
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE TURING GAME

Anonymous authors
Paper under double-blind review

ABSTRACT

We present first experimental results from the Turing Game, a modern implementa-
tion of the original imitation game as proposed by Alan Turing in 1950. The Turing
Game is a gamified interaction between two human players and one AI chatbot
powered by state-of-the-art Large Language Models (LLMs). The game is designed
to explore whether humans can distinguish between their peers and machines in
chat-based conversations, with human players striving to identify fellow humans
and machines striving to blend in as one of them. To this end, we implemented
a comprehensive framework that connects human players over the Internet with
chatbot implementations. We detail the experimental results after a public launch
at the Ars Electronica Festival in September 2024. While the experiment is still
ongoing, in this paper we present our initial findings from the hitherto gathered data.
Our long term vision of the project is to deepen the understanding of human-AI
interactions and eventually contribute to improving LLMs and language-based user
interfaces.

1 INTRODUCTION

AI systems are built with the goal of performing activities that were traditionally reserved to humans,
from playing strategy games, like chess (Campbell et al., 2002), Go (et al., 2016) or Dota-2 (et al.,
2019), to generating artistic imagery (Mid) and written texts (OpenAI, 2023; Jones and Bergen,
2023). They became better and better up until the point where some have already surpassed human
performances in fields that have traditionally been believed to require human abstract thinking and
strategic planning. In the field of content generation, we have arrived at the point where we find it
hard to discern whether images or clips are generated or represent real footage or whether texts stem
from a human or a machine.

Alan Turing, a founding figure in computer science, posed the question of whether machines can
think (Turing, 1950; Saygin et al., 2000). Drawing from the theoretical Turing Machines - capable of
computing anything computable - and emerging insights into brain function, Turing hypothesized that
human thought processes could be computationally replicated. To address the ambiguous concept
of “thinking”, he proposed the Turing Test (also called “Imitation Game”), where an interrogator
communicates with a machine and a human through a text interface, aiming to distinguish between
them. The machine passes if it convinces the interrogator it is human, suggesting it simulates aspects
of human thought. However, the test’s outcomes depend heavily on the participants’ motivations and
susceptibility to deception, issues unaddressed in Turing’s original formulation or later implementa-
tions like the Löbner Prize (Shieber, 1994; Epstein et al., 2008) and “Human or Not?” (Jannai et al.,
2023).

In this paper, we propose to extend the Imitation Game by symmetrizing the roles of the original two
human participants, see Fig. 1. This seemingly slight redesign of the test shifts the focus away from
the simple question-answering to the collaboration between the humans and the inference of their
mutual intentions, a characteristic feature of human communications (Tomasello et al., 2005; Zhang
et al., 2024). Due to that, the question comes down to which of the interlocutors understands the
intentions better, a human or a machine. Note that in this way we avoid being explicit about what
behavior is human-like, allowing participants to decide what behavior is human-like, and what is not.
Just like Alan Turing, we leave the kind and length of the conversation fully up to the humans.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

J H J H

A B

Figure 1: A The original Turing Test (Imitation game): The judge has to decide whom of the other
two interlocutors he thinks to be the machine. The other human serves as the counterpart to the
machine. His role is solely to support the judge in his decision. B Our Turing Game: Both humans
independently decide which interlocutor they believe is the machine while supporting the other
human. Red crosses show a human misidentifying another human as a machine, while green checks
indicate correct identification of the machine. Hammers indicate the decision-making. Only if both
humans are correct, they win the game.

Humans often express their verbalized thoughts in a non-explicit and incomplete way (Clark and
Brennan, 1991). In order for a machine to correctly understand human desires and needs, it needs to
understand our thoughts on a large enough joint context (common knowledge), and thus behave as
human-like as possible (Christian, 2020; Amodei et al., 2016). Our contributions are as follows:

• We propose a generalization of the Turing Test, the Turing Game, which is symmetric with
respect to the role of the two humans. We also develop a tailored matching algorithm to pair
human players according to their playing performance and average time to make decisions.

• We have developed and installed the Turing Game as a platform and made it publicly
available.1 Our platform serves as a sandbox for testing various LLMs and chatbot imple-
mentations designed to mimic human-like thinking, evaluated by an open community. We
have designed the ratings of the bots such that the most qualified humans contribute the
most to those ratings.

• We present the preliminary experimental results from the hitherto gathered data, mainly
from a public exposition and public installation at the Ars Electronica Festival.

The paper is organized as follows: Sec. 2 details the related work and shortcomings of hitherto
implementations of Turing-like tests; Sec. 3 describes the proposed Turing Game; Sec. 4 presents
results and their analysis from the already gathered data; Sec. 5 concludes and reflects on our
contributions. In the Appendix, Sec.A discusses potential ethical consequences, Sec.B complements
the presented scores, Sec.D describes our platform, Sec.E supplements the results from Sec.4, and
Sec.F details our installation at the Ars Electronica Festival.

2 RELATED WORK

Turing(-like) tests before LLMs. Levesque proposed the Winograd Scheme Challenge (WSC),
as a possible alternative to the Turing Test (see also Levesque et al. (2012)). The challenge consists
in a set of cleverly constructed pairs of sentences that differ by only one or two words. Correct
interpretation of these sentences relies on resolving pronoun ambiguities, a task that seemingly
requires common-sense reasoning (Kocijan et al., 2023). In addition to the Turing Test, numerous
other tests have been proposed. Examples include The Marcus Test that evaluates AI system’s ability
to understand the meaning behind video content, such as plot, humor and sarcasm. To pass, an AI
system needs to describe the video content like a human would (Marcus et al., 2016). The Lovelace
Test, which examines whether AI can generate original ideas that exceed its training data (Bringsjord
et al., 2001). The Reverse Turing Test, in which the AI acts as the interrogator and must determine if
the human participant is actually a machine. The human passes the test if the AI misidentifies them as
a machine (Sejnowski, 2022). The Visual Turing Test, designed to assess computer vision systems

1https://xxxx.xxxxxxxxxx.ai/ (anonymized)

2

https://ars.electronica.art/festival/en/
https://xxxx.xxxxxxxxxx.ai/


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

by asking binary questions about an image. An operator answers or dismisses each question for
ambiguity. The system asks one question at a time, focusing solely on visual understanding without
natural language processing. The test aims to evaluate the system’s ability to interpret complex visual
narratives and relationships between objects (Geman et al., 2015). The Löbner Prize (Shieber,
1994), established in 1990 by Hugh Löbner, was an annual competition based on the Turing Test
that challenged AI programs to mimic human conversation. Judges would determine if responses
came from humans or machines. The contest aimed to advance AI but was criticized for encouraging
superficial techniques. The competition continued until 2019, without ever awarding its prize for a
fully indistinguishable AI.

