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ABSTRACT

Determining the binding pose of a ligand to a protein, known as molecular dock-
ing, is a fundamental task in drug discovery. Generative approaches promise
faster, improved, and more diverse pose sampling than physics-based methods,
but are often hindered by chemically implausible outputs, poor generalisability,
and high computational cost. To address these challenges, we introduce a novel
fragmentation scheme, leveraging inductive biases from structural chemistry, to
decompose ligands into rigid-body fragments. Building on this decomposition, we
present SIGMADOCK, an SE(3) Riemannian diffusion model that generates poses
by learning to reassemble these rigid bodies within the binding pocket. By oper-
ating at the level of fragments in SE(3), SIGMADOCK exploits well-established
geometric priors while avoiding overly complex diffusion processes and unsta-
ble training dynamics. Experimentally, we show SIGMADOCK achieves state-
of-the-art performance, reaching Top-1 success rates (RMSD < 2 & PB-valid)
above 79.9% on the PoseBusters set, compared to 12.7-30.8% reported by recent
deep learning approaches, whilst demonstrating consistent generalisation to un-
seen proteins. SIGMADOCK is the first deep learning approach to surpass classi-
cal physics-based docking under the PB train-test split, marking a significant leap
forward in the reliability and feasibility of deep learning for molecular modelling.

1 INTRODUCTION

The biological function of a protein is determined primarily by its 3D structure and the interactions
it mediates. Thus, a central goal of drug discovery is to design small-molecule ligands that bind to
a target protein and modulate its function to achieve a therapeutic effect. Since a change in protein
function (activation or deactivation) is highly correlated with the bound pose of the binding ligand,
a consequence of energetically favourable protein-ligand interactions, the ability predict these
structural conformations, which is the primary aim of molecular docking, is essential for reliable
and accelerated drug discovery.

Deep learning approaches for molecular docking, in particular, diffusion-based methods, have been
recently touted as providing superior accuracy over traditional, industry-standard physics-based
methods (Halgren et al., 2004; Morris & Lim-Wilby, 2008; Trott & Olson, 2010). However,
the need for such claims to be further qualified has been highlighted by Harris et al. (2023);
Buttenschoen et al. (2024), who demonstrated that solely focusing on metrics, such as Root Mean
Squared Deviation (RMSD) between the bound and predicted ligand poses, can obfuscate the actual
predictive ability of deep learning-based docking tools. For instance, Buttenschoen et al. (2024)
showed that when controlling for the chemical plausibility of generated samples, deep learning
approaches performed far worse than traditional docking methods. While notable progress on
this front has been made from the advent of co-folding models (Abramson et al., 2024; Boitreaud
et al., 2024; Wohlwend et al., 2024) such as AlphaFold 3, these models still have key limitations.
Firstly, they require massive quantities of data and compute to train, hindering the ability of other
researchers to contribute and improve such models. Secondly, as co-folding models jointly model
the structure of proteins and ligands, they suffer from slow inference, which makes their practical
applicability to drug discovery (especially for virtual screening) computationally prohibitive, often
requiring querying up to millions of protein-ligand pairs.
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To address these issues, we revisit the commonly-used forsional model approach (Corso et al., 2022;
Huang et al., 2024; Cao et al., 2025) for diffusion-based molecular docking. This approach defines
a diffusion process over a ligand’s global roto-translations and its torsional angles. Fundamentally,
structural (geometric) chemical constraints imply that this low-dimensional manifold forms the
principal degrees of freedom underlying any chemically feasible pose. By operating over a space
with significantly reduced dimensionality, torsional models promise improved data efficiency,
generalisation and faster inference over all-atom approaches (favoured by co-folding models).
However, this has not been borne out empirically, with relatively disappointing results reported in
the literature (Skrinjar et al., 2025).

In this work, we seek to resolve the discrepancy between the poor performance of torsional models
and the desired benefits of exploiting inductive biases from structural chemistry. We suspect
torsional models underperform because the score model must implicitly account for the mapping
from 3D coordinates to torsional updates, a non-local, highly nonlinear, and sometimes ambiguous
inverse problem. To bypass this burden, we propose a fragment model. We decompose a ligand
into molecular fragments by breaking rotatable bonds; due to structural chemical constraints,
we can treat each fragment’s internal geometry as essentially fixed. The generative task thereby
reduces to predicting an SE(3) rigid transformation for every fragment, from which any chemically
feasible pose can be recovered by composing these transformations, obviating explicit modelling
of torsional angles. Building on this, we introduce SIGMADOCK, an SE(3) Riemannian diffusion
model that defines a diffusion process over the translation and orientation of rigid-body fragments.
During sampling, SIGMADOCK iteratively reassembles the ligand’s constituent fragments into a
predicted bound pose. To reduce the additional degrees of freedom introduced from fragmentation
(compared to the torsional model), we make the following novel contributions: (i) a fragmentation
scheme that reduces the number of fragments required to represent a ligand; (ii) soft triangulation
constraints to provide further inductive biases on the preserved bond lengths and angles across
fragments; (iii) an SO(3)-equivariant architecture tailored for reasoning over fragment geometry
and protein-ligand interactions.

Empirically, we demonstrate SIGMADOCK surpasses prior deep learning approaches' and
traditional physics-based docking, achieving state-of-the-art performance on the challenging Pose-
Busters set (Buttenschoen et al., 2024), and generalising to unseen proteins (Figure 4). We highlight
that, with a fraction of the training data, training/sampling time, and lower test-train leakage, we
reach AlphaFold3-level performance. With this, we wish to state our main contribution as the
careful and rigorous design of a well-characterised diffusion process, and a detailed construction of
structural inductive biases which help learn simpler functions for the task of molecular docking.

2 METHOD

2.1 NOTATION

Molecular notation. The 3D graph of a molecular structure (e.g. ligand, protein or molecular
fragment) is defined by the collection G = {x,v,b} where |G| is the number of atoms in the
structure, x € RI91*3 are atomic coordinates, v € RI9/*9 represents the features (e.g. atom
type, atomic charge etc.) associated with each atom, and b € RI91*191Xd represents the features
(e.g. bond type, bond conjugation etc.) associated with each bond. Furthermore, we define the
corresponding 2D graph of a molecular structure by G*® = {v, b}. For further details on our choice
of molecular featurisation see Appendix G.1.

SE(3) notation. Let x = [71,...,2y5] € RY*3 be a collection of points z; € R? in a rigid-body
system where [-] denotes row-wise concatenation. The pose (i.e. position and orientation) of x can
be parametrised by elements (p, R) from the Lie group SE(3) via the standard group action:

(pvR) "X = [p+RfE1,,p+RSUN],
where p € T(3) = R? is an element of the translation group and R € SO(3) is a special orthogonal
matrix representing a rotation in R3. For further details about SE(3), see Appendix B.

Fragment notation. In this work, we develop a novel fragmentation scheme which allows us to
represent the 2D graph of a ligand Gip ; = {v,b} in terms of rigid-body fragments {Gr, } ;"

"Under fair comparison with models trained on the PoseBusters train-test split
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where Gp = {Xp, Vg, bp} foreach F € {F;} . In particular, we take X € RI97 X3 to represent
the local coordinates of the fragment centered at the origin’, i.e. @lTi r = 0 where 1is a
vector of unit entries; at a high level, this can be viewed as the predetermined coordinates of a local,
rigid substructure within the ligand due to structural chemical constraints from gﬁgDand. Hence, the
3D coordinates x of the ligand can only be constructed from some arrangement of the rigid-body
translations and rotations of {Xr, }1" ;. Formally, we identify z = (p, R) € SE(3)™ with the global
coordinates {xp,}7, of the fragments through the usual group action: xp, = (pp,, Rr,) - XF,
where p = (pp,,-..,pr,) € T(3)™ and R = (Rp,,...,RF, ) € SO(3)™. This allows us to

parametrise the pose of the ligand x in terms of SE(3)"™ by x = [Xp, ..., Xry] and we denote this
mapping’ by ¢ : SE(3)" — RlGismx3,

2.2 STRUCTURALLY-AWARE FRAGMENTATION FOR SE(3) DIFFUSION

The task of molecular docking can be summarised as predicting a ligand’s bound pose x €
Rl %3 for some query protein, given the 2D graph of the ligand gl%gDand = {v,b} and the 3D
graph of the protein Gprowein = {Y¥, Vy, by }. The guiding idea behind SIGMADOCK is to exploit
the inherent structure of a ligand’s topology to simplify and condition a smooth and well-defined
rigid-body diffusion process in SE(3). In particular, we rely on a novel fragmentation strategy that
preserves common stereochemical symmetries, reduces degrees of freedom, and creates a set of ge-
ometric priors which help SIGMADOCK learn more general physicochemical correlations. A visual
overview of the SE(3) diffusion process described in this section is outlined in Figure 1.

NH, t=T @&------=----. Denoising (Reverse Time) ------------ =

<t-------------- Noising (Forward Time) ------------ o t=0

Figure 1: Illustration of SIGMADOCK using PDB 1V4S and ligand MRK. We create an initial
conformation of a query ligand where we define our m rigid body fragments (colour coded). The
corresponding forward diffusion process operates in SE(3)™ via independent roto-translations.

2.2.1 THE CONFORMATIONAL MANIFOLD

SIGMADOCK makes use of well-established thermodynamic priors in structural chemistry. Namely,
it leverages the fact that the conformational space x. defining the local geometry of a ligand (in a

vacuum) with known topological structure leigDand follows a Boltzmann distribution with probability

mass concentrated about a manifold M, with holonomic constraints® of the form:
M. = {x. € RIF=3: g(x) ~ 0},

where g : RlGuemalx3 _, R’ maps from Cartesian coordinates to an m-vector of scalar holonomic
constraints, encoding m independent (soft) boundary conditions. The latter represent locally con-
served geometrical priors such as bond lengths (dap = do) and bond angles (Tapc = 79), and
exclude dihedral angles/torsions (papcp = ¢); although the distribution ¢ 4pcp is anisotropic,
bodies adjacent to a torsional bond defined over atoms B, C are free to rotate (Figure 2a). Impor-
tantly, we can safely assume the holonomic constraints implicit in M, can be derived from GﬁgDand
and thermodynamic equilibria. A more formal definition of the form of ¢(-) is detailed in Appendix
D.1. Under this construct, the probability measure supported on M., is the constrained Boltzmann

2We defer the issue of choosing the orientation of the local coordinates to Section 2.4.
3We abuse notation by leaving the dependence on {Xr, }7; from the fragmentation {Gr, }7"; implicit.
*Holonomic constraints restrict the configuration space (position) of a body.
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measure 7, Which we may sample from: x. ~ 7y, (QIQig’an). As shown in Figure 2c, although
this distribution is complex and multimodal, there are abundant preserved symmetries: with RDKit’s
ETKDGvV3 (Landrum (2025)) as our proxy for ma,, we observe that, excluding global rigid mo-
tions, the 3D structural differences in x,. are effectively dominated by changes in dihedrals (torsion).

Figure 2: A: Illustration of a dihedral ¢ 4pcp across torsional bond BC, defined as the angle
between planes ABC and BC D, across two adjacent benzene rings in ligand BFL; B: Bound (red)
and aligned (green) poses for BFL in PDB 1Q4G with an optimised alignment RMSD of 0.11A;
C: Conformational ensembles generated from 7, for ligands SKF, CEL, and IHS respectively.
Notably, the most significant structural changes are derived from torsions across the rotatable bonds.

To faithfully sample rigid body fragments, we first need to justify that samples in SE(3)™ drawn
from the conformational manifold M, can be consistently aligned to the bound manifold (M),
whose distribution 74, represents the target (data) distribution of bound states. We verify this by
aligning ligand conformations from M, to M}, via joint roto—translational and torsional registration.
Concretely, let x. ~ 74, (+) denote a conformer on M. and let ¢. € T* represent the correspond-
ing dihedral angles which define the & torsional bonds in x,.. Let 1)(¢.) : TF — Rl%imalx3 denote
the invertible map, where T* = (S1)* = SO(2)* is the hypertorous defining the space of dihedrals.
With (p, R) € SE(3) representing global rigid motion, we use the total map

U(p,R,¢) = (p,R) () € RlGmmlx3

and perform Kabsch alignment jointly with torsional adjustment by solving

. 2D
peRS, RESO(3), T RMSD(xp, W(p, R, @), X ~ Wty (Giigana)

Empirically, we find that the RMSDs between experimentally bound poses x; and their correspond-
ing aligned conformers x; = ¥(p*, R*, ¢*) are substantially below both (i) standard error rates
reported by docking baselines (Buttenschoen et al., 2024; Harris et al., 2023), and (ii) the com-
monly used success threshold of 2A. This provides sufficient support to claim that the variability in
bond lengths and bond angles subsumed in M can be generally ignored in the task protein-ligand
docking. Crucially, this allows us to treat bound states as being approximately contained in the set
of structures reachable by torsions and SE(3) transforms on conformers drawn from 7 : for any
X. € M, and x; € My, we can align X, to x;, with negligible error such that RMSD(x, xg) < 2A.
See Figure 2b for an aligned example and Appendix D.3 for additional results and empirical analy-
sis. This empirical inclusion is paramount to our approach as it justifies assembling our stationary
distribution from fragments sampled from M, without falling out of distribution. Throughout the
remainder of the paper, we will absorb the alignment into the notation by writing x < x; < X;.

