

exceptional performance across a wide range of029

NLP tasks (Brown et al., 2020; Wang et al., 2024).030

However, they are prone to hallucinations, where031

they generate content that deviates from facts or032

relevant contexts, hindering their practical appli-033

cations in real-world scenarios. To address this034

challenge, efforts have been devoted to mitigate035

knowledge hallucinations in LLMs (Kojima et al.,036

2022; Dhuliawala et al., 2023). In this work, we037

focus on mitigating hallucinations during inference038

generation (Li et al., 2024).039
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To address this, some studies have focused on de- 040

veloping effective inference-time decoding strate- 041

gies. Among these, contrastive decoding based 042

approaches have demonstrated strong performance 043

(Shi et al., 2024). However, current contrastive de- 044

coding methods typically compare the model’s in- 045

herent outputs, such as those from earlier layers or 046

smaller models, with the original outputs(Chuang 047

et al., 2024; Li et al., 2023b). Limited research has 048

explored to construct hallucinated outputs that can 049

effectively contrast with the original outputs(Sahoo 050

et al., 2024). 051

Previous work suggested that weak models have 052

the potential to harness the capabilities of stronger 053

models(Burns et al., 2024). Therefore, investi- 054

gating how to induce hallucinations to construct 055

a weak model capable of improving contrastive 056

decoding performance is a topic worth exploring. 057

Building on this, (Zhang et al., 2023b) proposed 058

inducing hallucinations in LLMs via slight fine- 059

tuning or zero-shot prompting, and mitigating them 060

through contrastive decoding with the original out- 061

puts. And there’s a method that prunes retrieval 062

heads to generate hallucinated outputs for compari- 063

son with the original outputs (Gema et al., 2024). 064

However, these hallucination-inducing methods re- 065

quire additional fine-tuning or rely on model’s inter- 066

nal parameters, limiting their adaptability in differ- 067

ent datasets. Moreover, the plausibility of the hal- 068

lucinations and their effectiveness for contrastive 069

decoding have not been validated. 070

Other works have addressed the issue of hal- 071

lucinations by focusing on model interpretability. 072

Some studies examined attention heads that play a 073

key role in output quality (Bansal et al., 2023). An- 074

other study revealed that key points causing hallu- 075

cinations in LLMs are the inconsistencies in the in- 076

formation flow integration between memory heads 077

and context heads, and effectively mitigated hal- 078

lucinations by pruning conflicting attention heads 079

(Jin et al., 2024). This suggests that targeting the 080
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Figure 1: Illustration of Hallucination-Inducing Contrastive Decoding Method(HICD). The method include
calculation of the importance scores and identification of the inducing heads (yellow), dispersing attention of
inducing heads to induce hallucinations (pink) and applying contrastive decoding for hallucination mitigation (blue).

attention heads critical to hallucinated outputs can081

effectively control hallucination generation.082

Inspired by these studies,we propose HICD, a083

method that induces hallucinations through atten-084

tion dispersion on inducing heads for contrastive085

decoding to mitigate hallucinations. To address086

the limitation that existing hallucination-inducing087

methods rely on model’s internal parameters, re-088

stricting adaptability to different datasets, we con-089

struct correct and incorrect (adversarial) samples090

by pairing questions with corresponding right and091

wrong answers. We then compute task-relevant092

importance scores for attention heads that are criti-093

cal to generating correct outputs (right heads) and094

incorrect outputs (wrong heads). Finally, we se-095

lect heads that contribute to correct outputs while096

suppressing those leading to incorrect outputs, re-097

sulting in a set of inducing heads.098

To improve the effectiveness of contrastive de-099

coding methods, the attention maps of the inducing100

heads are averaged, ensuring attention values are101

equalized across all tokens within each head. This102

redistribution disperses attention, effectively induc-103

ing hallucinated outputs optimized for contrastive104

decoding, as demonstrated by experiments. Finally,105

these hallucinated outputs are compared with the106

original model’s outputs to mitigate hallucinations.107

Our findings show that compared to existing con-108

trastive decoding methods, HICD significantly im-109

proves faithfulness in tasks requiring contextual 110

understanding, such as HellaSwag(Zellers et al., 111

2019), RACE(Lai et al., 2017), OpenBookQA (Mi- 112

haylov et al., 2018) on Llama-7b(Touvron et al., 113

2023a) and HaluEval-Sum(Li et al., 2023a) on 114

Llama2-7b(Touvron et al., 2023b). Furthermore, 115

HICD also enhances the model’s accuracy in fac- 116

tual recall tasks like TruthfulQA(Lin et al., 2022) 117

and Factor(Muhlgay et al., 2024). Our contribu- 118

tions are as follows: 119

• Task-Driven Inducing Head Selection: In- 120

ducing heads selected based on task, yield 121

more effective hallucination induction than 122

task-irrelevant selecting methods. 123

• Attention Dispersion: Averaging the atten- 124

tion maps of inducing heads increases the ef- 125

fectiveness of hallucinated outputs by allow- 126

ing context with lower relevance to the predic- 127

tion to influence the results. 128

• Contrast Effective: HICD leads to more ef- 129

fective hallucination outputs and better miti- 130

gation during contrastive decoding. 131

2 Background 132

2.1 Multi-head Attention 133

Multi-head attention is crucial in transformer-based 134

models, enabling them to capture complex depen- 135
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dencies by attending to different parts of the input136

sequence simultaneously (Halawi et al., 2023).137

Formally, given the input sequence xℓ−1 =138

[xℓ−1
1 , . . . , xℓ−1

N ] at layer ℓ, an MHA block in the139

transformer computes a set of attention heads. Each140

attention head h at layer ℓ is computed as follows:141

sℓ,h = σ

(
(Xℓ−1W ℓ,h

Q )(Xℓ−1W ℓ,h
K )T√

d/M

)
(1)142

where Xℓ−1 ∈ RN×d represents the input hid-143

den states, d is the dimensionality, and M is the144

number of heads. W ℓ,h
Q , W ℓ,h

K , and W ℓ,h
V are the145

queries, keys, and values for the h-th head, respec-146

tively. The attention score is the dot product of147

queries and keys, scaled by
√
d/M , and passed148

through the softmax function σ to get the attention149

distribution sℓ,h.150

The final attention output for the h-th head, Hℓ,h,151

is computed by:152

Hℓ,h = sℓ,hXℓ−1W ℓ,h
V (2)153

The attention output of all heads is then concate-154

nated to form the output of the MHA block:155

Aℓ = [Hℓ,1;Hℓ,2; . . . ;Hℓ,M ]W ℓ
O (3)156

where W ℓ
O is a learnable output matrix that157

projects the concatenated attention heads back to158

the desired dimensionality.159

2.2 Gradient-based Importance Score160

The gradient-based importance score quantifies the161

contribution of an attention head h to the model’s162

predictions by calculating the sensitivity of the out-163

put to changes in h (Michel et al., 2019; Bansal164

et al., 2023). Given a dataset D, the score is com-165

puted as:166

Ih(D) = E(x,y)∼D

∣∣∣∣ ∂L(y|x)
∂Ah([x; y])

∣∣∣∣ (4)167

where L(y|x) is the loss function, Ah([x; y]) is168

the output of attention head h, and (x, y) are input-169

output pairs from D. The model’s loss is computed170

using the negative log-likelihood:171

L(y|x) = − 1

Ty

Ty∑
j=1

log p(yj |x, y1:j−1) (5)172

The importance scores for all heads are effi-173

ciently computed by performing a single forward174

and backward pass over the model with D.175

3 Method 176

The overall algorithm of HICD is shown in 1. First, 177

we identify the inducing heads that are closely as- 178

sociated with generating hallucinations(3.1). Next, 179

we apply attention dispersion to these inducing 180

heads to induce task-relevant hallucinations (3.2). 181

Finally, these hallucinated outputs are compared 182

with the original model outputs through contrastive 183

decoding to alleviate hallucinations (3.3). 184

3.1 Identification of Inducing Heads 185

To discover the attention heads that are crucial for 186

correct and incorrect outputs on different datasets, 187

we define a process for identifying the final set of 188

inducing heads. We begin by constructing an ad- 189

versarial dataset D′
m based on the original dataset 190

(x, c) ∈ Tm, where m refers to the specific task, 191

x represents the context, c denotes a set of an- 192

swer choices. Given a dataset (x, c, yi) ∈ Dm, 193

where yi is the right anwser that belongs to one 194

of the choices c, and we generate the new sample 195

(x, c, yj) ∈ D′
m, where yj ∈ c \ {yi}. This results 196

in adversarial samples that pair questions with in- 197

correct answers, derived from the original dataset 198

Tm. 199

Utilizing both the correct and adversarially 200

constructed incorrect samples, we compute the 201

gradient-based importance score for each attention 202

heads, as defined in Equation 4. Based on these im- 203

portance scores Il,h(Dm) and Il,h(D
′
m), we define 204

a discrepancy correction factor Fm
l,h as: 205

Fm
l,h = Il,h(Dm)− 1

|c \ {yi}|
∑
yj

Il,h(D
′
m) (6) 206

where Il,h(Dm) and Il,h(D
′
m) represent the im- 207

portance scores in Dm and D′
m, respectively, with 208

l referring to the layer and h representing the atten- 209

tion head. The term |c \ {yi}| represents the size of 210

the set c excluding the correct answer yi. The final 211

inducing heads score in dataset Tm is defined as: 212

Sm
l,h(Dm, D′

m) = Il,h(Dm)− s · Fm
l,h (7) 213

where s is a hyperparameter scaling factor that 214

controls the influence of the discrepancy between 215

right and wrong heads on the inducing heads score. 216

We select the top km attention heads based on the 217

inducing heads score from dataset Tm. The optimal 218

number km of inducing heads for each dataset is 219

determined experimentally, as described in 4.2. For 220

further implementation details, refer to Appendix 221

A.4. 222
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3.2 Attention Dispersion for Hallucination223