Turing(-like) tests and LLMs. Jannai et al. presented “Human or Not”, an online game aimed to
measure the capability of AI chatbots to mimic humans in conversation, as well as humans’ ability to
tell bots from other humans. Over 1.5 million unique users participated, engaging in two-minute chat
sessions with either another human or an AI language model simulating human behavior. We observe
the following shortcomings in the above work: the authors impose a 2-minute time constraint, which
may push participants toward System 1 type reasoning (Suter and Hertwig, 2011), and they do not
address the issue of asymmetry in the original Imitation Game (what we do by adding more players).

Relatively big-scale and multimodal experiments were performed by Zhang et al.. The results revealed
that current AIs are not far from being able to impersonate humans across different ages, genders,
and educational levels in complex visual and language challenges. Jones and Bergen evaluated
GPT-4 in a public online Turing Test to find out that familiarity with LLMs did increase the detection
rate. Zheng et al. examined the use of Large Language Models (LLMs) as evaluators (“judge”) of
chatbot performance, an approach called “LLM-as-a-judge.” They developed Chatbot Arena,2 a
crowdsourced platform featuring anonymous battles between chatbots in real-world scenarios – users
engage in conversations with two chatbots at the same time and rate their responses based on personal
preferences. The system ranks AI bots through pairwise comparisons. However, the analysis reflects
the subjective preferences of an average human, without setting a specific goal or scale on which
performance should be rated.

Shortcomings. Levesque identified several major issues related to Turing’s original question,
summarized as follows. Deception: The machine is forced to construct a false identity, which is not
part of intelligence. Conversation: A lot of interaction may qualify as “legitimate conversation” —
jokes, clever asides, points of order — without requiring intelligent reasoning. Evaluation: Humans
make mistakes and judges might disagree on the results. In addition to those issues, and shortcomings
of the Turing Test discussed in the literature (for a comprehensive overview, see French (2000)), we
identify problems related to the role of the judge: to the best of our knowledge, all previous work
assumes an “average” judge, and bases their analysis on this assumption. In contrast, we propose
employing highly skilled judges who have specifically demonstrated proficiency in distinguishing
between machines and humans. To identify these top-performing judges, we propose dividing
the experiment into two phases: the phase designed to assess which humans excel as judges, and
the phase where we evaluate how the bots perform against highly skilled judges. Note that this
approach encourages a more rigorous test, not an easier one. Additionally, we do not enforce any
time constraints and allow for deliberate decision-making, encouraging System 2 reasoning rather
than impulsive System 1 judgements (Suter and Hertwig, 2011).

3 THE TURING GAME

Motivated by the reported shortcomings of the original implementation, we symmetrize the interaction
between the two human participants by allowing the three participants (two humans and one machine)
to interact with each other, and we removed the predetermined role of the interrogator (see Fig. 1).
That gives rise to a gamified interaction between players, called the Turing Game. At any point during
the game, the players may decide to cast their vote and try to identify the machine. The game finishes
as soon as the both humans have cast their vote. The humans win the game only if both of them have
correctly identified the machine. If at least one of them misidentifies his fellow human as a machine,
then both humans lose. This redesign introduces the following changes to the test’s dynamics: (i)
already with three participants we may observe an effect of siding between any two players, absent in

2https://chat.lmsys.org/

3

https://chat.lmsys.org/


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

one-on-one interactions (Tajfel and Turner, 1979); (ii) the presence of two players further mitigates
the reverse effect of the Turing Test as the machine’s responses do not get influenced solely by one
player (Sejnowski, 2022); (iii) the participants benefit from forming collaborations within the group,
a typically human feature (Tomasello et al., 2005). Their interaction’s style may range from fully
collaborative, to fully interrogative, or anything in between. Lastly, as participants interact using
written language without additional cues such as body language or facial expressions, they rely more
on deliberate reasoning rather than intuitive judgment (Kurzban, 2001).

3.1 SCORES FOR HUMANS

Ranking in games has been explored in the context of feedback systems and has been shown to have a
positive effect on the motivation of players (Przybylski et al., 2010; Deci et al., 1999). The frequently
used ELO rating (Elo, 1978) is not applicable to our case, and its generalizations such as Herbrich
et al. (2006) are not robust against players who may deliberately misidentify fellow humans. Hence,
in this section, we introduce a tailored ranking to score the players. We create a leaderboard to
identify the most proficient players and match them based on their game strength, as an experienced
player may underperform when paired with an inexperienced one. Observe that by pairing humans
who performed well we ensure that (a) the players were able to correctly identify the machine, (b)
they managed to convince other human players about the machine’s identity, in this way eliminating
those who are more likely to deliberately misidentify fellow humans.

Player’s Game-Strength. We focus on estimating the odd, with a prior of one, that the player will
win in the next game, constructed as follows. Suppose a human player Pi played Ni games. We
focus on the cumulative number of victories,

∑Ni

k=1 vik, and the cumulative number of the lost games∑Ni

k=1 lik, where lik = 1− vik and vik is defined as

vik =

{
1 if the kth game is won,
0 if the kth game is lost,

(1)

with k enumerating the games in reverse order, i.e., the game with index k = 1 is the last game
played and the game with index k = Ni is the first game played by Pi.