2.2.2 CHALLENGES OF TORSIONAL MODELS & MOTIVATION FOR OUR METHOD

The idea behind directly modelling dihedral angles has been readily adopted as the standard
approach to modelling small molecules (Corso et al., 2022; Jing et al., 2023) and amino acid side-
chains in proteins (Jumper et al., 2021). However, formulations that directly model time-dependent
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dihedrals ¢ 4pcp(X¢,t) via torsional updates suffer from fundamental caveats which we aim to
resolve in our approach. In Theorem | we show that the induced torsional density in Cartesian
space is generally not a product distribution, leading to highly entangled implicit dynamics. For
further details and a proof of Theorem 1, see Appendix C.2.

Theorem 1. For standard molecular topologies, torsional models define nonlinear mappings from
torsion angles to Cartesian coordinates, producing highly entangled, non-product induced mea-
sures. In contrast, disjoint rigid fragments yield a factorised product of Haar measures on SE(3)™.

Consequently, we argue that diffusing a molecule in fragment space SE(3)™ offers a simpler learn-
ing task than diffusing in torsion space T* x SE(3). Intuitively, local changes in torsional angles
often produce non-local Cartesian displacements, creating strong geometric coupling along torsional
chains: a change in a single torsion can substantially displace remote atoms. Therefore, transition
kernels that perturb torsions independently become geometrically entangled once mapped to Carte-
sian coordinates (where the model observes the data) via the induced measure, breaking the product
structure and leading to ill-conditioned and often degenerate dynamics during training and sampling.

Furthermore, mapping a torsional increment A¢; to a Cartesian displacement Ax is intrinsically
ambiguous: one must chose an extrinsic gauge (which side of the torsional bond is rotated, or which
combination). Implementations often apply heuristics such as RMSD alignment to remove the net
rigid motion caused by torsional updates, which would otherwise break the product-space structure.
However, this does not mitigate the ambiguity of the intrinsic to extrinsic mapping, especially when
torsional steps are large. Practical solutions often commit an extrinsic realisation (rotate left, rotate
right, or a combination), and the model must learn a score consistent with that convention; this
choice cannot guarantee consistency during sampling as the selected torsional realisation may not
align with the true score direction. Moreover, as k (and thus molecular size and flexibility) increases,
torsions produce amplified nonlocal Cartesian displacement (lever effect), coupling distant degrees
of freedom. The combinatorial growth of possible extrinsic realisations exacerbates this geometric
entanglement, making this framework unscalable. We hypothesise that, in general settings, these
issues make torsional frameworks can become poorly conditioned and unnecessarily complex to
model. These shortcomings motivate our approach of representing molecules via independent rigid
fragments, allowing us to operate over a well defined and geometrically independent product space.

2.2.3 IRREDUCIBLE FRAGMENTATION & SOFT GEOMETRIC CONSTRAINTS ON SE(3)

The naive choice to define our fragments is to break the molecular graph obtained from 7, at the
torsional bonds, producing a set {Gr, }1; of torsion-free rigid-body fragments with global coordi-
nates parametrised by SE(3)™. This approach yields a set of 77 = (k + 1) fragments with a total
of 6/ DoFs”. In contrast, we note torsional models have (k + 6) DoFs (k torsional bonds in S!
and 6 for rigid body SE(3)). Thus, the natural question arises: How can we reduce the DoFs of the
system and in turn abstract the problem in a general form? In SIGMADOCK we tackle this prob-
lem by creating a simple yet effective molecular fragmentation reduction (FR3D) that recursively
merges adjacent fragments from m = (k + 1) down to m (Figure 3). Instead of biasing the frag-
mentation order, FR3D performs a stochastic search, starting from the m fragments and branching
through candidate neighbours until it reaches an irreducible set of size m. Hence, FR3D not only
reduces the learnable DoFs but also provides a promising stream of data augmentation. Since merg-
ing is only possible in molecular graphs where two or more consecutive torsional bonds are linked,
there are topologies that are irreducible, thus we are still upper bound in the number of fragments:
0 <m < k + 1. However, we find FR3D reduces the average number of fragments by ~ 66%.

During fragmentation, we retain torsional bond length and angle information by introducing dummy
atoms at either side of the bond. Hence, |Giigana| < Y_;~; |Gr,|. Importantly, we only retain free
dummy atoms in G, and otherwise prune dummies which are over-constrained. Here, we label a
dummy as over-constrained whenever FR3D merges the torsional bond it belongs with a neighbour-
ing fragment, as it naturally over-defines a dihedral angle (Figure 3b). Removing over-constrained
atoms is fundamental since an immutable dihedral sampled from 74, would violate the free tor-
sional requirements outlined in Section 2.2.1, forcing our generator 74, to yield structures that do
not strictly overlap with the bound manifold under optimal alignment: U - o (+) # 7, (+). We
refer the reader to Algorithm 1 in Appendix D.4 for an overview of FR3D and further analysis.

> Assuming |Gr| > 1, each fragment is defined by its T(3) 22 R® and SO(3) parametrisation.
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Figure 3: Illustrative example of how FR3D reduces the number of fragments (colour coded) re-
quired to represent rigid bodies on ligand TNK into irreducible form. A: Defining fragments by
snapping all torsional bonds (ribbons); B: FR3D recursively attempts to reduce the & torsional
bonds and removes over-constrained dummies in the process (denoted by the coloured rings), which
otherwise define a dihedral across the merged fragment; C; Over-constrained dummies removed and
triangulation edges displayed under a different stochastic reduction (equiprobable to solution b).

Soft geometric constraints. A core ingredient of our method is the inclusion of geometric priors
as a mechanism to provide soft (implicit) boundary conditions. Specifically, although FR3D pro-
duces irreducible fragments, we define a triangulation distance conditioning scheme which enables
pseudo-reductions to the observable DoFs. Concretely, for any torsional bond BC' connecting ad-
jacent fragments A and D, we define triangles (A, B, C') and (B, C, D) using neighbouring atoms
A € Aand D € D on either side of the set of dihedrals ¢ 4zcp across BC. Through Lemma 1, we
show that by defining cross-fragment distances || A — C|| and || B — D|| on top of the rigid fragment
template, the corresponding bond angles Z(A, B, C) and Z(B, C, D) become uniquely determined.
See Figure 3c for an illustration, and for a proof of Lemma 1, see Appendix D.2.

Lemma 1. V(A,B) € (A, D) bond lengths ||A — Bl||,||B — C||,||C — D|| and bond angles
Z(A,B,C), 4(B,C, D) are fully determined with triangulation conditioning, without restricting
changes in the dihedral angles A¢ Apcp.

2.3 SE(3) DIFFUSION

From our identification of ligand poses x with z = (p,R) € SE(3)™ via the fragmentation
{GF, }",, we adopt the SE(3) diffusion model framework introduced in Yim et al. (2023)
to construct a generative model py(z|Gaock) for sampling the docked pose of some ligand,
given its 2D graph leigmd, its fragmentation {Gr, }/; and some query protein Gpotein; We USE
Gdock = (gﬁgdnd, {Gr, } 721, Gprotein) to denote this conditioning information. We provide an overview
of this framework below, and for further details, see Appendix C.

Forward process. For each protein-ligand pair (Qngand, mewin) in our dataset pgu,, With an asso-
ciated fragmentation {Gp, }7,, we define the forward process (Z™*),ci0,7) = (P, R®));c(0.7)
with Z(®) ~ p;(2|Gyock) via the SDE:

4z = [~1p®,0] dt + [aBY.;, dBL ). | (1)

(t) (t) m
where B]Rmx37 Bso<3)m

initial condition Z(®) = (p(®), R(®)) = x~1(x) where Gjigama = {X, v, b} contains the ground-truth
docked pose x. We note that the SDE is designed for the forward kernel p; o (2())2(9) to be tractably
sampled from, and we take 7' > 0 large enough for pr to be close to the stationary distribution
q(z) = N(p;0,I) ® Uso(3y= (R), where Uso(3)m denotes the uniform distribution on SO(3)™.

denotes Brownian motion on R™*3 and SO(3)™ respectively, with the

—
Backward process. The associated backward process (Z(t))tE[O,T] is then given by the SDE:

— «— —
dz® = %i—)(t) + V, log pr—i(Z™|Ggock), leong—t(Z(t)|gdock):| dt+ |:dB]§§t7)n><37dBétg(3)m:| ’
(2)
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where V. 1og pi(z|Gaock) = [V 10g D4(2|Gaock); V r 108 pi(z|Gaock)] denotes the score function of
the induced probability path p;; we note that this should be understood as a Riemannian gradient
which lives in the tangent space Tan, SE(3)™.

Training and sampling. We see that we can generate bound poses under Gyox from simulating the
backward SDE in Equation 2, however, the true score function V, log p; is intractable. Therefore,
we train a neural network approximation sg(z, t, Gaock) Via the score matching objective:

2
£(0) = Byt o Grn) i (2602600 [HS@(Z(t), t, Gaoek) — V- 1ogpt|o(z<t>|z<o>)HSE(3)m} .

3)

-
Hence, we denote py(z|Gaock ) as the distribution of generated samples, from first sampling 70 ~ q
and then simulating the backward SDE with our learnt approximation sg, which approximates the
true distribution po(z|Gaock). The corresponding 3D coordinates x of samples Z ~ pg(z|Gaock) can
then be recovered by the mapping X = ().

2.4 ARCHITECTURE

A significant contribution of SIGMADOCK is the design of our architecture s¢(z,t, Gaock) Which
parametrises the score function. In particular, we heavily modify EquiformerV2 (Liao et al., 2023)
to handle protein-ligand (and other molecular) diffusion; we use this as the backbone for our model
to ensure SO(3)-equivariance®. Our main innovations are: (i) we augment the input graph with
virtual nodes and edges on top of the original chemical graph Gy.ck, creating a hierarchical topology.
This reduces risk of over-squashing by reducing the average node degree, whilst promoting global
information flow and mitigating over-smoothing: less layers needed to pass global information; (ii)
we tailor our featurisations of nodes and edges according to their structural role; (iii) we ensure
messages and gradients along the edges, which represent local interactions (present on proximity),
smoothly decay to zero as the distance between the neighbouring nodes approaches some cutoff;
this prevents instabilities from sudden changes in the input graph’s topology as we perturb z.

Moreover, we note that a critical issue for the design of our architecture is that the parametrisation
of the global coordinates xr in terms of (p, R) € SE(3) is not uniquely defined. This is due to
the fact that we do not have a canonical choice for the orientation of the local coordinates X . For
instance, we have the equally valid choices X, X/ for the local coordinates of G if X = Ry - Xp
where Ry € SO(3). Hence, we can have two different representations of global coordinates x
fromxp = (p,R) - X = (p, RRy h - X» depending on the initial choice of orientation. To resolve
this issue, we adapt the SO(3)-equivariant prediction head introduced in Jin et al. (2023), based
on the Newton-Euler equations from rigid-body mechanics, to which we pass the outputs of our
backbone model into. With this choice, Theorem 2 shows that SIGMADOCK is invariant to the
choice of local coordinate axes.

Theorem 2. Our training objective and sampling procedure are invariant with respect to the choice
of orientations for local coordinates. Moreover, our score model is SO(3)-equivariant which ensures
09(2|Gaoek) is a stochastically SO(3)-equivariant kernel.

Conditioning. We define the triangulation conditioning by feeding the relative distance mismatch
as an edge feature (compact notation): Ada c(x¢,t|Gaock) = ||A(t) — C(t)|] — |]A(0) — C(0)]|
such that lim; o Adac (%, t|g§£nd) = 0 across all cross-fragment triangulation edges. With this
conditioning, only dihedral angles and rigid body roto-translations are left undefined at ¢ = 0,
yielding a lower bound ’ of DoFs > (k + 6), similar to the torsional space parametrisation.

For further architectural details, see Appendix G, and for a proof of Theorem 2, see Appendix H.1I.
2.5 TRAINING AND INFERENCE

We outline our training setup for SIGMADOCK in Appendix E. In particular, we discuss how we pre-
process our data for fragmentation and training, as well as computational tricks for increasing train-

SEquiformerV?2 is also translation invariant but we do not require this property since our problem setting
has a canonical centre of mass given by the binding pocket.

"The resulting DoFs are lower-bounded because the triangulation scheme imparts soft boundary constraints.
However, it provides a powerful signal for SIGMADOCK to reduce Adap to 0 as t — 0.
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ing throughput. Our sampling procedure is outlined in Appendix F, where we discuss the fact that,
due to the reliability of SIGMADOCK in generating chemically plausible samples, SIGMADOCK
does not require the use of a separately trained confidence model to filter out poor generations.
Instead, we propose using the simple and cheap heuristic of evaluating both the (pseudo) binding
energy of the generated protein-ligand system, as well as a set of physicochemical checks (such as,
bond angles, bond lengths, internal energy) to rank our Nyqs sSamples for evaluation.

3 EXPERIMENTS

3.1 DATA AND METRICS

Datasets. We use PDBBind(v2020) (Wang et al., 2005), a curated set of 19,443 protein-ligand com-
plexes obtained through crystallography, as our training set. We highlight we deliberately restrict
ourselves to this dataset for fair comparison®, isolating any increase in performance obtained in this
study to our proposed framework. For validation, we use the well established PoseBusters (But-
tenschoen et al., 2024) and Astex (Hartshorn et al., 2007) datasets. PoseBusters(v2) (PB) acts as
our temporal-split validation set containing 308 protein-ligand complexes with unseen protein se-
quences realised from 2021 onwards. The Astex (AX) dataset consists of an additional 85 diverse
and highly curated protein-ligand complexes originally designed to faithfully evaluate the quality of
protein-ligand docking algorithms.