Induction224

We perform attention map averaging on the induc-225

ing heads obtained in Section 3.1. Specifically,226

given the query Qℓ,h and key Kℓ,h of an inducing227

head h at layer ℓ, we apply a lower triangular mask228

M ℓ,h such that:229

M ℓ,h
ij =

{
0 if i ≥ j,

1 if i < j
(8)230

This mask is multiplied element-wise with the prod-231

uct of Qℓ,h and Kℓ,h to generate a modified query-232

key interaction matrix based on Equation 1:233

αℓ,h
new = M ℓ,h ⊙ (Qℓ,h(Kℓ,h)T )√

d/M
(9)234

where ⊙ represents the element-wise multiplication235

operation. This operation forces the lower triangu-236

lar part of αℓ,h
new to become zero. Then, in Equation237

10, applying the softmax operation σ, the attention238

values for each position are equalized, with all en-239

tries in the lower triangular part of the attention240

map being set to 1
n , where n refers to the index of241

the row in the attention matrix:242

sℓ,hinducing = σ(αℓ,h
new) (10)243

244
Hℓ,h

inducing = sℓ,hinducingX
ℓ−1W ℓ,h

V (11)245

Then, sℓ,hinducing is substituted into Equation 2 to get246

Equation 11. After obtaining Hℓ,h
inducing , the model’s247

attention towards each token position in the induc-248

ing head is equalized, thus achieving attention dis-249

persion, with the processed model called induced250

model. Experiments in 4.3 demonstrate dispersing251

attention in inducing heads induces more effective252

hallucination outputs for contrastive decoding.253

3.3 Contrastive Decoding for Hallucination254

Mitigation255

Given the induced model from Section 3.2, the goal256

of this approach is to mitigate hallucination in the257

generated output. We propose a contrastive decod-258

ing approach that contrasts the token distributions259

from the base model and the induced model,which260

is defined as a re-weighting of the next-token distri-261

butions of the base model and the induced model.262

p(xt|x<t) ∝ exp
[
(1 + α) log poriginal(xt|x<t)

(12)263264

−α log pinducing(xt|x<t)
]

265

In Equation 12, the new next-token distri- 266

bution p(xt|x < t) is derived by contrast- 267

ing the next-token distributions of the original 268

model poriginal(xt|x < t) and the induced model 269

pinducing(xt|x < t). 270

The scaling factor α ∈ R controls the relative 271

influence between the original and induced models. 272

When α > 0, the likelihood of the original model is 273

emphasized, leading to a preference for token pre- 274

dictions consistent with the output of the original 275

model. And the likelihood of the induced model 276

is penalized by the term α log pinducing(xt|x < t), 277

which discourages the selection of tokens that are 278

likely under the induced model. 279

4 Experiments 280

4.1 Experimental Setup 281

Datasets and Metrics. 1) Faithfulness evalu- 282

ation: For context completion, we evaluate on 283

HellaSwag(Zellers et al., 2019), where the goal 284

is to predict the next sentence based on con- 285

text. For reading comprehension (RACE-H and 286

RACE-M(Lai et al., 2017)), representing high 287

school and middle school levels. For question 288

answering, we use the additional subset of Open- 289

BookQA(Mihaylov et al., 2018) with a "fact1" field 290

as reference context. 2) Knowledge hallucination: 291

Evaluated with HaluEval-Sum(Li et al., 2023a), 292

using accuracy for both hallucinated and correct 293

summaries (Acc-A and Acc-H). 3) Factuality eval- 294

uation: Done with TruthfulQA(Lin et al., 2022) 295

and Factor(Muhlgay et al., 2024), measuring the 296

model’s ability to provide truthful answers (Truth- 297

fulQA) and generate factual completions (Factor). 298

Models and baselines. Our experiments are ba- 299

sically conducted with the Llama family(Touvron 300

et al., 2023a,b). We compare HICD with the fol- 301

lowing decoding methods: 1) greedy decoding, 302

which greedily selects the next token with the high- 303

est probability; 2) DoLa(Chuang et al., 2024), 304

which attempts to reduce hallucinations by con- 305

trasting output distributions from different layers 306

of the model; 3) Contrastive decoding (CD)(Li 307

et al., 2023b), which contrasts output distributions 308

from models of different scales of parameters; 4) 309

Context-Aware Decoding (CAD)(Shi et al., 2024), 310

a variant of CD where the amateur model is the 311

same as the expert model but is not presented with 312

the additional context. Details of experimental se- 313

tups and datasets are provided in Appendix A. 314
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Table 1: Performance of different models and methods on faithfulness evaluation tasks. The best performance is
indicated in bold, and the second-best is underlined. "*" means we report results of previous research. Alpaca
means using an instruction-following dataset to fine-tune. The hyperparameter settings are provided in Table 8.

Backbone Methods Hellaswag Race HaluEval-Sum OpenbookQA

Acc Middle High Acc_H Acc_A Acc

LLaMA-7b

Vanilla 0.7761 0.5642 0.4339 18.94 26.06 0.5142
+Alpaca 0.7849 0.5947 0.4806 18.31* 37.24* 0.4901
+DoLa 0.7517 0.5710 0.4462 20.41 25.91 0.4845
+CAD - 0.5772 0.4522 - - 0.5463

+HICD (Ours) 0.8423 0.5989 0.4668 27.15 27.25 0.5581

LLaMA2-7b

Vanilla 0.7832 0.5801 0.43253 24.27 48.9 0.4846
+DoLa 0.6925 0.5536 0.4070 27.78 50.31 0.4941
+CAD - 0.5898 0.4545 - - 0.5302

+HICD (Ours) 0.8433 0.5996 0.4514 37.46 52.65 0.5223

4.2 Main Results315

HICD Mitigates Faithfulness Hallucinations. Ta-316

ble 1 presents the performance of different con-317

trastive decoding methods in faithfulness-related318

tasks. HICD outperforms other methods in all tasks,319

showing significantly better contextual faithfulness.320

It achieves the highest or second-highest scores321

across tasks. Detailed parameter settings are pro-322

vided in Appendix B.323

For example, HICD achieves 84.23% accuracy324

on the HellaSwag context completion task with325

Llama-7B, a 6.6% improvement over greedy de-326

coding and a significant improvement compared327

to other methods. It also performs well on read-328

ing comprehension and question answering tasks,329

surpassing other methods on the RACE bench-330

mark and achieving competitive results on Open-331

BookQA. In the HaluEval-Sum knowledge hallu-332

cination task, HICD achieves significant improve-333

ments with Llama2-7B, scoring 37.46 (Acc-H) and334

52.65 (Acc-A), outperforming the next best results335

by 9.7% and 2.3%, respectively. Additionally, with336

Llama2-7B, HICD outperforms CAD on RACE-337

Middle, and scores comparably to CAD on RACE-338

High and OpenBookQA, securing the second-best339

performance.340

HICD Mitigates Factuality Hallucinations. Al-341

though HICD’s primary goal is to improve contex-342

tual faithfulness by mitigating hallucinations, its ef-343

fectiveness in factual consistency tasks remains an344

open question. Therefore, we also evaluate HICD345

on TruthfulQA and Factor tasks, where the model346

is required to generate factually accurate outputs.347

Besides comparing with the previously mentioned348

baselines, we also compare with the model fine-349

tuned on the Alpaca dataset(Taori et al., 2023).350

Table 2: Performance of different decoding methods
on factuality evaluation tasks. The best performance
is indicated in bold, the second-best is underlined. "*"
means we report results of previous research.

