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Abstract Neural Architecture Search (NAS) methods, when applied to very small but complex datasets,

tend to overfit on the validation partitions and underperform compared to Transfer Learning

models. In order to reduce the bias and variance of their predictions, Deep Ensemble Learning

(DEL) can be used. The combination of NAS and DEL has only been employed on large

datasets in the literature, but these scenarios do not present the overfitting in validation

we typically experience, for instance, on medical imaging applications. In this work, we

empirically assess the feasibility of NAS, DEL and the combination of the two on both small

and large dataset scenarios. We find that the performance of the ensembles highly depend

on the degree of overfitting of the standalone models.

1 Introduction

Most advances on Computer Vision are designed for and tested on large natural image datasets such

as IMAGENET or CIFAR. Pretrained, highly performing models are readily available for the Deep

Learning community, making Transfer Learning the standard approach for many research fields,

such as medical image processing. However, despite their widespread popularity, the advantage

of using these pretrained models on medical images has been questioned [Raghu et al. (2019),

Neyshabur et al. (2020)]. The suitability of any given pretrained model has been shown to heavily

rely on the inductive biases inherent to its architecture [Wang et al. (2019), Goyal and Bengio

(2022)].

Selecting an adequate model for any specific application is not trivial, but several methods

have been proposed to reduce bias and variance of sub-optimal models. One such method is Deep

Ensemble Learning (DEL), which can achieve a high degree of complexity by combining the outputs

of several relatively simple learners [Ganaie et al. (2022)]. Although powerful, DEL presents its

own set of challenges. On the one hand, training several models requires considerably more time

than fine-tuning a single architecture. On the other, it is difficult to obtain a high diversity on the

features learnt by the individual learners if their architectures are identical and thus present the

very same inductive biases.

Modifying the architecture of a pretrained Convolutional Neural Network is a complex, sub-

jective and time-consuming endeavor because the optimal model hyperparameters are problem-

dependent. Neural Architecture Search (NAS) techniques are used to explore the space of feasible

models in an automatic way and have achieved state of the art performance on several computer vi-

sion benchmarks [White et al. (2023)]. However, balancing the exploration-exploitation trade-off is

not trivial, especially when very deep networks are required: more layers imply more combinations

between their hyperparameters, generating massive spaces to be explored. Moreover, considering

a large number of architectures comes at the risk of overfitting on the validation partition of the

datasets, which are used to select or discard the models. This problem is particularly relevant for

AutoML 2024 © 2024 the authors, released under CC BY 4.0

mailto:adgomezm@pa.uc3m.com
mailto:mabella@ing.uc3m.es
mailto:mdesco@ing.uc3m.com
https://creativecommons.org/licenses/by/4.0/


complex datasets where few samples are available as it may be very difficult to construct training

and validation partitions that are representative of the whole task.

The problems faced by NAS can be mitigated with the use of DEL and vice versa. Ensemble

methods could allow to limit the search to shallower models, considerably reducing the required

computational expenses while maintaining the complexity of the prediction. Moreover, the feature

sharing and weighting enhances the generalization capabilities of the models, overcoming the

instances of overfitting on the validation partitions. Conversely, NAS methods already work with

populations of solutions with distinct hyperparameters, which inherently present the high diversity

that traditional DEL lacks. Combining the resulting models instead of selecting the best performing

one might yield considerable benefits with negligible extra computational cost.

In this work, we have assessed the feasibility of DEL, NAS and a combination of the two to deal

with the challenges of Transfer Learning in two completely different scenarios. The main goal is to

assess the robustness of the methods against different degrees of overfitting. First, the different

approaches were validated on the CIFAR-10 classification task. Several data and model weighting

strategies were compared for the application of DEL. The NAS method employed was an in-house

optimizer called the Chimera Algorithm. The combination of the Chimera Algorithm with DEL

methods gave rise to a new, enhanced optimizer, referred to as the Gaggle Algorithm. All these

methods were then employed to tackle a problem of biomedical interest to test their performance

on a task where Transfer Learning would be the standard approach.

2 Related works

2.1 Deep Ensemble Learning

Ensemble Learning consists on training several individual learners on subsets of the original dataset

and combine their predictions to leverage the influence of the most useful features learnt by each

one of them [Breiman (2000)]. Deep Ensemble Learning (DEL) uses this strategy to enhance the

predictive capabilities of Deep Learning models [Ganaie et al. (2022)]. There are many strategies to

train Deep Learning models and combine them into ensembles, such as Bagging, Boosting, Stacking

or Negative correlation Ensemble Learning. Particularly, Boosting Ensemble Learning methods

train the different learners sequentially, based on the performance of the growing population. For

each new learner, the dataset is either weighted or resampled in order to pay more attention to

misclassified data. Each learner is also weighted based on its standalone performance, so that the

final prediction is mainly driven by the most accurate ones. This approach allows for the use of

shallower models that focus on specific parts of the task at hand rather than a single deep model that

is more powerful on its own, but more prone to overfitting. However, some of the models present

in the ensemble might not provide any valuable contribution, and even worsen the predictions.

In order to limit this effect, ensemble pruning —also known as selective ensemble or ensemble

selection— methods based on the validation error, kappa measure, complementary measure, margin,

and diversity are commonly used [Margineantu and Dietterich (1997), Martínez-Muñoz and Suárez

(2004), Guo et al. (2018)].

2.2 Neural Architecture Search

Neural Architecture Search (NAS) is a sub-field of metaheuristic optimization that strives to

automatize the creation and optimization of Artificial Neural Networks. It spans a wide range of

optimization algorithms, from the earliest works in the field employing Genetic Algorithms [Miller

et al. (1989)] to modern approaches such as supernet optimization [Cha et al. (2023)], Multi-Fidelity

MetaLearning [Zimmer et al. (2021)] or training Controller Recurrent Neural Networks using

Reinforcement Learning to generate the architectures [Zoph and Le (2017)]. Each method presents

their own strengths and drawbacks, but most of them are prone to overfit on the dataset partition

used to select or discard the models, if it is not representative enough of the whole task. This
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Table 1: Ensemble sample and model weighting strategies considered

Sample

weighting

Not weighting the data

Resampling the dataset to only contain samples missclasified by the ensemble

Resample the data randomly based on sample weight

Modifying the loss function to take sample weight into cosideration

Model

weighting

Averaging all the models’ outputs

Weighting each model’s contribution on its individual validation accuracy or

average loss

Weighting each model’s contribution for each output based on its validation

confusion matrix or average loss for each one

overfit is tangential to most methods, as it mainly depends on the distribution of our data and the

model selection criterion employed [Cawley and Talbot (2010)]. Unfortunately, using rigorous

model selection criteria within a NAS pipeline is oftentimes unfeasible due to computational costs.

Combining the models generated through NAS into an ensemble has been shown to surpass the

performance of the individual learners and is much less computationally expensive. However, the

very few works that assess this approach in the literature [e.g. Herron et al. (2020), Chen et al.

(2021)] only do so on large, widely studied datasets such as CIFAR-10, MNIST, IMAGENET or

COCO. The behavior of ensembles attained through NAS in small and complex datasets, for which

overfitting is a prevalent issue, is yet to be analyzed.

3 Materials and Methods

3.1 Algorithms

3.1.1 Deep Ensemble Learning. As previously stated, Boosting Ensemble methods allow for the use of

shallower models. This is especially relevant in the context of NAS, as deeper models are much more

computationally expensive to find —not just because of the higher training times, but because the

possible hyperparameter combinations grow exponentially with the number of layers, generating a

wider search space—. A modular Boosting Ensemble creator was developed, which sequentially

trains copies of a given base model, weights their contributions to the growing ensemble, and

modifies the training dataset according to the strategies specified by the user. In this work, we

explored four strategies to modify the training dataset to assign a heavier weight to the samples

that the ensemble is unable to properly characterize, as well as three strategies to calculate the

contribution of each individual model to the complete ensemble. These are shown in Table 1.