Metrics. We evaluate a generated pose X by measuring the symmetry-corrected RMSD (Meli &
Biggin, 2020) between the crystallographic (bound) pose x and the generated pose X obtained
by the mapping X = ©(2) where Z ~ py(2|Gaock)- To account for sampling variability, either
from different conformers (inducing differences in fragment local coordinates), or by resampling
z(D) ~ q(z), we report the Top-k success rate, i.e., the fraction of complexes where at least one
of the top k poses (from Nieqs samples) has RMSD < 2A. We also use PoseBuster to assess
PB-validity, indicating whether generated structures satisfy standard physicochemical tolerances.

3.2 RESULTS

Using the sampling algorithm described in Appendix F, we benchmark’ the base performance of
SIGMADOCK and present our main results in Figure 4. To the best of our knowledge, SIGMADOCK
is the first deep learning-based method to surpass classical physics-based approaches in the PB and
AX sets using the intended train-test split (relative increase of 39% w.r.t. Gold). Not only does
SIGMADOCK achieve a 6.3 x higher PB-validity than DiffDock, the best open-source alternative
tested on the same split, but it also excels on proteins with low sequence similarity, overcoming the
common critique that deep learning models memorise rather than learn physics. We also highlight
SIGMADOCK does not require minimisation to achieve high PB validity, a common yet computa-
tionally expensive hack used to artificially improve deep learning methods. Notably, we achieve
AF3-level performance (Top-1 of 84%) with just 19k training data-points, significantly lower train-
test leakage, and 50x faster sampling. Together with an outstanding performance in the AX set,
reaching near-perfect Top-1 (above 90%), we believe these results mark a major leap forward in the
feasibility and reliability of deep learning for molecular modelling.

Ablations. To better characterise and highlight the contribution of some key components in our
method, we perform an ablation study covering a set of training-time and test-time variables (see
Table 1). Namely, we report the influence of our fragmentation merging strategy and triangulation
conditioning, as well as the effect of including protein-ligand interactions as part of the compu-
tational graph, and give empirical evidence of their relevance (4-12% relative improvement). In
addition, we show how sampling fragments from M. vs. M, leads to a small but expected decrease
in sample quality. By excluding PB-checks in the heuristic, SIGMADOCK maintains a high PB-valid
Top-1. Finally, we show how increasing Ng.qs improves performance at the expense of more com-
putational overhead, and highlight the importance of our simple yet effective heuristic for ranking
our samples and picking our best candidate(s).

81t is unfair yet unfortunately common in the literature to compare the same held out set with models trained
with larger and more diverse datasets without assessing train-test overlap (Abramson et al., 2024).
“For fairness, we compare our method in the main body against models trained on the same train-test split.
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Figure 4: Performance benchmarks. Left: Comparative performance of SIGMADOCK on the PB and
AX diverse sets against prior methods. Extracted from from Abramson et al. (2024); Buttenschoen
et al. (2024). (*) Denotes classical docking; (**) Are not open-sourced. Right: Performance break-
down across sequence similarity splits in the PB set.

On top of sequence similarity, we stratify the PB set into distinct chemical environments determined
by the nature of ligand interactions with additional co-factors (ions, crystallisation aids, natural
ligands, or other co-factors). We hypothesise that, since SIGMADOCK is deliberately designed (for
simplicity) to exclude co-factors, higher failure rates should be observed when the true bound pose is
realised in conjunction to additional artefacts (co-binding event), as the setup is partially observable.
After isolating the protein-ligand pairs for which SIGMADOCK fails to generate accurate poses'’,
we find this hypothesis to hold true, as per Table 2. This result provides additional confidence that
SIGMADOCK does not blindly memorise and hallucinate protein-ligand poses.

Table 1: Ablation results (Top-1 accuracy (%)  Table 2: Performance analysis (Top-1 accuracy
across the PB set) for different configurations. (%)) across PB subsets according to the presence

A,B,C are all re-trained from scratch. of various co-factors. The subset size is shown
next to the co-factor species key. The failure

Conf. Description RMSD < 2 PB Val. rate represents the sample failure rate, averaged
A (=) Tri. Cond. 719 7.1 across 40 seeds, for all complexes in the subset.
B (—) PL Interactions 79.2 76.3
C (—) Frag. Merging 74.4 73.7 Co-factor Presence RMSD < 2 PB Val. Fail Rate
G Sampling from M 86.4 85.4 Natural Ligands (17) 58.8 58.8 41.2
D (—) Energy Scoring 67.2 66.1 Tons (57) 75.4 75.4 23.6
E (=) PB Scoring 82.1 70.8 Other (60) 76.7 76.7 28.1
H SIGMADOCK (Ngeeds = 10) 74.7 722 Crystallisation Aids (37) 81.1 81.1 35.0
1 SIGMADOCK (Ngeeds = 40) 80.5 79.9 None (165) 84.2 83.0 162

We refer the reader to Appendix [ for extended results, and Appendix J for a discussion on the
current limitations of our method and future works.

4 CONCLUSION

We believe SIGMADOCK represents a major step forward in the reliability and feasability of deep
learning as a promising tool for accelerating drug discovery. Moving away from the torsional
parametrisation, we show our proposed SE(3) diffusion framework is highly competitive with
physics-based methods in modelling protein-ligand docking. We extensively lay out the key compo-
nents of SIGMADOCK in the Appendices and open-source our codebase'' to proliferate the develop-
ment of generative models for science. Furthermore, we demonstrate the critical role of principled
inductive biases in enabling superior generalisation and data efficiency. From our presented results
and analysis, we hope our work encourages rethinking the current trends of simplifying and scaling
increasingly larger models (Abramson et al., 2024).

"Here we define a failure if the majority of samples generated across N seeds have an RMSD below 2A.
""We will released all our codebase and model weights after the reviewing process.
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A RELATED WORK

Molecular docking. Traditional approaches to molecular docking rely on the combination
of assessing ligand poses with hand-crafted physics-based scoring functions and search-based
optimisation (Halgren et al., 2004; Morris & Lim-Wilby, 2008; Trott & Olson, 2010). Despite
the widespread use of such tools, these approaches have relatively slow run times and lower than
desired accuracy. There is growing interest in the application of deep learning-based methods to
address these shortcomings. These can be broadly organised into learning scoring functions (Prat
et al., 2024; 2023; Méndez-Lucio et al., 2021; Zhou et al., 2023a), regression-based prediction
(Stirk et al., 2022; Lu et al., 2022) and generative modelling of docked poses. The latter can
be roughly grouped into methods which condition on pocket-specific interactions (Plainer et al.,
2023) (as opposed to blind docking), restricts the generative dynamics to the degrees of freedom
spanned by global transformations and updates to torsional angles (Corso et al., 2022; Cao et al.,
2025), allow for the unconstrained atom-level generation of poses (Stirk et al.,, 2023), and the
flexible modelling of protein side chains (Huang et al., 2024). Closely related are co-folding models
(Abramson et al., 2024; Boitreaud et al., 2024; Wohlwend et al., 2024) which aim to jointly generate
the 3D structure of a protein-ligand complex for docking, as opposed to only modelling the ligand.
Despite the impressive results claimed over traditional docking tools, as measured in terms of
RMSD, Buttenschoen et al. (2024) demonstrated that when controlling for the chemical plausibility
of generated samples, performance falls below even traditional approaches. We note that co-folding
models have reported good performance on the PB benchmark, which are higher than traditional
docking methods, used by Buttenschoen et al. (2024), but the comparison with the specialised deep
learning-based docking models mentioned above is not exactly fair, due to the large gap in data and
compute used to train co-folding models, which also results in substantially longer inference times.
SIGMADOCK improves over previous methods in that it is able to quickly and reliably generate
poses with high chemical plausibility and accuracy—even without the need for a separate neural
network-based confidence model to filter out poor quality samples.

SE(3) diffusion. Euclidean diffusion models (Ho et al., 2020; Song et al., 2020) construct a gen-
erative model of data by learning the time reversal of some fixed Gaussian noising process. This
class of models have been generalised to data residing on non-Euclidean manifolds (Leach et al.,
2022; Huang et al., 2022; De Bortoli et al., 2022), in particular the Lie group SE(3) (Yim et al.,
2023) which is commonly used to describe the position and orientation of rigid-body systems. By
formulating the generative dynamics for a given ligand over the position and orientation of its frag-
ments in SE(3), SIGMADOCK avoids the complexity and poor training dynamics of the torsional
model approach popularised by Corso et al. (2022) for generative molecular docking.

Fragment-based models. Working with molecules in terms of their constituent molecular frag-
ments is a popular approach due to the close relation between the properties and geometry of a
molecule and the composition of their fragments. Examples include lead discovery for drug devel-
opment (Xu & Kang, 2025), modelling proteins in terms of rigid backbone frames (Jumper et al.,
2021; Yimet al., 2023; Watson et al., 2023), generating synthesizable molecules in terms of building
blocks and their reaction pathways (Koziarski et al., 2024; Gao et al., 2024), and linker design (Guan
et al., 2023). Despite the aforementioned popularity of fragmentation, to the best of our knowledge,
SIGMADOCK is the first work to use a fragment-based framework for generative molecular docking.
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B FURTHER DETAILS ON SE(3)

In this section, we provide an extended discussion on SE(3) and Lie group theory.

Group structure of SE(3)  Let T(3) be the translation group in R? with the addition operation (it is
trivial to see that T(3) is isomorphic to R? with vector addition) and let SO(3) be the group of special
orthogonal matrices in R3*3, The group SE(3) is defined by the following semi-direct product:
SE(3) := T(3) x SO(3) where elements from SE(3) can be written as (p, R) € T(3) x SO(3). We
recall the following properties of SE(3):

* The identity element e € SE(3) is defined as e = (0, I);
* The group operation is defined by (p, R) - (p/, R') = (p + Rp’, RR');
e For any (p, R) € SE(3), its inverse is defined by (p, R)~! = (-R~'p, R71).

Furthermore, we define SE(3)™ := []!", SE(3) as a product group.

Lie groups A Lie group is a smooth manifold G equipped with a group structure, such that the
group operation - : G x G — G and the inverse operation (-)~! : G — G are both smooth maps,
considered under the smooth structure of G. Common examples of Lie groups include T(3), SO(3)
and SE(3). Additionally, for each Lie group G, we have its associated Lie algebra g defined as
the tangent space Tan.G of G at the identity element e € G'>. For a mathematical introduction to
smooth manifolds and Lie groups, we recommand Lee (2003).

B.1 FURTHER DETAILS ON SO(3)

We provide a further discussion on the Lie group SO(3) which is relevant for our construction of a
SE(3) diffusion model.

Lie algebra basis The Lie algebra so(3) of the Lie group SO(3) has a canonical basis described
by the following skew-symmetric matrices:

00 0 0 0 1 0 -1 0
e1:<0 0 1), e=[0 0 0], e3:<1 0 0).
01 0 -1.0 0 0 0 0

We use [-]gs : 50(3) — R3 to denote the standard coordinate representation map which is a linear
isomorphism (i.e. maps the canonical basis to the canonical basis of R?), and we denote [« : R? —
50(3) as its inverse.

The above basis can be derived from differentiating A(t) " A(t) = I where t — A(t) is any smooth
curve in SO(3) such that A(0) = I, and using the fact that SO(3) is an embedded submanifold
of RY (by the regular value theorem) so that the standard Euclidean derivative A’(t) of A(t) can
be considered as an element in Tan A(t)R‘g =~ R, which contains as a linear subspace, the tangent
space of SO(3) (considered as the image of the differential of the inclusion map). Moreover, for
any R € SO(3), we can define the canonical basis for Tang SO(3) as { Re;, Reo, Res} by mapping
{e1, ez, e3} through the linear isomorphism given by the differential of the left-multiplication map
Lr(R') = RR’ (this map is a diffeomorphism as smoothness is given by the definition of the Lie
group and we have the smooth inverse L' (R') = R™'R).

We note that another common representation of s0(3) is the axis-angle parametrisation - i.e. for any
S € s0(3), there exists some u € S? C R3 (the axis) and w € R (the angle) such that S = [wu] .

Exponential and logarithmic maps The exponential map exp : g — G and its inverse, the loga-
rithmic map log : G — g are fundamental tools for studying Lie groups. They provide a canonical
(local) diffeomorphism between the flat Lie algebra and the curved Lie group, thus allowing for
the parametrisation of the manifold by an easy-to-work-with vector space and translating geometric
problems to problems of linear algebra.

12Strictly, this should also be considered as equipped with a Lie bracket.
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In the case of SO(3), the exponential map exp : s0(3) — SO(3) has an analytic form, given by
Rodrigues’ formula (considering S € s0(3) in terms of its angle-axis parametrisation):

sin w 1 —cosw

exp(S) =1+ - S+ S2

w?

Furthermore, the logarithmic map log : SO(3) — s0(3) has the form:

logR = (R—R"), where Tr(R) =1+ 2cosf.

2sin 6
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C FURTHER DETAILS ON SE(3) DIFFUSION

In this section, we provide an extended discussion on the construction of diffusion models on
SE(3); this is mainly recapped from the seminal work: Yim et al. (2023).

Riemannian metric In order to define a diffusion process on the Lie group SE(3), we note that the
generator for Euclidean Brownian motion is given by the Laplace operator A. Therefore, to define an
analogous (diffusion) Markov process on SE(3), we can use the Laplace-Beltrami operator, which
is a generalisation of the Laplace operator to Riemannian manifolds. This requires endowing SE(3)
with a Riemannian metric.

