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ABSTRACT

There is a well known intrinsic trade-off between the fairness of a representation
and the performance of classifiers derived from the representation. Due to the
complexity of optimisation algorithms in most modern representation learning
approaches, for a given method it may be non-trivial to decide whether the obtained
fairness-performance curve of the method is optimal, i.e., whether it is close to the
true Pareto front for these quantities for the underlying data distribution.
In this paper we propose a new method to compute the optimal Pareto front, which
does not require the training of complex representation models. We show that
optimal fair representations possess several useful structural properties, and that
these properties enable a reduction of the computation of the Pareto Front to a
compact discrete problem. We then also show that these compact approximating
problems can be efficiently solved via off-the shelf concave-convex programming
methods. Finally, in addition to representations, we show that the new methods may
also be used to directly compute the Pareto front of fair classification problems.
Since our approach is independent of the specific model of representations, it may
be used as the benchmark to which representation learning algorithms, or classifiers,
may be compared. We experimentally evaluate the approach on a number of real
world benchmark datasets.

1 INTRODUCTION

Fair representations are a central topic in the field of Fair Machine Learning, Mehrabi et al. (2021),
Pessach & Shmueli (2022),Chouldechova & Roth (2018). Since their introduction in Zemel et al.
(2013), Fair representations have been extensively studied, giving rise to a variety of approaches
based on a wide range of modern machine learning methods, such GANs, variational auto encoders,
numerous variants of Optimal Transport methods, and direct variational formulations. See the
papers Feldman et al. (2015), Edwards & Storkey (2015),Louizos et al. (2015),Madras et al. (2018),
Gordaliza et al. (2019); Zehlike et al. (2020), Song et al. (2019), Du et al. (2020), for a sample of
existing methods.

For a given representation learning problem and a target classification problem, since the fairness
constraints reduce the space of feasible classifiers, the best possible classification performance will
usually be lower as the fairness constraint becomes stronger. This phenomenon is known as the
Fairness-Performance trade-off. Assume that we have fixed a way to measure fairness. Then for
a given representation learning method, one is often interested in the fairness-performance curve
(γ,E(γ)). Here, γ is the fairness level, and E(γ) is the classification performance of the method at
that level. The curve (γ,E(γ)) where E(γ) is the best possible performance over all representations
and classifiers under the constraint is known as the Fairness-Performance Pareto Front.

As indicated by the above discussion, representation learning methods typically involve models with
high dimensional parameter spaces, and complex, possibly constrained non-convex optimisation
algorithms. As such, these methods may be prone to local minima, and may be sensitive to a variety
of hyper-parameters, such as architecture details, learning rates, and even initializations. While the
representations produced by such methods may often be useful, it nevertheless may be difficult to
decide whether their associated Fairness-Performance curve is close to the true Pareto Front.
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Figure 1: Illustration of fair representation learning setup, where representation space Z (center)
connects input features X conditioned on protected attribute values A=0 (left) and A=1 (right).
Multiple source points (x,a) can map to the same representation z, with each z maintaining target
information through P(Y|Z=z) derived from the conditional probabilities P(Y|x,a) of its source points.

In this paper we propose a new method to compute the optimal Pareto front, which does not require
the training of complex fair representation models. In other words, we show that, perhaps somewhat
surprisingly, the computation of the Pareto Front can be decoupled from that of the representation,
and only relies on learning of much simpler, unconstrained classifiers on the data. To achieve this,
we first show that the optimal fair representations satisfy a number of structural properties. While
these properties may be of independent interest, here we use them to express the points on the Pareto
Front as the solutions of small discrete optimisation problems. The problems fall into the category of
concave minimisation problems Benson (1995), which have been extensively studied, and can be
efficiently solved using modern dedicated optimisation frameworks, Shen et al. (2016).

We now describe the results in more detail. Let X and A denote the data features and the sensitive
attribute, respectively. The sensitive attribute is a part of the data, and we assume that A is binary.
The features X will be taking values in Rd. In addition, we have a target variable Y , taking values in
a finite set Y . We are then interested in representations that maximise the performance of prediction
of Y , under the fairness constraint. The representation is denoted by Z, and is typically expressed by
constructing the conditional distributions P (Z|X = x,A = a), for a ∈ {0, 1}. The problem setting
is illustrated in Figure 1.

The remainder of the paper unfolds as follows: Algorithm 1 outlines the steps for computing the
Pareto front - learning calibrated probability estimators, constructing relevant histograms, and solving
the resulting optimization problem using standard solvers.
The theoretical foundation for this approach is built on two key results. The Factorization result
(Section D) demonstrates that instead of working with all features x, we need only consider the
distributions P (Y |x), as inputs with identical distributions are equivalent for Pareto front purposes.
This crucial insight reduces our representation space from Rd to ∆Y , making discretization more
tractable. The Invertibility Theorem (Section 4) complements this by establishing bounds on the
representation’s target space - specifically, how many points z are needed in the representation to
maintain accuracy.

As for a detailed breakdown of each section : The invertibility theorem states that in an optimal
representation, every point z can be generated from at most two x’s, one given A = 0 and an-
other given A = 1. That is, there are unique u, v such that P (Z = z|X = u,A = 0) ̸= 0 and
P (Z = z|X = v,A = 1) ̸= 0. This in turn hints at a possibility that in an optimal representation,
the space of z may be indexed by the pairs (u, v), where u, v denote x’s corresponding to A = 0
and A = 1 as above. Indeed, an additional result, the Uniform Approximation Lemma D.1, deferred
to Supplementary D due to space constraints, implies that for every pair (u, v), one needs to have
only a small number of z’s associated with it, in order to approximate all possible representations.
Together, these results bound the number of points needed to model all optimal representations, if X
has finitely many values.

Next, in Section 5.1 we show that instead of discretising X as suggested above, one may in fact
discretise a much smaller space, i.e., ∆Y—the space of all possible distributions of Y . As an example,
if Y is binary, this space is equivalent to the interval [0, 1]. This reduction is possible due to the
factorisation property of representations. That is, we show that for the purposes of the computation
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of the Pareto front, any representation may be represented as a composition (thus the factorisation
terminology) of a mapping into ∆Y , and a representation of ∆Y .

Based on these results, in Section 5.2 we introduce MIFPO, a discrete optimisation problem for the
computation of the Pareto front, and in Section 5.3 we provide details on estimating the problem
parameters from the data. The MIFPO problem is a concave minimisation problem with linear
constraints, and we solve it using the disciplined convex-concave programming framework, DCCP,
Shen et al. (2016). It is worth noting that for the special case of perfect fairness, i.e., the point γ = 0
on the curve, the MIFPO problem is in fact a linear programming problem, solvable by standard
means, and closely related to the Optimal Transportation problem (Supplementary B).

We illustrate MIFPO by evaluating it on a number of standard real world fairness benchmark datasets.
We also compare its fairness-performance curve to that of FNF, Balunović et al. (2022a), a recent
representation learning approach which yields representations with guaranteed fairness constraint
satisfaction. As expected, MIFPO produces tighter fairness-performance curves, indicating that FNF
still has space for improvement. This suggests that MIFPO may also be used as an analysis method
in the construction of full representation learning algorithms. In addition, we show that MIFPO
may also be used to evaluate the fairness-performance Pareto front of fair classifiers (Section 3),
where fairness is measured by statistical parity. We thus evaluate two widely used fair classification
methods and, similarly, find that their Pareto front is significantly below that of MIFPO.

To summarise, the contributions of this paper are as follows: (a) We derive several new structural
properties of optimal fair representations. (b) We use these properties to construct a model indepen-
dent problem, MIFPO, which can approximate the Pareto Front of arbitrary high dimensional data
distributions, but is much simpler to solve than direct representation learning for such distributions.
(c) We illustrate the approach on real world fairness benchmarks.

The rest of this paper is organised as follows: Section 2 discusses the literature. Section 3 introduces
the formal problem setting. The Inveribility Theorem is discussed in Section 4, and the details of the
MIFPO construction are given in Section 5. Experimental results are presented in Section 6, and we
conclude the paper in Section 7. All proofs are provided in the Supplementary Material.

2 LITERATURE AND PRIOR WORK

As mentioned in the previous Section, there exists a variety of approaches to the construction of fair
representations. We refer to the book Barocas et al. (2023), and surveys Mehrabi et al. (2021),Du et al.
(2020), for an overview. Notably, the work Song et al. (2019) introduces a variational framework
that unifies many of the existing methods under a single optimisation procedure. This work also
explicitly deals with the difficulty of obtaining useful fairness-performance trade-offs, although such
considerations are present in practically all fairness related work.

In a recent paper, Balunović et al. (2022a), it was observed that if one knows the density of the source
data, P (X|A = a), a ∈ {0, 1}, and uses models with computable change of variables, such as the
normalising flows, Rezende & Mohamed (2015), then one can verify the total variation fairness
criterion (see (3)), with high probability. This enables one to provide guarantees on the fairness of
a representation, which is clearly an important feature in applications. Such guarantees also allow
result comparison between different methods. Indeed, if a given constraint is not guaranteed in one of
the methods, then the performance comparison may be unfair. Due to this reason, in the experiments
Section 6 we compare our own results to those of Balunović et al. (2022a). It may be worthwhile to
note, however, that the assumption of knowing the densities P (X|A = a), made in Balunović et al.
(2022a), is quite significant. This is due to the fact that such information is normally not given, and
the estimation of densities from data is generally a difficult problem. We remark that our approach
does not rely on this assumption.