The sample weights were the ones employed by the AdaBoost classifier [Breiman (2000)]. The

algorithm’s pseudocode, default hyperparameters and explanation of the weights employed are

depicted in Algorithm 1 in Appendix A.

3.1.2 Neural Architecture Search. The NAS method employed in this work is the Chimera Algorithm, a

metaheuristic based on the Artificial Bee Colony Algorithm [Karaboga and Basturk (2007)] that

was developed in-house. This algorithm deploys two kinds of optimizer agents —referred to as

Employed and Onlooker Bees— on a population of candidate solutions. These agents select models

from said population based on their individual performances, and explore similar architectures

by using the flexible mutation operators employed in traditional Genetic and Evolutionary NAS

methods. Unlike Genetic and Evolutionary approaches, though, the Chimera Algorithm is able to

maintain a much higher diversity within the population —which is useful to obtain good performing

ensembles— as the worst models are not discarded on each iteration, but rather simply given less
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attention. Moreover, its local nature facilitates the exploration of similar architectures to that of

any pretrained model provided by the user, exploring outwards from already promising positions

within the search space. Its pseudocode is depicted in Algorithm 2 in Appendix A, along with a

detailed algorithm description and a definition of its default hyperparameters.

3.1.3 Combination of DEL and NAS. Both DEL and NAS approaches have been combined into the

Gaggle Algorithm, which operates similarly to the Boosting Ensemble creator but calls the Chimera

Algorithm to generate batches of optimized models instead of simply training a base architecture.

Its pseudocode is depicted in Algorithm 3 in Appendix A.

3.2 Experimental Setup
The performance of DEL, NAS, and their combination were compared with that of predesigned

architectures in two scenarios fully described in Sections 3.2.1 and 3.2.2. In the first scenario,

these methods were evaluated on the classification problem of the natural images in the CIFAR-10

[Krizhevsky and Hinton (2009)] dataset. In the second scenario, they were tested on a problem of

biomedical interest: the estimation of the horizontal misalignment of the detector in a Computed

Tomography system by analyzing the artifacts present in the volumes reconstructed from a set

of projections spanning an angle of 180º. In both scenarios, the Leslie Smith’s learning rate test

[Smith (2018)] was used to approximate the optimal learning rate for each model, as it proved

itself much faster and reliable than adding an extra dimension to the hyperparameter space. Cross-

validation has not been employed to compare individual models but, rather, to assess the validity

of each method as a whole, generating a different split for each run to avoid biases due to the data

partition used. The code developed can be accessed through this link: https://github.com/HGGM-

LIM/Chimera. The seeds employed for randomization are specified in the code itself. An Intel®

Core™ i7-7700 CPU and a NVIDIA® GeForce® RTX 2060 Super™ GPU were used for all tests

performed.

3.2.1 Scenario I: natural image classification on CIFAR-10. The following tests have been performed to

evaluate the different approaches on the CIFAR-10 dataset, which consists on 60000 32x32 colour

images divided into 10 diferent classes. 10000 images are reserved for testing and, in our setup,

we used 90% of the remaining images for training, using the leftover ones for validation. No data

augmentation was employed. All models were trained until the validation loss converged, with a

patience of 8 epochs.

• One shallow and one deep feed-forward architectures were trained on the dataset to check the

performance of standalone models. The shallow architecture selected was LeNet-5 [Lecun et al.

(1998)] —which has around 60 thousand weights to optimize— and the deep architecture selected

was VGG11 —over 133 million parameters, as reported in [Simonyan and Zisserman (2014)]—. In

the case of VGG11, the last fully connected layer was modified to reduce the number of output

classes from 1000 to 10. The weights of LeNet-5 were initialized at random, while VGG11 was

tested both with random initialization and inheriting the weights from pretraining in ImageNet.

The three cases were tested 32 times, generating a different training and validation partition of

the dataset in each iteration. The AdamW optimizer was used. The learning rates employed were

10
−3

and 10
−4

for the shallow and deep models respectively, as suggested by the Leslie Smith test.

• LeNet-5 was used as a template architecture to create ensembles with. For this test, we employed

all the data and model weighting strategies depicted in Table 1. Each new model was randomly

initialized before training on the auxiliary dataset, which was obtained according to the data

weighting scheme and the ensemble accuracies on the complete, unweighted dataset. Population

pruning was performed after the whole ensembles were created. For simplicity, the models

were selected simply based on their standalone validation error. Each data and model weighting

combination was tested 10 times, reshuffling the training and validation partitions.
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Figure 1: Axial view of a rodent head CT study reconstructed with an angular span of 180º and with

no geometric misalignments (a). Detail of the region indicated in orange reconstructed with

a simulated horizontal detector misalignment of 0mm (b), +0.5mm (c), -0.5mm (d), +1mm (e)

and -1mm (f).

• The performance obtained with a simple NAS method was evaluated, using the Chimera Algo-

rithm to create models from scratch. The models generated consisted of a feature extractor with

convolutional and pooling layers and a single fully connected layer with 10 output classes. Two

tests were performed. Firstly, it was run with a population size of 4 models and a search length

of 16 iterations to check the capabilities of the algorithm to find good performing models in

relatively shallow searches. Then, it was run with a population size of 8 models, a search length

of 32 iterations and an exhaustion limit of 16 iterations to measure the possible improvement

that a deeper search would yield. Each test was performed 4 times, reshuffling the training and

validation partitions.

• The Gaggle Algorithm was employed to create ensembles with models generated from scratch.

Once again, two distinct tests were performed. Firstly, the Gaggle Algorithm was run with 4

batches, a population size of 4 models, a search length of 16 iterations, accuracy-based model

weighting and failed prediction data resampling in between batches. Then, the Gaggle Algorithm

was run with a single batch, a population size of 8 models, a search length of 32 iterations and

accuracy-based model weighting. Each test was performed 4 times, reshuffling the training and

validation partitions.

3.2.2 Scenario II: misalignment regression on CT slices with artifacts. Horizontal misalignment of

the detector in a Computed Tomography system leads to artifacts in the reconstructed volumes,

which can render the studies unusable for proper diagnosis. When the volumes are reconstructed

with an angular span of 180º, these artifacts appear in the axial slices as arcs, as can be seen in

Fig. 1. Their thickness depends on the misalignment value, and their orientation is given by the

misalignment direction. In order to correct for these artifacts, a calibration file needs to be acquired

manually by a technician. Theoretically, the geometrical misalignments of any acquisition could be

automatically characterized based on the artifacts that appear on the pre-reconstructed volumes.

Doing so would eliminate the need for manual calibration, and allow for the reconstruction of any

study for which the callibration file is not available.