First, we note that tangent space to SE(3) can be expressed as a direct sum: Tan(, r) SE(3) =
Tan,, T(3) @ Tangr SO(3) which we equip with their canonical bases. Yim et al. (2023) then proposes
the choice of metric (-, -)gp 3 defined by

((a,8),(d, Sl)>SE(3) = <a»a/>qr(3) + (S, Sl>so(3) )

where (a,5), (a’, S") € Tan, ) SE(3) for some (p, ?) € SE(3), and (a,a’)y ) = Z?:1 a; - d

and (S, 8")s0(3) = 1 Tr(SS'T) are the canonical metrics for T(3) and SO(3) respectively. We note
that the canonical basis of Tan,, ) SE(3) is orthonormal under this metric. Essentially, this choice
of metric allows us to view SE(3) as the Riemannian product manifold T(3) x SO(3) and allows
for the factorisation of diffusion processes over translations and rotations. The Riemannian metric
on SE(3)™ is given by the standard extension.

Noise schedules For ease of presentation, we only consider a non-time dependent forward process
in Section 2.3, however, following Yim et al. (2023), our actual implementation fixes 7' = 1 and
uses the following decoupled time-scaling of the forward translational and rotational SDEs:

* Our translation SDE is given by

dp® = —%5(t)p(t)dt +V/B(HABY), .,
where ﬂ(f) = Bmin + t(ﬂmax - Bmin)-

* Our rotational SDE is given by
Y =./g (t)
R( ) dBSO(g)wz)
where g(t) = £0%(t) and o(t) = log(t exp(omax) + (1 — t) exp(Tmin))-
The backward SDE then has the form:

-
4Z® — |38 + 81— 1)V, logp1_(Z)
g(1 —t)Vrlogp;_+(Z®)

VB —1dBY, 1
(¢
Vol =8B 5

Going ahead, we will refer to these as the definition of our forward and backward SDE:s.

Forward kernels By the structure of the metric (-, -)gps), the forward kernel pyjo(z?|2(")) (for
ease of presentation, we only consider m = 1 here) can be factorised into independent kernels over
T(3) and SO(3).

* For the translational component, we have the standard VP forward kernel:
1 [t
o0V p®) = N(p®;a:p', (1 — o)1), where a; = exp <_2/ 5(8)‘13) '
0

* For the rotational component, the forward kernel is given by:

P(RD|RO)) = IGgo(3) (RY; R, o2 (t)).
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To sample from R ~ ZGgo(s)(RM; R, 6?), we can first sample R ~ ZGgos) (R;1,02)
through independently sampling w € [0, 7] according to the following density:

1 — cosw 2 osin((l + 1w)
— 2l 1 —1l(l+1)0°/2 2
f(w,) T ;( +1e sin(w/2)
and sampling u ~ Ug2 where Ug2 denotes the uniform distribution on the sphere (e.g. sampling
from isotropic Gaussian and then dividing by the norm). We then compute R = exp([wu]x) ~
IGsos)(R; 1, 0?) and return the sample: R = RR() ~ IGg0(3)(RM; R, 02).

To sample from f(w, o), following previous work (Leach et al., 2022; Yim et al., 2023), we truncate
the infinite series in order to compute an approximation to the distribution’s CDF. We then cache
these values and draw samples with inverse transform sampling.

Stationary distribution To sample from the uniform distribution g3y over SO(3), we inde-
pendently sample w € [0, 7] according to the following density:
1 —cosw
p(w) = a0
and sample u € Ug=. We then return R = exp([wu]x) ~ Uso(3). We note that this is equivalent to

sampling from ZGgo(3)(0, 02) in the limit as 0 — oo.

Conditional scores For the score matching objective, we require the form of the conditional scores
over translations and rotations. For translations, this is a standard computation, and for rotations, we
first require the modified function: fy(w, o) = f(w,o)/p(w). This is due to the fact that f(w, o)
denotes the marginal density of the angle w, hence the density ZGgo(3) (R®; RO) 52), which has
support over SO(3) instead, requires a different factor. We then have the following formula:
) p0)y _ @ (0,t) 9w fo(w(t),a(t))
leogpt\O(R |R ) w(t) IOgR fo(w(t),a(t)) )

where R(OY) = (RO)YT R® and w(t) = w(R(Y) is the angle in the axis-angle representation of
R(©% _ this can be computed from the equation: Tr R(**) = 1 + 2cos(w(R(*")). Similarly, we
truncate the infinite sum in fp(w, t) in order to compute the above score.

Loss scaling We base our loss scaling off of the standard heuristic given in (Song et al., 2020)
from the reciprocal of the expected value of the squared norm of the conditional score. For the

1
5.

translational loss, it is a standard calculation to show E ||V, log pyjo(p'?[p(?)) ||12r(3) x AP = =

For the rotational loss, we have the following proposition. For the proof'?, see Appendix C.1.
Proposition 1. The expected squared norm of the conditional rotational score is given by

) 2 awf (wva(t)) ?
R_ )| © - o) [ =5 ey
A ]EHVR logpﬂo(R |R )HSO(S) Eonfw,o(t) [( folw,o(t)) .

We then define our final loss scaling by X? = C? /\? for translations and A® = C'® /AR for rotations
where CP, C > 0 are some chosen hyper-parameters. We note that we numerically compute the

expectation in ;\f from our truncated approximation to fo(w, o).

C.1 PROOF OF PROPOSITION |

Proof. We first note that
HVR logptm(R(t)|R(O))H§o(3)
B ( Oufo(w(t),o(t

2
1
- (t) (0,t) O0N\T(RINT
)) 5 Ir(R log R%™" (log R©™Y) ' (RY) )

)
t
2
_ ( O fo(w(t »U(tz ) %Tr (log R(O,t)(log R(O,t))‘l’) 7

3We note that it is surprising that, to the best of our knowledge, this proof is not seen in the literature.

19



Under review as a conference paper at ICLR 2026

due to Tr(AB) = Tr(BA). Moreover, since R®) ~ ZGgo(3)(RM; R, 02(t)), we know that
R® = exp(jwu]x)R® with w ~ f(w,0%(t)) and u ~ Usg2, which implies that R(*t) =
exp(Jwu]x) " = exp([—wu]« ) by the definition of []« and using the fact that exp(S)T = exp(ST)
by the definition of the exponential map. As we have u ~ —u, we can conclude that R(O:Y) ~
e.xpﬂwu] ). Moreover, we have w(exp([wu]x)) = w as w(-) returns the angle of the input rota-
tion ~.

This allows us to rewrite E ||V 5 log pyjo (R |R(?) H;O(S) as

t 0 2
2 [FemroEo] -

M 2} I {10g X wu 0og ex wUu T
Ew’"l(wjb(w,a(t))) 5T (log exp([wu] x ) (log exp([wu] ) )]-

Further, we see that logexp([wu]x) = [wu]x and that  Tr([wu]x[wu]]) = w? Hu||§ = w? as
u € S2. Putting this together, we can conclude
2 Do fo(w,0(t)\?
E[Valogpyo(ROIRO)|| = Fuswo (“ :
R gpt\o( ‘ ) SO(3) fw,a2(t)) fo(w7a(t))
O

C.2 PROOF OF THEOREM 1

Let a molecule with NV atoms have Cartesian coordinates x = (z1,...,zy) € X : RV*3, where
each z; € R3. Let pxy := X — R be any target density on Cartesian space (with respect to
Lebesgue measure dx), covering equilibrium Boltzmann distributions, forward-diffusion marginals
Py, empirical data density, etc.

pa(x) = 5 exp(—FE(X)),

where £3 is a thermal constant and F(x) : RV*3 — R is the energy (scalar) function.

The purpose of this proof is geometric: compare the Riemannian (Jacobian) base measures induced
by two different parametrisations of the same constrained Cartesian manifold and show that, under
standard molecular topologies, the torsional parametrisation generically does not induce a product
base measure while a disjoint rigid-fragment parametrisation does.

Torsions Fix all bond lengths and bond angles and parametrize the remaining internal degrees of
freedom by k torsional angles ¢ = (¢1,...,¢x) € ® := T, where ¢; € S = SO(2). Together
with a global rigid-body pose (R, p) € SE(3) this gives the parameter space U = SE(3) x T*. Let

¢:U=SE@)xT" - RY*® w=(R,p¢)r—x

denote the parametrisation of Cartesian configurations with prescribed fixed bonds and angles.

Rigid Fragments Split the molecule into m disjoint rigid fragments with local coordinates X, €
RI9=: X3 forj = 1,...,m. Letz = (21,...,2m) € Z = SE(3)™ with z; = (p;, R;) € SE(3), and
define

0 Z — RVNX3, Z X,

by placing each fragment via the group action
xp, = Ri Xp, + pi, i=1,...,m.

Assuming the fragments are disjoint (no shared atoms) this yields an explicit parametrisation of the
constrained Cartesian configurations obtained by rigidly placing each fragment.

“This is trivial to show.
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Important distinction. The data density py at ¢t = 0 is identical under any parametrisation, since
it reflects the true molecular distribution. What differs is the forward (noising) process: the marginals
p¢(x;) depend on the parameter space in which the dynamics are defined. In other words, while the
starting distribution po(xo) is fixed in Cartesian space, the choice of coordinates (e.g. torsions or
rigid fragments) determines how the forward dynamics evolve and hence the form of the intermedi-
ate marginals.

Preliminaries For a parametrisation €2 denoting either parametrisation map (¢ or ) and a param-
eter y in the corresponding parameter space, define the Jacobian

o0
JQ(y) _ @ c R?’NXd,

where d is the parameter-space dimension. ~We define the Gram matrix as Gq(y) =
Ja(y) " Ja(y) € R%¥4, The induced Riemannian volume element on parameter space is

dua(y) = v/det Go(y) dy,

where dy is the Lebesgue element in the local parameter space. For densities px on X and py on
parameter space ), the change-of-variables (push-forward) relation is the equality of measures

Py (¥)dua(y) = px(x)dx
which simplifies to

py(y) = pax(Q(y))vdet Ga(y) -
Equivalently

a2 =~

C.2.1 TORSIONAL ENTANGLEMENT

Proof. Torsional models suffer from geometric coupling and a highly intricate non-product induced
measure.

Consider the torsional parametrisation ). The parameter space is
U=SE@3)xT:  u=(R,p,¢)

and the torsional parametrisation is the map 1) : U — RV X3 4 — x. Its Jacobian and Gram matrix
are

Jy(u) = g% c ]R3N><(k+6)7 Goylu) = JJ(U)J»L/}(U) c R(k+6)x(k+6)

and the induced Riemannian volume on parameter space is dt, (u Vdet Gy (u) du.

Index torsional coordinates by i,7 € {1,...,k}. The column J,p corresponding to ¢; is the in-
stantaneous Cartesian displacement vector obtained by varying torsion ¢;. Writing atomic positions
o € R3,a € {1,---, N}, the torsion-torsion Gram matrix is

8a 6a
Gy W)y = (J)is (Jo)) Za“; ) 56

In standard bonded molecular topologies (chains, branched trees, rings with shared downstream
atoms) a change in a single torsion displaces multiple downstream atoms. Additionally, the sets
of atoms that move when different torsions are varied typically overlap (i.e., the same downstream
atoms are moved by multiple torsions). Hence, there generally exist pairs ¢ # j and atoms a for
which both derivatives are non-zero, producing off-diagonal entries (Gy);; # 0. Thus, the torsion
block Gy (u) is generically non-diagonal. Since the determinant of a matrix with non-zero off-
diagonals does not factor as a product of single-coordinate functions, det G, (u) does not decompose
as [[; gi(¢:). Consequently, the induced volume form

dpy(u) = 1/det Gy (u) du
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is not a product measure across torsions.

Therefore, independent perturbations in torsion space is mapped to Cartesian marginals with metric-
induced correlations: torsional independence does not imply Cartesian independence. As a result,
forward-backward kernels in torsion space correspond to correlated and anisotropic displacements
in Cartesian space, complicating diffusion processes. In addition, a model that observes Cartesian
coordinates must implicitly learn this metric-induced coupling, yielding unstable training dynamics,
and degeneracy during inference.

Gauge ambiguity (complementary issue) A torsion angle by itself does not uniquely determine
which rigid sub-body rotates about a bond; mapping a torsional increment A¢; to Cartesian up-
dates requires choosing a canonical extrinsic gauge (heuristics such as RMSD alignment are often
situation-dependent and non-differentiable): An update AquB €D defined in S! can rotate bodies
A; and B; equiprobably such that AgABCP = 9ABC _ gBCD Gince we have 2 loose variables that
are not determined by the torsion alone, the mapping from A¢{1Z¢P to Cartesian updates is unde-
termined, systematically pushing the marginal densities to lower likelihood regions at inference.

Global-pose coupling Augmenting torsional coordinates with a global pose (R, p) € SE(3) (i.e.
treating the parameter space as T* x SE(3)) does not in general restore a product space.

Torsional changes typically (i) shift the molecule’s center-of-mass (CoM) and (ii) alter its
orientation-dependent moments of inertia. As a result, the Jacobian acquires additional non-zero
cross-terms between torsion and translation/rotation columns. Concretely:

* The translation—torsion cross term is proportional to the net displacement of the molecular
CoM induced by a torsional ¢;:

d Ox
—CoM(¢;) Jp—
25, COM(®) x 3 maggt,
where, for uniform masses, this reduces to the unweighted centroid shift). This quantity is
generically non-zero, so torsions couple to non-zero translations about the CoM.

* The rotation-torsion cross term is proportional to the instantaneous change in angular mo-
mentum induced by the torsional displacement field:

mexzj;

which can be interpreted as the torsion-induced torque on the molecular frame. This term
is generically non-zero, so torsions also couple to rotations.