Regarding related work dealing with optimal tradeoffs between accuracy and fairness, in Zhao &
Gordon (2019) the autors developed a theoretical error bound for the perfecly fair classifier and
are not concerned with the full Pareto front, nor addressing fair representation. Dehdashtian et al.
(2024),Sadeghi et al. (2022) proposed learning fair representations using neural encoders with RKHS
mappings and classifiers, measuring independence-based fairness through RKHS proxies. This
approach requires implicit data assumptions, particularly Gaussian projections in Sadeghi et al.
(2022) in contrast to our method which also provide simple solution. The most related work Wang
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et al. (2024) builds on Kim et al. (2020) observation that the classification Pareto front depends
solely on classifier confusion matrices. While similar to our factorization result (Section 5.1), their
main contribution characterizes these matrices through infinite constraint intersection, proposing
an iterative algorithm that progressively adds constraints to solve increasingly constrained Pareto
problems. Like our approach, their method learns a probability estimator g(x, a) = P (y|x, a) for
constraints. However, we utilize g differently - leveraging optimal fair representation properties
to formulate a closed-form problem with finite constraints solvable by standard methods, rather
than requiring custom iterative algorithms. Moreover, our approach addresses the broader challenge
of representation learning, not just classification. While Wang et al. (2024) handles multi-class
classification and non-binary discrete attributes, their iterative algorithm operates in high-dimensional
spaces with potentially exponential constraint growth, compared to our solution’s required simplex
∆Y discretization, especially when implemented thoughtfully using clustering algorithms.

3 PROBLEM SETTING

Let A be a binary sensitive variable, and let X be an additional feature random variable, with values
in Rd. Assume also that there is a target variable Y with finitely many values, jointly distributed with
X,A.

A representation Z of (X,A) is defined as a random variable taking values in some space Rd′
, with

(i) distribution given through Pθ (Z|X,A), where θ are the parameters of the representation, and
(ii) such that Z is independent of the rest of the variables of the problem conditioned on (X,A). In
particular, we have

Z ⊥⊥ Y |(X,A), (1)
where ⊥⊥ denotes statistical independence.

Fairness in this paper will be measured by the Total Variation distance. For two distributions, µ, ν on
Rd, with densities fµ, fν , respectively, this distance is defined as

∥µ− ν∥TV =
1

2
sup

g s.t. ∥g∥∞≤1

∫
g(x) · [fµ(x)− fν(x)] dx =

1

2

∫
|fµ(x)− fν(x)| dx. (2)

Note that
∫
|fµ(x)− fν(x)| dx is in fact the L1 distance, and the equivalence ∥·∥TV = 1

2 ∥·∥L1
is

well known, see Cover & Thomas (2012).

For a ∈ {0, 1}, let µa be the distribution of Z given A = a, i.e. µa(·) := P (Z = ·|A = a). For
γ ≥ 0, we say that the representation Z is γ-fair iff

∥µ0 − µ1∥TV ≤ γ (Fairness Condition). (3)

In what follows we will denote the norm of the difference as Fθ := ∥µ0 − µ1∥TV . Note that (3) is
a quantitative relaxation of the “perfect fairness” condition in the sense of statistical parity, which
requires Z ⊥⊥ A. Specifically, observe that by definition, Z ⊥⊥ A iff (3) holds with γ = 0 (i.e.
µ0 = µ1). In addition, as shown in Madras et al. (2018), (3) implies several other common fairness
criteria. In particular, (3) implies bounds on demographic parity and equalized odds metrics for any
downstream classifier built on top of Z.

Next, we describe the measurement of information loss in Y due to the representation. Let h : ∆Y →
R be a continuous and concave function on the set of probability distributions on Y , ∆Y . The quantity
h(P (Y |X = x)) will measure the best possible prediction accuracy of Y conditioned on X = x, for
varying x. As an example, consider the case of binary Y , Y = {0, 1}. Every point in ∆Y can be
written as (p, 1− p) for p ∈ [0, 1], and we may choose h to be the optimal binary classification error,

h((1− p, p)) = min(p, 1− p). (4)

Another possibility it to use the entropy, h((1− p, p)) = p log p+ (1− p)log(1− p). The average
uncertainty of Y is given by Ex∼Xh(P (Y |X = x)). Note that this notion does not depend on a
particular classifier, but reflects the performance the best classifier can possibly achieve (under
appropriate cost).

The goal of fair representation learning is then to find representations Z that for a given γ ≥ 0 satisfy
the constraint (3), and under that constraint minimize the objective E = Eθ given by

Eθ = Ez∼Zh(P (Y |Z = z)). (5)
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That is, the representation should minimise the optimal Y prediction error (using Z) under the fairness
constraint.

The curve that associates to every 0 ≤ γ ≤ 1 the minimum of (5) over all representations Z which
satisfy (3) with γ is referred to as the Pareto Front of the Fairness-Performance trade-off.

In supplementary material Section A we show that for any representation, Ez∼Zh(P (Y |Z = z)) ≥
Ex∼Xh(P (Y |X = x)), i.e. representations generally decrease the performance. Technically, this
happens due to the concavity of h, and this result is an extension of the classical information
processing inequality, Cover & Thomas (2012). To intuitively see why representations decrease
performance, note that as illustrated in Figure 1, the distribution P (Y |Z = z) is a mixture of
various distributions P (Y |X = x,A = a). Thus, for instance, even if all P (Y |X = x,A = a) are
deterministic, but not all of the same value, P (Y |Z = z) will not be deterministic.

We conclude this section by showing that the Pareto front of binary classifiers, with statistical parity
fairness measure, can be computed from the Pareto front of representations with total variation
fairness measure. In fact, Lemma 3.1 below states that both Pareto fronts amount to the same curve.
As discussed in Section 1, this equivalence implies that MIFPO can be used to evaluate fair classifiers,
in addition to fair representations.

Consider a binary classifier Ŷ of Y , with (X,A) as features. The prediction error is defined as usual
by ϵ(Ŷ ) := P

(
Ŷ ̸= Y

)
. The statistical parity distance of Ŷ is defined as

∆SP (Ŷ ) :=
∣∣∣P(Ŷ = 1|A = 1

)
− P

(
Ŷ = 1|A = 0

)∣∣∣ . (6)

Let the uncertainy measure h be defined by (4).

Lemma 3.1. Let Ŷ be a classifier of Y . Then there is a representation given by a random variable Z
on a set Z with |Z| = 2, such that

Ez∼Zh(P (Y |Z = z)) ≤ ϵ(Ŷ ) and ∥µ0 − µ1∥TV ≤ ∆SP (Ŷ ). (7)

Conversely, for any given representation Z, there is a classifier Ŷ of Y as a function of Z (and thus
of (X,A)), such that

ϵ(Ŷ ) ≤ Ez∼Zh(P (Y |Z = z)) and ∆SP (Ŷ ) ≤ ∥µ0 − µ1∥TV . (8)

The Proof of Lemma 3.1 is presented in Supplementary Material Section H.

4 THE INVERTIBILITY THEOREM

In this section we define the notion of invertibility for representations, and show that optimal fair
representations are invertible.

To this end, let us first introduce an additional notation, which is more convenient when describing
representations specifically on finite sets. Let S0, S1 be finite disjoint sets, where Sa represents the
values of (X,A) when A = a, for a ∈ {0, 1}. Denote S = S0 ∪ S1. We are assuming that there
is a probability distribution ζ on S, and A is the random variable A = 1{s∈S1}. X is defined as
taking the values s ∈ S, with P (X = s) = ζ(s). Further, the variable Y is defined to take values
in a finite set Y , and for every s ∈ S, its conditional distribution is given by ρs ∈ ∆Y . That is,
P (Y = y|X = s,A = a) = ρs(y) = ρs,a(y). 1 This completes the description of the data model.

For a ∈ {0, 1} we denote αa = P (A = a) = ζ(Sa), and βa(s) = P (X = s|A = a). Observe that
βa(s) = 0 if s /∈ Sa, and βa(s) = ζ(s)/ζ(Sa) if s ∈ Sa.

We now describe the representation. The representation will take values in a finite set Z . For
every s ∈ S and z ∈ Z , let Ta(z, s) = P (Z = z|X = s,A = a) be the conditional probability of

1Note that there is a slight redundancy in the notation P (Y = y|X = s,A = a) here, since a is determined
by s. However, to retain compatibility with the standard notaion, we specify them both. This is similar to the
continuous situation, in which although A is technically part of the features, X and A are specified separately.
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representing s as z. Then Ta’s fully define the distribution of the representation Z. We shall refer to
the representation as T or Z in interchangeably. Finally, for a ∈ {0, 1} denote

µa(z) = Taβa = P (Z = z|A = a) =
∑
s∈Sa

βa(s)Ta(z, s). (9)

Similarly to the previous section, our goal is to find representations T that minimise the cost (5) under
the constraint (3), for some fixed γ > 0.

A representation T is invertible if for every z ∈ Z and every a ∈ {0, 1}, there is at most one s ∈ Sa

such that Ta(z, s) > 0. In words, a representation is invertible, if any given z can be produced by at
most two original features s, and at most one in each of S0 and S1.

Given a representation T and z ∈ Z , we say that an s ∈ S is a parent of z if Ta(z, s) > 0 for the
appropriate a.