Methods TruthfulQA FACTOR

MC1 MC2 MC3 WIKI NEWS

LLaMA-7b 23.62 41.21 19.33 0.5855 0.5840
+Alpaca 22.88 52.47 25.19 0.5711 0.5820
+DoLa 31.95 52.21 28.17 0.6196 0.6168
+13b-CD 24.40 41.01 19.03 0.6411 0.6190
+HICD 25.45 53.71 26.52 0.6058 0.6197

LLaMA2-7b 28.51 43.30 22.40 0.5898 0.7203
+DoLa 34.51 55.91 28.81 0.6325 0.7268
+13b-CD 28.15* 54.87* 29.75* - -
+HICD 23.99 51.28 25.89 0.6069 0.7346

In Table 2, we can see that HICD improves the 351

accuracy of the model in factual consistency tasks. 352

Specifically, on the multiple choice task in Truth- 353

fulQA, with Llama-7B, HICD achieves competitive 354

results across all metrics compared to the baselines, 355

surpassing DoLa and Alpaca on the MC2 metric. 356

In the Factor task, for all models, although HICD 357

achieves slightly lower scores compared to 13B- 358

CD and DoLa in Wiki dataset, it achieves the high- 359

est score in the News Factor dataset. More detailed 360

results analyses are shown in Appendix C. 361

4.3 More Analysis 362

Effect of inducing heads number on task per- 363

formance of HICD. We further analyze the rela- 364

tionship between the number of inducing heads and 365

downstream task performance with the LLaMA-7B 366

model. The results, represented by all red lines in 367

Figure 2, provide insight into this relationship. 368

For contextual faithfulness tasks, we adjust the 369

number of Topk heads to identify the optimal num- 370

ber of inducing heads. For the OpenBookQA and 371

RACE-High tasks, a strong correlation between 372
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Figure 2: Effect of inducing head number on task performance. The red lines represent our HICD method, using
average attention over inducing heads to induce hallucinations. The blue lines show the head-pruning method from
prior research, where inducing heads are pruned (implementation details in Appendix C.1). The green dashed line
represents the baseline model without hallucination induction. Spearman correlation coefficient r measures the
correlation between inducing heads and task performance. The parameter α and s tuning are shown in Appendix B.

the number of inducing heads and accuracy. We373

attribute this to the strong dependence on the ad-374

ditional context provided in the datasets for mak-375

ing predictions. As a result, the inducing heads,376

which are crucial for capturing context relevant to377

the correctness of the model’s predictions, play an378

indispensable role. Increasing the number of in-379

ducing heads enables the model to generate more380

context-aware hallucinations, improving the effec-381

tive of contrastive decoding and task performance.382

However, for HellaSwag and RACE-Middle, perfor-383

mance peaks at 30 inducing heads and decreases384

with further increases. We hypothesize that beyond385

a threshold, adding more inducing heads harms386

output, making contrastive decoding less effective387

and hindering performance. This is consistent with388

(Bansal et al., 2023), which observed that removing389

a significant percentage of attention heads greatly390

reduces model performance.391

For factuality tasks, such as TruthfulQA, a mod-392

erate correlation is observed between the number393

of inducing heads and various metrics, with Spear-394

man correlations for MC1, MC2 at 0.48, 0.65, re-395

spectively. However, the impact on performance396

is limited. For example, MC1 accuracy improves397

by just 1.8 points on TruthfulQA, while accuracy398

for Wiki Factor and News Factor increases by 1.3%399

and 3.5%. We believe that hallucinations induced400

in factuality tasks are are less "contrast-effective"401

than in contextual tasks. As shown in Figure 2, hal-402

lucinations induced with fewer heads can even ad-403

versely affect contrastive decoding. Consequently,404

the hallucination mitigation effect of HICD is less405

prominent in factuality tasks, as the number of 406

inducing heads changes. Nevertheless, in all exper- 407

iments, HICD produces more accurate results than 408

the baseline. Detailes analyses see Appendix B.3. 409

Comparison with Other Hallucination-Inducing 410

Methods. HICD demonstrates an ability to induce 411

more "contrast-effective" hallucinations compared 412

to other methods. We compare HICD with the 413

following methods, as detailed in Appendix E: 414

• Prompt-based: A prompt is used to force 415

LLMs to generate fabricated information to 416

induce hallucinations. 417

• SH2-based: Low-information tokens are 418

prepended to the context to shift the model’s 419

attention to unrelated content to induce hallu- 420

cinations(Kai et al., 2024). 421

• PASTA-based: Attention steering is ap- 422

plied by increasing the attention weights of 423

low-importance tokens to induce hallucina- 424

tion(Zhang et al., 2023a). 425

• Cut-based: Inducing heads are directly 426

masked to trigger hallucinations. 427

As shown in Figure 2, in most tasks, the Cut- 428

based method (blue lines) exhibits a weaker abil- 429

ity to mitigate hallucinations at the optimal num- 430

ber of inducing head compared to the Ave-based 431

approach HICD (red lines). From the results in 432

Table 3, HICD consistently outperforms both the 433

Prompt-based and PASTA-based method in most 434

datasets. This is especially evident in contextual 435

faithfulness tasks, where HICD achieves the best 436

overall performance. 437
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Table 3: Comparison of different hallucination-inducing methods across various evaluation tasks: Prompt-based,
which uses a prompt to compel LLMs to provide fabricated information for contrast; PASTA-based, which employs
attention steering to enhance the weights of low-importance tokens for inducing hallucinations; SH2-based, which
prepends low-information tokens to redirect the model’s attention toward unrelated context to induce hallucinations;
Cut-based, which directly masks inducing heads to trigger hallucinations.

Methods Hellaswag Race HaluEval-Sum OpenbookQA TruthfulQA FACTOR

Acc Middle High Acc_H Acc_A Acc MC1 MC2 MC3 WIKI NEWS

Vanilla 0.7760 0.5641 0.4339 18.94 26.06 0.5142 23.62 41.21 19.33 0.5855 0.5841
+Prompt 0.8025 0.5721 0.4454 21.61 25.82 0.5314 28.02 43.55 22.51 0.5841 0.5897
+PASTA 0.7859 0.5883 0.4408 26.57 29.25 0.5302 25.21 40.14 20.28 0.5955 0.5868
+SH2 0.7971 0.5927 0.4436 25.96 26.01 0.5421 28.51 48.85 25.10 0.6279 0.6235
+Cut 0.8035 0.5829 0.4628 22.83 30.95 0.5402 25.09 51.83 26.33 0.6014 0.5932
+HICD 0.8423 0.5989 0.4668 27.15 27.21 0.5581 25.45 53.71 26.50 0.6058 0.6197

Table 4: In-domain and out-of-domain evaluation. Each row represents the performance of inducing heads, selected
from different tasks, on a specific evaluation task. The best performance for each task is indicated in bold.

Metric OpenbookQA TruthfulQA Race High Halleswag Factor News Race Middle Factor Wiki HaluEval-Sum Baseline

OpenbookQA 0.558 0.544 0.522 0.544 0.542 0.526 0.528 0.542 0.514
TruthfulQA 33.46 35.14 32.30 34.90 34.11 33.96 31.20 33.85 28.05
Race High 0.453 0.457 0.469 0.454 0.451 0.449 0.445 0.458 0.434
Halleswag 0.813 0.827 0.804 0.842 0.808 0.834 0.809 0.808 0.776
Factor News 0.585 0.588 0.575 0.583 0.619 0.589 0.571 0.581 0.584
Race Middle 0.583 0.588 0.568 0.596 0.563 0.598 0.572 0.581 0.564
Factor Wiki 0.588 0.583 0.576 0.581 0.572 0.584 0.605 0.590 0.585
HaluEval-Sum 24.85 26.07 24.83 20.61 23.36 27.31 24.05 35.22 22.51

Figure 3: Spearman correlation coefficients for induc-
ing heads score ranking across different tasks. Higher
correlation coefficients indicate that the inducing heads
selected more similarly.