We generated a small dataset to train models able to predict the misalignment corresponding

to any given individual slice. We first acquired six properly calibrated rodent cranial studies using

a SEDECAL micro-CT system. Then, 25 sets of miscalibrated projections were simulated for each

volume. Simulated horizontal misalignments values were taken from a random uniform distribution

with a range of ±1mm. An FDK-based algorithm was used for reconstruction, generating volumes

of 256×256×200 pixels, which were then normalized to ImageNet’s mean and standard deviation

—0.485 and 0.225, respectively— and separated into 2D axial slices. The tolerance, defined as

the smallest misalignment that produces artifacts noticeable to the naked eye, was set to ±0.1

millimeters [Abella et al. (2021)]. The database was split into a training partition with five rodents,

a validation partition with one rodent, and a test partition with one rodent as well —25000, 5000

and 5000 images, respectively—.
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All models tested in this scenario were designed to work on individual slices, but the misalign-

ment prediction for each volume was defined as the median of the predicted misalignments for

all its slices. The use of the median reduced the influence of outliers coming from slices with less

information. The Huber Loss [Huber (1964)] was used as the loss function for the prediction of

the detector horizontal misalignment for every slice during training. The 𝛿 value in the Huber

Loss, which controls the slackness for outliers, was selected via grid-search within a range [0, 0.5]

in 0.1 intervals. The validation performance of VGG11 yielded 0.1 as the best 𝛿 value, which was

consistent with the tolerance value defined and was thus employed for training all models. The

following tests have been performed:

• Firstly, the shallowest and deepest pretrained models from the VGG Transfer Learning family

proposed in [Simonyan and Zisserman (2014)], VGG11 and VGG19, were trained on the dataset

defined. These were selected as they are some of the highest performing and most widely studied

feedforward neural networks in image processing. The last fully connected layer of each classifier

was modified to obtain a single regression value instead of the original 1000 class probabilities.

The grayscale images were transformed into 3-channeled ones in order to match the expected

input size. The AdamW optimizer was used with a cyclical learning rate whose bounds were

selected by means of the Leslie Smith test with a cycle length of 4 epochs.

• Then, models were generated with the Chimera Algorithm in three different searches: (1) starting

from scratch with a population size of 6 models and a search length of 16 iterations, (2) starting

from 4 mutated copies of the VGG11 model and a search length of 12 iterations, and (3) starting

from 4 mutated copies of the VGG19 model and a search length of 8 iterations. The population

sizes and search lengths were selected such that all runs would take around 48 hours to complete

on our setup. No exhaustion limit was specified in any of the three cases. In all cases, only the

feature extractors were mutated, keeping the classifiers constant as three fully connected layers

of 4096, 4096, and 1 output features respectively with ReLU and dropout layers with a probability

of 0.5 in between. The AdamW optimizer was used with a cyclical learning rate with a cycle

length of 4 epochs as well. Suitable bounds for the learning rates had to be calculated before

training every model using the Leslie Smith test, as in this case it did not produce stable learning

rates for differently sized randomly generated models. To reduce the time required to obtain

such learning rates, the search was restricted to an order of magnitude above and below those

of the parent model to the one to be trained, relying on the assumption that small changes in

the architecture would not yield great fluctuations in the optimum learning rate bounds. The

Chimera Algorithm’s output models are referred to as ScratchNAS, VGG11NAS and VGG19NAS.

• Each of the three populations generated with the Chimera Algorithm were combined into

ensembles by means of the Gaggle Algorithm. These were pruned based on the models’ Mean

Absolute Error (MAE) in the median prediction of the validation volumes, generating an ensemble

out of each population. These ensembles are referred to as ScratchDEL, VGG11DEL and VGG19DEL.

Moreover, in order to palliate the effect of the simple ensemble pruning strategy employed, all

model combinations within each population have been tested to check the theoretical performance

of an optimal ensemble generated from each population. The models were weighted based on

their validation MAE, but the best ensembles were selected based on their test MAE. These

optimum ensembles are referred to as ScratchBest, VGG11Best and VGG19Best.

All methods —Transfer Learning, the Chimera and the Gaggle Algorithms— have been tested

twice, selecting a different validation rodent for each of the two cross-validation partitions.
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Table 2: Results of the methods proposed on the CIFAR-10 dataset. The shallow searches were carried

out with a population size of 4 models and a search length of 16 iterations, while the deep

ones were carried out with a population size of 8 models and a search length of 32 iterations.

All tests performed, including all ensemble approaches, required a total of 1077.86 GPU hours

Approach Training

% accuracy

Validation

% accuracy

Test

% accuracy

Computing

time (h)

Number of

models

Base

models

LeNet-5 68.96

± 1.73

60.52

± 0.76

60.52

± 0.83

0.17

± 0.04

1

VGG11

(random init.)

85.43

± 3.43

70.76

± 0.98

70.56

± 0.85

0.24

± 0.03

1

VGG11

(pretrained)

93.87

± 1.61

84.39

± 0.87

84.01

± 0.61

0.23

± 0.01

1

DEL Acc-based

weightings

80.83

± 0.72

71.01

± 0.57

70.83

± 0.30

5.43

± 0.15

25.00

± 1.26

NAS

Shallow

searches

85.67

± 2.84

74.52

± 0.91

74.43

± 0.97)

8.04

± 0.23

1 (5.2 ± 1.3

generated)

Deep

search

85.07

± 4.73

74.08

± 4.02

73.74

± 4.00

36.23

± 6.06

1 (23.0 ± 4.3

generated)

DEL

+ NAS

Shallow

searches

94.87

± 0.45

81.76

± 0.73

81.11

± 0.25

36.05

± 1.78

14.75

± 2.86

Single deep

search

94.35

± 1.08

81.61

± 0.84

81.05

± 0.84

36.62

± 5.79

19.00

± 6.68

4 Results

The main results obtained by the previously discussed approaches are presented for the CIFAR-10

image classification task and the CT geometrical misalignment characterization task in Sections 4.1

and 4.2, respectively. The complete behavior of all approaches is laid out in Appendix B.

4.1 Results for the Scenario I

The accuracies attained in the CIFAR-10 dataset with all methods proposed are shown in Table 2.

Regarding the standalone predesigned architectures, VGG11 attained better accuracies in training,

validation, and testing throughout cross-validation.

The behavior of an example ensemble employing accuracy-based data resampling and model

weighting is shown on Fig. 2. The ensemble accuracy increased as more models were added, al-

though the rate of improvement decayed rapidly. The final ensemble was pruned, further improving

the ensemble performance up until fundamental models started to get removed and the accuracy

lowered back to that of the best standalone one. In all cases, the pruned populations produced

better results than the original ones, using less models. The maximum training, validation and test

accuracies were obtained when using accuracy-based data resampling and accuracy-based model

weighting, which are shown in Table 2. For the complete results of all data and model weighting

strategies, refer to Table 4 in Appendix B.

The best models in the NAS setting were always found in the deep searches. However, some low

performing models also appeared in deep searches due to the late exhaustion and reinitialization of

some solutions, which lowered their mean population accuracy. The time required and the number
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Figure 2: Performance of an example ensemble, adding the models by creation order (left) or removing

them according to their standalone accuracies (right).

Table 3: Results of the methods proposed on the CT artifacts dataset. All tests performed required

a total of 283.52 GPU hours. The best performing approaches according to the test Mean

Absolute Error (MAE) are highlighted in bold.