Theorem 4.1. Let T be any representation of (S,A, ζ, Y ) on a set Z . Then there exists an invertible
representation T ′ of (S,A, ζ, Y ), on some set Z ′, such that

Ez′∼Z′h(P (Y |Z ′ = z′)) ≤ Ez∼Zh(P (Y |Z = z)) and ∥µ′
0 − µ′

1∥TV = ∥µ0 − µ1∥TV . (10)

Here, similarly to µa, µ′
a are the distributions induced by T ′ on Z ′. In words, for every representation,

we can find an invertible representation of the same data which satisfies at least as good a fairness
constraint, and has at least as good performance as the original. In particular, this implies that when
one searches for optimal performance representations, it suffices to only search among the invertible
ones.

The proof proceeds by observing that if an atom z ∈ Z has more than one parent on the same side
(i.e. S0 or S1), then one can split this atom into two, with each having less parents. However, the
details of this construction are somewhat intricate. The full argument can be found in Section C.

5 THE MODEL INDEPENDENT OPTIMIZATION PROBLEM

This Section describes the specific numerical problem, MIFPO, that is used to compute the Fairness-
Performance Pareto Front. Section 5.1 discusses the factorisation of representations, in Section 5.2
the MIFPO problem is defined, and in Section 5.3 we describe how MIFPO is instantiated from data.

To motivate MIFPO, let us write again some of the terms involved in the expressions of the perfor-
mance cost and the fairness constraints E and F , as defined in Section 3. To simplify the exposition,
we use the discrete summation notation, but similar expressions can also be written using integration
and densities. We have

P (z) =
∑
x,a

P (z|x, a)P (x, a) and P (z|a) =
∑
x

P (z|a, x)P (x, a) /P (a) . (11)

Moreover,

P (Y |z) =
∑
x,a

P (Y |x, a, z)P (a, x|z) =
∑
x,a

P (Y |x, a)P (z|a, x)P (a, x) /P (z) , (12)

where we have used P (Y |x, a, z) = P (Y |x, a), which holds due to the independence condition (1)
of the representation. We observe that one can write the performance cost and the fairness constraint,
E and F , in terms of P (a) ,P (x, a) ,P (Y |x, a), and of the representation P (z|x, a). We refer to
these quantities as the basic probabilities. It follows that any two problems having the same basic
probabilities, will have the same E and F .

One way to view the construction of the MIPFO problem is simply as a discretization, where we
model the above basic probabilities in an abstract way, on a finite set, without the need to consider the
details of how the representation P (z|x, a) is implemented. However, discretization of the features
x ∈ Rd directly would likely always be too crude. In the following Section we show that in fact one
only needs to discretize a much smaller space, namely ∆Y - the set of distributions over Y values,
which is typically easy to achieve. In Section 5.3 we show how factorisation is used in practice.
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(a) (b)

Figure 2: (a) The MIFPO Setting (b) Factorisation Through ∆Y

5.1 FACTORISATION

The general idea behind factorisation is the observation that in a given representation, individual
source points x, x′ may be merged if they have the same ρx = P (Y |x) distribution, without affecting
the measurements E and F . We now carry out this argument formally, with Figure 2(b) illustrating
the construction. For clarity, we use the notation of Section 4 for finite sets. The extension to the
continuous case is discussed in the end of the Section.

Suppose that we have a representation on some, possibly very large source space S = S0 ∪ S1, with
representation space Z . Introduce a map Ψ : S0 → ∆Y , given by Ψ(v) = ρv . Then we can define a
distribution β̄0 on ∆Y , and the transition kernel T̄0 : Z ×∆Y → [0, 1] by

β̄0(ρ) =
∑

v∈Ψ−1({ρ})

β0(v) and T̄0(z, ρ) =
∑

v∈Ψ−1({ρ})

β0(v)

β̄0(ρ)
T0(z, v), for all ρ ∈ ∆Y . (13)

Similar construction can be made for a = 1, defining β̄1, T̄1. Observe that together, β̄a and T̄a define
a representation on ∆Y with values in Z (technically, the source space is ∆0

Y ∪∆1
Y , where ∆a

Y are
two disjoint copies of ∆Y ). Note that it is understood here that the distribution of Y at point ρ ∈ ∆Y
is taken to be ρ itself. The crucial property of this new representation is that the induced distributions
on Z coincide with those of the old one. That is,

µa(z) = µ̄a(z) and PT (Y |Z = z) = PT̄ (Y |Z = z) (14)

for all z ∈ Z . This property follows simply by substituting the definitions, although the derivation is
slightly notationally heavy. The full details may be found in Supplementary Section F.2.

The meaning of (14) is that from Z one can not distinguish between the representations T and T̄ , and
in particular they have the same E and F . We say that T is factorised through ∆Y since it can be
represented as a composition, of first applying Ψ and then applying T̄ .

When the feature space S is continuous, e.x. Rd, the construction of T̄ is similar. Indeed, Ψ can
be defined in the same way, β̄a are defined as push-forwards β̄a = Ψβa, and T̄a(z, ρ) is defined as
conditional expectation, T̄a(z, ρ) = Ev∼β0

Ta(z, v)| (Ψ(v) = ρ).

5.2 MIFPO DEFINITION

Fix an integer k ≥ 2. The representation space Z will be a finite set which can be written as
Z = S0 × S1 × [k], where [k] := {1, 2, . . . , k}. That is, every point z ∈ Z corresponds to some
triplet (u, v, j), with u ∈ S0, v ∈ S1, j ∈ [k]. The motivation for this choice of Z is as follows: First,
note the by the invertibility Theorem 4.1, in an optimal representation, every z ∈ Z is associated with
a pair of parents, (u, v). Moreover, it can be shown that for every pair (u, v), it is sufficient to have
at most k points z which have (u, v) as parents, to approximate all representations on all possible
spaces Z ′, in terms of their E and F quantities, to a given degree ε. Here, k would depend on ε
and on the function h, but not on the particular representations, or even the sizes |S0| , |S1|, etc. See
Section D in Supplementary Material, for additional details. As a result, choosing Z = S0 ×S1 × [k]
should be sufficient to model all representations well. We have used k = 10 in all experiments.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

The variables of the problem, modeling the representation itself, will be denoted by ru,v,j and
rv,u,j , for (u, v, j) ∈ Z . These values correspond to ru,v,j = P (Z = (u, v, j)|(X,A) = (u, 0)) and
rv,u,j = P (Z = (u, v, j)|(X,A) = (v, 1)). Note that the order of u, v in ru,v,j and rv,u,j determines
whether the weight is transferred from S0 or S1. The values r correspond to those of T0(z, u), T1(z, v)
in Section 4. However, due to the special structure of the representation here, many values will be 0,
such as for instance T0((u, v, j), u

′), whenever u ̸= u′. The r notation accounts for this, and is thus
clearer. The full setup is illustrated in Figure 2(a).

Note that the variables represent probabilities, and thus satisfy the following constraints:

ru,v,j ≥ 0, rv,u,j ≥ 0 ∀(u, v, j) ∈ Z (15)∑
v∈S1,j∈[k]

ru,v,j = 1 ∀u ∈ S0 and
∑

u∈S0,j∈[k]

rv,u,j = 1 ∀v ∈ S1. (16)

Recall from Section 4 that the additional parameters of the problem are the conditional distributions
β0(u), β1(v), on S0 and S1, modeling P ((X,A)|A = 0) and P ((X,A)|A = 1) respectively. The
quantities αa = P (A = a), and the conditional Y distributions, ρu, ρv ∈ ∆Y , modelling ρu =
P (Y = ·|(X,A) = (u, 0)), ρv = P (Y = ·|(X,A) = (v, 1)). Here we assume that these quantities
are given, and in Section 5.3 below we describe how one may estimate them from the data.

With these preparations, we are ready to write the performance cost (5) in the new notation:

Er =
∑

z=(u,v,j)

(α0β0(u)ru,v,j + α1β1(v)rv,u,j)h

(
ρuα0β0(u)ru,v,j + ρvα1β1(v)rv,u,j

α0β0(u)ru,v,j + α1β1(v)rv,u,j

)
. (17)

Indeed, observe that due to the structure of our representations, every z has two parents, and we
have P (Z = z) = (α0β0(u)ru,v,j + α1β1(v)rv,u,j). Similarly, P (Y |Z = z) is computed via (12)
and substituted inside h to obtain (17). As we show in Supplementary E, the cost (17) is a concave
function of the parameters r.

We now proceed to discuss the fairness constraint F . Recall that we define µa(z) = P (Z = z|A = a),
for a ∈ {0, 1}. For z = (u, v, j) we have then µ0((u, v, j)) = β0(u)ru,v,j and µ1((u, v, j)) =
β1(v)rv,u,j . We thus can write

Fr = ∥µ0 − µ1∥TV =
1

2

∑
z

|µ0(z)− µ1(z)| =
1

2

∑
(u,v,j)

|β0(u)ru,v,j − β1(v)rv,u,j | (18)

and the Fairness constraint, for a given γ ∈ [0, 1] is simply

Fr ≤ γ. (19)

Although the constraint (19) is convex in the variables r, and can be incorporated directly into most
optimisation frameworks, it may be significantly more convenient to work with equality constraints.
Using the following Lemma, we can find equivalent equality constraints in a particularly simple form.
Lemma 5.1. Let µ0, µ1 ∈ ∆Z be two probability distributions over Z and fix some γ ≥ 0. If
∥µ0 − µ1∥TV = γ then there exist ϕ0, ϕ1 ∈ ∆Z such that µ0 + γϕ0 = µ1 + γϕ1. In the other
direction, if there exist ϕ0, ϕ1 ∈ ∆Z such that µ0 + γϕ0 = µ1 + γϕ1, then ∥µ0 − µ1∥TV ≤ γ.