Although SH2-based method for inducing hal-438

lucination outperforms HICD on specific factual-439

ity tasks, such as the TruthfulQA in MC1 metric440

and the FACTOR datasets, the overall results indi-441

cate that HICD has a greater potential for inducing442

"contrast-effective" hallucinations. This advantage443

makes HICD particularly effective in mitigating444

hallucinations while maintaining superior perfor-445

mance in a wide range of evaluation tasks.446

In-domain and Out-of-domain Inducing Head447

Evaluation. We evaluate the performance of in-448

domain and out-of-domain inducing head selection449

method, with the results presented in Table 4. For 450

the in-domain setup, the inducing heads are se- 451

lected using the specific task dataset and evaluated 452

on the same task. For the out-of-domain setup, the 453

inducing heads are selected from a task dataset and 454

tested on different tasks. 455

The highest performance is consistently obtained 456

from in-domain inducing heads. This demonstrates 457

that task-relevant, in-domain head selection out- 458

performs out-of-domain selection methods across 459

all datasets, significantly improving model perfor- 460

mance. Moreover, the results for out-of-domain 461

inducing heads are generally better than baseline 462

methods, indicating that the HICD approach ex- 463

hibits a certain degree of generalizability across 464

different datasets and tasks. 465

The performance of out-of-domain inducing 466

heads is related to the correlation between in- 467

domain and out-of-domain heads rankings. As 468

the correlation between out-of-domain and in- 469

domain inducing heads increases, their perfor- 470

mance becomes more similar, with results pre- 471

sented in Figure 3. For example, the inducing heads 472

from Race Middle, TruthfulQA, and HaluEval- 473

Sum exhibit relatively high ranking similarity with 474

OpenBookQA. Therefore, the out-of-domain heads 475

from these tasks show performance that is notably 476

closer to the in-domain OpenBookQA heads com- 477

7



Figure 4: Visualization of the relationship between to-
ken confidence and the norm f(x), where a subset of
high-confidence tokens corresponds to higher f(x).

pared to other out-of-domain heads, as seen in Ta-478

ble 4. Similarly, the Factor (News and Wiki) tasks479

exhibit relatively lower Spearman correlation with480

other tasks, leading to similar performance among481

the Factor’s out-of-domain heads, which shows482

a significant gap in performance compared to in-483

domain heads. See details in Appendix F.484

Analysis of Attention Map Averaging vs. Head485

Cutting in Inducing Effective Hallucinations.486

The attention mechanism transforms each input487

vector x into a norm f(x), calculates the attention488

weights α, then computes the output αf(x). Com-489

pared to α, the f(x) plays the dominant role in490

controlling the attention of the high-frequency and491

low-information tokens (Kobayashi et al., 2020).492

Besides, a higher token confidence corresponds to493

a lower information content (Kai et al., 2024).494

Building on these intuitions, we analyze the re-495

lationship between token confidence and the norm496

f(x), as illustrated in Figure 4. Most tokens exhibit497

low f(x) values, but a subset of high-confidence,498

low-information tokens corresponds to higher f(x)499

values. We hypothesize this strengthens the final500

attention values at the positions of low-information501

tokens. Figure 5 compares the cosine similarity502

of the ||f(x)|| and ||αf(x)||(attention output) at503

different token positions across three methods. As504

shown, Ave Head results in higher similarity be-505

tween ||f(x)|| and ||αf(x)|| than the others, in-506

creasing the dominance of ||f(x)|| in determining507

the final attention values. Thus, HICD applies at-508

tention map averaging makes α uniform across all509

positions, with the final attention determined by510

f(x). Higher values of f(x), dominated by low-511

information tokens, exert a greater influence.512

To further illustrate the impact of attention aver-513

aging on model’s outputs. Based on (Wang et al.,514

Figure 5: Cosine similarity of the output norms ||f(x)||
and ||αf(x)||(attention output) at different token po-
sitions under the methods: None, Cut Head, and Ave
Head. Ave Head shows a higher similarity, allowing
||f(x)|| to dominate the final attention values.

Figure 6: Visualization of the information flow, Ave
head increases the importance of information flow from
more tokens, leading to spread-out attention distribution
and more plausible hallucinations.

2023), we visualize the information flow in Fig- 515

ure 6. Compared to other methods, Ave Head in- 516

creases the importance of information flow from 517

more tokens to the token being predicted, making 518

the model consider the impact of other irrelevant 519

low-information tokens. This makes the halluci- 520

nated outputs seem more plausible and meaningful. 521

5 Conclusion 522

In this paper, HICD are introduced to induce hal- 523

lucinations on inducing heads for contrastive de- 524

coding to mitigate hallucinations. Experiments on 525

several tasks show that HICD outperforms existing 526

methods in contextual tasks and achieves compet- 527

itive results in factual consistency tasks. We also 528

find that selecting task-relevant inducing heads im- 529

proves performance compared to out-of-domain 530

selections. And attention averaging induces more 531

contrast-effective hallucinations compared to other 532

methods. Our work opens new directions for hal- 533

lucination induction and mitigation, providing a 534

promising strategy to reduce hallucinations and en- 535

hance LLM robustness across tasks. 536
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6 Limitations537

The HICD method shows strong improvements in538

hallucination mitigation, but it has several limi-539

tations. First, its effectiveness depends on task-540

relevant induced head selection, which may not541

generalize well to all tasks, especially those under-542

represented in training data. Second, attention map543

averaging for hallucination induction can be com-544

putationally expensive, particularly for larger mod-545

els and datasets, making scalability a concern for546

real-time or resource-limited applications. Lastly,547

the method’s performance relies on the quality of548

adversarial data, and future work should explore549

how different adversarial data construction meth-550

ods impact performance across various tasks and551

domains.552
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A Experimental Setup Details756

A.1 Datasets and Metrics757

1) Faithfulness Evaluation758

For faithfulness evaluation, we use the following759

tasks:760

• Context Completion (HellaSwag): Hel-761

laSwag (Zellers et al., 2019) is a dataset de-762

signed to evaluate the ability of a model to763

predict the next sentence based on context.764

It contains multiple-choice questions that re-765

quire the model to select the most plausible766

continuation of a given context. The task767

tests how well the model maintains context768

coherence and handles commonsense reason-769

ing. We use the validation split of HellaSwag,770

which contains 10,042 examples. The dataset771

can be accessed at: https://huggingface.772

co/datasets/Rowan/hellaswag.773

• Reading Comprehension (RACE): RACE774

(Lai et al., 2017) is a reading comprehension775

dataset that contains two subsets: RACE-H776

(high school) and RACE-M (middle school).777

The dataset consists of questions based on778

passages, requiring the model to select the779

correct answer. RACE tests the model’s abil-780

ity to understand and reason about the con-781

text of longer text. We use the test split of782

RACE, with RACE-H containing 3,498 ex-783

amples and RACE-M containing 1,436 exam-784

ples. The dataset is available at: https://785

huggingface.co/datasets/ehovy/race.786

• Question Answering (OpenBookQA):787

OpenBookQA (Mihaylov et al., 2018) is a788

dataset designed to evaluate a model’s ability789

to answer scientific questions. It consists790

of two subsets: main and additional. The791

additional subset provides a ’fact1’ field as792

a reference context, which contains core793

scientific facts related to the question. In794

our evaluation, we use the additional subset795

and treat ’fact1’ as the contextual input for796

the model. We use the test split of the addi-797

tional subset, which contains 500 examples.798

This task assesses the model’s ability to799

recall and apply scientific knowledge in a800

reasoning context. The dataset is available801

at: https://huggingface.co/datasets/802

allenai/openbookqa.803

2) Knowledge Hallucination Evaluation 804

To assess the extent of hallucinations generated 805

by the model, we utilize the following task: 806

• HaluEval-Sum: HaluEval (Li et al., 2023a) is 807

used to evaluate hallucinations in summaries 808

generated by the model. This dataset includes 809

10,000 samples, where each sample consists 810

of a document, a hallucinated summary, and 811

a correct summary. The task involves deter- 812

mining whether a summary contains factual 813

inconsistencies or hallucinations. The perfor- 814

mance of the model is evaluated using two 815

metrics: The dataset can be accessed at: 816

– Arithmetic-mean accuracy (Acc-A): The 817

mean accuracy for both hallucinated and 818

correct summaries. 819

– Harmonic-mean accuracy (Acc-H): The 820

harmonic mean of the accuracy for hal- 821

lucinated and correct summaries. Acc-H 822

provides a more balanced view, penaliz- 823

ing imbalances between the two types of 824

summaries. 825

The dataset can be accessed at: https: 826

//github.com/RUCAIBox/HaluEval/blob/ 827

main/data/summarization_data.json. 828

3) Factuality Evaluation 829

For evaluating factual consistency, we use the 830

following datasets: 831

• TruthfulQA: TruthfulQA (Lin et al., 2022) 832

is a dataset designed to test the truthfulness 833

of language models. It consists of multiple- 834

choice questions where the model must select 835

the correct answer from a set of options. The 836

dataset includes three metrics for evaluating 837

the model’s truthfulness. We use the vali- 838

dation split of the multiple-choice subset, 839

which contains 817 examples. The dataset 840

is available at:https://huggingface.co/ 841

datasets/truthfulqa/truthful_qa/ 842

viewer/multiple_choice. 843

• FACTOR (Wiki and News): The FACTOR 844

dataset (Muhlgay et al., 2024) focuses on fac- 845

tual consistency, requiring the model to se- 846

lect the correct completion of a text from 847

factual and non-factual alternatives. It in- 848

cludes two subsets: Wiki-FACTOR and News- 849

FACTOR, with 2,994 and 1,036 examples, re- 850

spectively. The task tests the model’s ability 851
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to generate factually accurate outputs. The852