Only in rare cases where both the CoM shift and the torque vanish for every torsion (or their mass-
weighted analogues vanish under a physical metric), or in infinitesimally small time changes, do
torsions decouple from global SE(3), yielding a quasi-block-diagonal metric and an approximate
product structure T* x SE(3). Although heuristics such as RMSD alignment can be applied to
mitigate this issue, this is not a general solution and is only strictly true for infinitesimally small
Ag): RMSD can only attempt to mitigate net body motions induced from torsional updates.

Degenerate Exceptions If two torsions act on strictly disjoint atom sets (no downstream overlap),
or only a single torsional bond exists such that it cannot form a branch or chain, the corresponding
Jacobian columns have disjoint support and the associated blocks of G, may be diagonal; in such
degenerate topologies the geometric term can factorise.

C.2.2 RIGID FRAGMENTS
Proof. Rigid-fragment parametrisation induces a true product measure.

Partition a molecule into m rigid, disjoint fragments with local coordinates X € RI9%i1*3 j ¢
{1,--- ,m}. The parameter space is

Z = SE(3)ma z = (217 e 727”)7 Zi = (Riapi);

22



Under review as a conference paper at ICLR 2026

and the rigid-fragment parametrisation is the map
©:Z— RVNX3, 7 — X, xp, = RiXp, + pi,
which by construction is block-wise rigid:

X = @(zla"' ,Zm) = @ (Rupz) 'SCFL--

i=1

Its Jacobian, Gram matrix and induced Riemannian volume form are
0
Jo(2) = (,Tf RV Go(2) = T (2)J,(2) € ROTXOM . dp(2) =y [det G(2) dz.

From the definition of the block-wise rigid mapping in ¢ and the disjointness in the fragments,
moving one fragment does not affect the Cartesian positions of any other fragment. Concretely the
Jacobian has a block-diagonal structure

Ji1 0 0
0 Joo ... 0 Oxr.

Jo(z) = | . - < Jii = ;F € R3I9r; X6,
0 0 ... Jum

As a result, the Gram matrix is also block-diagonal:
Gy(2) = diag(J) J1, ..., dm),

so that the determinant factorises:

m

det G (2) = H det (JiTJi).
i=1

Hence the induced volume element

dpg(z) = \/det Gy (2) dz = H \/det (J;7 ;) dz;,
i=1

is a product measure over fragments.

Therefore, independent noise applied to each fragment in the parameter space remains independent
in Cartesian space via the linear rigid mapping. This decoupling makes diffusion or generative
modelling much simpler via the rigid body SE(3) parametrisation.

O
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D FURTHER DETAILS ON FRAGMENTATION & CONFORMATIONAL
ALIGNMENT

D.1 HoLoONOMIC CONSTRAINTS

Let X = (T1,...,%|g,.,) € RI9=*3 be the Cartesian coordinates of the ligand atoms. The
holonomic map

9(x) = (91(x),- -, gm(x)) "

is built from scalar constraints that enforce bond lengths and bond angles inferred from the molec-
ular graph gggf;nd. Below we give simple valid forms which (softly) approximate the holonomic
constraints assumed in the construct of our method.

Bond-length constraint. For a bonded pair (A4, B) with equilibrium length d 45 = dj define
TAB =T — B, 9aB)(x) = |lrasll — do.
Thus g(ap)(x) =~ 0 enforces ||rap| = do. The gradients (akin to vector field / forces) are

09(aB) _ TaB 99(aB) TAB

dza  lrasl’ drg  |rasl’

and Og(ap)/0r; = 0 fori ¢ {A, B}.

Bond-angle constraint. For a bonded triplet (A— B —C') with equilibrium angle 74 = 79 let
TAB TcB
TAB = TA — IB, rTeB = Tc — IB, U=y—"py V= 7— -
[rasll Iresll
‘We use the cosine form
gaBc)(x) = u-v —cos T,

$0 g(aBc)(x) = 0 enforces the desired angle. The partial derivatives are

d9aBcy 1
dzc Iresll

99(ABC) 1

= I—uu’ v,
ora ~ Trasl! )

(I—wvo")u,

and
99apoy _99aBo)  99aBo)
Oxrp ora Oxc

Soft (harmonic) enforcement. Instead of imposing g(x) = 0 as a hard constraint, we relax the
requirements by instead assuming stiff harmonic penalties. For a bond and an angle the typical
potentials are

2 2
Evond(za,28) = tkap(|rasl — do)”, Eangle(®4, 75, 2¢) = $kapc(u-v — cos 7o)

For large force constants k4, kapc >> 1 the Boltzmann measure concentrates near g(x) = 0 and
approximates the hard-constrained manifold; for finite (but large) constants the potentials provide
numerical stability and allow standard unconstrained sampling while strongly biasing configura-
tions toward M. These harmonic constraints are a fundamental component in physics-based and
template-based conformer generators such as ETKDGv3 (Landrum, 2025). Crucially, this assump-
tion is paramount to our SE(3) rigid-body framework as it allows us to safely assume that the
variation in bond angles and lengths is negligible (up to a certain error rate, see D.3) when defining
our local coordinates during sampling.

D.2 PROOF OF LEMMA 1

Let BC be a torsional bond at the center of a set of dihedrals defined as ¢A.o.p and let A =
{A,}pery denote the set of neighbour atoms on the B-side (connected to B), and D = {D,}4er,
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denote the set of neighbour atoms on the C-side (connected to C). Suppose the following pairwise
distances are defined as:

VAp € A: ||[Ap — Bull, [1Ba(t) = Co ()], [[Ap(1) = Cp(1)]),
VDg €D :  ||Balt) = Cn(t)], |Cp = Dyll, [Balt) — Dy(t)],

where gray terms denote cross-edges across fragments that are time-dependent and therefore vary-
ing according to the forward-backward diffusion process on SE(3). For clarity, we use the notation
B4 (t) to represent the node B of the dihedral ¢ 4.pc.p corresponding to fragment A. This is im-
portant because B and C are duplicated (as dummy atoms) in the fragmentation process to preserve
torsional bond information. An illustration is shown in Figure 5.

Figure 5: Visual helper for Lemma 1 showing corresponding atoms for fragment .A shown in blue
and fragment D denoted in red. For additional clarity, dummy atoms across torsional bond BC' are
marked with an asterisk.

Thus, during the forward noising process, B4(t) # Bp(t), V¢ € (0,1],and BA(t =0) = Bp(t =
0). Note that we absorb time for the other distance definitions as these are always preserved: dis-
tances are fixed through time by from the canonical fragment template G (i.e. due to fixed internal
bond angles). To simplify notation, we will also absorb time for all other variables for the rest of the
proof but keep the colouring.

For every A, the triangle (A,, B, Cp) is rigidified via side-side-side constraints (SSS). Equiva-
lently, for every D, the triangle (B4, Cp, D,;) is also rigidified. Subsequently, for every A, € A and
D, € D the corresponding adjacent bond angles Z(A,,, B4,Cp) and Z(B.,Cp, D,) are uniquely
determined by the fixed side lengths and therefore invariant under any motion that preserves the
listed distances (in particular under any torsional update in d¢_ 4 gcp that preserves those distances).

Proof. Fix any A, € A. The triple of distances {||A, — Ba||, ||B.a — Cp|, |4, — Cp|} specifies
triangle (A, B4, Cp) up to rigid motion. By the law of cosines,

b? = a® + ¢ — 2accos(b)

rearranging and plugging in our terms, we define the cosine of our angle as

|Ap — Ball* +[[Ba — Cp|®* — ||4, — Cp

€05 £y B o) 24, - Bal|Bx— Col |

so the angle Z(A,, B4, Cp) is uniquely determined from the fixed lengths. An identical argument
applies for any D, € D using the triple {|| B4 — Cp|[,||Cp — Dy, || B4 — D,||}. Hence all listed
adjacent bond angles are fixed whenever the cross-edge stated distances are fixed, and any motion
preserving those distances (including a torsional rotation that leaves them invariant) preserves the
angles. In particular, the distances |4, — C'p|| and || B4 — D, || ¥ (p,q) € A, D are the additional
triangulation conditioning edges that pseudo-enforce these invariances through conditioning jointly
with the symmetrical torsional conditioning edges |34 — Cp||, || B — Cp|| and the known (from
equilibrium chemistry) immutable bond lengths ||A, — B4|| = dap and ||Cp — Dy|| = dcp. O

25



Under review as a conference paper at ICLR 2026

Implications and remarks The distances || A, —Cp|| and || B4 — Dy|| are new conditioning edges
introduced by triangulation: they do not typically appear as edges of the 2D chemical graph but are
required to convert adjacent triples into SSS triangles and thereby fix angles via the law of cosines.
Fixing these triangulation edges removes the continuous freedom in the adjacent bond angles: the
angles become functions of the fixed side lengths. Consequently, triangulation reduces the effective
(not strictly but trivially by conditioning) local degrees of freedom. In the idealised SSS case (one
triangle on each side), the dihedral (signed) degree of freedom about BC'is constrained to a discrete
choice (mirror sign) rather than a continuous rotation; in other words, continuous torsional variation
that would change the triangulation edges is no longer allowed.

Note that using many A, and D, triangles generally over-determines the local geometry and can
introduce redundant or mutually constraining distance equalities. In practice, we select a consistent
subset of triangulation edges and remove duplicates to avoid incompatibility. See Section 2.2.3 for

more details on how we ensure that we avoid over-constraining the system by removing dummy
atoms during fragmentation merging.

D.3 FRAGMENTATION & ALIGNMENT

Further statistics for the alignment procedure described in Section 2.2.1 are shown in Figure 6. By
selecting the best-aligned pose from 5 randomized conformers, we obtain an average RMSD of
0.21 A between the aligned x;, and the ground-truth x;. This provides strong empirical evidence
that sampling fragments from x. does not push the model out of distribution at test time. Moreover,
the small alignment errors act as a form of regularisation during training, with typical RMSDs below
0.5 A for any aligned conformer. In contrast, aligning only a single conformer results in an average
RMSD of 0.39 A. In both settings, all 85 ligands from the Astex diverse set produced conformers
that could be aligned below the 2 A acceptance threshold. These results indicate that, during both
training and sampling, SIGMADOCK remains well within the distribution of valid conformers.

To further ensure that our x; samples are not chemically implausible, we run iterative optimisation
with PoseBuster checks in place. We find this to be helpful in reducing high-energy alignments,
and as we show in Figure 7, this is exacerbated in circumstances where a single alignment optimi-

sation attempt is taken, where changes in internal energies above 10Kcal/mol are observed (highly
implausible stereochemistry).
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Figure 6: Pair-plot distributions across the alignment RMSDs (A), molecular weight (Da), and num-

ber of torsional bonds across all 85 ligands in the Astex diverse set. We use the best (lowest RMSD)
aligned pose from an initial set of conformation(s) generated from different random seeds.
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Figure 7: Histogram of internal energy differences (Kcal/mol) (bound pose vs. aligned pose) across
all 85 ligands in the Astex diverse set. We use the best (lowest RMSD) aligned pose from an initial
set of conformation(s) generated from different random seeds.

D.4 FR3D

We provide a more concrete algorithmic breakdown of the logic behind FR3D in Algorithm 1. Note
that at inference, we may choose different heuristics for RecMerge, allowing different valid-cut
sets to be prioritised according to a selection criteria, i.e. by filtering out fragments with broken
chiralities, or prioritising larger overall fragments. However, we leave this for future work and use
the random fragmentation merging strategy for both training and inference.

We quantitatively contrast the differences between the fragments produced by FR3D and the classic
(k + 1) approach, where all k torsional bonds are split, through Figure 8.
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Figure 8: Whisker plots showing the number of fragments and the range (min and max) of fragment
sizes (heavy atoms only) across the PoseBusters and Astex diverse set using either FR3D, or the

classic (k + 1) fragmentation scheme.
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Algorithm 1: FR3D — Fragment REduction for Molecular Docking

Input: molecule mol, candidate torsions C, seed s, optional max_iters
Output: reduced fragments {Gp }

init RNG with s

cuts < C // start from all torsion cuts
S + RecMerge(mol, cuts, sorted(C), 0) // valid cut-sets
sample cuts uniformly from S // stochastic augmentation
frags + safe_fragment(mol, cuts) // Sanitize

foreach f < frags do
| f ¢ remove_overconstrained(f)

return frags

Function RecMerge (mol, cur, cand, start)
V « {frozenset(cur)}
for i < start to |cand| — 1 do
b + cand]i]
if b € cur then

new < cur \ {b}

if validState (mol,new) then

add frozenset(new) to V
L V + V URecMerge(mol, new, cand, i + 1)

L r(;turn %

Function VvalidState (mol, cuts)
parts < safe_fragment (mol, cuts)
foreach p € parts do
Delean — remove_overconstrained(p)
if |perean| > 3 and detect _torsions (Pejea,) then
L return false

return true

E TRAINING DETAILS

E.1 DATA PROCESSING

Here, we describe how we preprocess each sampled protein-ligand pair (Giigand, Q'pmwm) ~ Ddata-

Molecule Parsing We define proteins and ligands in raw form via the standard PDB and SDF
formats. We parse ligand files with RDKit (Landrum, 2025) and force sanistisation to ensure correct
kekulisation and featurisation. We parse protein files via BioPython (Cock et al., 2009), removing
water molecules and other heteroatoms (ions, crystallisation aids, and other co-factors). For both,
we remove all hydrogens (except, for ligands, those necessary to maintain correct valence). During
training, we filter out ligands with more than 20 torsional bonds and/or those with higher molecular
weight than 750 Daltons (excluding hydrogens). Since FR3D permutes across possible fragmen-
tation merging options, this allows us to better scale training, whilst also maintaining our training
distribution inside the desired range of drug-like compounds.