As consequence, if we find distributions ϕ0, ϕ1 ∈ ∆Z such that µ0 + γϕ0 = µ1 + γϕ1 holds, then
we know that (19) also holds, and conversely, if (19) holds, then distributions as above exist.

Using this observation, we introduce new variables, ϕu,v,j and ϕv,u,z , for every (u, v, j) ∈ Z , which
correspond to ϕ0((u, v, j)) and ϕ1((u, v, j)) respectively. These variables will be required to satisfy
the following constraints:

ru,v,j ≥ 0, rv,u,j ≥ 0 ∀(u, v, j) ∈ Z (20)∑
u,v,j

ru,v,j = 1 and
∑
u,v,j

rv,u,j = 1 (21)

β0(u)ru,v,j + γϕu,v,j = β1(v)rv,u,j + γϕv,u,j ∀(u, v, j) ∈ Z. (22)

Here the first two lines encode the fact that ϕ0, ϕ1 are probabilities, while the third line encodes the
fairness constraint, as discussed above. We now summarise the full MIFPO problem:

8
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Figure 3: (a) Fairness-Performance Curves of MIFPO and FNF (b) Histograms Ha for the Datasets

Definition 5.1 (MIFPO). For a fixed finite ground set S = S0 ∪ S1, the problem parameters are
the weight α0, the distributions β0, β1, on S0 and S1 respectively, and the distributions ρx ∈ ∆Y
for every x ∈ S. The problem variables are {ru,v,j , rv,u,j , ϕu,v,j , ϕv,u,j}(u,v,j)∈Z as defined above.
We are interested in minimising the concave function (17), subject to the constraints (15)-(16) and
(20)-(22).

The relationship between MIFPO and the Optimal Transport problem is detailed in Section B.

5.3 CONSTRUCTING A MIFPO INSTANCE

In this Section we discuss the estimation of the quantities α,β and ρ from the data, and specify how
the data is used to construct the MIFPO problem instance.

For clarity we treat the case of binary Y , which is also the case for all datasets in Balunović et al.
(2022a), on which we base our experiments. Note that for binary Y , ∆Y is simply the interval [0, 1],
with p ∈ [0, 1] corresponding to the probability p = P (Y = 1|x, a).
The computation proceeds in 3 steps, schematically shown as Algorithm 1. The input is a labeled
dataset {(xi, ai, yi)}i≤N , with xi ∈ Rd, ai, yi ∈ {0, 1}, and two integers, L, k, which will specify the
approximation degrees for the discretisation and for the approximation space, respectively. In Step 1.,
separately for the parts of the data corresponding to A = 0 and A = 1, we learn calibrated classifiers
c0, c1 : Rd → [0, 1], which represent the probabilities ca(x) = P (Y = 1|X = x,A = a) = ρa(x).
Note the following points: (a) In most applications, the true values of P (Y = 1|X = x,A = a)
are non-binary (i.e. ̸= 0, 1), and thus the {0, 1}-valued labels are only noisy observations of the
actual probabilities. Thus, some sort of estimator must be used to learn the probabilities. (b)
Typical classification objectives tend to yield in an imprecise estimation of P (Y = 1|X = x,A = a).
However, this can usually be fixed by the process of calibration in post-processing, see Niculescu-
Mizil & Caruana (2005), Kumar et al. (2019), (Berta et al., 2024). In Step 2. we define the sets
Ha = {ca(x) | x ∈ Xa} ⊂ [0, 1], and approximate them by histograms with L bins. That is, for
each a, we find L points ρ1a, . . . , ρ

L
a ∈ [0, 1], and weights β1

a, . . . , β
L
a , such that the distribution

with centers ρia and weights βi
a approximates Ha well. We typically take uniform bins, i.e. simply

ρla = l−1
L−1 , for l = 1, . . . , L. See Figure 3(b) for an example of such histograms on real data.

Finally, in Step 3. we solve the MIFPO problem, as given in Definition 5.1. The ground set here
is S = S0 ∪ S1, with S0 = {1, . . . , L} and S1 = {1′, . . . , L′}, where we have added ′ in S1 to
signify that the sets are disjoint copies in S, and |S| = 2L. The problem parameters are αl

a, β
l
a, ρ

l
a,

as computed in the previous step, and the parameter k determining the size of Z .

6 EXPERIMENTS

This section describes the evaluation of the MIFPO approach on real data. As indicated in Algorithm
1, two main components are required to apply our methods: building a calibrated classifier and solving
the discrete optimization problem described in Section 5.2. For the calibrated classifier, we have
used a standard XGBoost (Chen et al., 2015), with Isotonic Regression calibration, Pedregosa et al.
(2011). Next, as discussed in Sections 1, 5.2, MIFPO is a concave minimisation problem, under linear
constraints. While such problems do not necessarily posses the favourable properties of concave
maximisation (or convex minimisation), such as unique minima points, it is nevertheless possible to

9
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take advantage of concavity, to improve on general purpose optimisation methods. Here we have used
the DCCP framework and the associated solver, (Shen et al., 2016; 2024). This framework is based on
the combination of convex-concave programming ideas (CCP) Lipp & Boyd (2016) and disciplined
convex programming, Grant et al. (2006). Throughout the experiments, we use the missclassification
error loss h given by (4). Supplementary Section G provides additional implementation details.

Algorithm 1 MIFPO Implementation

Input: Data {(xi, ai, yi)}i≤N , integers L, k.
For a ∈ {0, 1} denote Xa = {xi | ai = a}.

1. Learn calibrated classifiers
c0, c1 : Rd → [0, 1], such that
ca(x) ∼ P (Y = 1|X = x,A = a)

2. Construct the histograms
{
ρla, β

l
a

}L
l=1

,
a ∈ {0, 1}, for the sets
Ha = {ca(x) | x ∈ Xa} ⊂ [0, 1].

3. Solve MIFPO, given by Definition 5.1,
with parameters k and{
ρla, β

l
a

}L
l=1

and αa = |{i | ai = a}| /N .

We evaluated MIFPO and the FNF fair repre-
sentation learning algorithm, Balunović et al.
(2022a), on the "Health", "Crime", and "Law"
datasets, which are standard benchmarks in
fairness-related work, and were also used in
Balunović et al. (2022a). Figure 3(a) presents
the MIFPO results as dotted lines, while the
FNF results are solid lines. Figure 3(b) shows
the histograms Ha for the datasets (see the re-
lated discussion in Section 5.3).

First, as expected, when the histograms of A =
0 and A = 1 classes look similar, as in "Law"
(indicating approximately Y ⊥⊥ A, fair Y ), the
Pareto front is flat. Otherwise, the front exhibits
variability, as in "Health" and "Crime".

Then, inspecting Figure 3(a), we observe that FNF struggles to obtain the full range of total variation
values γ in its fairness-performance curve. Moreover, for the values that are obtained, the accuracy
computed by MIFPO at the corresponding points γ is better. This highlights the difficulties with the
construction of fair representations, which were circumvented in this paper.

As shown in Section 3, MIFPO may also be used to compute the Pareto Front for the fair classification
problem. In the Supplementary Material Section H We evaluate the performance of MIFPO in
compare to fair classifiers. These evaluations demonstrate that standard fair classifiers achieve a
considerably lower accuracy than what is theoretically possible, and, the existing methods are also
unable to present solutions for the full range of the statistical parity values.

Our approach is subject to three types of uncertainty: (i) Learning probability estimators from finite
data - an unavoidable challenge in any ML approach. (ii) Discretization errors from histogram binning
and representation space sizing. These are controllable: discretizing simple spaces like [0,1] is well-
understood, and we provide bounds relating k to maximum front error (Supplementary Material
Section D). (iii) DCCP potentially yielding sub-optimal results. While DCCP typically performs well,
branch-and-bound methods can guarantee global optimum convergence if needed, though potentially
at higher computational cost. This optimization domain is generally well-developed.

7 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper we have uncovered new fundamental properties of optimal fair representations, and
used these properties to develop a model independent procedure for the computation of Fairness-
Performance Pareto front from data. We have also demonstrated the procedure on real datasets, and
have shown that it may be used as a benchmark for representation learning algorithms.

We now discuss limitations and a few possible directions for future work. Perhaps the biggest
limitation of the current approach is the need to discretise the ∆Y . This means that the Y can only
take a small number of values, which, for instance, prevents us from considering multiple target
variables, i.e. Y = (Y1, . . . , Yt). It is thus of interest to ask whether it is possible to obtain a
continuous version of our method, which would not discretise ∆Y . Note that this would still be
different from the current continuous methods, since it would operate in a different space, that of ∆Y ,
which could still be significantly smaller than Rd.

Finally, as noted earlier, representation learning methods solve an inherently harder problem than
MIFPO, since such methods need to supply the actual representation, while MIFPO does not. It then
would be of interest to understand whether one can use the partial information provided by MIFPO,
to guide and improve a full representation learning algorithm.
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A MONOTONICITY OF LOSS UNDER REPRESENTATIONS

As discussed in Section 3, we observe that representations can not increase the performance of the
classifier (i.e decrease the loss).

Lemma A.1. For every (Y,X,A), every representation Z as above, and concave h,

Ez∼Zh(P (Y |Z = z)) ≥ E(x,a)∼(X,A)h(P (Y |X = x,A = a)). (23)

Note that the right hand-side above can be considered a “trivial" representation, Z = (X,A).