dataset is available at:https://github.com/853

AI21Labs/factor/tree/main/data.854

A.2 Models and Baselines855

We conduct our experiments with the Llama family856

of models (Touvron et al., 2023a,b). The following857

baseline methods are used for comparison:858

• Greedy Decoding: This baseline method se-859

lects the next token greedily by choosing the860

one with the highest probability at each step.861

It is the simplest form of decoding and serves862

as a baseline for comparison with more ad-863

vanced methods.864

• DoLa: DoLa (Chuang et al., 2024) is a con-865

trastive decoding method that attempts to re-866

duce hallucinations by contrasting the out-867

put distributions of different layers of the868

model. This method aims to enhance the869

factuality of the generated text by comparing870

the outputs from various layers. The method871

code is available at: https://github.com/872

voidism/DoLa.873

• Context-Aware Decoding (CAD): CAD (Shi874

et al., 2024) is a variant of contrastive decod-875

ing that involves two models: the first model,876

which has access to the full context during877

decoding, and the second model, which is878

the same architecture but lacks access to the879

additional context. By contrasting their out-880

puts, CAD amplifies the difference in perfor-881

mance when the model has context, helping882

it focus more on the provided context. This883

improves the model’s faithfulness, particu-884

larly when the context introduces new or con-885

tradictory information. The method code is886

available at: https://github.com/xhan77/887

context-aware-decoding.888

• Contrastive Decoding (CD): CD (Li et al.,889

2023b) is a well-established contrastive de-890

coding method that contrasts the token dis-891

tributions of models with different param-892

eter scales. This approach aims to re-893

duce hallucinations by comparing the out-894

puts of smaller(7b) models with larger(13b),895

more powerful models. The method896

code is available at: https://github.com/897

XiangLi1999/ContrastiveDecoding.898

Table 5: Inference time for different datasets using a
single Tesla V100 (32GB) GPU.

Dataset Number of Examples Inference Time

HellaSwag 10,042 82 m
RACE-M 1,436 14 m
RACE-H 3,498 52 m
OpenBookQA 500 3 m
TruthfulQA 817 18 m
FACTOR-Wiki 2,994 40 m
FACTOR-News 1,036 13 m
HaluEval-Sum 10,000 15 h

A.3 Computational Resources and Software 899

Libraries 900

Model and Computational Resources. All exper- 901

iments were conducted using the Llama2 , Alpaca3 902

and Llama24 models, both of which have 7 billion 903

parameters. We test the inference experiments exe- 904

cuted on a single Tesla V100 GPU (32GB) without 905

GPU parallelism. The approximate runtime for 906

inference on different datasets show in Table 5. 907

Software and Implementations. We utilized Py- 908

Torch5 , and Transformers6 . The Transformers 909

library was modified to support head masking and 910

attention map averaging. Additionally, Baukit7 911

and lm-evaluation-harness8 were used in our imple- 912

mentation.The modifications to the Transformers 913

library primarily focused on adding a head_mask 914

attribute to control inducing heads and implement- 915

ing attention map averaging . 916

This setup ensures that our experimental results 917

are reproducible and that sufficient computational 918

resources were allocated for evaluating model per- 919

formance across multiple benchmarks. 920

For the reported experimental results, we set the 921

random seed to 42 for all runs to ensure repro- 922

ducibility. The results presented are based on the 923

maximum performance observed across multiple 924

runs with the same seed. Specifically, for each 925

dataset, we ran experiments using a fixed seed and 926

report the highest accuracy obtained across differ- 927

ent validation or test splits. We emphasize that 928

these results represent the best-performing config- 929

urations under this particular seed setting. Addi- 930

tionally, while the results are based on a single 931

random seed for consistency, future work could 932

2https://huggingface.co/huggyllama/llama-7b
3https://huggingface.co/wxjiao/alpaca-7b
4https://huggingface.co/meta-llama/

Llama-2-7b-hf
5https://github.com/pytorch/pytorch
6https://github.com/huggingface/transformers
7https://github.com/davidbau/baukit
8https://github.com/EleutherAI/

lm-evaluation-harness
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benefit from running experiments across multiple933

seeds to better assess the stability and reliability of934

the model’s performance.935

A.4 Identification of Inducing Heads936

In this subsection, we focus on how to construct ad-937

versarial data using incorrect answer options from938

the original dataset. By utilizing these adversar-939

ial samples, we calculate the importance scores940

for attention heads that are crucial for predicting941

incorrect answers, referred to as "wrong heads."942

This process allows us to evaluate the impact of943

these heads on the model’s performance in gen-944

erating erroneous outputs. We directly utilize the945

other answer choices in the dataset (which are not946

the correct answer) and treat them as adversarial947

labels. Using the gradient-based importance scor-948

ing method, we compute the importance scores for949

each attention head that influences the model’s deci-950

sion towards a wrong answer. The higher the score,951

the more important that head is in contributing to952

the model’s incorrect response. We then compute953

the average importance score for the heads corre-954

sponding to all adversarially constructed data and955

use this average score as the final importance score956

for the "wrong heads."957

In parallel, we also compute the importance958

scores for "right heads" using the original correct959

answers. These heads are critical in generating960

correct outputs, and their scores provide insights961

into the attention heads responsible for guiding the962

model toward accurate decisions.963

The final inducing heads score is determined by964

combining the scores of both "right" and "wrong"965

heads. This allows us to identify which heads are966

most influential in guiding the model’s decisions967

towards outputs. The optimal number of inducing968

heads is chosen based on the combined importance969

scores, as detailed in Section 4.2.970

B Parameter Settings Analysis and971

Hyperparameter Tuning972

Table 3 has demonstrated the impact of selecting973

top-k inducing heads on model performance across974

different tasks. In this section, we provide a de-975

tailed account of the parameter configurations used976

in our experiments, including the hyperparameter977

values and their corresponding evaluation results.978

As shown in Table 6, we investigate the effect of979

the hyperparameter α on model performance while980

Table 6: Ablation study showing the effect of Alpha on
the evaluation results, with fixed Scale and Top-k.

Task Alpha Scale,
Top-k

Evaluation

HellaSwag 0.7 20, 30 0.8325
0.9 20, 30 0.8379
1.1 20, 30 0.8422
1.3 20, 30 0.8421
1.5 20, 30 0.8413
1.7 20, 30 0.8424

Race Middle 0.5 10, 30 0.5974
0.7 10, 30 0.5988
0.9 10, 30 0.5968
1.1 10, 30 0.5912
1.3 10, 30 0.5863
1.5 10, 30 0.5856

Race High 0.5 50, 70 0.4594
0.7 50, 70 0.4608
0.9 50, 70 0.4628
1.1 50, 70 0.4599
1.3 50, 70 0.4637

OpenbookQA 0.6 1, 70 0.544
0.8 1, 70 0.558
1.0 1, 70 0.542
1.2 1, 70 0.538
1.4 1, 70 0.546

TruthfulQA -1.0 10, 70 0.2386
0.4573
0.2387

-3.0 10, 70 0.2533
0.4852
0.2589

-5.0 10, 70 0.2533
0.5105
0.2641

-6.0 10, 70 0.2545
0.5339
0.2644

-7.0 10, 70 0.2521
0.5187
0.2638

Factor News 0.3 10, 70 0.5984
0.38 10, 70 0.6197
0.42 10, 70 0.6003
0.44 10, 70 0.6004
0.5 10, 70 0.5984

Factor Wiki 0.38 20, 70 0.5935
0.5 20, 70 0.6058
0.8 20, 70 0.5931
1.0 20, 70 0.5945
1.3 20, 70 0.5902

HaluEval-Sum 0.3 20, 30 25.31
26.50

0.5 20, 30 26.01
26.70

0.7 20, 30 26.44
26.75

0.9 20, 30 27.15
27.25

1.1 20, 30 27.02
27.15

keeping Scale s and Top-k fixed. Similarly, in Table 981

7, we explore how Scale s influences performance 982
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while keeping α and Top-k fixed.983