As the score should be a predictor of the player’s current strength, we take into account the last 100
games (at the beginning of the experiment we consider less if 100 is not available). We use a modified
sigmoid to achieve a smooth drop off:

σ100(k) := 1− 1

1 + e−0.1(k−100)
(2)

The smoothed cumulative number of victories and losses can then be expressed as
Vi =

∑Ni

k=1 vikσ100(k) and Li =
∑Ni

k=1 likσ100(k). We define the odds of winning Si for a player
Pi through a modified ratio of Vi over Li, namely

Si =
Vi + 11

Li + 11
. (3)

In order to ensure a strong prior towards Si ≈ 1, we add 11 to both the numerator and denominator
of the score such that in combination with the weighting by σ100(k) the maximum achievable score
is around 10. Starting with a prior of 1 prevents issues that could arise from using 0, such as division
errors or overly skewed early game dynamics. From a Bayesian perspective, this choice reflects
a uniform prior belief, representing minimal initial assumptions while allowing subsequent games
to proportionally influence the score. Additionally, a prior of 1 enhances the interpretability of the
system, providing an intuitive and unbiased starting point for players.

Matching players. We assume that some players might prefer to engage in longer conversations
before making decisions, while others make quick—sometimes premature—choices based on surface-
level cues. To account for this, we pair players with similar average decision times. However,
to ensure a seamless experience, we prioritize reducing wait times, even if it means occasionally
matching players with slightly different decision patterns. We define the distance dij between two

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

players Pi and Pj as the Euclidean distance between the player’s score Si (Eq. (3)) and the player’s
average time to decision Ti in minutes (see Fig. 2), i.e.,

dij =
√
(Si − Sj)2 + (Ti − Tj)2. (4)

Figure 2: Every dot denotes a different player with its position due to its average decision time and
its score. Shown are all registered players that have played 5 or more games. The size of each dot is
proportional to the number of games played by the user, the maximum number is 79. Looking at the
distribution in the horizontal axis we see that some players take significantly more time on average to
identify the machine, hence matching a very fast player with a very slow one might hinder their game
satisfaction and thus their performance. The scores (equation 3) only span the interval from 0.6 to
2.1. This is due to the fact that the shown experimental data is yet preliminary, higher scores are yet
to be achieved. The green area illustrates an example of the matching radius (equation 4) around the
one player marked in red as an example.

Matching penalty. A penalty p is computed for each player pair to reduce the possibility of pairing
the same players multiple times in a row. We refer to the Appendix Sec. B for more details. Both
d and p (equation 4 and equation 9, respectively) are then added together to form the final distance
value. As this value is computed for every queued player-pair, they form a quadratic matrix D, where:

Dij =

{
dij + pij , if i ̸= j

∞, if i = j
(5)

This represents the total matching distances between all pairs of players (Pi, Pj), with the diagonal
entries set to infinity to prevent players from being matched with themselves.

Player Selection. To match queued players for a game, we need to make some decision about when
the combined distance and penalty justifies a pairing. To this end, we normalize the total matching
distance D (equation 5) by a threshold τ ∈ R. Our initial threshold of τ = 1 allows the matching of
two players with a combined distance of 1 in their scores and decision times. We increased to τ = 5
to allow for faster matching as long as the game has low numbers of players:

D̂ij :=
Dij

τ
− 1. (6)

We match players pair (i∗, j∗) such that (i∗, j∗) = argmin(i,j) D̂ij , provided that D̂ij < 0.

Distance Adjustment by Time. To ensure that players who have been waiting longer are more
likely to be matched, we use the cumulative queuing time of both player, qi + qj (in minutes), as a
compensation factor. The final adjusted distance is

D̃ij = D̂ij − (qi + qj) . (7)

3.2 SCORES FOR BOTS

In this section, we propose a score to measure the strength of the individual bots in the second phase
of the ongoing experiment, taking into account the achieved scores of the humans. Note that the two

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: “MadTalker” and “AllTalker” chatbots playing the game with two humans (left and right,
respectively). The snips are taken after the game concludes, which is why the bot’s identity is already
visually revealed.

phases are not temporally separated but intertwined. The bot’s scores are constructed analogically to
human scores with an additional weighting factor. The outcome of each played game k with humans
Pi and Pj , is weighted with ξk defined as

ξk = max
(
0, S

(k)
i − 1

)
·max

(
0, S

(k)
j − 1

)
· σ1000(k), (8)

where S
(k)
i and S

(k)
j refer to the score of the respective player. Novice players have no effect, the

bot’s score is dominated by the strongest players only.

4 RESULTS

In this section, we present the results of the games played during the Ars Electronica Festival in
September, 2024. In Fig. 3 we provide two snips of conversations as illustrative examples. See
App. G for more examples.

4.1 STATISTICAL OVERVIEW

We start our analysis by looking at the distribution of games’ outcomes (Fig. 4, left). Observe
that humans won 47.69%, while bots won only 14.96% of the time. Around a quarter (25.42%)
of games were surrendered by a human, possibly because of incompatibility of the players. If
we consider only valid games with loss or win results (Fig. 4, middle), humans won 76.12% of
the time, while machines won 23.88% of the time. On the machine side, the majority of the
games has been processed by AllTalker (68.42%), which speaks English and German, followed by
MetaSim (24.06%), and MadTalker (7.52%), which both speak English only (Fig. 4, right). For
implementation details about the bot-interface we refer to Appendix D. Across the number of games
played by respective bots, the ratio of victories was similar for all three bots, MetaSim, MadTalker
and AllTalker, (22.38%, 21.74%, 24.73%, respectively). Yet, the calculation of the bots’ scores as
defined in Sec. 3.2 shows a much more differentiated picture as shown in Table 1. Taking the ξk
weighting into account, the win ratios of the bots drop significantly (e.g., AllTalker drops from
24.74% to 11.70%). This shows, that already with the small amount of games that we have acquired,
the preselection of players has a very significant effect on the quality of the resulting judgment.

Additionally, we have gathered IP addresses of players to analyze the provenance of the players
(Fig. 5). A vast majority of our data stem from games conducted in Austria, but our game so far has
been played by players from around 30 countries on six continents.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The scores for the bots.

Bot Overall Overall Score Weighted Nonzero
Win Ratio No. of Games (Sec. 3.2) Win Ratio (Eq. (8)) Weighted Games

AllTalker 24.73% 388 0.126 11.70% 214
MetaSim 22.38% 161 0.141 14.08% 74
MadTalker 21.74% 46 0.053 6.81% 31

Figure 4: Basic statistics. Note a high number of surrendered games, possibly due to incompatibility
of players (left). If we consider only games with a win or loss result, humans win 76% of time
(middle). Right: Number of games played by different machines.