In what follows, to simplify the notation we use expressions of the form P (x, a|z) to denote the formal
expressions P (X = x,A = a|Z = z), whenever the precise interpretation is clear from context.

Proof. For every value y ∈ Y , we have

P (Y = y|Z = z) =
∑
a

∫
dx P (Y = y|x, a, z) ∂P (x|a, z)

∂x
P (a|z) (24)

=
∑
a

∫
dx P (Y = y|x, a) ∂P (x|a, z)

∂x
P (a|z) (25)

= E(x,a)∼(X,A)|Z=zP (Y = y|x, a) . (26)

Here, on line (24), ∂P(x|a,z)
∂x is the density of P (x|a, z) with respect to dx. Crucially, the transition

from (24) to (25) is using the property (1). The transition (25) to (26) is a change of notation. Using
(26) and the concavity of h, we obtain

Ez∼Zh(P (Y |Z = z)) ≥ Ez∼ZE(x,a)∼(X,A)|Z=zh (P (Y |x, a)) (27)

= E(x,a)∼(X,A)h(P (Y |X = x,A = a)). (28)

B MIFPO AND OPTIMAL TRANSPORT

In this Section we discuss the relation between the MIFPO minimisation problem, Definition 5.1,
and the problem of Optimal Transport (OT). General background on OT may be found in Peyré et al.
(2019). We discuss the similarity between OT and the minimisation of (17) under the constraint
(19) with γ = 0, i.e. the perfectly fair case. In this case, (19) is equivalent to the condition
β0(u)ru,v,j = β1(v)rv,u,j , for all (u, v, j) ∈ Z . Next, note that thus in is case the expression for
P (Y |Z = (u, v, j)) is

ρuα0β0(u)ru,v,j + ρvα1β1(v)rv,u,j
α0β0(u)ru,v,j + α1β1(v)rv,u,j

=
ρuα0 + ρvα1

α0 + α1
, (29)

and this is independent of the variables r! Therefore we can write the cost (17) as

∑
u,v

(α0 + α1)h

(
ρuα0 + ρvα1

α0 + α1

)
1

2

∑
j≤k

β0(u)ru,v,j + β1(v)rv,u,j

 . (30)

Note further that for fixed u, v, the different j’s in this expression play similar roles and could be
effectively merged as a single point.

The cost (30) has several similarities with OT. First, in both problems we have two sides, S0 and
S1, and we have a certain fixed loss associated with "matching" u and v. In case of (30), this loss is
(α0 + α1)h

(
ρuα0+ρvα1

α0+α1

)
, which describes the information loss incurred by colliding u and v in the

representation. And second, similarly to OT, (30) it is linear in the variables r. Linear programs are
conceptually considerably simpler than minimisation of the concave objective (17).
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C PROOF OF THEOREM 4.1

Proof. Assume T is not invertible. Then there is a z ∈ Z which has at least two parents in either S0

or S1. Assume without loss of generality that z has two parents in S0. Let

U = {s ∈ S0 | T0(z, s) > 0} , V = {s ∈ S1 | T1(z, s) > 0} (31)

be the sets of parents of z in S0 and S1 respectively. Chose a point x ∈ U , and denote by Ur = U\{x}
the remainder of U . By assumption we have |Ur| ≥ 1. We also assume that |V | > 0. The easier case
|V | = 0 will be discussed later.

Now, we construct a new representation, T ′. The range of T ′ will be Z ′ = Z \ z ∪ {z′, z′′}. That is,
we remove z and add two new points. Denote

κ = P (x|z, a = 0) =
β0(x)T0(z, x)∑
s∈U β0(s)T0(z, s)

. (32)

Then T ′ is defined as follows:

T ′
a(h, s) = Ta(h, s) for all a ∈ {0, 1}, all s ∈ S and all h ∈ Z \ {z}

T ′
0(z

′, x) = T0(z, x)

T ′
0(z

′′, u) = T0(z, u) for all u ∈ Ur

T ′
1(z

′, v) = κT1(z, v) for all v ∈ V

T ′
1(z

′′, v) = (1− κ)T1(z, v) for all v ∈ V .

(33)

All values of T ′ that were not explicitly defined in (33) are set to 0. In words, on the side of S0, we
move all the parents of z except x to be the parents of z′′, while z′ will have a single parent, x. On
the S1 side, both z′ and z′′ will have the same parents as z, with transitions multiplied by κ and 1−κ
respectively. The multiplication by κ is crucial for showing both inequlaities in (10).

Note that T ′ can be though of as splitting z into z′ and z′′, such that z′ has one parent on the S0 side,
and z′′ has strictly less parents than z had. Once we show that T ′ satisfies (10), it is clear that by
induction we can continue splitting T ′ until we arrive at an invertible representation which can no
longer be split, thus proving the Lemma.

In order to show (10) for T ′, we will sequentially show the following claims:

P (z) = P (z′) + P (z′′) and P (z′) = κP (z) (34)

P (a|z) = P (a|z′) = P (a|z′′) for a ∈ {0, 1} (35)
for a = 1 P (s|z, a) = P (s|z′, a) = P (s|z′′, a) ∀s ∈ S

for a = 0, s ∈ Ur

{
P (x|z′, a) = 1 P (x|z′′, a) = 0

P (s|z′, a) = 0 P (s|z′′, a) = (1− κ)−1P (s|z, a)
(36)

P (Y |z) = κP (Y |z′) + (1− κ)P (Y |z′′) (37)

P (z)h(P (Y |z)) ≥ P (z′)h(P (Y |z′)) + P (z′′)h(P (Y |z′′)) (38)

|µ0(z)− µ1(z)| = |µ′
0(z

′)− µ′
1(z

′)|+ |µ′
0(z

′′)− µ′
1(z

′′)| . (39)

Here the probabilities involving z′, z′′ refer to the representation T ′. Observe that the left hand side
of (38) is the contribution of z to the performance cost Et∼Zh(P (Y |Z = t)) of T , while the right
hand side of (38) is the contribution of z′, z′′ to the performance cost of T ′. Since all other elements
t ∈ Z have identical contributions, this shows the first inequality in (10). Similarly, recall that

∥µ0 − µ1∥TV =
1

2

∑
t∈Z

|µ0(t)− µ1(t)| , (40)

and thus the left hand side of (39) is the contribution of z to ∥µ0 − µ1∥TV , with the right hand
side being the contribution of z′, z′′ to ∥µ′

0 − µ′
1∥TV , therefore yielding the claim ∥µ′

0 − µ′
1∥TV =

∥µ0 − µ1∥TV .
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Claim (34): By definition,

P (z′) = α0β0(x)T
′
0(z

′, x) + α1

∑
s∈V

β1(s)T
′
1(z

′, s) (41)

= α0β0(x)T0(z, x) + κα1

∑
s∈V

β1(s)T1(z, s) (42)

= κα0

∑
s∈U

β0(s)T0(z, s) + κα1

∑
s∈V

β1(s)T1(z, s) (43)

= κP (z) . (44)

Similarly, by definition we have

P (z′′) = α0

∑
s∈Ur

β0(s)T0(z, s) + (1− κ)κα1

∑
s∈V

β1(s)T1(z, s), (45)

and summing this with (42), we obtain P (z) = P (z′) + P (z′′).

Claim (35): Note that it is sufficient to prove the claim for a = 0 since the probabilities sum to 1.
Write

P (a = 0|z) = P (a = 0, z)

P (z)
(46)

=
α0

∑
s∈U β0(s)T0(z, s)

P (z)
(47)

=
κ · α0

∑
s∈U β0(s)T0(z, s)

κ · P (z)
(48)

=
α0β0(x)T0(z, x)

P (z′)
(49)

= P (a = 0|z′) . (50)

Similarly,

P (a = 0|z) = P (a = 0, z)

P (z)
(51)

=
α0

∑
s∈U β0(s)T0(z, s)

P (z)
(52)

=
(1− κ) · α0

∑
s∈U β0(s)T0(z, s)

(1− κ) · P (z)
(53)

=
α0

∑
s∈Ur β0(s)T0(z, s)

P (z′′)
(54)

= P (a = 0|z′′) . (55)

Claim (36): For a = 1, let us show P (s|z, a) = P (s|z′, a).

P (s|z, a = 1) =
α1β1(s)T1(z, s)

α1

∑
s′∈V β1(s′)T1(z, s′)

(56)

=
κα1β1(s)T1(z, s)

κα1

∑
s′∈V β1(s′)T1(z, s′)

(57)

=
α1β1(s)T

′
1(z, s)

α1

∑
s′∈V β1(s′)T ′

1(z, s
′)

(58)

= P (s|z′, a = 1) . (59)

The statement P (s|z, a) = P (s|z′′, a) is shown similarly. Next, for a = 0, we have P (x|z′, a) = 1
and P (x|z′′, a) = 0 by the definition of the coupling T ′. Moreover, for s ∈ Ur, P (s|z′, a) = 0 also

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

follows by the definition of T ′. Finally, write

P (s|z′′, a = 0) =
α0β0(s)T

′
0(z

′′, s)∑
s∈Ur α0β0(s′)T ′

0(z
′′, s′)

(60)

=
α0β0(s)T0(z, s)∑

s∈Ur α0β0(s′)T0(z, s′)
(61)

=
α0β0(s)T0(z, s)

(1− κ)
∑

s∈U α0β0(s′)T0(z, s′)
(62)

= (1− κ)−1P (s|z, a = 0) . (63)

Claim (37): We first observe that for any representation (and any z),

P (Y = y|Z = z) =

∑
s,a P (Y = y, s, a, z)

P (z)
(64)

=

∑
s,a P (Y = y|s, a)P (s, a, z)

P (z)
(65)

=
∑
a

P (a|z)

[∑
s∈Sa

P (Y = y|s, a)P (s|a, z)

]
, (66)

where we have used the property (1) for the transition (64)-(65). Now, using (36), for a = 1 we have∑
s∈S1

P (Y = y|s, a = 1)P (s|a = 1, z) =
∑
s∈S1

P (Y = y|s, a = 1)P (s|a = 1, z′) =
∑
s∈S1

P (Y = y|s, a = 1)P (s|a = 1, z′′) .