B.1 Effect of α (Alpha)984

The α parameter controls the relative weighting985

between the original model and the hallucination-986

induced model during contrastive decoding (Equa-987

tion 12). A higher α amplifies the suppression of988

hallucinated outputs, while a lower α allows more989

hallucination-driven tokens.990

As seen in Table 6, the effect of α on model991

performance varies by task. For example, in Hel-992

laSwag, increasing α from 0.7 to 1.1 leads to a993

steady improvement, but further increases provide994

diminishing returns, with performance stabilizing995

around α = 1.3. A similar trend is observed in996

Race Middle, where performance peaks at α = 0.7,997

after which further increases cause a decline. In998

contrast, for TruthfulQA, a significantly larger neg-999

ative value of α = −6.0 provides optimal perfor-1000

mance. In our experiments, we found that a neg-1001

ative α forces the model to prioritize the halluci-1002

nated outputs generated by the induced model over1003

the original model’s outputs. For TruthfulQA, this1004

leads to a more effective combination of the origi-1005

nal model and the inducing model outputs, improv-1006

ing the overall performance. For Factor tasks, the1007

effect of changing α was less pronounced, which1008

may be due to the inducing hallucinations not be-1009

ing as contrast-effective in these tasks compared to1010

others. This suggests that hallucinations induced1011

in Factor tasks do not contribute as effectively to1012

contrastive decoding, leading to relatively smaller1013

performance improvements when adjusting α.1014

B.2 Effect of Scale Parameter1015

The Scale parameter s determines the weight of1016

the discrepancy correction factor applied during1017

inducing head selection (Equation 4). It adjusts1018

how much difference in importance scores between1019

correct and incorrect outputs influences the final1020

inducing head score.1021

As shown in Table 7, the optimal Scale value1022

varies in different tasks, with each task exhibiting1023

a distinct best value for Scale s. Scale s effec-1024

tively adjusts the importance scores of the induc-1025

ing heads, which in turn influences the selection1026

of more contrast-effective inducing heads. For in-1027

stance, in the HellaSwag task, the performance1028

peaks at s = 20, while in Race Middle, the best1029

performance is achieved at s = 10. Compared1030

to α, the effect of s on performance is relatively1031

subtle, as it primarily changes the scores used to1032

Table 7: Ablation study showing the effect of Scale on
the evaluation results, with fixed Alpha and Top-k.

Task Scale Alpha,
Top-k

Evaluation

HellaSwag 10 1.1, 30 0.8326
20 1.1, 30 0.8422
30 1.1, 30 0.7491
50 1.1, 30 0.7422
70 1.1, 30 0.7310
100 1.1, 30 0.7367

Race Middle 1 0.7, 30 0.5968
10 0.7, 30 0.5988
20 0.7, 30 0.5842
50 0.7, 30 0.5842
70 0.7, 30 0.5815
100 0.7, 30 0.5864

Race High 1 1.3, 70 0.4603
10 1.3, 70 0.4643
20 1.3, 70 0.4631
50 1.3, 70 0.4651
70 1.3, 70 0.4634
100 1.3, 70 0.4668

OpenbookQA 1 0.8, 70 0.5441
10 0.8, 70 0.5582
20 0.8, 70 0.5380
30 0.8, 70 0.5364
50 0.8, 70 0.5307

TruthfulQA 1 -6, 70 0.2264
0.5019
0.2501

10 -6, 70 0.2545
0.5339
0.2644

30 -6, 70 0.2337
0.5177
0.2538

50 -6, 70 0.2423
0.5209
0.2613

100 -6, 70 0.2386
0.5188
0.2588

Factor News 1 0.38, 70 0.5917
10 0.38, 70 0.6197
30 0.38, 70 0.5782
50 0.38, 70 0.5782
70 0.38, 70 0.5839

Factor Wiki 1 0.5, 70 0.5961
10 0.5, 70 0.5962
30 0.5, 70 0.6058
50 0.5, 70 0.5961
70 0.5, 70 0.5958

HaluEval-Sum 20 0.9, 30 27.15
27.25

100 0.9, 30 25.45
25.70

select inducing heads rather than directly impacting 1033

the final output. This indicates that while s changes 1034

the hallucination induction process by altering the 1035

selection of inducing heads, it does not drastically 1036

impact the model’s overall contrastive decoding 1037

performance. 1038
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B.3 Effect of Inducing Head Selection (Top-k)1039

The number of inducing heads (Top-k) plays a cru-1040

cial role in determining the extent of hallucination1041

induction and contrastive decoding effectiveness.1042

As observed in Figure 2, different tasks achieve1043

peak performance at different Top-k values. In Hel-1044

laSwag selecting 30 inducing heads yields optimal1045

results, whereas OpenBookQA performs best with1046

70 inducing heads. This suggests that different1047

tasks have different sensitivities to hallucination in-1048

duction, and optimal Top-k values should be deter-1049

mined based on task-relevant characteristics rather1050

than a fixed number across all tasks.1051

As shown in Table 9, selecting an appropriate1052

Top-k value improves the performance of the model1053

on various tasks. For example, in HellaSwag, se-1054

lecting 30 inducing heads yields the highest accu-1055

racy of 0.8423, while in RACE High, the optimal1056

number of inducing heads is 70, resulting in an1057

accuracy of 0.4637. In OpenBookQA, selecting 701058

inducing heads also provides the best performance1059

with an accuracy of 0.558. From the extent of the1060

impact of varying the selected Top-k on perfor-1061

mance,we confirm that Top-k selection plays a cru-1062

cial role in optimizing the model’s performance by1063

effectively inducing hallucinations for contrastive1064

decoding.1065

In tasks like TruthfulQA, the optimal Top-k selec-1066

tion varies depending on the evaluation metric. For1067

instance, the MC1, MC2, and MC3 scores achieve1068

peak values at Top-k = 70, which suggests that the1069

inducing heads selected at this value help the model1070

focus on the right hallucinations to improve factual1071

correctness across the multiple-choice questions.1072

Similarly, for Race Middle, the performance im-1073

proves as Top-k increases, with 30 inducing heads1074

yielding the best results. However, increasing Top-1075

k further leads to diminishing returns, emphasizing1076

the importance of selecting an optimal number of1077

heads for each task.1078

These findings suggest that while increasing1079

the number of inducing heads can enhance perfor-1080

mance up to a certain point, there exists an optimal1081

threshold beyond which adding more heads does1082

not yield further benefits. In fact, as the number1083

of inducing heads continues to increase, the hallu-1084

cinations inducing become less contrast-effective1085

and can even lead to worse performance compared1086

to the original model outputs. This indicates that1087

hallucination induction should be balanced. An1088

excessive number of inducing heads can introduce1089

Table 8: Final hyperparameter configurations for each
task, optimized based on performance across evaluation
metrics.

Task Alpha Scale Top-k

HellaSwag 1.1 20 30
Race Middle 0.7 10 30
Race High 1.3 50 70
OpenBookQA 0.8 1 70
TruthfulQA -6.0 10 70
Factor News 0.38 10 70
Factor Wiki 0.5 20 70
HaluEval-Sum 0.9 20 30

noise, diluting the effectiveness of the contrastive 1090

decoding process. Therefore, it is crucial to fine- 1091

tune Top-k based on task-relevant characteristics to 1092

maintain the effectiveness of hallucination induc- 1093

tion without surpassing the point of diminishing 1094

returns. The results with Llama2-7b are shown in 1095

Table 11. 1096

B.4 Final Hyperparameter Selection 1097

After extensive tuning, we summarize the optimal 1098

hyperparameter configurations in Table 8. These 1099

values were selected based on maximizing perfor- 1100

mance across all evaluation metrics while ensuring 1101

stable and reliable contrastive decoding. 1102

Overall, our analysis highlights the importance 1103

of careful hyperparameter tuning in balancing hal- 1104

lucination induction and mitigation. The results 1105

demonstrate that an appropriate combination of 1106

α, Scale, and Top-k effectively enhances model 1107

robustness in contrastive decoding, with different 1108

tasks requiring distinct configurations to achieve 1109

optimal performance. 1110

C Additional Results and Analysis 1111

C.1 Head Pruning Method in Our 1112

Experiments 1113

In our experiments, the head-pruning method is 1114

implemented by directly setting the inducing heads 1115

to be inactive. This process effectively "prunes" the 1116

selected heads by disabling them in the attention 1117

mechanism. Specifically, this involves setting the 1118

attention values of the chosen inducing heads to 1119

zero, which ensures that these heads do not con- 1120

tribute to the final output. As a result, the output 1121

from the pruned heads is excluded from the over- 1122

all attention computation, effectively simulating a 1123

head pruning. This method serves as a baseline 1124

for comparison with the HICD method, where hal- 1125

lucinations are induced by averaging the attention 1126

maps of selected heads. 1127
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Table 9: Ablation study showing the effect of Top-k
inducing heads on model performance across various
tasks.