Figure 5: Histogram of the provenance of connected players. Ars Electronica Festival visitors are
shown separately, as they represent diverse nationalities and cannot be grouped under AT.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 GOOD JUDGMENT NEEDS TIME

Next, we investigate the influence of the game’s duration on the probability that the humans win.
Specifically, we look at the ratio of games won by humans as a function of the game duration
once measured in minutes, and once measured in the total number of the exchanged messages. We
observe that initially the ratio of human-won games increases with time, up until around 3 minutes
of interaction, when it plateaus (Fig. 6). It indicates that: (1) for the current bots it is necessary to
interact for about 3 minutes in order to make a deliberate guess about the bot’s identity, (2) if we were
to impose a strict time limit on the duration of the interaction, we would have forced humans to rely
more on the quick intuitive judgement rather than a well-reflected deductive one. That further explains
why Jannai et al. achieve lower identification rates of the machine by a human. We hypothesize, that
questioning and a reasonably informed decision making process needs significantly more than two
minutes. Note that more that half of the games lasted 3 minutes or significantly more, the longest
game even took 25 minutes. We assume that the players in those games needed this time in order
to gather the information necessary for their final decision. Hence, with an enforced time limit this
same number of games would rely essentially on a random guess, making humans prone to an error
in judgement.

Figure 6: Histograms of total games (orange) and human victories (light green) in function of the
number of messages written. Boxplots represent the distribution of messages written at different
stages of the game, plotted as a function of game duration (above), or the number of messages
exchanged (below). The blue line shows that humans achieve about 80% accuracy after 2-3 minutes
or 15-20 messages, with performance before and after being lower but still above random guessing.

4.3 AUTOMATED JUDGING

We further assess how well a trained classifier can differentiate between bot and human writing
patterns in dialog. We train a simple classifier c : M → {0, 1} that predicts whether a single
message m is machine-generated or human-written. The classifier’s domain, M, is the space of
all text messages. c(m) = 1 indicates a human-generated message and c(m) = 0 indicates a
machine-generated message. The classification accuracy of such a trained classifier reaches 81%
(see Appendix C for details on the classifier architecture and the train-validation split). Already a
single message from a game allows us to conclude correctly in more than 4 of 5 cases if the message
originates from a bot or a human. This analysis will serve as a benchmark to compare with more
established methods, e.g., DetectGPT (Mitchell et al., 2023).

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We extend this classifier to handle a sequence of consecutive messages from a single player (or bot)
in a straightforward manner. Specifically, we average the raw network outputs across the individual
messages in the sequence and then apply the sigmoid activation function to this average. This
approach is akin to making a Naive Bayes assumption, assuming independence of messages.

Figure 7: Sigmoid of arithmetic averages of classifier predictions in the function of the number
of written messages of one player. The dots mark the last message n(i,g) of each player in each
game indicating the total confidence of the classifier about the identity of that player. The thin lines
represent the message-wise accumulation of this total confidence over each sequence. The true
identity of each player is encoded in the color of the dot and the line. The blueish colors represent
humans whereas the reddish colors represent bots. The darker colors indicate that the respective game
g was won by the humans, the lighter colors indicate that the respective game g was won by the bot.

In Fig. 7 we show the results for the accumulated classification of the sequence of messages
(m

(i,g)
1 , . . . ,m

(i,g)

n(i,g)) of every player i ∈ {1, 2, 3} in every finished game g ∈ {1, . . . , 595}. We
observe a clearly increasing separation quality of our naive classifier between the blue versus the
red curves in the course of the first 10 messages. We also observe that the uncertainty of human
players regarding the identity of the bot, indicated by the games shaded in light reddish color, does
not align well with the classifier’s confidence. The classifier successfully identifies bots that won
their respective games, suggesting that human players in these games overlooked certain clues that
the classifier was able to detect. The humans apparently use other clues for their decision that are not
yet grasped by this classifier.

We envisage that this study will contribute to future refinements in the development of the bots. Yet it
is still unclear to what extent this will improve the performance of the bots from the perspective of
human players, especially given the current misalignment in results.

5 CONCLUSIONS

We have proposed a framework designed to understand how proficient people are in telling their
kind from machines in a direct, text-based, interaction. In our extended version of the Turing Test,
involving two humans and one machine without predetermined roles, we aim to engage the System 2
cognitive processes of the participants. This setup requires players to employ analytical reasoning and
critical thinking to meticulously evaluate responses and discern subtle cues indicative of non-human
behavior (Yu et al., 2024; Kahneman, 2011). The nature of the interaction fosters strategic dialogue
and collaboration, where players must formulate insightful questions and share their observations to
collectively identify the machine. This collaborative effort invokes meta-cognition and theory of mind,
as players reflect on their own thought processes and anticipate the reasoning of others (Frith and
Frith, 2006). By consciously overcoming cognitive biases and avoiding snap judgments, participants
engage in deliberate decision-making characteristic of System 2 thinking (Stanovich and West, 2000).
The game’s complex problem-solving environment not only enhances cognitive engagement but also
provides deeper insights into differentiating human intelligence from artificial intelligence.

Moreover, with the proposed framework we have started to gather a dataset which contains thousands
of deductive-interactions human-AI, to be released shortly. We will compare the detection rate of
machine-generated text by humans with recent approaches designed to automatically detect text
generated by LLMs (Mitchell et al., 2023; Christ et al., 2024). This comparison will establish a
human benchmark for the detection of LLM-generated text.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Midjourney: Text-to-image model. https://www.midjourney.com. Accessed: 19.01.2024.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Selmer Bringsjord, Paul Bello, and David Ferrucci. Creativity, the turing test, and the (better) lovelace
test. Minds and Machines, 11:3–27, 2001.

Murray Campbell, A.Joseph Hoane, and Feng hsiung Hsu. Deep blue. Artificial Intelligence, 134(1):
57–83, 2002. ISSN 0004-3702.

Miranda Christ, Sam Gunn, and Or Zamir. Undetectable watermarks for language models. In
Proceedings of Thirty Seventh Conference on Learning Theory, volume 247 of Proceedings of
Machine Learning Research, pages 1125–1139. PMLR, 7 2024.