(67)
For a = 0, we have for z′ using (36):∑

s∈S0

P (Y = y|s, a = 1)P (s|a = 1, z′) = P (Y = y|x, a = 1) . (68)

For a = 0 and z′′ we have∑
s∈S0

P (Y = y|s, a = 1)P (s|a = 1, z′′) =
∑
s∈Ur

P (Y = y|s, a = 1)P (s|a = 1, z′′) (69)

= (1− κ)−1
∑
s∈Ur

P (Y = y|s, a = 1)P (s|a = 1, z)

(70)

where we have used (36) again on the last line.

Combining (67),(68),(70), and using (35) and the general expression (66), we obtain the claim (37).

Claim (38): This follows immediately from (37) by using (34) and the concavity of h.

Claim (39): By definition, for every representation, µa(z) = P (Z = z|a) = P(z|a)P(z)
P(a) . Thus, using

(34),(35) we have for a ∈ {0, 1},

µa(z
′) = κµa(z) and µa(z

′′) = (1− κ)µa(z), (71)

which in turn yields (39).

It remains only to recall that we have derived (38),(39) under the assumption that |V | > 0. That is,
we assumed that the point z which fails invertability on S0 has some parents in S1. The case when
|V | = 0, i.e. there are no parents in S1 can be treated using a similar argument, but is much simpler.
Indeed, in this case one can simply split z into z′ and z′′ and splitting the S0 weight between them as
before, without the need to carefully balance the interaction of probabilities with S1 via κ.
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D UNIFORM APPROXIMATION AND TWO POINT REPRESENTATIONS

As discussed in Sections 1,5.2, we are interested in showing that all optimal invertible representations,
no matter which, and no matter on which set Z ′, can be approximated using a representation with the
following property: For every u ∈ S0, v ∈ S1, there are at most k points z ∈ Z that have (u, v) as
parents, see Figure 2(a). Here k would depend only on the desired approximation degree, but not
on Z ′, or on the exact representation we are approximating. We therefore refer to this result as the
Uniform Approximation result. Its implications for practical use were discussed in Section 5.2.

To proceed with the analysis, in what follows we introduce the notion of two-point representation.
The main result is given as Lemma D.1 below.

This Section uses the notation of Section 4. Let T be an invertible representation, let u ∈ S0, v ∈ S1

be some points, and denote by Zuv =
{
zj
}k
1

the set of all points z ∈ Z which have u and v as
parents. Denote by

wu =

k∑
j=1

β0(u)T0(z
j , u) and wv =

k∑
j=1

β1(v)T1(z
j , v) (72)

the total weights of β0 and β1 transferred by the representation from u and v respectively to Zuv.
Recall that ρu, ρv denote the distributions of Y conditioned on u, v. We call the situation above,
i.e. the collection of numbers

({
β0(u)T0(z

j , u)
}
j≤k

,
{
β1(v)T1(Z

j , v)
}
j≤k

)
, a two point repre-

sentation, since it describes how the weight from the points u, v is distributed in the representation,
independently of the rest of the representation. The contribution of Zuv to the global performance
cost is

Euv,T :=
∑
j≤k

P
(
zj
)
h(P

(
Y |zj

)
) (73)

=
∑
j≤k

(
α0β0(u)T0(z

j , u) + α1β1(v)T1(z
j , v)

)
h

(
α0β0(u)T0(z

j , u)ρu + α1β1(v)T1(z
j , v)ρv

α0β0(u)T0(zj , u) + α1β1(v)T1(zj , v)

)
,

(74)

while its contribution to the fairness condition is

Fuv,T =
1

2

∑
j≤k

∣∣β0(u)T1(z
j , u)− β1(v)T1(z

j , v)
∣∣ . (75)

Let us now consider two extreme cases of two-point representations. Assume that the total amounts
of weight to be represented, wu, wv are fixed. The first case is when k = 1, and this is the maximum
fairness case, since in this case the weights wu, wv overlap as much as possible. Indeed, the
contributions to the fairness penalty and performance cost in this case are

|wu − wv| and (α0wu + α1wv)h

(
α0wuρu + α1wvρv

α0wu + α1wv

)
(76)

respectively. The other extreme case is when wu and wv do not overlap at all. This case be realised
with k = 2, by sending all wu to z1 and all wv to z2. The fairness and performance contributions
would be

wu + wv and α0wu · h (ρu) + α1wv · h (ρv) , (77)
respectively. Note that the fairness penalty is the maximum possible, while the performance cost
is the minimum possible (indeed, this is the cost before the representation, and any representation
can only increase it, by Lemma A.1). We thus observed that each two points u, v, with fixed total
weight wu, wv , can have their own Pareto front of performance-fairness. One could, in principle, fix a
threshold γuv , |wu − wv| ≤ γuv ≤ wu + wv for the fairness penalty (75), and obtain a performance
cost between that in (76) and (77). However, it is not clear how large the number of points k should
be in order to realise such intermediate representations. In the following Lemma we show that one
can uniformly approximate all the points on the two-point Pareto front using a fixed number of points,
that depends only on the function h. This means that in practice one can choose a certain number n
of z points, and have guaranteed bounds on the possible amount of loss incurred with respect to all
representations of all other sizes.
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Lemma D.1. For every ε > 0, there a number n = nε depending only
on the function h, with the following property: For every two-point representation({

β0(u)T0(z
j , u)

}
j≤k

,
{
β1(v)T1(Z

j , v)
}
j≤k

)
, with total weights wu, wv, there is a two point

representation T ′ on a set Z ′
u,v , with the same total weights, such that |Z ′

uv| ≤ n, and such that

Fuv,T ′ ≤ Fuv,T and Euv,T ′ ≤ Euv,T + 2(wu + wv)ε. (78)

Proof. To aid with brevity of notation, define for j ≤ k

cj0 = α0β0(u)T0(z
j , u), cj1 = α1β1(v)T1(z

j , v). (79)

Then we can write

Euv,T =
∑
j≤k

(cj0 + cj1) · h

(
cj0ρu + cj1ρv

cj0 + cj1

)
, Fuv,T =

1

2

∑
j≤k

∣∣Λcj∣∣ , (80)

where Λ is the vector Λ = (α−1
0 ,−α−1

1 ), cj = (cj0, c
j
1), and Λcj is the inner product of the two.

Observe that the cost Euv,T depends on cj mainly through the fractions cj0
cj0+cj1

. Our strategy thus
would be to approximate all k of such fractions by a δ-net of a size independent of k. To this end, set

pj =
cj0

cj0 + cj1
(81)

and define huv : [0, 1] → R by

huv(p) = h(pρu + (1− p)ρv). (82)

Since h is continuous (by assumption), and defined on a compact set, it is uniformly continuous, and
so is huv. By definition, this means there is a δ > 0 such that for all p, p′ with |p− p′| ≤ δ, it holds
that |huv(p)− huv(p

′)| ≤ ε. Let us now choose {xi}ni=1 to be a δ net on [0, 1]. For every i ≤ n set

Γi =
{
j |

∣∣pj − xi

∣∣ ≤ δ, and i is minimal with this property
}
. (83)

That is, Γi is the set of indices j such that pj is approximated by xi. Using xi we construct the
representation T ′ as follows: For a ∈ {0, 1} set

c′ia =
∑
j∈Γi

cja. (84)

For n new points, zi ∈ Z ′
uv, set T ′

0(z
′i, u) = c′i0 /β0(u), T ′

1(z
′i, v) = c′i1 /β1(v). Note that the total

weights are preserved,
∑

i≤n c
′i
0 = wu and

∑
i≤n c

′i
1 = wv .

Next, for every j ∈ Γi we have ∣∣∣∣∣ cj0
cj0 + cj1

− xi

∣∣∣∣∣ ≤ δ. (85)

Thus ∣∣∣∣ c′i0
c′i0 + c′i1

− xi

∣∣∣∣ =
∣∣∣∣∣∣
∑

j∈Γj

[
cj0 − (cj0 + cj1)xi

]
c′i0 + c′i1

∣∣∣∣∣∣ ≤
∑

j∈Γj
δ(cj0 + cj1)

c′i0 + c′i1
= δ. (86)

Next, observe that by the construction of xi,∣∣∣∣∣Euv,T −
∑
i

(c′i0 + c′i1 )huv(xi)

∣∣∣∣∣ =
∣∣∣∣∣∣
∑
i

∑
j∈Γi

(cj0 + cj1)huv(p
j)−

∑
i

(c′i0 + c′i1 )huv(xi)

∣∣∣∣∣∣ (87)

≤
∑
i

∑
j∈Γi

(cj0 + cj1)ε (88)

= (wu + wv)ε. (89)
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In addition,∣∣∣∣∣Euv,T ′ −
∑
i

(c′i0 + c′i1 )huv(xi)

∣∣∣∣∣ =
∣∣∣∣∣∑

i

(c′i0 + c′i1 )huv(
c′i0

c′i0 + c′i1
)−

∑
i

(c′i0 + c′i1 )huv(xi)

∣∣∣∣∣ (90)

≤ (wu + wv)ε, (91)
where we have used (86) in the last transition.