Cross-validation I Cross-validation II

Model Validation

MAE (mm)

Test

MAE (mm)

Validation

MAE (mm)

Test

MAE (mm)

VGG11 0.0603 0.1890 0.1204 0.1108

VGG19 0.0377 0.0672 0.0638 0.0796
Worst Scratch𝑁𝐴𝑆 0.0134 0.3335 0.1070 0.2488

Best Scratch𝑁𝐴𝑆 0.0121 0.2915 0.0520 0.1914
Scratch𝐷𝐸𝐿 0.0131 0.3123 0.0466 0.1927

Scratch𝐵𝑒𝑠𝑡 0.0129 0.3007 0.0467 0.2005

Worst VGG11𝑁𝐴𝑆 0.0854 0.1814 0.0141 0.0344

Best VGG11𝑁𝐴𝑆 0.0399 0.1559 0.0158 0.0293

VGG11𝐷𝐸𝐿 0.0436 0.1674 0.0126 0.0297

VGG11𝐵𝑒𝑠𝑡 0.0496 0.1603 0.0148 0.0283
Worst VGG19𝑁𝐴𝑆 0.0342 0.2067 0.0676 0.1279

Best VGG19𝑁𝐴𝑆 0.0244 0.1728 0.0719 0.0378

VGG19𝐷𝐸𝐿 0.0176 0.1857 0.0670 0.0804

VGG19𝐵𝑒𝑠𝑡 0.0216 0.1791 0.0706 0.0281

of models generated in the deep searches were approximately 4-fold that of the shallow searches,

which was consistent with the batch size and search length.

Combining NAS with DEL produced better results than any of the two methods on their own,

but the ensembles were not able to surpass the accuracy of the pretrained VGG11. Using the Gaggle

Algorithm with failed prediction data resampling in between several shallow Chimera searches

produced slightly more consistent results than simply combining the results of a single long search.

4.2 Results for the Scenario II

The most representative results for each method in the CT artifacts scenario are shown in Table 3 for

both cross-validation partitions. The performance of the models and ensembles was measured by

the MAE of their volume-wise predictions. The best and worst generalizing models generated from

each search are shown, as well as the ensembles —composed of at least two models— generated by

pruning and the best possible model combination. The complete results are reported in Appendix
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B. VGG19 performed better than VGG11, and starting the search from either of the two resulted in

considerably better performance than starting from scratch. All the ensembles generated with the

Gaggle Algorithm outperformed the worst model of their population in test, but none outperformed

the best one.

5 Discussion and conclusions
Each method considered on the CIFAR-10 dataset attained a very similar accuracy in the validation

and test partitions, as shown in Table 2. The validation partition was representative enough of

the whole task, and thus the validation accuracy could be used both for early stopping and as a

model selection criterion, with no signs of overfitting. The importance of pretraining the models is

highlighted by the significant difference in the accuracies attained by VGG11 depending on the

weight initialization strategy employed.

The accuracy of the LeNet-5 ensembles matched that of the randomly initialized VGG11, and

the NAS searches commencing from scratch surpassed both of them. The combination of DEL

and NAS performed consistently better than either standalone method, which is consistent with

the literature [Herron et al. (2020), Chen et al. (2021)]. Combining the models required negligible

computational requirements, the resampling of the training dataset made each epoch slightly

shorter and, especially, allowed to limit the search to very shallow models which, when combined,

almost rivaled the accuracy of the pretrained VGG11. This was no trivial achievement, considering

that the models were created from scratch, with no data augmentation, learning rate scheduler, nor

a priori guidance, using a simple NAS algorithm and in under two days of computing.

Pruning was always necessary to achieve the best performing ensembles, which makes sense

particularly when the learners were created via NAS because they presented a much higher diver-

sity —and performance— within the population. Thus, further research onto how the models are

combined —to only extract valuable contributions from each model, for instance by employing a

Mixture of Experts approach [Chen et al. (2022)]— and trained —to avoid the creation of uninfor-

mative models whatsoever— is crucial to further improve the performance of our systems while at

the same time reducing the time and resources needed to create them.

On the other hand, the models trained on the CT misalignments dataset presented a much

greater tendency to overfit on the validation partition, as evidenced by the order of magnitude

difference between validation and test performances inmost cases throughout Table 3. This occurred

due to the relatively small dataset size compared to the problem complexity. The models trained on

this dataset presented a great variance in their predictions because the validation partition failed to

characterize the whole problem [Cawley and Talbot (2010)]. In most cases, all the models generated

within a NAS run performed similarly, attaining much better validation than test MAE. In these

cases, their combination into ensembles, even with the theoretical optimal pruning, attained similar

or even worse results. In the second cross-validation partition, there was a significant difference

between the overfitting presented by some of the VGG19NAS. This led to the VGG19DEL generated

to perform considerably worse than the best VGG19NAS on its own. In all cases, the models that

overfit the most are introduced first and their contributions are given more weight due to their

higher validation accuracy.

From all this, we derive that the combination of the models generated into ensembles based on

their validation performance seems to be beneficial when there is a low risk of overfitting. If that is

not the case, there are two possible outcomes. In the best case scenario, all models present a similar

degree of overfitting, and their combination performs similarly. Otherwise, we might add models to

the ensemble that smear the contribution of better generalizing ones, giving more weight to their

contributions due to their higher performance in validation. One option to perform a well-founded

ensemble pruning is to consider the uncertainty of the models predictions, as quantified through

methods such as those explored in the literature [Abdar et al. (2021)]. Moreover, the ensembles could

be pruned based on the performance of the models on meta-validation dataset partitions, given
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that enough data is available. Despite not always outperforming the best individual learners, all

ensembles generated generalize considerably better than the worst models on their own. Reducing

the variance of the models via DEL might still prove itself a sensible approach for small dataset

scenarios, considering that the test partition can be as biased as the validation one.

All of these observations are carried out in two very specific scenarios, though. A single NAS

method is employed, modifying only the feature extractors of feedforward Convolutional Neural

Networks. No data augmentation approaches are used, and the analysis is performed on just

two datasets that, although representative of the kind of problems they present, are not sufficient

to characterize the wide NAS use case. The interaction with the many techniques employed in

the Deep Learning workflow might vary the behavior of the ensembles and the optimal way of

combining and weighting the models. Moreover, there is very limited knowledge about how to

select the best NAS, DEL and ensemble pruning method for any given problem, requiring significant

expertise from the final user. We call for further research on use cases such as the one presented

herein, for which the Computer Vision tools at our disposal are not yet applicable.

On the bright side, given that the data available is either representative of the whole task or

abundant enough as to make independent model selection and ensemble pruning partitions, the

combination of DEL and NAS appears to be a promising strategy. DEL can be integrated almost

effortlessly to any population-based NAS framework, with negligible extra computation costs to

the final user. Moreover, these methods require minimal human intervention, which makes them

perfect for settings where Deep Learning experts are rarely available —like biomedical laboratories—.

Coincidentally, the kind of data produced and processed in these settings tend to differ greatly

from that of large natural images datasets for which powerful Transfer Learning models are readily

available.

In conclusion, we found that the combination of populations generated through NAS methods

into ensembles only generalize better than the standalone models provided that they all present

a similar degree of overfitting. Such is not always the case for models generated via NAS using

very small datasets, for which building representative validation and test partitions is not trivial.

In these scenarios, DEL can mitigate the influence of the worst models generated, but it does not

ensure the best generalization to the test datasets. Sensible ensemble pruning must be carried

out to identify and discard the heavily overfitting models in order to achieve the most out of the

generated populations.

6 Broader Impact Statement

We have shown that the combination of the resulting models from a Neural Architecture Search

into Deep Ensembles can significantly increase their generalization capabilities, even in scenarios

where the low amount of data yields an overfitting on the validation partitions. This allows the use

of AutoML in scenarios where they were previously unfeasible. However, automation bias might

lead non-experts in Deep Learning to fall for the luring generalization of the resulting models

to the test datasets, i.e. trusting their predictions with no regards for their interpretability. Said

interpretability, which is crucial in high-stakes scenarios such as medical imaging, is generally lost

upon the combination of the individual models into ensembles [Kook et al. (2022)]. Advancements

on the AutoML field must be taken with caution until we are able to reliably distinguish sensible

architectures from fortuitous nonsense.