Pocket selection For a given protein-ligand pair, we define the pocket by including every residue
that has at least one atom within a specified cut-off distance dpocker from any atom in the bound
ligand pose. To help de-bias the selection of the pocket we use a stochastic distance dpocker =
5+ N(0, Opocket), Where we use a value of opocker = 1 for training and opocker = 0.5 for sampling.
If there are multiple ligands present in the SDF file due to the presence of multiple chains, we
randomly sample one. We note that we include residues from all protein chains as this is the closest
representation of what the ligand sees during its binding event.

We define the pocket center of mass, which we define as the origin for our stationary distribution,
by finding the center of mass of the pocket residues and adding an additional noise Zpocket € R3 =
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(ﬁ > 24 € azi) + N (0, ocomIs). This is in an attempt to further de-bias the selection of the
'pocket 2 ocke

CoM away from the bound ligand’s CoM and introduce robustness to the often arbitrary choice of
the CoM in practical settings.

Defining fragments For a sample (Giigand; Gprotein) ~ Pdata> W€ generate a conformer via RDKit’s
ETKDGv3 (Landrum, 2025) from gggf;nd, align to x; via our Kabsch aligment procedure and split
the fragments selected by FR3D, yielding m independently SE(3) bodies. We initialise our space
z0) = (p(0, R®) € SE(3)™ by trivially defining p(*) as the CoMs of each fragment as described
in 2.1. This canonical choice ensures our coordinate-frame-invariant pseudo-force construction out-
lined in G.4 is valid. Furthermore, since our training objective is invariant to the relative orientation
of local coordinates Xz, we initialise R at the identity.

Data scaling We scale the global coordinate system by a factor of 2.7. This factor is derived from
the isotropic dimensional scale | M|, computed as the average standard deviation (in A) of fragment
CoMs relative to the pocket CoM across all ligands in the training dataset. The total normalisation

of the coordinate system is therefore x < xl_f/f:jke‘ )Y — yrf/;’;‘c'ke‘. In effect, this scaling ensures that
the stationary distribution (prior) zp provides a faithful representation of the spread of states in z,

consistent with the variance-preserving form of the forward kernel on R™*3,

E.2 ACCELERATED CACHING

We accelerate sampling of complex molecular graphs by creating a cached sampling algorithm as
shown in Algorithm 2. Effectively, we use FR3D to process particular protein-ligand complexes
individually to create a cache of size C' and then sample R random batches of size B. Each time
we sample a particular complex from the dataset we sample time ¢ € [0, 1] independently such that
we re-use a loaded complex R times, artificially reducing the computational bottleneck by a factor
R/C. By default we set R to 8 and C to 2, such that we speed up processing time by a factor
of 4. We pick a relatively small factor to ensure we can sample across multiple noise levels with
sufficient diversity in Ggox such that we limit the risk of non-independent and identically distributed
(iid) sampling.

Algorithm 2: CachedSampling — Stochastic cached batching with recycling

Input: Dataset D, cache size C, batch size B, cycles R, seed s
Output: Batch of size B; each datapoint constructed by FRED ()
Initialize random seed s
while true do
cache + ]
while |cache| < C do

if no more data then

L if |cache| = 0 then
L return
break

1 < next index

if © < FRED (¢) is invalid then continue

append(clone(x), cache)

forr =1to R do
shuffle(cache; seed = s)
fori=0,...,Bdo

| yield cacheli]

E.3 TRAINING

We build SIGMADOCK in Python 3.12, employing PyTorch, PyTorch Geometric and PyTorch Light-
ning as our core deep learning libraries. For our optimiser, we employ AdamW (Loshchilov &
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Hutter, 2019) with an L2 weight penalty of 0.1. We train for a maximum of 256 epochs using a
batch size of 32 and apply early stopping with a patience of 50 epochs. We also use an Exponen-
tial Moving Average (EMA) to define our final parameters, using a weight decay of 0.999, as is
common practice in diffusion models. We use linear warmup with cosine annealing as our learning
rate scheduler strategy, with an initial (cold) learning rate of 1 x 107, a maximum learning rate of
1 x 10~* warmed up over the first 16 epochs, and a final annealed learning rate of 1 x 107°. We
train SIGMADOCK using 4 NVIDIA-A100s (80Gb) via distributed-data-parallel for 4 days, until
convergence.
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F INFERENCE DETAILS

In this section, we present our sampling procedure for SIGMADOCK and how we filter generated
samples to return the best samples for evaluation.

F.1 SAMPLING

We outline our sampling procedure in Algorithm 3 below which supports both deterministic and
stochastic generation. We include the use of noise annealing, as we find that it can help improve
performance for stochastic generation. For our time discretisation between t,,,x and t,,i,, we use
the schedule from Karras et al. (2022). For k = 0,..., N — 1, the k-th timestep is defined as

k P
_ (4 1/ 1
by = (tm/gx + Nsteps 1 (tmille - tm/apx>> ’

where Nieps is the number of discretisation steps and p > 0 controls the spacing. When p = 1, this
reduces to uniform discretisation; larger values of p concentrate timesteps near t,,i,, while smaller
values spread them more evenly across the interval. By default, we use Ngeps = 25, tmin = 0.002,
tmax = 1, p = 3. For our noise annealing, we use the same schedule with Ypin = 0, Ymax = 0.5 and
p=2.

Algorithm 3: SIGMADOCK sampling
Input: Score model sy, docking information Ggock, time steps 0 < tpy =tg < ... < t, =1,
noise annealing schedule {~; }7-, where y; > 0
Output: Predicted ligand coordinates x
Sample z() = (pM), RW) ~ ¢(z) = N(0,I) ® Usoz)m // sample from the prior
fori < ntoldo
At +— |ti — ti,1|
[87,8%] « s9(2*) 5, Gaock) // compute scores

ptti-1) « ReverseTranslations(p®),8&P, t;, At, ;)
R®i-1) « ReverseRotations(R®) &% t; At ;)
z(tiz1) (p(ti—l),R(tzfl))

X — @(Z(tmin))
return x

Function ReverseTranslations (p,s?,t, At, )
Ap « At- (5B8(t)p + B()s")

A€+ v-+/At-B(t) - N(0,1)

p +— p+Ap+ Ac

| return p’
Function ReverseRotations (R,s?, ¢, At,v)
sfE« R1.sF // convert to Lie algebra
sft + [sFps // convert to R3 basis

g+ 4:0°(8)]s=t

AR + At -g-sf

Ae v -/At-g-N(0,I)

R+ R - exp([AR + A€]x) // convert back to SO(3)
L return R’

Computational cost of sampling Using an NVIDIA-A40 GPU for sampling, we achieve a gen-
eration speed (average runtime across the PoseBusters set) of 0.57s/mol per seed when using 20
discretisation steps and a batch size of 64. Depending on the number of seeds (Ngeeq) used in our
SIGMADOCK (Ngeeq) parametrisation via our heuristic outlined in F.2, increasing Ngeeq up-scales
the runtime linearly (unless a distributed system was employed). Sampling speed is also linearly de-
pendent on the number of reverse diffusion steps. However, we find diminishing returns with more
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than 20-30 steps. We argue SIGMADOCK is highly computationally efficient in comparison to other
deep learning methods, taking between 5.7-22.8s/mol for Ng.q = 10, 40 respectively. See Table 2
in (Jiang et al., 2025) for a comparative analysis of other deep learning tools and their relative run-
times. Notably, AF3 (Abramson et al., 2024) is reported to have an average runtime of 16min/mol
and DiffDock (Corso et al., 2022) is reported to have an average runtime of 72s/mol (this includes
the respective number of seeds required by each method).

F.2 CONFIDENCE MODEL

A common requirement of previous work in generative molecular docking is the use of a separately
trained confidence model. This is used to filter a batch of generated samples, from ranking samples
by their computed confidence value, in order to find the best generated poses and discard samples
with poor chemical plausibility. However, this is a significant additional computational burden, from
both the training of the confidence model and the need to apply this to every generated sample. For
instance, Corso et al. (2022) evaluates the performance of their model from a batch of 40 generated
samples for each protein-ligand pair, and Prat et al. (2024) creates a scoring function to filter a large
pool of physics-based docked poses.

In contrast, due to the inductive biases that SIGMADOCK leverages, we find that generated samples
from SIGMADOCK tend to be reliably chemically plausible. Hence, we do not require the use of a
trained confidence mode, and more importantly, we do not employ energy minimisation techniques
which alter the final coordinates of our predicted X;. Specifically, using the force fields (Maier
et al., 2015; Boothroyd et al., 2023) implemented in OpenMM (Eastman et al., 2017) for energy
evaluation, Buttenschoen et al. (2024) shows the relevance of energy minimisation in previous deep
learning approaches.

Instead, we use the simple and cheap (trivially parallel) heuristic of evaluating the binding energy
of the protein-ligand system at a generated docked pose as our “confidence model” with Vinardo
(Quiroga & Villarreal, 2016), where we take lower energies as corresponding to better samples.
During sampling, we compute a total score per sample which also penalises for stereochemical
inconsistencies including bond lengths, bond angles, tetrahedral chirality mismatch, internal steric
clash, and minimum distance to the protein.

Formally, let b; € R denote the binding energy of sample i, fori € {1, - , Ngeeqs } and let p; € [0, 1]
represent the average PoseBusters validity checks for the stereochemical properties specified above
(1 = all checks are valid, O = all checks are invalid). The mixed score for a set of samples is defined
as
5;=—b; pf7

where 3 controls the strength of the total PoseBusters penalty (set to 4). Higher values of s; corre-
spond to higher-confidence poses. We then use these scores to rank the sampled poses across Needs
when computing Top-k metrics.

We believe our approach stands as a more fair test since relying on a different method to correct
the coordinates of sampled bound states is not generally a form which agrees with the maximum
likelihood objective of score models during sampling, and can be tuned at test time to artificially
generate better performance metrics.
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G ARCHITECTURE

In this section, we provide an overview of our score architecture sy which takes the inputs z €
SE(3)™,t € [0,1] and Ggock = (gﬁgDand, {GF, }1 1, Gprotein). We assume that the docking conditioning
information Gy,cx has already been preprocessed by the steps outlined in Section E. 1.

G.1 PROTEIN-LIGAND FEATURISATION

Here we describe the structure of Qﬁ;nd, {GF, },, and Gprotein> and how we extract relevant struc-
tural stereochemical information therein.

Chemical features We featurise the atoms and bonds according to their chemical nature. Specifi-
cally, in addition to the coordinates, we extract the following atomic (node-wise) features:
* Atomic Number € Z™T.
e Degree € Z*, number of adjacent atoms.
» Charge € {0,1,2} representing the formal charge: O if charge is neutral, 1 if charge is
negative, 2 otherwise.
* Hybridicity € {0,--- , 5} representing the hybridisation type (Other, SP, SP2, SP3, SP3D,
SP3D2) respectively.
* Implicit Valence € Z.
 Explicit Valence € Z.
* Is Aromatic € {0, 1}. Boolean value determining if atom belongs to an aromatic chain.
* Is Ring € {0, 1}. Boolean value determining if the atom belongs to a ring/cycle structure.
¢ Num Rings € Z". Number of ring systems the atom belongs to.
¢ Chirality Tag € {0, 1,2}. R(1)-S(2) featurisation of the chirality if atom is chiral, else 0.

Similarly, we extract the following bond (edge-wise) features:

* Bond Type € {0, - - - ,4}: undefined, single, double, triple, or aromatic bond.

* Is Conjugated € {0, 1}. Boolean determining if the bond is a conjugated bond.

* Is In Ring € {0, 1}. Boolean determining if bond is in a ring system.

* Stereo Feature € {0, - - -, 3}. Mapping bond stereo information (None, Any, Cis, Trans).

Protein-specific features To further extract relevant information from the protein atoms we add
an additional feature, for all atoms in the protein, flagging the amino acid it belongs to (from the
standard set of 20 amino acids) and passing this through a learnable embedding function. We also
create virtual nodes at the alpha-carbon C,, which have significant importance in our topological
design. Furthermore, to remove redundancies and prevent over-smoothing across the protein residue,
we add a depth-from-C,, distance encoding over the atoms in the chain.

Fragment-specific features Using FR3D and the featurisation procedure outlined above, we de-
fine our rigid body fragments from a conformation (aligned bound pose during training, random
conformer during sampling). On top of the chemically featurised local geometry obtained here, we
add a set of virtual nodes in each fragment (denoted as V) defined by the following logic: if the
fragment has no rings, place the virtual node in the center of mass of the fragment. Alternatively,
place multiple virtual nodes at the center of each ring.

G.2 INPUT GRAPH

We clarify that in the main body we use the notation Ggox as our representation of the protein-
ligand complex conditioning, and in this section we specify how Gyock is processed into the input
graph Ginpu that we passing into our score architecture. We note that while our diffusion process
and training objective is defined on the Lie group SE(3)™, following previous work, we design our
score model s to operate on the 3D coordinates of the protein-ligand system, defined by Gprorein and
©(z), instead of on the group elements z directly.

33



Under review as a conference paper at ICLR 2026

The input graph Giypy can be decomposed into the global topology, which does not change through-
out the diffusion path, i.e. is immutable across all p:(z(t),t|Gaock), t € [0, 1], and the transient
topology, which is defined from the current fragment coordinates x(t) = ¢(z(t)) and Gprorein. We
make the important distinction: In our global topology, we are not assuming that the entries have
fixed coordinates, but instead that the edge indices and edge types are fixed throughout. We pro-
vide the analogy of a spider’s web, which you can stretch out (altering the coordinates) but will still
maintain the same nodes and edges.