Task Top-k Acc / MC

Factor Wiki 0 0.5855
10 0.5895
30 0.5858
50 0.5879
70 0.6058
90 0.5873

Factor News 0 0.5841
10 0.5833
30 0.5927
50 0.5753
70 0.6197
90 0.5724

TruthfulQA 0 23.62 41.21 19.33
10 21.78 39.14 19.54
30 21.54 46.67 24.19
50 20.56 45.99 23.62
70 25.21 53.70 26.50
90 25.33 46.30 27.50

HaluEval-Sum 0 18.94 26.06
10 21.38 24.33
30 27.15 27.25
50 26.31 25.86
70 22.41 23.12
90 19.42 21.04

HellaSwag 0 0.7801
10 0.8140
30 0.8424
50 0.8372
70 0.8239
90 0.7945

OpenbookQA 0 0.5141
10 0.5123
30 0.5325
50 0.5567
70 0.5581
90 0.5423

Race High 0 0.4320
10 0.4379
30 0.4388
50 0.4545
70 0.4637
90 0.4614

Race Middle 0 0.5740
10 0.5731
30 0.5989
50 0.5926
70 0.5843
90 0.5933

C.2 Spearman Correlation Coefficient r1128

The Spearman correlation coefficient r is a non-1129

parametric measure of statistical dependence be-1130

tween two variables. It assesses how well the re-1131

lationship between two variables can be described1132

using a monotonic function. In the context of our1133

study, we use the Spearman correlation coefficient1134

to quantify the relationship between the number of 1135

inducing heads and the performance of the down- 1136

stream tasks. Specifically, we evaluate how the 1137

number of inducing heads affects the task perfor- 1138

mance. A higher correlation coefficient indicates 1139

that the number of inducing heads have a stronger 1140

impact on task performance.We calculate r across 1141

different tasks to observe how the number of induc- 1142

ing heads correlates with the performance metrics. 1143

The results are summarized in Figure 2. The cor- 1144

relation values for each task are shown in Table 1145

10. 1146

D Inducing Head Analysis 1147

D.1 Visualization of Importance Scores for 1148

Attention Heads 1149

To identify the most relevant attention heads for in- 1150

ducing hallucinations, we visualize the importance 1151

scores for the attention heads, which are computed 1152

by combining the scores of right heads and wrong 1153

heads. These scores help us rank the heads from 1154

the most to the least important. Based on these 1155

rankings, we select the top-k heads to form the set 1156

of inducing heads. 1157

The visualization of the importance scores, 1158

shown in Figure 7, illustrates the distribution of 1159

these scores across the heads. We use this scores to 1160

guide our selection of the top-k heads, where the 1161

most important heads are chosen for hallucination 1162

induction. 1163

D.2 Custom Metric for Inducing Head 1164

Selection 1165

To evaluate the selection of inducing heads, we 1166

define a custom metric based on the overlap be- 1167

tween the inducing heads and two key sets: the 1168

right heads and the wrong heads. Specifically, we 1169

aim to maximize the intersection between the in- 1170

ducing heads and the right heads while minimizing 1171

the intersection with the wrong heads. 1172

The custom metric is computed as follows: for 1173

each set of inducing heads, we compute the overlap 1174

with the right and wrong heads sets and use these 1175

values to generate a score. Let Hr represent the 1176

set of right heads, Hw represent the set of wrong 1177

heads, and Hi represent the set of selected inducing 1178

heads. The custom metric score Smetric is computed 1179

as Equation 13. 1180

Smetric = |Hi ∩Hr| − β · |Hi ∩Hw| (13) 1181
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Figure 7: Visualization of importance scores for attention heads, used to select the inducing heads.

Table 10: Spearman correlation coefficient r for various
tasks.

Task Spearman r

HellaSwag 0.2
Race High 0.9429
Race Middle 0.5429
OpenBookQA 0.7714
TruthfulQA (MC1) 0.4857
TruthfulQA (MC2) 0.6571
TruthfulQA (MC3) 0.8286
Factor Wiki 0.4286
Factor News 0.2571
HaluEval-Sum(Acc-H) 0.3127
HaluEval-Sum(Acc-A) 0.3512

Where:1182

- |Hi ∩Hr| is the number of inducing heads that1183

overlap with the right heads1184

- |Hi∩Hw| is the number of inducing heads that1185

overlap with the wrong heads1186

- β is a hyperparameter that controls the penalty1187

for overlap with the wrong heads1188

This score is maximized when the inducing1189

heads align well with the right heads and avoid1190

overlap with the wrong heads. We evaluate this1191

metric across different values of top-k and scale1192

settings, and the results are shown in Figure 8. This1193

evaluation shows that the best configurations, as1194

determined by our metric, align with the configura-1195

tions yielding the best performance in our experi-1196

ments.1197

Table 11: Performance of Llama2-7b with Top-k induc-
ing heads.

Task Top-k Acc / MC

Factor Wiki 0 0.5898
10 0.5922
30 0.5992
50 0.6035
70 0.6035
90 0.6069

Factor News 0 0.7200
10 0.7249
30 0.7249
50 0.7288
70 0.7346
90 0.7307

TruthfulQA 0 28.51 43.30 22.40
10 23.99 47.35 25.35
30 21.78 47.13 23.76
50 22.39 50.33 24.65
70 23.99 51.28 25.89
90 23.74 46.64 26.27

HellaSwag 0 0.7800
10 0.8025
30 0.8433
50 0.8307
70 0.8083
90 0.8017

OpenbookQA 0 0.4841
10 0.5012
30 0.5181
50 0.5021
70 0.5223
90 0.5124

Race High 0 0.4325
10 0.4199
30 0.4483
50 0.4465
70 0.4514
90 0.4431

Race Middle 0 0.5800
10 0.5745
30 0.5996
50 0.6017
70 0.5996
90 0.5843
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E Comparison with Other1198

Hallucination-Inducing Methods1199

In this section, we compare HICD with several1200

other hallucination-inducing methods. The goal of1201

this comparison is to highlight the superior ability1202

of HICD to induce "contrast-effective" hallucina-1203

tions. The results are presented in Figure 2 and1204

Table 3.1205

• Prompt-based: In line with the idea of induc-1206

ing hallucinations, we leverage specially de-1207

signed prompts to directly compel the model1208

to generate fabricated information. We use the1209

prompt: "You are a helpful, respectful but not1210

honest assistant. You must generate false or1211

fabricated information. This is very important1212

to my career." This system prompt directs the1213

model to intentionally produce false informa-1214

tion, making it a useful tool for investigating1215

the effects of hallucinations. By prompting1216

the model in this manner, we can generate hal-1217

lucinated outputs that are systematically dif-1218

ferent from the model’s original predictions,1219

which allows us to perform contrastive analy-1220

sis and study the impact of hallucinations on1221

model performance.1222

• SH2-based: Inspired by (Kai et al., 2024),1223

which selects tokens with high informational1224

content and prepends them to the context.1225

By repeating these high-information tokens,1226

the model’s attention is shifted towards them,1227

increasing their focus and improving the1228

model’s accuracy. In contrast, we are inspired1229

by this idea, but we apply it in reverse. In-1230

stead of adding high-information tokens, we1231

prepend low-information, low-relevance to-1232

kens to the context. This forces the model1233

to shift its attention to these irrelevant to-1234

kens, which effectively induces hallucinations.1235

Then we apply contrastive decoding to com-1236

pare the hallucinated outputs with the original1237

model outputs, thus mitigating hallucinations1238

while preserving performance.1239

• PASTA-based: Based on the Attention Steer-1240

ing method from (Zhang et al., 2023a), the1241

PASTA-based method selects task-relevant1242

attention heads and increases the attention1243

weights of token positions corresponding to1244

key context information. This technique im-1245

proves the model’s attention to critical sen-1246

tences or words, thus enhancing its contextual1247

faithfulness. Following the ideas in PASTA,1248

we manipulate the attention weights of low- 1249

information tokens, which have low relevance 1250

to the task or correctness of the output. By in- 1251

creasing the attention scores of low-relevance 1252

tokens, we intentionally shift the model’s 1253

focus towards irrelevant or less informative 1254

words. This dispersion of attention results in 1255

the induction of hallucinations, as the model 1256

starts to generate content based on these non- 1257

essential tokens. We then apply contrastive 1258

decoding to compare the hallucinated out- 1259

puts with the original model’s outputs, effec- 1260

tively mitigating hallucinations while preserv- 1261

ing overall model performance. 1262

• Cut-based: The Cut-based method directly ig- 1263

nores the outputs of specific inducing heads by 1264

masking them, effectively forcing the model 1265

to disregard certain attention heads. This sim- 1266

ple yet effective approach induces hallucina- 1267

tions by removing the influence of particular 1268

attention heads. After inducing hallucinations, 1269

contrastive decoding is applied to compare the 1270

hallucinated outputs with the original outputs. 1271

As shown in Figure 2, in most tasks, the Cut-based 1272

method (blue lines) exhibits weaker performance 1273

in mitigating hallucinations at the optimal inducing 1274

head number compared to the Ave-based approach 1275

HICD (red lines). From the numerical results in 1276

Table 3, HICD consistently outperforms both the 1277

Prompt-based and the PASTA-based attention steer- 1278

ing across all datasets. This is especially evident 1279

in tasks that require contextual faithfulness, where 1280

HICD achieves the best overall performance. 1281

Although the SH2-based method for inducing 1282

hallucinations outperforms HICD on specific fac- 1283

tuality tasks—such as the TruthfulQA MC1 metric 1284

and the FACTOR datasets—the overall results indi- 1285

cate that HICD has greater potential for inducing 1286

"contrast-effective" hallucinations. This advantage 1287

allows HICD to effectively mitigate hallucinations 1288

while maintaining superior performance across a 1289

wide range of evaluation tasks. 1290

F In-domain vs Out-of-domain Inducing 1291

Head Evaluation 1292

We analyze the performance of out-of-domain in- 1293

ducing heads obtained from various datasets, with 1294

respect to the same task. As shown in Figure 3, 1295

the performance of these out-of-domain inducing 1296

heads varies depending on the correlation between 1297

the rankings of the inducing head scores. As the 1298
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Figure 8: Evaluation of inducing heads using our custom metric. The metric scores are plotted for various top-k and
scale settings.