On the other hand, AutoML methods benefit greatly from higher computational resources,

leading to a monopolization of AutoML by those with access to high computing power. Although

this holds true for our Deep Ensembles scenario, the methods proposed herein allow to obtain

feasible results while limiting the search to shallower models. This could reduce the computational

resources required which, in turn, can both mitigate the environmental impact of AutoML and help

democratize the application of Deep Learning in low-budget scenarios.
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1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] The scope is defined in the introduction, and the contribu-

tions are summarized in the abstract, with the problems described in both being reflected

on the experiments performed.

(b) Did you describe the limitations of your work? [Yes] The limitations of the work are

described in Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] The main

potential negative societal impacts are assessed in Section 6.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] As mentioned, the main poten-

tial negative societal impacts are assessed in Section 6. The datasets did not contain any

human data, thus there is no harm that could be done to non-consenting people. The

figures are designed to be colorblind barrier-free. Non-gendered language has been used

throughout and author names have been checked to be kept up to date.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] All methods proposed have been

tested in both datasets mentioned in the paper. The exact same setup has been used

throughout.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] The CIFAR-10 dataset is used as is, while the

creation and normalization of the CT dataset is explained in sufficient detail in Section 3.2.2.

All the default hyperparameters for the algorithms are mentioned in the Appendix A.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] Cross-validation was used in

bot scenarios. In the CT application, the methods were only cross-validated twice, but the

results were consistent in all cases.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] The variance is explicitly mentioned in all results.

(e) Did you report the statistical significance of your results? [No] This work focuses on

the empirical testing of DEL and NAS to a particular scenario, rather than the statistical

differences between the methods or models tested. Moreover, the differences in the metrics

attained are significant enough and the results are consistent with those reported in previous

literature.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] Ensembles

of models cannot be validated on surrogate benchmarks for standalone models. Moreover,

there are very few surrogate benchmarks for datasets with a low number of complex images

to depict the medical imaging scenario, which is the main focus of this work.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [N/A] The performance for shallower and deeper searches has been assessed.

The maximum duration was arbitrarily selected based on computational resources, but the
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main point of this work is not to propose a specific, optimized method but to assess the

interaction between Ensemble Learning and Neural Architecture Search in the context of

the aforementioned small dataset regime.

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] The setup used has been specified in the

introduction of Section 3. The compute times were reported along with every result.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] The DEL and NAS methods have been validated separately and in conjunction in

different settings to assess their individual contribution to the complete approach.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results, including all requirements (e.g., requirements.txt with explicit versions),

random seeds, an instructive README with installation, and execution commands (either

in the supplemental material or as a url)? [Yes] The code developed and the environ-

ment.yml/requirements.txt required, as well as the data generated for the CT misalignments

scenario, can be accessed through this link: https://github.com/HGGM-LIM/Chimera. The

code is given as jupyter notebooks with instructions and comments throughout. The random

seeds are given within the code.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [No] The whole results can be replicated with the code provided. To

produce a minimal example, it suffices to eliminate samples from the dataloaders to suit the

computational requirements of the reader.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] The code is provided in the form of jupyter notebooks

with instructions and comments throughout.

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] The jupyter notebooks are provided with their outputs in one of the

cross-validation partitions.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] The jupyter notebooks contain the

code used to generate the all figures shown throughout, although some have been modified

for composition reasons.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] The only external asset used is the CIFAR-10

dataset, which has been properly cited.

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A] The CIFAR-10 dataset is open source, and

the CT artifacts one was obtained in-house.

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] No human data was employed.

5. If you created/released new assets (e.g., code, data, models). . .
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(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

The code developed is open-source, and so is the dataset generated. Both are accessible

through the link in Appendix A.

(b) Did you include the new assets either in the supplemental material or as a url (to,

e.g., GitHub or Hugging Face)? [Yes] Everything is accessible through this link:

https://github.com/HGGM-LIM/Chimera.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] No human data was used.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] No human data was used.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] No human data was used.

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A] There are no

theoretical results, all results reported are empirical.

(b) Did you include complete proofs of all theoretical results? [N/A] There are no theoretical

results, all results reported are empirical.
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A Appendix A: Algorithms

All algorithms described in this section can be accessed through this link: https://github.com/HGGM-

LIM/Chimera.

Algorithm 1: Ensemble Generator

Input: 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟 , a data loader containing the training partition of the dataset

𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 , a data loader containing the validation partition of the dataset

𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙 , the base architecture to create the ensembles with

𝑛_𝑚𝑜𝑑𝑒𝑙𝑠 , the ensemble length

Output: 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 , a list containing all trained models

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 , matrix with the weights of each learner for each target dimension

1 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ← ∅
2 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← ∅
3 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟𝑎𝑢𝑥 ← 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟

4 for 𝑖 ← 1 to 𝑛_𝑚𝑜𝑑𝑒𝑙𝑠 do
5 model← train(𝑏𝑎𝑠𝑒_𝑚𝑜𝑑𝑒𝑙, 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟𝑎𝑢𝑥 )
6 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ← 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ∪𝑚𝑜𝑑𝑒𝑙

7 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← CalculateWeights(𝑚𝑜𝑑𝑒𝑙, 𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 ) ∪𝑚𝑜𝑑𝑒𝑙

8 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟𝑎𝑢𝑥 ←ModifyDataset(𝑡_𝑙𝑜𝑎𝑑𝑒𝑟, 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒,𝑤𝑒𝑖𝑔ℎ𝑡𝑠)
9 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒,𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← pruneEnsemble(𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒,𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 )

The ensemble generator depicted here is a modular Boosting Ensemble algorithm. The func-

tions CalculateWeights andModifyDataset follow any of the strategies depicted in Table 1. The

pruneEnsemble function orders the models based on their validation accuracy and discards the

worse ones until the ensemble performance starts decreasing.

The sample weights are based on the ones employed by the AdaBoost [Breiman (2000)]

classifier. In classification problems, these weights are given by exp(−𝛼 · 𝑎𝑐𝑐) if the datapoint has
been properly classified by the ensemble, or exp(𝛼 · 𝑎𝑐𝑐) if it has not, where 𝑎𝑐𝑐 is the complete

ensemble’s training accuracy and 𝛼 is a hyperparameter that controls how much misclassified

samples are penalized; in regression ones, it will be given by exp(−𝛼 · 𝑙𝑜𝑠𝑠𝑣), where 𝑙𝑜𝑠𝑠𝑣 is the
validation loss. By default, 𝛼 is set to 1.

The Chimera Algorithm is an in-house Neural Architecture Search method that follows the same

workflow as the Artificial Bee Colony Algorithm [Karaboga and Basturk (2007)]. The population

of solutions can be initialized by copying a model provided or by generating architectures with

a random —up to a maximum defined— amount of layers, depending on the 𝑖𝑛𝑖𝑡_𝑎𝑟𝑔𝑠 passed.

Then, two types of optimizer agents, referred to as 𝐵𝑒𝑒𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 and 𝐵𝑒𝑒𝑠𝑂𝑛𝑙𝑜𝑜𝑘𝑒𝑟 , will take turns

to explore the hyperparameter space until 𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 is met. The 𝐵𝑒𝑒𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 bind to each

model in a one-to-one assignment (line 8) while the 𝐵𝑒𝑒𝑠𝑂𝑛𝑙𝑜𝑜𝑘𝑒𝑟 randomly choose a model every

iteration with a probability proportional to its validation performance (line 27). Some models might

not be selected in this step, whereas others could be selected by several 𝐵𝑒𝑒𝑠𝑂𝑛𝑙𝑜𝑜𝑘𝑒𝑟 within a single

iteration. This drives the exploration-exploitation tradeoff to lean towards the latter for the most

promising regions in the hyperspace.