Global topology The core representation of the global topology consists of the rigid fragments
and static protein structure absorbed in Gyock- We extend our global topology by creating edges
across all virtual nodes:

* Cartesian product across all C,, under an 18A distance cut-off,

* Cartesian product across all (Vg,, VF,), i # j,

* Cartesian product across all (Vr, Cy,),

forming a hierarchical and well-structured global message passing mechanism. We also add trian-
gulation edges connecting fragment atoms together, as illustrated in Figure 9.

Transient topology Our transient topology is dynamically defined and includes all protein-ligand
interactions edges under a pre-determined cutoff of 4A . We keep this cutoff relatively low to focus
on important protein-fragment interactions which could otherwise be missed by the message passing
mechanism over the global topology.

Node encoding To distinguish between protein and ligand nodes we add further categorical fea-
tures to the aforementioned list of chemical features. Namely, we add a node entity attribute which
labels the node as either one of:

* Ligand (fragment) Atom

* Ligand (fragment) Anchor (beginning of torsional bond)

 Ligand (fragment) Dummy (inclusion of end of torsional bond)

* Fragment Virtual (Vr)

* Protein Atom

¢ Protein Virtual (C,)
For all nodes in our graph we encode time through a Fourier embedding as used in (Song et al.,
2020). We then define an AtomDiffusionEncoder which processes the categorical features
of each node (including node entity and chemical features) together with the time embedding to
produce a feature embedding of dimension foqe = 128. Distinctively, the feature embedding of Vi,
is computed as the average of the feature embeddings extracted from each individual atom connected

to Vr,. Note we connect to VF, all atoms in fragment F; unless it has multiple rings, whereby we
connect Vg, to all atoms in each ring system. This reduces over-squashing Vg, in large fragments.

Edge encoding Similarly, we build a node entity attribute which labels edges as either one of:

* Ligand Bond

* Protein Bond

* Torsional Bond (across (F;, Fj, @ # j)

» Fragment Triangulation

* Protein-Ligand Interaction

* Fragment Virtual to fragment atom Vp, to Fragment Atom F;
* Fragment-Virtual to Protein-Virtual (Vi — Cy,)

* Fragment Virtual-Virtual (Vi — Vi)

* Protein Virtual-Virtual (C,, — Cy,)

For all edges, we define a distance embedding function using an adapted Fourier distance encoder,
TotalFourierSmearing, for edges defined as part of the global topology, and a Bessel basis
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with smooth polynomial cutoff, RadialEmbeddingBlock, for edges defined as part of the tran-
sient topology. All edges compute distance encodings based on the true distance evaluated from
(x¢,y+) except the fragment triangulation edges. For these edges we define the distance as an offset
from equilibrium: All distances are computed from the current atomic positions (x;,y;), with the
exception of fragment triangulation edges. For these edges, we instead define the distance as an
offset from the equilibrium length:

dij(t) = | lIxi(t) = x; (1)l = %i(0) — %; ()] |,

where x;(0),x;(0) denote the equilibrium reference positions extracted from a random conformer
sampled from RDKit.

An example of Giypy (excluding interaction and virtual edges for clarity) is shown in Figure 9.
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Figure 9: Example of SIGMADOCK representing the bound pose as fragments, (color coded) on
the protein pocket (gray) for complexes with PDB-LIG codes SSAK-ZRY, 7NR8-UOE, 6YR2-T1C,
6XGS5-TOP respectively. Virtual nodes (blue diamonds for each fragment, red diamonds for protein
C,) are depicted. Fragment-protein interactions, C, —C, and C,, — V= edges are hidden for clarity.
We keep the connections between fragment virtual nodes and their corresponding fragment atoms.
Triangulation edges are shown in orange. The pocket CoM is depicted via the golden sphere with a
radius of 1A. Note how the pocket CoM is not always indicative of the bound pose CoM, offering
lower bias during sampling.

G.3 BACKBONE MODEL

Given our input graph Giypy constructed as described above, we pass this into our backbone model.
This is a modified'> version of the EquiformerV2 (Liao et al., 2023) architecture where the output
head predicts atom-wise forces. The modification that we make to the EquiformerV?2 architecture is
to remove the bias terms within the MLPs (i.e. RadialFunction) that process edge features for
dynamic edges in Ginpy (i.e. edges which we include if the neighbouring nodes are within some cut-
off distance); we also use a different MLP for each edge type. We recall from above, that the edges
features for these dynamic edges are computed, from passing the distance between the neighbouring
nodes through a Bessel basis expansion and a polynomial envelop for the cutoff distance, so that
these features smoothly decay to zero as the cutoff distance is approached. Therefore, the effect of
removing the bias terms is to ensure that the messages along these dynamic edges, computed within
the equivariant graph attention blocks (as well as the edge degree embedder), also smoothly decay
to zero as the cutoff distance is approached. In addition, our radial basis function has the desired
property of ensuring the gradient norms smoothly decay to zero as the edge distance approaches the
cutoff. This is to ensure smoothness in the prediction of forces as we perturb z which could cause
sudden changes in the topology of the input graph Gipy from dynamic edges being added/removed.
All our ablations and main results are run with the same number of trainable parameters (14.9M).

G.4 PREDICTION HEAD

To ensure invariance with respect to the choice of local coordinates, we adapt the SO(3)-equivariant
prediction head from Jin et al. (2023); Guan et al. (2023) which utilises the Newton-Euler
equations from rigid-body mechanics. In particular, for each fragment Grp with global in-
put coordinates Xp = (Tp1,...,Tp|g.|) € RI971x3 and SE(3) coordinates (pr, Rr), let

15 Although strictly within the architecture module, we consider the featurisation of the nodes and edges in
our input graph, which we previously describe, as separate from the core EquiformerV2 architecture.
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f=(f1,--, flgr|) € RI971%3 where f; denotes the output from our backbone model for the ith
node in the fragment; the total force F  and the torque 7 on G are defined as

[GF| |G|

Fr= qu TF = Z(l“m —pr) X fi.
i=1

i=1

We then predict the score function for G with the score components [s}, sff} defined by:

1 Dufolw,o(t)) -
sh = . Fp, sht=-=- : Lrp]lx Rp.
ST w 10T T T et T
where w = ||I}1TF||2 and Ip = Z‘Zg:ll lxr fpp||2I — (zpi — pr)(xr; — pr) ' denotes the

inertia matrix of the fragment. We see that s} is essentially parametrised for e-prediction and that sf
is constructed to match the form of the conditional score; this is done to improve the conditioning
of the score matching loss.
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H SYMMETRIES

As part of SIGMADOCK, we are concerned with two main symmetries of our model. Firstly, we
note that an issue of working with fragments naively is that due to their heterogenous construction
(i.e. fragments can have various different topologies and number of atoms etc.), we can not define
a canonnical orientation for their local coordinates. This is not an issue with other fragment-based
models, such as AlphaFold 2 (Jumper et al., 2021), as in their setting, all fragments take the same
form (e.g. protein backbone frames have a canonical axis defined by the (N — C, — C') atoms).
Formally, consider a fragment G with some choice of local coordinates X . For any choice of R, €
SO(3), we can define another valid choice of local coordinates given by 5(% = R, -xp; we denote the
fragment defined by this alternative choice by G7. Therefore, if we observe the global coordinates
of the fragment are xp = pp + Rp - Xp, then under the fragment G, this pose is parametrised
by (pr, Rr), whereas under the fragment G/, this pose is parametrised by (pr, RpR. ) instead,
since Xp = pr + Rp R;r - X». To prevent issues from the orientation of local coordinates not being
well-defined, we have designed SIGMADOCK to ensure that our training objective and sampling
procedure are invariant with respect to the choice of orientations for local coordinates.

Secondly, we note the kernel pg(z|Gaock) defined by sampling from SIGMADOCK should ideally
be stochastically equivariant (Bloem-Reddy & Teh, 2020; Cornish, 2024; Zhang et al., 2024) with
respect to SO(3), i.e.

po(dz|Ro - Gaock) = Ro - po(dz|Gaock), VRy € SO(3),

where Ry - Ggock should be understood as applying the rotation Ry to the coordinates y of
Gprotein € Gaock, and the right-hand side denotes the push-forward under the mapping given by
applying Ry (where we define the action Ry - z = Ry - (pr,, Rr,)i"y = (Ro - pr,, RoRrE,)[21).
In random variable notation, this corresponds to the statement saying that the sample z’ = Ry - z
where z ~ pp(2z|Gaock) follows the same distribution as z ~ pg(z|Ro - Gaock). Intuitively, this
means that the distribution pg(z|Ggock) Of fragments (and hence, the ligand, as it is easy to see that
©(Ro - z) = Ro - ¢(z)) should be transformed in a consistent way as we change the orientation
of the protein pocket that SIGMADOCK is conditioned on. To enforce this symmetry, we have
designed SIGMADOCK to use an SO(3)-equivariant architecture for our score model.

We note that stochastic equivariance is more commonly presented in the literature (Hoogeboom
et al., 2022) in terms of conditional densities p(x|y) which obey the condition p(g - z|g - y) for all
g € G where G is some group under consideration. However, this definition implicitly assumes
that the Jacobian of the group action has unit determinant and does not account for the general case
presented in Bloem-Reddy & Teh (2020); Cornish (2024). Further, we note that it is surprising to
us that, to the best of our knowledge, this particular symmetry has not been remarked on (or proved
to hold as we do later on) in the literature on diffusion-based molecular docking, as this condition
provides justification for using an equivariant architecture for the score model. Specifically, we find
prior work appears to use such architectures without analysing the properties they induce on the
diffusion model and sampling.

To show that SIGMADOCK does indeed satisfy the symmetry requirements that we have outlined
above, and stated in Theorem 2, we provide a proof of this fact below in Appendix H.1.

H.1 PROOF OF THEOREM 2

Proof. We divide the proof into three sections: (i) proving invariance of our training objective;
(ii) proving invariance of our sampling procedure; and (iii) proving pp(z|Gaock) is stochastically
equivariant with respect to SO(3).

Invariance of training objective Consider two different fragmentations {Gr, }7, and {G} }i*,
of a ligand with different choices for the orientations of local coordinates—i.e. G has local coor-
dinates X and G} has local coordinates X7 = R, p - Xp where R; p € SO(3) for F' € {F;}1,.
Then the global 3D coordinates x of the ligand has different representations for each choice of
fragmentations. However, no matter the choice of fragmentation, the backbone of our score model
so (with Gaoex and G being the corresponding docking information formed the two choices) will
output forces for each fragment that are independent of this, as we have designed the backbone to

operate over the global 3D coordinates of our protein-ligand system, i.e. x = ¢(z) and y.
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Next, we focus on the rotational scores for a single fragment with different orientations: Gr and Q%.

We let (p(bg), jo)) denote the SE(3) parametrisation at ¢t = 0 for Gp, therefore (pﬁé)% R;?)R;r’ )
is the parametrisation under G%. Therefore, the sampling distribution for training is given by

RY ~ IG5 (RY; RY, 02(t)) for Gp and is given by R ~ IGso ) (RY; RY R] 1, o2(t))
for G '»- We note that in random variable notation, we have the expressron R( ) = RR( ) where R ~

Igso(3)(R, I,0%(t)) and R;(f) RR(O)RTF This implies that R R(t)RTF Further, under
the sampling distribution for training for G, we can express the condrtronal score in the objective as

Vrlogpyo(RY [RY R ) = Vi logpyo(BY R oI RY R )
= CORY R plog (Ro r(RY) RYRL ;)
= CORYR] e R, plog (RE)TRY ) R
= ()R 10g (RY)TRY) R
=Vr 10gpt\0(R( )iR(O))Rs F

where the third equality is due to the trivial identity: log(ABAT) = Alog(B)AT for A, B € SO(3)
and we define

Ct) =

O fo(w(t),a(t))

w(t) fo(w(t),a(t))’
where w(t) = w (Rsyp(R;?))TR;E)RIF) and this equals w ((Rg))TR;’f)> from the definition of
the function w.

Further let z = ((pr,,Rp,)), and 2/ = ((pF’RFiRIFi))?;I be the parametrisation under

{GF, }i2, and {Gf }i%, respectively for a ligand pose x, then the rotational score for a fragment
Gr has the followrng relationship

ng(zl>tvgr/iock>F = Sg(zvtangCk)F ’ R;i‘?’

due to the fact that the predicted forces for G, G} are the same and the only impact that the
different choices of orientation makes is in the rotational prediction head.

Turning our focus to the translational scores, it is easy to see that the definition of the translational
components pr (hence, the sampling for training, the prediction of scores and the training objective
for the translational scores) are independent of the choice of orientations as these are disentangled.

Finally, by considering the training objective of the rotational scores under G, we have
2
E [ 552", Ghoua)r — Vrlog pyo(RE R] s R R] >HSO(3)]

2
=E [HSE(Z(UJ, Gaock) - Ry pp — VRlogpt\O(Rivt)|RivO)) : R‘IFiiSO(s)i

2
~E [Hsé‘%z“),t, Gaos) — Vlog po (R | R i 7

SO(3)
where z'(Y) is formed from sampling from pg,., extracting the SE(3) parametrisation under
{GF, }i2, and applying the forward sampling kernel, and the final equality is due to the form of the
SO(3) inner product. The above result demonstrates that the the training objective of SIGMADOCK
is invariant to the choice of orientations for local coordinates, as the final equality has the form of
the training objective of the rotational scores under Gp.