correlation between out-of-domain and in-domain1299

inducing heads increases, the performance of the1300

out-of-domain inducing heads becomes more simi-1301

lar to that of the in-domain inducing heads.1302

For example, the inducing heads from Race Mid-1303

dle, TruthfulQA, and HaluEval-Sum exhibit rela-1304

tively high ranking similarity with OpenBookQA.1305

This is evident from the data presented in Table 4,1306

where the performance of the out-of-domain induc-1307

ing heads from these datasets is closer to that of the1308

in-domain OpenBookQA inducing heads compared1309

to other out-of-domain heads.1310

On the other hand, the Factor News tasks, ex-1311

hibit a relatively lower Spearman correlation with1312

other tasks. This results in a more uniform per-1313

formance across the out-of-domain inducing heads1314

from these datasets. This uniformity is accompa- 1315

nied by a notable gap in performance when com- 1316

pared to the in-domain inducing heads. In Truth- 1317

fulQA task, out-of-domain heads from Factor News 1318

and Factor Wiki, which have lower correlations 1319

with in-domain heads, perform worse than other 1320

out-of-domain heads. At the same time, we ob- 1321

serve that out-of-domain heads with a correlation 1322

greater than 50% with in-domain heads exhibit a 1323

relatively larger performance improvement com- 1324

pared to those with a correlation below 50%. 1325

This analysis demonstrates that the inducing 1326

heads from out-of-domain datasets with higher cor- 1327

relation to the in-domain dataset yield more consis- 1328

tent with in-domain results. 1329

19



G Norm Analysis and Token Confidence1330

G.1 Norm-Based Analysis1331

In Transformer models, the attention mechanism is1332

essential for selecting relevant information from the1333

input sequence. While attention weights α are com-1334

monly used to measure the relevance of each token,1335

recent work shows that the norm of the transformed1336

input vectors, f(x), also plays a significant role in1337

determining the final attention output. Specifically,1338

the attention mechanism computes the output as1339

a weighted sum of the transformed input vectors,1340

where the transformed vector f(xj) is calculated1341

by applying a learned transformation to the input1342

token xj , and the attention weight αi,j determines1343

how much influence each token should have on the1344

output:1345

yi =
n∑

j=1

αi,jf(xj) (14)1346

In Equation 14, f(xj) represents the transformed1347

vector of input token xj , and αi,j is the attention1348

weight.1349

However, previous analyses based solely on at-1350

tention weights α overlook the critical role of1351

f(xj). As demonstrated in (Kobayashi et al., 2020),1352

the attention weight-based analysis is insufficient1353

because it does not account for the fact that the1354

transformed vectors can have varying magnitudes,1355

even if the attention weight is large.1356

To address this, the norm-based analysis that in-1357

corporates both the attention weights and the norms1358

of the transformed vectors. Based on norm-based1359

analysis, the model not only controls the contribu-1360

tion of different tokens through attention weights1361

α but also regulates the contribution levels of fre-1362

quently occurring, low-information tokens by con-1363

trolling the norm of f(x). In this framework, the1364

final attention is not only governed by the atten-1365

tion weights α, but also by the magnitude of the1366

transformed vectors f(xj).1367

This norm-based perspective helps to better un-1368

derstand how Transformer models attend to dif-1369

ferent tokens, especially in cases where attention1370

weights alone would lead to misleading interpreta-1371

tions. By adjusting the norms of these transformed1372

vectors, we can change the influence of frequent,1373

low-information tokens, leading to a more effective1374

and nuanced attention allocation.1375

G.2 Token Confidence and Key Tokens 1376

In language models, the prediction of a token is typ- 1377

ically driven by the context provided by previous 1378

tokens. The confidence of the model in its predic- 1379

tions can be quantified by the probability assigned 1380

to each token. We can define token confidence as 1381

the prediction probability of a token given its pre- 1382

ceding context, p(x̂t) = p(θ(x̂t|x<t)), where x̂t 1383

is the token at position t and x<t represents the 1384

context preceding it (Kai et al., 2024). 1385

Key tokens are defined as those that the model 1386

predicts with the lowest confidence. These tokens 1387

are the hardest for the model to predict and are con- 1388

sidered to carry more semantic information, often 1389

representing critical content such as nouns, proper 1390

nouns, and adjectives. These tokens provide sig- 1391

nificant insight into the factual content of the text. 1392

The reasoning behind this is that tokens with lower 1393

confidence are harder for the model to infer, indi- 1394

cating that they are less predictable, and thus may 1395

contain more complex or factual information. 1396

In contrast, high-confidence tokens, often func- 1397

tion words such as prepositions or determiners, 1398

contribute less to the factual content of the sen- 1399

tence. They are generally easier for the model to 1400

predict, and their occurrence does not add much to 1401

the model’s understanding of the facts. 1402

Tokens with the highest informational content 1403

are those hardest to predict. The language model 1404

can benefit from giving more attention to these low- 1405

confidence tokens, as they are more likely to carry 1406

factual information, thus improving the factuality 1407

of the generated text. 1408

G.3 Saliency Matrix and Information Flow 1409

We investigate the impact of attention map aver- 1410

aging on the model’s outputs through the analysis 1411

of the saliency matrix I(i, j), where I(i, j) quanti- 1412

fies the importance of information flow from token 1413

i to token j (Wang et al., 2023). The results re- 1414

veals that Ave Head allows the model to generate 1415

hallucinations that appear more "plausible." 1416

Figure 9 provides further evidence supporting 1417

these observations. It shows how applying attention 1418

map averaging can alter the importance of informa- 1419

tion flow across tokens, thereby impacting the at- 1420

tention given to the tokens that need to be predicted 1421

based on the context, ultimately affecting the result- 1422

ing outputs. The figure visualizes information flow, 1423

where the bottom row represents earlier tokens in 1424

the sentence and the top row represents later tokens. 1425
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Figure 9: Supplementary results showing the effect of different hallucination inducing methods on the information
flow. This figure complements Figure 6, illustrating how Ave Head dispersion the attention distribution and enhances
the effective of hallucinated outputs.

Table 12: Examples of contextual prediction and their corresponding information flow in Figure 9. The black
portion of the text represents the context, and the blue portion shows the predicted tokens.

Context Predicted Tokens
The boy lands on his back on to a red mat. The boy gets
up from the mat. the boy

celebrates by clapping and flexing both arms .

A man is holding a pocket knife while sitting on some
rocks in the wilderness. then he

takes a small stone from the flowing river and smashes it
on another stone.

Two people are seen passing a ball back and forth in a
pool and leads into one speaking to the camera.the man

demonstrates how to properly throw the ball with his hands
while still speaking to the camera.

A woman is sitting at a table in a fast food restaurant while
eating. She continually speaks to nobody as she eats. She

stands up and grabs her purse, continuing to talk and laugh
as she leaves.

The family enjoys eating the desert together. The people
in the restaurant laugh at the man and he wonders what
they are doing. the man

gets up and walks away to the other room.

A young boy and girl are standing over a sink with their
mother talking. the mother

instructs them on how to brush their teeth while laughing.

The mother instructs them on how to brush their teeth
while laughing. The boy helps his younger sister brush
his teeth. she

gets them some water to gargle in their mouths.

The connecting lines between tokens signify the1426

strength of information flow, with thicker or more1427

prominent lines indicating a stronger influence of1428

one token on another.1429

Additionally, the examples provided in the figure1430

are further detailed in Table 12, which lists the 1431

context and the corresponding predicted tokens. 1432
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