Combining the two inequalities yields the second part of (78),
|Euv,T ′ − Euv,T | ≤ 2(wu + wv)ε. (92)

Finally, note that ∑
i

∣∣Λc′i∣∣ =∑
i

∣∣∣∣∣∣
∑
j∈Γj

Λcj

∣∣∣∣∣∣ (93)

≤
∑
i

∑
j∈Γj

∣∣Λcj∣∣ (94)

=
∑
j

∣∣Λcj∣∣ , (95)

yielding the first part of, and thus completing the proof of, statement (78).

It remains to observe that above we have used a δ net for huv, which depends on ρu, ρv. However,
we can directly build an appropriate δ-net in full range of h, the simplex ∆Y , which would produce
bounds valid for all u, v. Indeed, let δ′ be such that |h(ν)− h(ν)| ≤ ε for all µ, ν ∈ ∆Y with
∥u− v∥1 ≤ δ′. Observe that the map p 7→ pρv + (1− p)ρu is 2-Lipschitz from R to ∆Y equipped
with the ∥·∥1 norm, for any u, v ∈ ∆Y . Thus, choosing δ = 1

2δ
′, we have |huv(p)− huv(p

′)| ≤ ε if
|p− p′| ≤ δ. This completes the proof of the Lemma.

E CONCAVITY OF Er

Note that the variables r appear in (12) both as coefficients multiplying h and inside the arguments of
h, in a fairly involved manner. Nevertheless, the cost turns out to still retain an interesting structure,
as it is concave, if h is. We record this in the following Lemma.
Lemma E.1. If h : ∆Y → R is concave, then of every ρ1, ρ2 ∈ ∆Y the function g : R2 → R, given
by g((c1, c2)) = (c1 + c2)h(

c1ρ1+c2ρ2

c1+c2
) is concave.

Proof. It is sufficient to show that for every c, c′ ∈ R2, we have g((c+ c′)/2) ≥ 1
2 (g(c) + g(c′). To

this end, define the map F : R2 → ∆Y by

F (c) =
c1ρ1 + c2ρ2
c1 + c2

(96)

and note that

F ((c+ c′)/2) = F (c)
c1 + c2

c1 + c2 + c′1 + c′2
+ F (c′)

c′1 + c′2
c1 + c2 + c′1 + c′2

. (97)

It then follows that

g((c+ c′)/2) =
1

2
(c1 + c2 + c′1 + c′2)h(F ((c+ c′)/2)) (98)

=
1

2
(c1 + c2 + c′1 + c′2)h

(
F (c)

c1 + c2
c1 + c2 + c′1 + c′2

+ F (c′)
c′1 + c′2

c1 + c2 + c′1 + c′2

)
(99)

≥ 1

2
(c1 + c2 + c′1 + c′2)

[
c1 + c2

c1 + c2 + c′1 + c′2
h(F (c)) +

c′1 + c′2
c1 + c2 + c′1 + c′2

h(F (c′))

]
(100)

=
1

2
(g(c) + g(c′)) . (101)
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F ADDITIONAL PROOFS

F.1 PROOF OF LEMMA 5.1

Proof. For this proof it is more convenient to work with the ℓ1 norm ∥·∥1 directly. Recall that
∥µ0 − µ1∥TV = 1

2 ∥µ0 − µ1∥1 and that

∥µ0 − µ1∥1 =
∑
z

|µ0(z)− µ1(z)| . (102)

Assume that ∥µ0 − µ1∥1 = 2γ. Define the functions ϕ̄0(z) = 1{µ1≥µ0}(z) · (µ1(z)− µ0(z)) and
ϕ̄1(z) = 1{µ0≥µ1}(z) · (µ0(z)− µ1(z)). Note that we then have∑

z

ϕ̄0(z) =
∑
z

ϕ̄1(z) = γ. (103)

Indeed, define
η(z) = 1{µ0≥µ1}(z) · µ1(z) + 1{µ1≥µ0}(z) · µ0(z). (104)

Clearly, η + ϕ̄0 = µ1 and thus
∑

z η(z) + ϕ̄0(z) = 1. Similarly,
∑

z η(z) + ϕ̄1(z) = 1. Therefore
we have ∑

z

ϕ̄0(z) =
∑
z

ϕ̄1(z). (105)

Note also that we can write
2γ = ∥µ0 − µ1∥1 =

∑
z

|µ0(z)− µ1(z)| =
∑
z

(
ϕ̄0(z) + ϕ̄1(z)

)
, (106)

which combined with (105) yields (103).

Next, we can also directly verify that
µ0 + ϕ̄0 = µ1 + ϕ̄1, (107)

and thus setting ϕ0 = γ−1ϕ̄0, ϕ1 = γ−1ϕ̄1 completes the proof of this direction.

In the other direction, given ϕ0, ϕ1 ∈ ∆Z such that µ0 + γϕ0 = µ1 + γϕ1, we have∑
z

|µ0(z)− µ1(z)| = γ
∑
z

|ϕ1(z)− ϕ0(z)| ≤ 2γ, (108)

thus completing the proof.

F.2 THE FACTOR REPRESENTATION

Fix z ∈ Z . To show µ0(z) = µ̄0(z) write, by definition,

µ̄0(z) =
∑
ρ

β̄0(ρ)T̄0(z, ρ) (109)

=
∑
ρ

∑
v∈Ψ−1({ρ})

β0(v)T0(z, v) (110)

=
∑
v∈S0

β0(v)T0(z, v) (111)

= µ0(z). (112)
The case a = 1 is shown similarly. Next, the above also implies that

PT̄ (z) = α0µ̄0(z) + α1µ̄1(z) = α0µ0(z) + α1µ1(z) = PT (z) . (113)

Finally, by definition we have

PT̄ (Y |z) =
∑

a∈{0,1}

∑
ρ

PT̄ (Y |ρ, a)PT̄ (ρ, a|z) (114)

= PT̄ (z)
−1

∑
a∈{0,1}

∑
ρ

PT̄ (Y |ρ, a)PT̄ (z|ρ, a) β̄a(ρ)αa (115)
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Taking (113) into account, to show PT̄ (Y |z) = PT (Y |z) it thus suffices to show that for a fixed a,∑
ρ

PT̄ (Y |ρ, a)PT̄ (z|ρ, a) β̄a(ρ)αa =
∑
x

PT (Y |x, a)PT (z|x, a)βa(ρ)αa. (116)

Let us consider a = 0. Then∑
ρ

PT̄ (Y |ρ, a = 0)PT̄ (z|ρ, a = 0) β̄0(ρ)α0 = α0

∑
ρ

ρT̄0(z, ρ)β̄0(ρ) (117)

= α0

∑
ρ

ρ
∑

v∈Ψ−1({ρ})

β0(v)T0(z, v) (118)

= α0

∑
v∈S0

ρvβ0(v)T0(z, v). (119)

where we have use the definitions on line (117), and in particular that PT̄ (Y |ρ, a) = ρ by construction.
This shows (116) for a = 0, and the case a = 1 is shown similarly, thus completing the proof.

G EXPERIMENTS - ADDITIONAL DETAILS

G.1 DATASETS FOR EVALUATIONS

The FNF data preprocessing, as implemented in Balunović et al. (2022b), was used for both MIFPO
and FNF models. In running FNF, we have used the original code and configuration from Balunović
et al. (2022b), with the exception that we have disabled the noise injection into features, and the
subsequent logit transformation. This was disabled since this step was not a part of preprocessing,
and due its particular implementation in Balunović et al. (2022b), it significantly complicated the
comparison with an external model like XGBoost. This step was also performed during both training
and evaluation, thus producing a less clean experiment, and was not documented anywhere in the
paper Balunović et al. (2022a). We note that retaining this step would not have changed the FNF
related analysis or its conclusions, as presented in Section 6.

G.2 MINIMIZATION OF CONCAVE FUNCTIONS UNDER CONVEX CONSTRAINTS

As described in figure 6, we used the disciplined convex concave programming (DCCP) framework
and the associated solver, (Shen et al., 2016; 2024) for solving the concave minimization with convex
constraints problem.

Minimizing concave functions under convex constraints is a common problem in optimization theory.
Unlike convex optimization where global minima can be readily found, in concave minimization
problems we only know that the local minimas lie on the boundaries of the feasible region defined
by the convex constraints. While techniques such as branch-and-bound algorithms, cutting plane
methods, and heuristic approaches are often employed, here we used the framework of DCCP which
gain a lot of popularity in recent years.

The DCCP framework extends disciplined convex programming (DCP) to handle nonconvex problems
with objective and constraint functions composed of convex and concave terms. The idea behind a
"disciplined" methodology for convex optimization is to impose a set of conventions inspired by basic
principles of convex analysis and the practices of convex optimization experts. These "disciplined"
conventions, while simple and teachable, allow much of the manipulation and transformation required
for analyzing and solving convex programs to be automated. DCCP builds upon this idea, providing
an organized heuristic approach for solving a broader class of nonconvex problems by combining DCP
principles with convex-concave programming (CCP) methods, and is implemented as an extension to
the CVXPY package in Python.