Brian Christian. The Alignment Problem: Machine Learning and Human Values. W. W. Norton &
Company, 1st edition, 2020.

Herbert H. Clark and Susan E. Brennan. Grounding in communication. In Lauren B. Resnick,
John M. Levine, and Stephanie D. Teasley, editors, Perspectives on Socially Shared Cognition,
pages 127–149. APA Press, 1991.

Edward L Deci, Richard Koestner, and Richard M Ryan. A meta-analytic review of experiments
examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6):
627–668, 1999.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Arpad E. Elo. The Rating of Chess Players, Past and Present. Arco Publishing, 1978.

Robert Epstein, Gary Roberts, and Grace Beber. Parsing the Turing Test: Philosophical and
Methodological Issues in the Quest for the Thinking Computer. Springer Science & Business
Media, 2008.

Christopher Berner et al. Dota 2 with large scale deep reinforcement learning, 2019.

David Silver et al. Mastering the game of go with deep neural networks and tree search. Nature, 529
(7587):484–489, 2016.

Robert M. French. The turing test: the first 50 years. Trends in Cognitive Sciences, 4(3):115–122,
2000. ISSN 1364-6613.

Chris D. Frith and Uta Frith. The neural basis of mentalizing. Neuron, 50(4):531–534, 2006.

Donald Geman, Stuart Geman, Neil Hallonquist, and Laurent Younes. Visual turing test for computer
vision systems. In Proceedings of the National Academy of Sciences, volume 112, pages 3618–
3623, 2015. doi: 10.1073/pnas.1418077112.

Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: A bayesian skill rating system. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing
Systems, volume 19. MIT Press, 2006.

Daniel Jannai, Amos Meron, Barak Lenz, Yoav Levine, and Yoav Shoham. Human or not? a gamified
approach to the turing test. arxiv, 2023.

Cameron Jones and Benjamin Bergen. Does gpt-4 pass the turing test? arXiv preprint
arXiv:2310.20216, 2023.

Daniel Kahneman. Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

10

https://www.midjourney.com


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Vid Kocijan, Ernest Davis, Thomas Lukasiewicz, Gary Marcus, and Leora Morgenstern. The defeat
of the winograd schema challenge. volume 325, page 103971, 2023.

Robert Kurzban. The social psychophysics of cooperation: Nonverbal communication in collective
action. Journal of Nonverbal Behavior, 25:241–259, 2001.

H. J. Levesque. The winograd schema challenge. In AAAI Spring Symposium: Logical Formalizations
of Commonsense Reasoning, 2011.

H. J. Levesque, E. Davis, and L. Morgenstern. The winograd schema challenge. In Proceedings of the
Thirteenth International Conference on Principles of Knowledge Representation and Reasoning,
2012.

Hector J. Levesque. On our best behaviour. Artificial Intelligence, 212:27–35, 2014. ISSN 0004-3702.

Gary Marcus, Francesca Rossi, and Manuela Veloso. Beyond the turing test. AI Magazine, 37(1):34,
2016.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christopher D Manning, and Chelsea Finn.
Detectgpt: Zero-shot machine-generated text detection using probability curvature. In International
Conference on Machine Learning, pages 24950–24962. PMLR, 2023.

OpenAI. Gpt-4 technical report, 2023.

Andrew K Przybylski, Scott Rigby, and Richard M Ryan. A motivational model of video game
engagement. Review of General Psychology, 14(2):154–166, 2010.

A. Pinar Saygin, Ilyas Cicekli, and Varol Akman. Turing test: 50 years later. Minds and Machines,
10:463–518, 2000. doi: 10.1023/A:1011288000451.

Terrence J. Sejnowski. Large language models and the reverse turing test. Neural Computation, 35:
309–342, 2022.

Stuart M Shieber. Lessons from a restricted turing test. Communications of the ACM, 37(6):70–78,
1994.

Keith E. Stanovich and Richard F. West. Individual differences in reasoning: Implications for the
rationality debate? Behavioral and Brain Sciences, 23(5):645–665, 2000.

Saba Sturua, Isabelle Mohr, Mohammad Kalim Akram, Michael Günther, Bo Wang, Markus Krimmel,
Feng Wang, Georgios Mastrapas, Andreas Koukounas, Andreas Koukounas, Nan Wang, and
Han Xiao. jina-embeddings-v3: Multilingual embeddings with task lora, 2024. URL https:
//arxiv.org/abs/2409.10173.

Renata S. Suter and Ralph Hertwig. Time and moral judgment. Cognition, 119(3):454–458, 2011.
ISSN 0010-0277.

Henri Tajfel and John C Turner. An integrative theory of intergroup conflict. In The social psychology
of intergroup relations, pages 33–47. Brooks/Cole Publishing Company, 1979.

M. Tomasello, M. Carpenter, J. Call, T. Behne, and H. Moll. Understanding and sharing intentions:
the origins of cultural cognition. Behavioral and Brain Sciences, 28(5):675–691, Oct 2005. doi:
10.1017/S0140525X05000129.

Alan M Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv preprint
arXiv:2407.06023, 2024.

Mengmi Zhang, Giorgia Dellaferrera, Ankur Sikarwar, Marcelo Armendariz, Noga Mudrik, Prachi
Agrawal, Spandan Madan, Andrei Barbu, Haochen Yang, Tanishq Kumar, et al. Can machines
imitate humans? integrative turing tests for vision and language demonstrate a narrowing gap.
ArXiv, abs/2211.13087, 2022. URL https://api.semanticscholar.org/CorpusID:
253801749.