The two types of 𝐵𝑒𝑒 explore around their selected model by duplicating it and performing

a series of mutation steps on the copy. We keep an 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛 counter for each solution that

increases every time the mutated model is worse than the original one, and resets to zero when it

is not. If a solution’s exhaustion counter exceeds a certain threshold it is saved as a plausible global

minimum and its Employed Bee reassigns itself to a newly initialized solution (lines 20-25).
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Algorithm 2: Chimera Algorithm

Input: 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟 , a data loader containing the training partition of the dataset

𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 , a data loader containing the validation partition of the dataset

𝑁𝑝 , the population size

𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛, a condition to stop searching for models

𝑒𝑥𝑚𝑎𝑥 , the threshold for the exhaustion counter to consider the solution exhausted

𝑖𝑛𝑖𝑡_𝑎𝑟𝑔𝑠 , arguments for the model initialization

𝑚𝑢𝑡_𝑎𝑟𝑔𝑠 , arguments for the model mutation

Output: 𝑓 𝑖𝑛𝑎𝑙_𝑚𝑜𝑑𝑒𝑙𝑠 , a list containing all trained models

1 Generate a 𝐵𝑒𝑒𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 population and a 𝐵𝑒𝑒𝑠𝑂𝑛𝑙𝑜𝑜𝑘𝑒𝑟 one of size 𝑁𝑝 each

2 𝑓 𝑖𝑛𝑎𝑙_𝑚𝑜𝑑𝑒𝑙𝑠 ← ∅
3 for i← 1 to 𝑁𝑝 do
4 models𝑖 ← initialize(𝑖𝑛𝑖𝑡_𝑎𝑟𝑔𝑠)
5 models𝑖 ← train(𝑚𝑜𝑑𝑒𝑙𝑠𝑖 , 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟 )
6 score𝑖 ← (𝑚𝑜𝑑𝑒𝑙𝑠𝑖 , 𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 )
7 exhaustion𝑖 ← 0

8 models𝑖
binds to←−−−−−− 𝐵𝑒𝑒𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑,𝑖

9 while stop_criterion is not met do
10 for 𝐵𝑒𝑒𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑,𝑖 ∈ 𝐵𝑒𝑒𝑠𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑 do
11 𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙 ← mutate(𝑚𝑜𝑑𝑒𝑙𝑠𝑖 ,𝑚𝑢𝑡_𝑎𝑟𝑔𝑠)
12 𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙 ← train(𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙, 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟 )
13 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 ← score(𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙, 𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 )
14 if 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 < 𝑠𝑐𝑜𝑟𝑒𝑖 then
15 𝑚𝑜𝑑𝑒𝑙𝑠𝑖 ← 𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙

16 𝑠𝑐𝑜𝑟𝑒𝑖 ← 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤
17 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑖 ← 0

18 else
19 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑖+ = 1

20 if 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑖 ≥ 𝑒𝑥𝑚𝑎𝑥 then
21 𝑓 𝑖𝑛𝑎𝑙_𝑚𝑜𝑑𝑒𝑙𝑠 ← 𝑓 𝑖𝑛𝑎𝑙_𝑚𝑜𝑑𝑒𝑙𝑠 ∪𝑚𝑜𝑑𝑒𝑙𝑖
22 𝑚𝑜𝑑𝑒𝑙𝑠𝑖 ← initialize(𝑖𝑛𝑖𝑡_𝑎𝑟𝑔𝑠)
23 𝑚𝑜𝑑𝑒𝑙𝑠𝑖 ← train(𝑚𝑜𝑑𝑒𝑙𝑠𝑖 , 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟 )
24 𝑠𝑐𝑜𝑟𝑒𝑖 ← score(𝑚𝑜𝑑𝑒𝑙𝑠𝑖 , 𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 )
25 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑖 ← 0

26 for 𝐵𝑒𝑒𝑂𝑛𝑙𝑜𝑜𝑘𝑒𝑟,𝑗 ∈Bees𝑂𝑛𝑙𝑜𝑜𝑘𝑒𝑟 do

27 𝑚𝑜𝑑𝑒𝑙 𝑗
is chosen from
←−−−−−−−−−−𝑚𝑜𝑑𝑒𝑙𝑠 with probability ∝ 𝑠𝑐𝑜𝑟𝑒𝑠

28 𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙 ← mutate(𝑚𝑜𝑑𝑒𝑙 𝑗 ,𝑚𝑢𝑡_𝑎𝑟𝑔𝑠)
29 𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙 ← train(𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙, 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟 )
30 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 ← score(𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙, 𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 )
31 if 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 < 𝑠𝑐𝑜𝑟𝑒 𝑗 then
32 𝑚𝑜𝑑𝑒𝑙 𝑗 ← 𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙

33 𝑠𝑐𝑜𝑟𝑒 𝑗 ← 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤
34 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛 𝑗 ← 0

35 else
36 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛 𝑗+ = 1

37
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The models are trained until convergence in order to properly compare their performance on

the validation partition. Each model generated is then assigned a score based on the Artificial Bee

Colony fitness value, given by (1 + 𝑙𝑜𝑠𝑠𝑣𝑎𝑙𝑑𝑎𝑡𝑖𝑜𝑛)−1. This score is used to compare the original and

mutated models and discard the worst performing one. The 𝐵𝑒𝑒𝑠𝑂𝑛𝑙𝑜𝑜𝑘𝑒𝑟 will also use this score to

select models.

The hyperparameters of the Chimera Algorithm are: the condition to stop the search

𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 —either a maximum number of iterations or a threshold for the objective loss

function—, the population size 𝑁𝑝 , the model exhaustion limit 𝑒𝑥𝑚𝑎𝑥 , the arguments for the

initialize function 𝑖𝑛𝑖𝑡_𝑎𝑟𝑔𝑠 , and the arguments for the mutate function 𝑚𝑢𝑡_𝑎𝑟𝑔𝑠 . The latter

comprises the number of mutations per mutate call, the probability of performing each mutation

type —that is, adding, subtracting or modifying each kind of layer—, and, optionally, the bounds

to the model hyperparameters’ space —the maximum number and types of layers, kernel sizes or

strides, or the range of learning rates—.

The default hyperparameters are defined as follows. The number of mutations performed on

each exploration attempt is defined as |𝑁 (1, 3

√
1 + 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑜𝑛𝑖) | rounded upwards, to ensure that

most of the time we perform very few mutation steps. Bigger steps to overcome local minima

are only allowed if the solution is close to exhaustion. In this way, we make sure that the close

neighborhood of a given solution is properly exploited before trying to reach further away. The

probabilities of adding, deleting, or mutating a layer on each exploration step are set to 30% each,

while there is a 10% probability of simply resetting the weights of some layers while leaving the

architecture intact. When adding or mutating a layer, its probability of being a convolutional layer

was set as 5𝑛𝑝/(5𝑛𝑝 + 𝑛𝑐), where 𝑛𝑝 is the number of pooling layers and 𝑛𝑐 that of convolutional

ones in the model to mutate. Otherwise, the new layer is a pooling one, with equal probability of

being either max or average pooling. This ensures that our models will tend to present 5 times

as many convolutional layers as pooling ones. Convolutional and pooling kernel sizes are drawn

from a uniform distribution from 1 to 7, and the model length is only limited by the available GPU

memory. When adding a convolutional layer, the input and output channels are given by those of

the surrounding layers. By default, when mutating a convolutional layer, the number of output

channels —and thus input channels of the next convolutional layer— can vary from half to twice

the original number of channels. Model exhaustion is deactivated by default, with 𝑒𝑥𝑚𝑎𝑥 being

infinity. If no base architecture is provided, the models will be initialized at random within the

search bounds. There are no default 𝑠𝑡𝑜𝑝_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 as this is specific to every problem and available

resources.