While convenient, the use of the disciplined framework bears some limitations. Mainly, generic
operations like element-wise multiplication are not under the allowed set of operations (and for
obvious reasons), which limits the usability. Notice, that for the prediction accuracy measure
h(p) = min(p, 1− p) this is not a problem, but for the entropy classification error h((1− p, p)) =
−p log p− (1− p) log(1− p), this is more challenging. Nevertheless, here we show that the standard
DCCP framework allows for entropy classification error.
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Lemma G.1. Let a = (1− α)V(v)rv,z and b = α · U(u)ru,z , with pv = pa and pu = pb.

We can write our cost function under the entropy accuracy error as:

(a+ b) · entropy
(
a · pa + b · pb

a+ b

)
= entropy(a · (1− pa) + b · (1− pb)) + entropy(a · pa + b · pb)− entropy(a+ b)

Proof.

entropy(x) = entropy(x, 1− x) = x [log(x)− log(1− x)] + log(1− x)

Thus,

entropy

(
a · pa + b · pb

a+ b

)
=

a · pa + b · pb
a+ b

[
log

(
a · pa + b · pb

a+ b

)
− log

(
1− a · pa + b · pb

a+ b

)]
+ log

(
1− a · pa + b · pb

a+ b

)
=

a · pa + b · pb
a+ b

[log(a · pa + b · pb)− log(a+ b− a · pa − b · pb)]

+ log(a+ b− a · pa − b · pb)− log(a+ b)

Hence :

(a+ b) · entropy
(
a · pa + b · pb

a+ b

)
= (a+ b) ·

[
a · pa + b · pb

a+ b
[log(a · pa + b · pb)− log(a+ b− a · pa − b · pb)]

]
+ (a+ b) · log(a+ b− a · pa − b · pb)
− (a+ b) · log(a+ b)

= entropy(a · pa + b · pb)− (a · pa + b · pb) · log(a+ b− a · pa − b · pb)
+ (a+ b) · log(a+ b− a · pa − b · pb)− entropy(a+ b)

Finally, the expression can be written as:

= entropy(a+ b− a · pa − b · pb) + entropy(a · pa + b · pb)− entropy(a+ b)

= entropy(a · (1− pa) + b · (1− pb)) + entropy(a · pa + b · pb)− entropy(a+ b)

Given the element-wise entropy function x · (1− x) is with known characteristics and under the dccp
framework, we can use the entropy error for our cost using :

=entropy((1− α)V(v)rv,z · (1− pv) + α · U(u)ru,z · (1− pu))

− entropy((1− α)V(v)rv,z · pv + α · U(u)ru,z · pu)
− entropy((1− α)V(v)rv,z + α · U(u)ru,z)

G.3 IMPLEMENTATIONS AND COMPUTATIONAL DETAILS

The Pareto front evaluation requires two main parts - solving the optimization problem described
above, and building a calibrated classifier required for evaluating ca = P (Y |X,A = a) (see
Algorithm 1).

For a calibrated classifier, we are using standard model calibration. Model calibration is a well-
studied problem where we fit a monotonic function to the probabilities of some base model so that
the probabilities will reflect real probabilities, that is, P (Y |X). Here, we used Isotonic regression
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(Berta et al., 2024) for model calibration with XGBoost (Chen et al., 2015) as the base model. For
training the XGBoost model, a GridSearchCV approach is employed to find the best hyperparameters
from a specified parameter grid, using 3-fold cross-validation.

The experiments were conducted on a system with an Intel Core i9-12900KS CPU (16 cores, 24
threads), 64 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU.

H FAIR CLASSIFIERS AS FAIR REPRESENTATIONS

As discussed in Section 3, Pareto front of binary classifiers with statistical parity can be computed
from the Pareto front of representations with total variation fairness distance. In this Section we
provide the proof of this result, Lemma 3.1. The Lemma and the related notation are restated here for
convenience.

For a binary classifier Ŷ of Y , its prediction error is defined as usual by ϵ(Ŷ ) := P
(
Ŷ ̸= Y

)
. The

statistical parity distance of Ŷ is defined as

∆SP (Ŷ ) :=
∣∣∣P(Ŷ = 1|A = 1

)
− P

(
Ŷ = 1|A = 0

)∣∣∣ . (120)

Let the uncertainy measure h be defined by (4). Note that the first part of the Lemma does use the
special properties of this h and does not necessarily hold for other costs h.

Lemma H.1. Let Ŷ be a classifier of Y . Then there is a representation given by a random variable
Z on a set Z with |Z| = 2, such that

Ez∼Zh(P (Y |Z = z)) ≤ ϵ(Ŷ ) and ∥µ0 − µ1∥TV ≤ ∆SP (Ŷ ). (121)

Conversely, for any given representation Z, there is a classifier Ŷ of Y as a function of Z (and thus
of (X,A)), such that

ϵ(Ŷ ) ≤ Ez∼Zh(P (Y |Z = z)) and ∆SP (Ŷ ) ≤ ∥µ0 − µ1∥TV . (122)

Proof. Let us begin with the second part of the Lemma, inequalities (122). Given a representation
Z, ϵ(Ŷ ) ≤ Ez∼Zh(P (Y |Z = z)) follows since Ez∼Zh(P (Y |Z = z)) is the error of the optimal
classifier of Y as a function of Z. We choose Ŷ to be such an optimal classifier and thus satisfy the
above inequality, with equality. Next, the second inequality in (122) holds for for any classifier Ŷ
derived from Z. The argument below is a slight generalisation of the argument in Madras et al. (2018).
Define f(z) = P

(
Ŷ = 1|Z = z

)
. Note that for a ∈ {0, 1}, P

(
Ŷ = 1|A = a

)
=
∫
f(z)dµa(z).

Thus

P
(
Ŷ = 1|A = 0

)
− P

(
Ŷ = 1|A = 1

)
=

∫
f(z)dµ0(z)−

∫
f(z)dµ1(z) (123)

≤ sup
g||g|≤1

∣∣∣∣∫ g(z)dµ0(z)−
∫

g(z)dµ1(z)

∣∣∣∣ (124)

= ∥µ0 − µ1∥TV , (125)

where we have used |f | ≤ 1 in the second line. Repeating the argument also for P
(
Ŷ = 1|A = 1

)
−

P
(
Ŷ = 1|A = 0

)
, we obtain the second inequality in (122).

We now turn to the first statement, (121). Let Ŷ be a classifier of Y as a function of (X,A).
Observe that thus by definition P

(
Ŷ |X,A

)
induces a distribution on the set {0, 1}, and thus may be

considered as a representation Z := Ŷ of (X,A) on that set. We now relate the properties of this Z
as a representation to the quantities ϵ(Ŷ ) and ∆SP (Ŷ ). Similarly to the argument above, the first
part of (121) follows since Ez∼Zh(P (Y |Z = z)) is the best possible error over all classifiers. For
the second part, note that since Ŷ is binary, we have

P
(
Ŷ = 1|A = 0

)
− P

(
Ŷ = 1|A = 1

)
= −P

(
Ŷ = 0|A = 0

)
+ P

(
Ŷ = 0|A = 1

)
. (126)
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Figure 4: Comparing common fair classification pipelines to the MIFPO Pareto front, for LSAC,
COMPAS, and ADULT datasets. For FGBM and LGBM+Post Process methods, each point represents
a trade-off obtained at a single hyper-parameter configuration.

It follows that

∥µ0 − µ1∥TV =
1

2

∑
v∈{0,1}

∣∣∣P(Ŷ = v|A = 0
)
− P

(
Ŷ = v|A = 1

)∣∣∣ (127)

=
∣∣∣P(Ŷ = 1|A = 0

)
− P

(
Ŷ = 1|A = 1

)∣∣∣ (128)

= ∆SP (Ŷ ), (129)

where we have used (126) for the second to third line transition. This completes the proof of the
second part of (121).

H.1 COMPARISON TO COMMON FAIR CLASSIFIERS

Here we use (i) FairGBM Cruz et al. (2023), an in-processing, method where a boosting trees algo-
rithm (LightGBM) is subject to pre-defined fairness constraints, and (ii) Balanced-Group-Threshold
Jang et al. (2021), a post-processing method which adjusts the threshold per group to obtain a certain
fairness criterion. For FairGBM we have used the original implementation provided by the authors,
while for Balanced-Group-Threshold post-processing we have used the implementations available
via Aequitas, Saleiro et al. (2018), a popular bias and fairness audit toolkit.

It is important to note that, as a rule, common fairness classification methods are not designed to
control the fairness-accuracy trade-off explicitly. Instead, in most cases, these methods rely on
rerunning the algorithm for a wide range of hyperparameter settings, in the hope that different
hyperparameters would result in different fairness-accuracy trade-off points. However, there typically
is no direct known and controlled relation between hyperpatameters and the obtained fairness-accuracy
trade-off. For FairGBM, we utilized the hyperparameter ranges specified in the original paper, Cruz
et al. (2023). In the case of the balancing post-processing method, we conducted a grid search over
the full range of all possible hyperparameters to ensure a comprehensive analysis.

Figure 4 shows the MIFPO computed Pareto front, and all hyperparameter runs of the two algorithms
above, with accuracy evaluated on the test set. These experiments demonstrate the following two
points: (a) The standard classifiers achieve a considerably lower accuracy than what is theoretically
possible at a given fairness level. (b) the existing methods are also unable to present solutions for
the full range of the statistical parity values. The values from the FGBM and the post-processing
algorithms all have statistical parity ≤ 0.2. Similarly to to the case of fair representations, these
results emphasize the limitations of current fair classifiers in achieving optimal trade-offs between
accuracy and fairness across the full range of fairness values.
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