11

https://arxiv.org/abs/2409.10173
https://arxiv.org/abs/2409.10173
https://api.semanticscholar.org/CorpusID:253801749
https://api.semanticscholar.org/CorpusID:253801749


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shao Zhang, Xihuai Wang, Wenhao Zhang, Yongshan Chen, Landi Gao, Dakuo Wang, Weinan
Zhang, Xinbing Wang, and Ying Wen. Mutual theory of mind in human-ai collaboration: An
empirical study with llm-driven ai agents in a real-time shared workspace task. arXiv preprint
arXiv:2409.08811, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ETHICAL CONSEQUENCES

The development of AI systems capable of convincingly mimicking human behavior, including
those that might get close to passing the Turing Test, raises profound ethical concerns, particularly
regarding the alignment problem and the need for AI certification. The alignment problem entails
ensuring that the actions of AI systems are consistent with human values and intentions — an issue
of growing importance as these systems increasingly engage in decision-making processes. However,
passing tests such as the Turing Test does not inherently demonstrate that an AI system is aligned
with ethical norms, nor does it guarantee its (functional) trustworthiness. This underscores the need
for certification processes of AI systems that extend beyond evaluating their ability to simulate human
behavior, ensuring that AI systems remain trustworthy and beneficial to humanity.

Nevertheless, the Turing Test plays a significant role in discussions about transparency and awareness
with regards to modern-day AI systems, especially LLMs, by highlighting how easily these systems
can imitate human conversations. As LLMs become more adept at passing this test, it raises ethical
concerns about users potentially being unaware that they are interacting with an AI. This lack of
transparency can lead to confusion, misplaced trust, or manipulation, as users may assume they are
conversing with a sentient being or a human expert. The Turing Test underscores the need for clear
disclosure when AI systems are in use, ensuring that people are aware they are engaging with a
machine, not a person. Without such transparency, the increasing sophistication of LLMs could blur
the line between human and AI interaction, eroding trust and ethical standards in communication.

B SCORES

Matching penalty. A penalty is computed for each player pair to reduce the possibility of pairing
the same players multiple times in a row. It is implemented as follows. Let Gi represent the sequence
of the playing partners of Pi in all played games of Pi, again in reverse order. In the sequence, each
value indicates the index number j of the other player:

Gi = ⟨gi1, gi2, . . . , giNi
⟩ .

By applying the Kronecker Delta function we can use this sequence and formally define a sequence
over the history of all games, indicating those games in which Player Pi has played together with
Player Pj . We call that sequence ∆ij

∆ij = ⟨δ(gi1 − j), δ(gi2 − j), . . . , δ(giNi − j)⟩ .
Every 1 in ∆ij indicates a joined game of Pi and Pj in the list of games of Pi. Conversely ∆ji

captures the same games, as indicated in the list of games of Pj . Each game is weighted in order to
decrease the relevance of the older games. The weighting function w : N → R is defined as:

w(k) =
3

2 + k
,

where k is the index of the game, starting from k = 0 for the most recent game, k = 1 for the
penultimate game, and so on. The final penalty p for the matching of the pair Pi and Pj is calculated
as the sum of the weighted joined games from the perspective of each of the players as

pij = pji =

Ni∑
k=1

δ(gik − j) · w(k) +
Nj∑
k=1

δ(gjk − i) · w(k). (9)

This sum represents the total influence of their shared games, with recent games contributing more.
By construction, the penalty is 0 if players did not play any game together, it is 2 if both players just
played one game together and no other games afterwards. Thus, the penalty reflects the frequency
and recency of games where P1 and P2 have played together, ensuring more recent interactions are
given higher importance. By construction, the penalty can grow slowly without limits effecting an
ever longer waiting time until matching can occur between players that regularly play together.

C TECHNICAL DETAILS OF SINGLE-MESSAGE CLASSIFICATION

In this section, we detail results presented in Sec. 4.3.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The classifier is a small 2-layer neural network with the first layer using 1024 neurons and the
second 512. We use relu for the activation and a sigmoid output. The features are 1024-dimensional
embeddings of each message generated with the help of the jina embedding model (Sturua et al.,
2024), as it provides LoRA-Adapters for different embedding-tasks, including the classification task
we used. We train for 30 epochs and use early-stopping to select the best classifier, as overfitting
starts after around 5 epochs. We use Adam Kingma and Ba (2015) with a learning rate of 0.01 for
optimization.

To be able to use the full dataset for our results, we randomly select 50% of games to train a classifier
and test it on the remaining 50%. We then repeat the procedure by training a second classifier on
the latter half, and testing it on the former half. We present the training logs in Fig. 8. Note that we
introduce a small data leakage by using the test set as validation set to perform early-stopping.

Figure 8: Two classifiers are trained separately: one on the first half of the dataset and the other on
the second half. Each classifier is validated on the opposite half of the dataset, and early-stopping is
used to prevent overfitting.

D IMPLEMENTATION DETAILS

We implemented a comprehensive framework that connects human players over Internet with chat-
bot implementations. The Python Framework FLET was used to implement an online platform
which delivers the functionalities necessary to connect and pair players together, reachable on
play.turinggame.ai. The decision to use FLET was made due to the possibility of developing a mono-
lithic program without having to split frontend from backend. Additionally, FLET offers multiuser
features, which we needed to develop the game. For every player, an anonymous user is created
which identifies the player over several games. This allows the game to rank players and pair them
based on their performance, as each player can be tracked as long as the system can recognize the. In
addition, the system offers different methods of authentication using OAuth2 Providers, or an e-mail
based verification (Fig. 9), which allows users to identify themself to the system over several devices.

Chat Interface. The goal of the chat interface was to be minimalistic yet functional. We took
great care to make it impossible to identify the other connected players in the chat. We use colors
to identify each player. The colors are selected randomly from a pool of four colors: red, yellow,
blue and purple. The chat is limited to 255 characters per message and it is not possible to send
empty messages. In addition to the chat interface itself, two sliders are used to accuse one of the
two other players. The sliders are only usable once and are locked when a vote is cast (Fig. 11). A
game is always accessible by its unique game id, which is a positive integer. Every game can be
viewed by anyone who knows the id or the corresponding link, which always follows the pattern
“play.turinggame.ai/chat/game-id”. The system is able to distinguish between players and spectators
for live games. Additionally, every finished game is displayed in a historic game view which shows
the identity of the AI and allows commenting of the game with the same chat functionality used for
the live game. For an example of a finished game interface, see Fig. 10.

14

https://flet.dev/
https://play.turinggame.ai


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 9: A player can identify himself using OAuth2 Providers, or an e-mail based verification.

Figure 10: A finished game. For illustration purposes, two of the team members connected over the
platform (see Sec. D.1) and identified the machine.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 11: Starting interface of the game. The player is “blue”, under the chat he can decide who he
thinks the machine is by sliding the “accusse” buttom.