Invariance of sampling Under the same setup as before, let z(Y) = ((p%),R%)))ﬁl and

7z = ((pgﬁ) R(t)RSTF ), be the SE(3) parametrisation of the same ligand pose x under
Gr, and {G}, . We consider the sampling step for z'(*) to the next time step ¢’ < t. For a
e F; pling step p
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given fragment Gf, the update step has the form (for clarity, (WLOG) we set all coefficients used
in sampling such as At - g and v - /At - g to be one):

RY R pexp (Ror (RY) s (2,1, Gloo ) r + 2

= RYR] pexp (~C(ORor (RY) M5 76) BY R + 2)

= RYR] pRopexp (~CORY) MR ]« RY + RLpZRow ) R
= B exp () Ts0(2, 1, Gaoe) + R o ZRor ) R 1

where Z = Z?zl d;e; where §; ~ N(0, 1) are iid and e; are the canonical basis of the Lie algebra
50(3). We can show that

[0 1 0iR, peiRs plre = S0, 0i[R, pei Ry plgs
= Y0 iR, e,
=R, - N(0,T3)
~ N(Oa 13)
where &; denotes the standard basis vectors of R3. This is a consequence of the self-adjointness
of SO(3) which implies that [R - v]y = R[v]xR~! where v € R? and R acts on the vector.

Therefore, we have RI pZRs £ Z. This allows us to conclude that distribution of the update
step considered in Euclidean space (via the mapping ¢) under the fragmentation {g},l}?il is the

same as the update step given by the fragmentation {Gp, }7,. Hence, the sampling procedure of
SIGMADOCK is invariant with respect to the choice of orientations for local coordinates.

Proof of stochastic equivariance We first recall the following notation z = ((pr,, Rr,))"
and gdock - (gﬁgDand? {gFl };7;17 gprotein)a Where gprotein = (Y7 Vya by) For RO S SO(3)7
we define the following group actions by Ry - z = ((Ro - pr,RoRF,))™, and

RO : gdock - (glzigDanda {gFi }?;17 RO N gprotein) where RO : gprotein == (RO 'y, Vya by) It is im-
portant to note that Ry - Ggock Only acts on the 3D coordinates y of the protein pocket, and does not
change the local coordinates for fragments {G, }7*,. We note that this group action represents the
global rotation of the protein-ligand system defined by z and Ggock-

Let pg(z")|G9°X) denote the marginal distribution of samples at time ¢ generated by SIGMADOCK
under the docking information Gy,cx. In order to prove stochastic equivariance, we can equivalently
show that if pg(z(")|Ggoe) is stochastically equivariant with respect to the above group action,
then this implies that pg (z(t') |Guock ), Where t' < t, is also stochastically equivariant. Therefore, as
po(21|Gaoer) is trivially stochastically equivariant, since this corresponds to the prior over z which
is independent of the orientation of y, the desired result follows by induction.

To show the inductive step, we note by basic probability that we have the following expression
(with densities considered over the product of Lebesgue and Haar measures):

pu(”[Gaos) = [ po(2, Ga (2 Gans 1.

where py (z(t,) |z(t), Gdock) denotes the kernel induced by sampling the next time step ¢’ from z(®).
We next consider showing the conditional density formulation of stochastic equivariance (this is
valid as the action of rotations has unit Jacobian),

pa(Ro - Z(t/)|R0 - Gdock) = /pe(Ro 'Z(t/)lz(t), Ro - Gaoek)P6 (27| Ro - Gaoar)dz?
= /pO(RO 'Z(t/)|R0 -2 Ry - Gaoex)pa(Ro - 29| Ro - Gaoer )z

= /pe(Ro 'Z(t/)|Ro -2 Ry - Gaoex)po (21 | Gaoer)dz?,
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where the second equality is due to a change of variables and using the fact that rotations has unit
Jacobian, and the third equality is due to our inductive hypothesis.

We can express the conditional density pg (R - z(®) |Ry - z(t), Ry - Gaock) in terms of the product of
po(Ro - PR -2, Ry - Gaoex) and pg(Ro - R |Ry - 2, Ry - Gaoex). For the former, we have
(for clarity, (WLOG) we set all constants to one):

po(Ro - "Ry -2, Ry - Gaoar) = N'(Ro - p*; Ry - p¥ + sh(Ro -2, t, Ry - Gaoek), I)
= N(Ro-p"; Ry - (P + 59(2"), , Gaoer)), 1)
N(p(t/)7 p(t) + 89 (Z(t)a t7 ngCk)7 I)
= po(P" |2, Ggoer),

where the second equality uses the fact that the forces predicted by EquiformerV2 are SO(3)-
equivariant (we note that this is with respect to the input coordinates which are Ry - x and Ry -y
in this case) and the prediction head for translations is trivially SO(3)-equivariant, and the third
equality is due to the Gaussian density being isotropic.

For the latter term, we first consider the random variable representation of R;&t )~ po (| Ro -z Ry-

Gdock ) for an individual fragment (the distribution on R factorises over fragments independently).
This is given from the update step for sampling (for clarity, (WLOG) we set all constants to one) as

R = RyRY exp ((R?)TRJSQ(RO 2® t, Ry - Gaoer) + Z)
= RoR{Y) exp ((R{) Ts0(2", 1, Guoer) + Z)

where Z = 23:1 d;e; where 6; ~ N(0,1) are iid. The second equality is using the fact that
the forces predicted by EquiformerV2 are SO(3)-equivariant and Guan et al. (2023) shows
that I,' 75 is SO(3)-equivariant and then applying [R - v]x = R[v]xR~'. Further, we note

that the term R;f) exp ((Rg))Tsf;(z(t),t,gdock) + Z) is the random variable representation of

R;f,) ~ po(- |z(t), Gdock )- Therefore, we can view R;&t/) as a change of variables of R;f/) by the trans-
formation Ry. Hence, we can conclude that pg( Ry -R;f )|R0 2z, Ry -Gaock) = Do (R;f ) 1), Gaock)
and more generally pg(Ro - R |Ry - 29, Ry - Gaoek) = po(R) |21, Gaork).

Since, we have shown that py (R - z(t) |Ro -2, Ry - Gaoek) = Do (z(t/) 1Y), Gocx)» following from
what we had before, we can conclude that

pa(Ro - Z(t,)|Ro - Gdock) = /pe(Ro 'Z(t/)|R0 -2 Ry - Gaoet)po (2| Gaoar ) dz?

= /p9 (Z(t/) |z(t)a gdock)pé‘ (Z(t) |Qd0ck)dz(t)

= (2" Gaoek)-

Hence, we can conclude that pg(z|Gaock ) is stochastically equivariant with respect to SO(3).
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I EXTENDED RESULTS

1.1 GENERATED SAMPLES

Trajectories Sample trajectories for four randomised protein-ligand pairs in the Astex diverse set
are displayed in Figure 10.

T IATE A v §
o R x w0 O
o oglis gt ¢ el ¢ ot
x &

Figure 10: Sample trajectories of protein-ligand pairs IHVY-D16 (a), IHWI-115 (b), 1IKZK-JE2
(c), and 1N46-PFA (d), using the default sampling scheme outlined in F. The respective RMSDs
between the sampled and bound pose are 1.2, 0.31, 0.33, 0.88 A . We illustrate discretisation-steps
0, 3, 10 and 20 (out of 20), where the zeroth step represents samples from the stationary distribution.
We show the reference bound pose in light green. For a and b we tilt the view in the last frame to
improve visibility of the fit.

(d)

yﬁ_

RMSD is an imperfect metric. In Figure 11 we show 4 examples of generated poses from the
PoseBusters set where the (symmetry-corrected) RMSD between the generated pose and the bound
pose is higher than the threshold of 2A . According to this metric, these are deemed as failed samples.
However, we argue that the generated poses seem stereochemically valid, as they recover similar
interactions. Namely, in (a), ligand O88 is highly symmetric; the generated pose yields very similar
interactions and induced fit, even when SIGMADOCK predicts the pseudo-rotated conformation, yet
the RMSD is 10.2A. A similar argument can be made for ligand XN7 in (b), where we observe the
(C = O) forming the correct interaction (hydrogen bond acceptor) with the protein. In our third
example (c¢) we see how the sampled pose very tightly recovers the true pose, yet the non-interacting
tail of the ligand containing a cycloproply group is predicted to be elsewhere. However, given the
binding pocket is open, this cyclopropyl should freely rotate (molecules are dynamic). This unfairly
labels the sampled pose as incorrect, with an RMSD of 4.2A.
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(a) (b) (c) (d)

< O %f e

Figure 11: 2D visualizations of ligands (top) and their corresponding generated poses (bottom)
across PDB-ligand pairs from the PB set: 7FRX-088 (a, 10.2 A RMSD), 7KZ9-XN7 (b, 4.7 A
RMSD), 6Y7L-QMG (c, 4.2 A RMSD), and TMGY-ZD1 (d, 5.8 A RMSD). The true bound pose
is shown in faint green.

~

1.2 SAMPLE PERFORMANCE & EFFICIENCY

In the main body we use Top-1 (%) as our key performance metric. However, it is also important to
assess the sample efficiency of our generator. We measure sample efficiency by looking at the rate
of change in Top-k as we vary the number of independent samples (Nyeeqs). We report our results in
Figure 12.

Notably, our Top-k success rates increase rapidly with only a few seeds, indicating high sample
efficiency. This is especially true when considering PB-validity, as a few random seeds rapidly
ensures better samples are prioritised according to our heuristic. Conversely, the Top-k accuracies
for (RMSD < 2) and (RMSD < 2 & PB-Valid) converge to similar values as Ngeqs increases, and
are practically indistinguishable when Ngqs > 20. Finally, we consider the Oracle performance,
which represents the empirical maximum success rate achievable by perfectly selecting the best
sample from the pool of Ngeegs. At Ngeegs = 20, the Oracle reaches over 90% success for the
(RMSD < 2 A) metric and just under 90% for the combined (RMSD < 2 A & PB-Valid) metric.
The relatively large gap (~ 10%) between this empirical ceiling and our practical Top-1 performance
quantifies the potential for improvement in re-ranking the generated candidates, and we leave this
for future work.

(a) RMSD Only

(b) RMSD + PB Valid

100% A

90% 1

80% -

70% -

— Top-1 I/ — Top-1
Top-3 : Top-3
60% - —— Top-5 —— Top-5
—— Top-10 — Top-10
—=- Oracle —=—- Oracle + PB
0% i1y i
Ideal Bernoulli Ideal Bernoulli + PB
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Nseeds Nseeds

Figure 12: Top-k success rate as a function of the pool sample size Ngeeqs. Solid Top-k lines rep-
resent the mean success rates across (40 - Ngeeqs) permutations, with shaded areas representing the
standard deviation. The Oracle reflects the empirical maximum success rate attainable across the
Nieeds Samples, equivalent to Top- Ngeeqs- The ideal Bernoulli line represents the empirical optimal,
assuming independent sampling probability.
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J  LIMITATIONS

J.1 CURRENT LIMITATIONS AND FUTURE WORKS

Intentionally small training set. SIGMADOCK was deliberately trained on PDBBind(v2020) to
enable fair method-level comparison with the intended PoseBusters train-test split, and to highlight
methodological improvements rather than raw performance. This choice clearly reduces the model’s
out-of-distribution generalisability. In the future, we will look at scaling training with additional
curated complexes, applying data augmentation and transfer learning / pre-training strategies, or
combining with larger foundation models to improve robustness.

Dependence on the pocket center at inference. SIGMADOCK requires a user-specified pocket
center to define the search region. Although we debias the choice of the geometric center from
the ligand center, and make SIGMADOCK relatively robust to the choice of pocket center during
training (see Appendix E.1), when the true center is misspecified, the search space (and therefore
predicted samples) can be biased. For fairness, we note that many physics-based and deep-learning-
based competing tools introduce a greater bias, such as a strict bounding box around the bound
ligand (Trott & Olson, 2010; Zhou et al., 2023b; Jiang et al., 2025). This explicitly restricts the
search space over a biased search region (Az, Ay, Az), providing information about the structural
fit of the bound ligand. Further work could be performed to (i) explore the sensitivity over the
choice of pocket centers; (ii) incorporate a different product structure with rigid body translations
that separates the requirement of a defined pocket center.

Chirality challenges from fragmentation. Although we implement a chirality-preserving scheme
by attempting fragmentation merging operations which try to keep chiral centers during sampling,
there are cases where no valid reconstruction preserves the original stereochemistry and a chiral cen-
ter may be altered during fragment linking. Currently, we simply apply post-filtering over the gen-
erated Ngeeqs sSamples to discard undesired stereoisomers (as performed in Abramson et al. (2024)).
Future works could try to explore ways in which SIGMADOCK might better capture stereochemical
priors to further ensure chirality is preserved.

Sensitivity to cofactors and receptor flexibility. Performance degrades when relevant co-factors
are omitted from the input. This indicates the model does not merely memorise unphysical poses but
relies on explicit physical context. In future work, we will consider including cofactors and flexible
side chains jointly with our SE(3)™ fragments.

Restricted evaluation protocol (re-docking only). All reported results are based on re-docking
benchmarks. We intentionally restrict the evaluation of SIGMADOCK to re-docking in order to
emphasise its key contribution on a task not yet dominated by deep learning methods. These re-
sults demonstrate the model’s ability to recover bound poses from known pocket conformations, but
they do not fully capture its generalisation to more challenging scenarios. While many protein tar-
gets have relatively rigid pockets with limited structural change, important future directions include
training and assessing performance on cross-docking and apo-structure docking tasks.
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