The stopping criteria and the search bounds are the hyperparameters that most significantly

affect the quality of the models produced. The initialization arguments, probability of each mutation

type, population size andmodel exhaustion limit simply define the starting point, preferred direction

and average search speed throughout the hyperspace. For instance, 1) keeping a higher probability

of removing layers rather than adding them yields a search focused on decreasing model complexity,

or 2) using a small population size with a high exhaustion limit favors a thorough exploitation of a

few regions rather than widespread exploration. The optimal hyperparameters will be problem-

dependent, and could be either fixed or adaptive, leveraging a-priori knowledge provided with the

quality of the models found throughout the search.
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Algorithm 3: Gaggle Algorithm
Input: 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟 , a data loader containing the training partition of the dataset

𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 , a data loader containing the validation partition of the dataset

𝑁𝑝 , the population size

𝑛_𝑏𝑎𝑡𝑐ℎ𝑒𝑠 , the number of times the Chimera Algorithm is called

𝑖𝑡𝑒𝑟𝑚𝑎𝑥 , a maximum number of iterations to run the search for

𝑙𝑜𝑠𝑠𝑚𝑖𝑛 , a threshold for the loss value to stop the search when achieved

𝑒𝑥𝑚𝑎𝑥 , the threshold for the exhaustion counter to consider the solution exhausted

𝑖𝑛𝑖𝑡_𝑎𝑟𝑔𝑠 , arguments for the model initialization

𝑚𝑢𝑡_𝑎𝑟𝑔𝑠 , arguments for the model mutation

Output: 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 , a list containing all trained models

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 , matrix with the weights of each learner for each target dimension

1 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ← ∅
2 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← ∅
3 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟𝑎𝑢𝑥 ← 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟

4 for 𝑖 ← 1 to 𝑛_𝑚𝑜𝑑𝑒𝑙𝑠 do
5 𝑚𝑜𝑑𝑒𝑙_𝑏𝑎𝑡𝑐ℎ ←

ChimeraAlgorithm(𝑡_𝑙𝑜𝑎𝑑𝑒𝑟𝑎𝑢𝑥 , 𝑣_𝑙𝑜𝑎𝑑𝑒𝑟, 𝑁𝑝, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 , 𝑙𝑜𝑠𝑠𝑚𝑖𝑛, 𝑒𝑥𝑚𝑎𝑥 , 𝑖𝑛𝑖𝑡_𝑎𝑟𝑔𝑠,𝑚𝑢𝑡_𝑎𝑟𝑔𝑠)
6 for𝑚𝑜𝑑𝑒𝑙 ∈𝑚𝑜𝑑𝑒𝑙_𝑏𝑎𝑡𝑐ℎ do
7 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ∪ CalculateWeights(𝑚𝑜𝑑𝑒𝑙, 𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 )
8 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ← 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ∪𝑚𝑜𝑑𝑒𝑙_𝑏𝑎𝑡𝑐ℎ

9 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒,𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← pruneEnsemble(𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒,𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑣_𝑙𝑜𝑎𝑑𝑒𝑟 )
10 𝑡_𝑙𝑜𝑎𝑑𝑒𝑟𝑎𝑢𝑥 ←ModifyDataset(𝑡_𝑙𝑜𝑎𝑑𝑒𝑟, 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒,𝑤𝑒𝑖𝑔ℎ𝑡𝑠)

The Gaggle Algorithm is an extension of the Chimera Algorithm that retrieves the populations

of models generated and adds them to a growing ensemble. The ensemble is pruned with the

addition of each new batch of models. The CalculateWeights, ModifyDataset and pruneEnsemble
functions work in the same way as in Algorithm 1.

B Appendix B: Complementary results

The performance of the LeNet-5 ensembles generated using all the combinations of sample weight-

ing —no data weighting, DN; failed prediction resampling, DF; accuracy-based resampling, DA;

loss function modification, DL— and model weighting —mean prediction, MM; accuracy-based

weighting, MA; confusion matrix-based weighting, MC— depicted in Table 1 are shown in Table

4. Both the complete and pruned populations —C and P, respectively— are shown. The pruned

ensembles always attained better results than the original ones. The best results were obtained by

a very slight margin with accuracy-based data resampling and accuracy-based model weighting,

highlighted in bold. The only ensembles that perform noticeably worse in validation and test are

the ones employing the loss function modification strategy, highlighted in grey.

The complete results on the CT artifacts scenario are shown in Tables 6 and 5. The models

generated with the Chimera Algorithm are ordered and numbered based on their Mean Absolute

Error on the validation dataset. The ensembles generated with the Gaggle Algorithm are ordered

and numbered based on the number of models they contain. In the first cross-validation partition,

the only model that did not overfit was VGG19, while neither Transfer Learning models nor most of

their evolutions and ensembles presented overfit in the second cross-validation partition. The best

Transfer Learning model is highlighted in blue. The best Chimera output model for each run based
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Table 4: Results of the methods proposed on the CIFAR-10 dataset

MM MA MC

Data w.

Model w.

Train

acc.

Valid.

acc.

Test

acc.

Train

acc.

Valid.

acc.

Test

acc.

Train

acc.

Valid.

acc.

Test

acc.

C

79.73

±0.49

70.46

±0.48

70.30

±0.28

80.11

±0.73

70.74

±0.64

70.42

±0.49

79.44

±0.87

69.88

±0.54

69.87

±0.43

DN

P

80.20

±0.52

70.71

±0.45

70.45

±0.29

80.61

±0.82

70.94

±0.61

70.61

±0.46

79.79

±0.90

70.05

±0.51

70.01

±0.39

C

80.23

±0.78

70.75

±0.33

70.54

±0.40

80.46

±0.66

70.84

±0.61

70.68

±0.28

79.33

±0.63

69.90

±0.41

69.91

±0.43

DF

P

80.46

±0.76

70.85

±0.35

70.63

±0.38

80.83
±0.72

71.01
±0.57

70.83
±0.30

79.83

±0.78

70.13

±0.46

70.10

±0.42

C

79.81

±0.55

70.40

±0.49

70.41

±0.37

80.04

±0.55

70.90

±0.51

70.48

±0.30

79.11

±0.64

70.17

±0.47

70.06

±0.35

DA

P

80.18

±0.65

70.59

±0.46

70.58

±0.32

80.35

±0.56

71.06

±0.56

70.65

±0.37

79.63

±0.58

70.36

±0.49

70.18

±0.39

C

79.57

±1.13

66.82

±0.53

66.58

±0.43

79.93

±0.86

66.89

±0.506

66.70

±0.332

77.97

±1.38

66.96

±1.24

66.64

±1.60

DL

P

79.63

±1.10

66.90

±0.57

66.63

±0.45

79.94

±0.91

66.98

±0.55

66.71

±0.37

78.29

±1.36

67.21

±1.29

66.83

±1.56

on their test Mean Absolute Error is highlighted in magenta, and the best Gaggle one is highlighted

in orange. The best possible ensembles to be created with each population are highlighted in green.