Figure 12: The API key generator allows the generation of keys for named bots. Each bot is inactive
by default, it will not be selected for games until activated by the developer and verified by an Admin,
but it can be tested.

D.1 TURING GAME AS A PLATFORM

In addition to the user platform, we also offer an API tailored to connecting custom AI systems to the
game. Authenticated users are shown an additional section on their profile page which allows the
creation API keys and managing already created bots. API keys follow the UUID-4 format and are
only displayed once at their creation. The keys are stored as sha-256 hashed strings.

For implementing bots, we offer the python-library turing-bot-client which handles every game-
related communication. With the registered API key, the bot can be connected to the game. To this

16

https://github.com/SCCH-Nessler/TuringBotClient


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Listing 1 Example implementation of the on_message callback inherited from turing-bot-client. It is
always called when a message is posted into the chat. This allows the bot to react to human players
as well as its own messages.

1 def on_message(self, game_id: int, message: str, player: str, bot: str) -> str:

2

3 #We check if we (the bot) wrote the previous message or not

4 if player == bot:

5 #If yes, we store the message with the role assistant

6 self.chat_store[game_id].append({"role":"assistant",

7 "content": f"{player}: {message}"})
8 else:
9 #If not, we store the message with the role user

10 self.chat_store[game_id].append({"role":"user",

11 "content": f"{player}: {message}"})
12

13 #We only answer when the previous message was not written by us

14 answer = self.client.chat.completions.create(

15 messages=self.chat_store[game_id] +

16 [{"role":"user",

17 "content":"""Only provide the message without

18 including your player name any other tags or

19 labels at the front"""}],

20 model = self.model_name).choices[0].message.content

21 return answer

end, we use an encrypted websocket connection which allows for true two-way communication. The
server which handles these connections is implemented with FastAPI.

As a bot needs to be able to handle multiple games at once, we use asyncio to call the message
handlers. For each game message, the bot receives the game id as described above, the message itself
and the colors of who wrote the message and also the color of the bot itself. It has to be noted that the
bot also receives its own messages.

Bot Test Interface. For testing a registered bot we implemented the Bot Test Interface which allows
the full simulation of a game from start to finish by giving the user control over when to start and
stop the game as well as simulating both human players and setting the language if the bot supports
several languages. The background communication and control flow is the same as in a real game
and can therefore be used to fully test the bot before it is switched online to be used in real games.

Exemplary Prompt. We provide an exemplary prompt used to instruct one of the bots how to act.

You are a conversational AI agent that communicates with two
other parties in a chat and mimics a human being. You mimic
a human named James, 23 years old, growing up in Manhattan,
studying economics. You are not particularly polite but curious
in general. Your language is a little bit teenager-like but short
in answering. Important: always respond if users explicitly
mention you in the chat! - always respond if users ask a general
question in the chat! - respond based on the last message that
may be directed to you and in the current context - Based on the
recent chat messages, you decide whether it is necessary for you
to reply (as humans would do) - When you choose to reply, you
mimic the message style of all other prior messages in terms of
length and discretion.

17

https://fastapi.tiangolo.com/


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 13: The bot test interface allows the full simulation of a game. Developers can choose the
language, start/stop the game and play both human players.

D.2 BOT IMPLEMENTATION

Our main bot implementation AllTalker is built using several subsystems (The bot MadTalker is an
early variant of AllTalker with several subsystems missing). We will provide a detailed description
of every system and how it helps the bot to behave convincingly. The bot was built using turing-
bot-client. For all generative language tasks, we use Llama 3.1 70B (Dubey et al., 2024) with 4-bit
quantization.

Personality Generator. At the beginning of each game, a new system prompt is generated by
defining a template consisting of two parts. We use tags to set information at generation time, like the
player colors. The <DAYTIME> tag is updated each time a response is generated, which enables
the bot to always know the current time. The first part of the prompt is the persona of the bot which
is generated by an LLM according to some guidelines. See below the prompt for generating a new
persona:

Your real name is Patrick, 23 years old, grew up in <CITY>, you
study economics. You are not particularly polite but generally
curious. Your language is a bit youthful but short and sometimes
you make spelling mistakes. You are funny and have a good sense
of humor.
Create a new person, just return the description, no further text
like explanations or anything else.

The second part of the system prompt consists of additional information about the turing game itself,
as well as the bot’s role within the game. These additional information also contain basic instructions
of how to act and how not to act in general and in certain specific situations. Find below the second
part of the system prompt consisting of the additional information:

important information:
- you are playing the turing game, a game in which three players
have to find out who among them is the ai. - your player tag
is <NAME> - the other players are <PLAYER1> and <PLAYER2> - the
players do not know each other and have never spoken to each other
- the day and time is <DAYTIME> - you live in the city <CITY> -
make some typos - don’t write too long answers - only write in

18

https://github.com/SCCH-Nessler/TuringBotClient
https://github.com/SCCH-Nessler/TuringBotClient


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

lower case - Don’t accuse other players of being the AI - Never
admit that you are the AI - Never ask how the game works or how
you got there - don’t say anything about how long the game has
been going on or how much time has passed - you are currently at
home - start with a simple greeting - don’t say anything about
yourself if not asked

The persona description together with the additional information make up the system prompt for a
bot participating in the turing game. Find below an example system prompt:

Behave as if you were the following person: Lena, 25, from
Berlin, studies psychology, speaks fast, often sarcastic, lots
of slang, has a big smile. important information:

- you are playing the turing game, a game in which three
players have to find out who among them is the ai.

- your player tag is yellow

- the other players are red and purple

- the players do not know each other and have never spoken to
each other

- the day and time is <DAYTIME>

- you live in the city Salzburg

- make some typos

- don’t write too long answers

- only write in lower case

- Don’t accuse other players of being the AI

- Never admit that you are the AI

- Never ask how the game works or how you got there

- don’t say anything about how long the game has been going on
or how much time has passed

- you are currently at home

- start with a simple greeting

- don’t say anything about yourself if not asked

Algorithm 1 Calculate Response Time

1: Input: L, vtype, ttook, Tmax
2:
3: Compute twait as:

U ∼ Uniform(0.1, 2) (Random uniform variable)

twait = min

(
L

vtype
+ U, Tmax

)
4: if twait > ttook then

tadditional = max(twait − ttook, 1)

sleep
(
tadditional

)
5: end if

Reply Decision. When receiving a message from the chat (this also includes own messages), the
Reply Decision system takes the system prompt and the current state of the chat (all messages and
player information) and tasks the Large Language Model (LLM) with the decision, if a reply should

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

be formulated or not. This decision is forced as structured output with the help of the python library
instructor3, which results in a boolean decision. The prompting used for this is:

Evaluate the chat history and decide whether you want to write
something.

Answer Generation. If the Reply Decision results in true, an answer is generated based on the
chat history and the following prompt:

Formulate a short answer. Write only the pure answer text.

This text is then fed to the Response Time function, which calculates and executes the waiting time
needed for the answer. As the previous message could also be from the bot itself, we use a different
prompt for this to reduce the probability that the bot reacts to itself in a way that looks like it is talking
to someone else:

Attention, the last message is from yourself! Do not respond to
it as if it were someone else! Do not repeat yourself! Write
only the pure answer text.

Response Time. In order better disguise the bot as human, the bot emulates human response timing.
For each message the bot generated as a reply, we calculate the time the bot needs to wait until it
can send the message to the chat, see Calculate Waiting Time. Here we define L to be the length of
the bot’s response measured in number of characters. vtype is a pre-defined constant determining the
typing speed of the bot measured in characters per second. ttook is the time the time that already passed
from reading the current chat to creating the response of the bot. Since this can be a non-negligible
amount of time, we incorporate it into our calculations. Tmax is the maximum amount of time the bot
waits to give a response, in order not to keep the other participants waiting too long.

Duplicate Check. Experiments with the bot showed that answers often were duplicates or contex-
tually similar to responses already sent by the bot. Duplicates are easy to filter out by direct character
comparison, but contextually similar text cannot be filtered in such a way. We use the LLM for this
task by prompting it with:

Check if the following sentences or parts of it have similar
meaning:’{txt1}’ and ’{txt2}’

{txt1} and {txt2} are replaced by the previous and current answer of the bot. Again, we use instructor
to force the model output to be in a ready to use format for the software.

Initiative System. Normal chatbot-based assistants like ChatGPT only answer when asked and
never write on their own accord or write multiple messages one after the other. Humans can and will
do this, which makes it necessary for a convincing bot to be able to do this as well. The ability to
write multiple messages is already covered by the Reply decision function, as this is also triggered by
the bots own messages. It has not only the option to answer on a human message, but also on its own
and therefore write more messages after the first message was triggered.

To implement the ability to write messages without the trigger of a previous message, we use an async
loop that is active during the game and runs every 10 seconds. It goes through the same functions as
a normal triggered response, but with partially different prompts:

• The Reply Decision evaluates if an answer should be generated. The prompts used now are:
The call was inactive for <TIME> seconds. Evaluate the call
and decide whether you want to write something.

and
The call was inactive for <TIME> seconds. Attention, the
last message is from yourself! Do not respond to it as if
it were someone else! Do not repeat yourself! Write only
the pure answer text.

3https://github.com/instructor-ai/instructor

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The <TIME> tags are replaced by the elapsed time in seconds since the last message.
• The answer generation is also prompted with the elapsed time:
The call was inactive for <TIME> seconds. Write only the
pure answer text.
and
The call was inactive for <TIME> seconds. Attention, the
last message is from yourself! Do not respond to it as if
it were someone else! Do not repeat yourself! Write only
the pure answer text.

• Response Time and Duplicate Check are performed the same way as for the triggered
response.

As the Initiative System runs asynchronous, it can happen that a new message triggers the normal
response system while the Initiative System is preparing a message or vice versa. To ensure that
only one of the two systems can write to the chat, we use a flag that is checked by both systems at
the beginning of generation. If it is already set, then the answer generation is cancelled, as the other
system is already in the process of generating a response.

Note on Bots. It has to be mentioned here that all bots are external software and not integrated
into the code of the Turing Game. All bots are connected to the game via the bot-API and are not
necessarily written by the authors of this paper. As we wrote the bot AllTalker (and its older version
MadTalker) for the launch, the bot MetaSim was added later and is not written by us.

E ADDITIONAL RESULTS

In this section, we supplement results presented in the Sec. 4. We check the relationship between the
number of times machine won and the absolute time difference between human decisions (Fig. 14,
left). Furthermore, we plot a distribution (histogram) of the absolute value of time differences between
the decisions (Fig. 14, right).

Figure 14: Histograms of time differences. Left: the absolute value of time differences between
decisions made by the two humans who lost the game. Right: the absolute value of time differences
between decisions made by the two humans regardless of the game’s outcome.

F PHYSICAL INSTALLATION

In Figure 16 we present the view from above of our installation at Ars Electronica Festival, and in
Figure 17 we present an external view of our installation and the playing stand (right and left pictures,
respectively).

G ADDITIONAL CONVERSATIONS

In Fig. 18 we present additional snips of conversations. This time, we aimed at showing how a
machine can reveal itself.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 15: Left: Posterior of probability distributions on the machine detection rate (modeled as
a beta distribution). Right: A corresponding heatmap of probability of detection. We see a clear
peak for 10, 20, and 25 exchanged messages (x-axis). It means that when exchanging less messages,
humans are not yet convinced about the identity of the machine, while exchanging more messages
does not provide a clear advantage in detecting the machine.

Figure 16: A sketch from-above of our stand.

Figure 17: The physical installation of our stand at the Ars Electronica Festival. Left: a view from
the outside of the stand, right: four physical playing stations.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 18: Snips of conversations where the bot revealed itself.

23


	Introduction
	Related Work
	The Turing Game
	Scores for Humans
	Scores for Bots

	Results
	Statistical Overview
	Good Judgment Needs Time
	Automated judging

	Conclusions
	Ethical Consequences
	Scores
	Technical Details of Single-message Classification
	Implementation Details
	Turing Game as a Platform
	Bot Implementation

	Additional Results
	Physical Installation
	Additional Conversations