A visual representation of the Transfer Learning models and the architectures generated in the

first cross-validation partition are shown in Figures 3, 4 and 5.
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Table 5: Results on the first cross-validation partition of the CT misalignments dataset

Model Training Absolute

Error (mm)

Validation Absolute

Error (mm)

Test Absolute

Error (mm)

VGG11 0.0950±0.0557 0.0603±0.0518 0.1890±0.1412

VGG19 0.0326±0.0241 0.0377±0.0323 0.0672±0.0748

Scratch𝑁𝐴𝑆1 0.0267±0.0152 0.0121±0.0091 0.2915±0.0967

Scratch𝑁𝐴𝑆2 0.0273±0.0206 0.0134±0.0088 0.3335±0.0920

Scratch𝑁𝐴𝑆3 0.0177±0.0211 0.0151±0.0083 0.3104±0.0843

Scratch𝑁𝐴𝑆4 0.0232±0.0180 0.0154±0.0108 0.3257±0.0903

Scratch𝑁𝐴𝑆5 0.0367±0.0314 0.0196±0.0123 0.3258±0.1006

Scratch𝑁𝐴𝑆6 0.0333±0.0205 0.0294±0.0177 0.2953±0.0808

VGG11𝑁𝐴𝑆1 0.0249±0.0203 0.0399±0.0289 0.1559±0.0950

VGG11𝑁𝐴𝑆2 0.0342±0.0242 0.0495±0.0303 0.1793±0.1101

VGG11𝑁𝐴𝑆3 0.0504±0.0397 0.0554±0.0300 0.1706±0.1034

VGG11𝑁𝐴𝑆4 0.0677±0.0531 0.0854±0.0544 0.1814±0.1032

VGG19𝑁𝐴𝑆1 0.0199±0.0105 0.0205±0.0199 0.1868±0.0933

VGG19𝑁𝐴𝑆2 0.0082±0.0053 0.0244±0.0222 0.1728±0.0826

VGG19𝑁𝐴𝑆3 0.0165±0.0136 0.0322±0.0276 0.1937±0.0748

VGG19𝑁𝐴𝑆4 0.0159±0.0094 0.0342±0.0225 0.2067±0.0854

Scratch𝐷𝐸𝐿2 0.0235±0.0181 0.0131±0.0068 0.3123±0.0922

Scratch𝐷𝐸𝐿3 0.0193±0.0184 0.0149±0.0072 0.3118±0.0886

Scratch𝐷𝐸𝐿4 0.0199±0.0173 0.0145±0.0075 0.3157±0.0891

Scratch𝐷𝐸𝐿5 0.0219±0.0192 0.0154±0.0082 0.3177±0.0887

Scratch𝐷𝐸𝐿6 0.0224±0.0184 0.0178±0.0122 0.3116±0.0864

VGG11𝐷𝐸𝐿2 0.0235±0.0221 0.0436±0.0274 0.1674±0.1039

VGG11𝐷𝐸𝐿3 0.0329±0.0270 0.0482±0.0274 0.1675±0.1041

VGG11𝐷𝐸𝐿4 0.0447±0.0369 0.0595±0.0383 0.1703±0.1020

VGG19𝐷𝐸𝐿2 0.0112±0.0071 0.0216±0.0198 0.1791±0.0871

VGG19𝐷𝐸𝐿3 0.0052±0.0045 0.0176±0.0200 0.1857±0.0662

VGG19𝐷𝐸𝐿4 0.0062±0.0038 0.0201±0.0191 0.1920±0.0678

Scratch𝐵𝑒𝑠𝑡 0.0212±0.0195 0.0129±0.0078 0.3007±0.0941

VGG11𝐵𝑒𝑠𝑡 0.0374±0.0297 0.0496±0.0496 0.1603±0.0985

VGG19𝐵𝑒𝑠𝑡 0.0112±0.0071 0.0216±0.0198 0.1791±0.0871
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Table 6: Results on the second cross-validation partition of the CT misalignments dataset

Model Training Absolute

Error (mm)

Validation Absolute

Error (mm)

Test Absolute

Error (mm)

VGG11 0.0791±0.0475 0.1204±0.0806 0.1108±0.0437

VGG19 0.0325±0.0274 0.0638±0.0574 0.0796±0.0535

Scratch𝑁𝐴𝑆1 0.1059±0.1259 0.0424±0.0346 0.1958±0.1586

Scratch𝑁𝐴𝑆2 0.1132±0.1189 0.0520±0.0501 0.1914±0.1625

Scratch𝑁𝐴𝑆3 0.1164±0.1262 0.0548±0.0649 0.2335±0.1858

Scratch𝑁𝐴𝑆4 0.1194±0.0907 0.0883±0.0486 0.2085±0.1329

Scratch𝑁𝐴𝑆5 0.1346±0.1304 0.0916±0.0602 0.2270±0.1601

Scratch𝑁𝐴𝑆6 0.1485±0.1252 0.1070±0.0648 0.2488±0.1779

VGG11𝑁𝐴𝑆1 0.0099±0.0068 0.0141±0.0142 0.0344±0.0230

VGG11𝑁𝐴𝑆2 0.0146±0.0129 0.0152±0.0112 0.0335±0.0163

VGG11𝑁𝐴𝑆3 0.0126±0.0114 0.0158±0.0154 0.0293±0.0108

VGG11𝑁𝐴𝑆4 0.0101±0.0100 0.0173±0.0183 0.0312±0.0187

VGG19𝑁𝐴𝑆1 0.0344±0.0204 0.0660±0.0351 0.0441±0.0257

VGG19𝑁𝐴𝑆2 0.0220±0.0180 0.0676±0.0541 0.1279±0.1256

VGG19𝑁𝐴𝑆3 0.0523±0.0299 0.0719±0.0404 0.0378±0.0369

VGG19𝑁𝐴𝑆4 0.0704±0.0366 0.0961±0.0364 0.0494±0.0280

Scratch𝐷𝐸𝐿2 0.1091±0.1193 0.0466±0.0420 0.1927±0.1605

Scratch𝐷𝐸𝐿3 0.1081±0.1207 0.0474±0.0485 0.2066±0.1702

Scratch𝐷𝐸𝐿4 0.1074±0.1097 0.0610±0.0471 0.2063±0.1586

Scratch𝐷𝐸𝐿5 0.1150±0.1141 0.0694±0.0499 0.2119±0.1592

Scratch𝐷𝐸𝐿6 0.1221±0.1151 0.0785±0.0531 0.2213±0.1636

VGG11𝐷𝐸𝐿2 0.0118±0.0086 0.0136±0.0112 0.0311±0.0195

VGG11𝐷𝐸𝐿3 0.0065±0.0053 0.0126±0.0126 0.0297±0.0134

VGG11𝐷𝐸𝐿4 0.0066±0.0053 0.0136±0.0141 0.0287±0.0174

VGG19𝐷𝐸𝐿2 0.0260±0.0109 0.0670±0.0390 0.0804±0.0689

VGG19𝐷𝐸𝐿3 0.0343±0.0207 0.0701±0.0274 0.0596±0.0478

VGG19𝐷𝐸𝐿4 0.0439±0.0260 0.0760±0.0321 0.0556±0.0415

Scratch𝐵𝑒𝑠𝑡 0.1121±0.1145 0.0467±0.0421 0.2005±0.1416

VGG11𝐵𝑒𝑠𝑡 0.0081±0.0077 0.0148±0.0163 0.0283±0.0155

VGG19𝐵𝑒𝑠𝑡 0.0418±0.0250 0.0706±0.0284 0.0281±0.0312
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Figure 3: Architectures of the six ScratchNAS generated in the first cross-validation partition.
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Figure 4: Architectures of VGG11 and the four VGG11NAS generated in the first cross-validation

partition.
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Figure 5: Architectures of VGG19 and the four VGG19NAS generated in the first cross-validation

partition.
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