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Abstract

Model merging is to combine fine-tuned mod-
els from multiple domains to enhance the
model’s capabilities across various domains.
Merging performance degradation is due to
parameter conflicts. The prevailing methods
address this issue of parameter conflicts dur-
ing the merging stage, but recently scholars
have been paying more attention to resolving
this problem during the pruning stage. DARE
has demonstrated promising results on a simple
fine-tuned model. However, this approach ex-
hibit diminished effectiveness when applied to
complex fine-tuned models that has significant
parameter bias compared to the baseline model.
In this study, we propose a two-stage method
called DPPA to address the challenge of fusing
complex fine-tuned models. First, we introduce
Dynamically Pruning (DP), an improved ap-
proach based on magnitude pruning which aim
is to enhance performance at higher pruning
rates. Subsequently, we propose Dynamically
Partition Amplification (DPA), a rescaling tech-
nique that aims to dynamically amplify parti-
tions of parameters based on their varying lev-
els of significance. The experimental results
show that our approach retains only 20% of
the specific domain parameters, yet achieves
comparable performance to other methods that
retain 90% of the specific domain parameters.
Furthermore, our method, due to its exceptional
performance after pruning, also achieves a sig-
nificant improvement of nearly 20% in model
merging. We will make our code on Github!.

1 Introduction

Model merging, also known as model fusion, is
a technique that combine fine-tuned models from
multiple domains in order to enhance the model’s
capabilities across various domains. Performance
degradation after merging is mainly caused by pa-
rameter conflicts. The prevailing methods (Yang

'"HTTP

et al., 2023a; Yadav et al., 2023; Jin et al., 2023)
address this issue of parameter conflicts during the
merging stage, but recently scholars have been pay-
ing more attention to resolving this problem during
the pruning stage. The purpose of the pruning
method is to remove as many parameters as pos-
sible while maintaining comparable performance.
As the number of parameters decreases, the occur-
rence of parameter conflicts also diminishes. When
pruning is applied to model fusion, the pruning tar-
gets are the delta parameters, which represent the
disparities between the fine-tuned model parame-
ters and the base model parameters, rather than the
fine-tuned model parameters themselves.

The existing pruning techniques(Frantar and Al-
istarh, 2023; Sun et al., 2023) primarily focus on re-
ducing the number of parameters and may not yield
satisfactory results when applied to delta parame-
ters. A recent approach called DARE (Yu et al.,,
2023b) introduces a method involving random
dropping and rescaling. This technique demon-
strates promising results on simple fine-tuned mod-
els. However, its effectiveness diminishes when
applied to models with larger deviations from the
base model parameters. The paper acknowledges
this limitation by stating, “However, once the mod-
els are continuously pretrained, the value ranges
can grow to around 0.03, making DARE impracti-
cal.” Furthermore, it is our belief that models with
more pronounced deviations from the base model
parameters tend to exhibit superior performance
after undergoing a complex fine-tuning process.

In this study, we propose a two-stage method
called DPPA to address the challenge of fusing
complex fine-tuned models. First, we introduce
Dynamically Pruning (DP), an improved approach
based on magnitude pruning which aim is to en-
hance performance at higher pruning rates. Subse-
quently, we propose Dynamically Partition Ampli-
fication (DPA), a rescaling technique that aims to
dynamically amplify partitions of parameters based
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Figure 1: In the left section of the diagram, we can observe that our DP method adaptively adjusts the pruning
rate at both the layer and linear layer levels, in contrast to Magnitude pruning. On the right side of the figure, we
can observe the integration of DP and DPA, which corresponds to the drop and rescale operations in DARE. This
integration effectively improves the performance of complex models following the pruning process.

on their varying levels of significance.
Dynamically Pruning (DP) is employed to dy-
namically adjust the pruning rate based on the im-
portance of different linear layers. OWL (Yin et al.,
2023) observed that the importance of parameters
varies across different layers. We believe that, un-
der a high pruning rate, it is necessary to further
refine the granularity of parameter importance and
adjust the pruning rate at the level of linear layers.
For example, as illustrated in Fig. 1, the parame-
ters in layer O of the Delta parameter demonstrate
greater significance compared to those in layer 22.
Additionally, it is evident that the Q and K parame-
ters in layer O are more important than other linear
layers. Our approach divides the model layers and
considers the linear layers (e.g., Q, K, V, O in At-
tention and upsampling/downsampling in MLP)
as the lowest units for adjusting the pruning rates.
Furthermore, to refine the definition of parameter
importance, we first identify the parameters that
exceed the absolute value of the mean. We then cal-
culate the ratio between their absolute values and
the mean value. Finally, we sum up these ratios
and divide them by the total number of parameters.

Moreover, Dynamically Partition Amplification
(DPA) is a rescale method, which is built upon the
pruning approach. Our assumption is that parame-
ters with larger deviations from the baseline model

during fine-tuning are more crucial. We prioritize
the most important subset of parameters and am-
plify their values. After determining the optimal
amplification rate for this subset, we proceed to
the next subset of parameters in terms of impor-
tance, and so forth. We propose two approaches
for parameter initialization, followed by a stepwise
search for the optimal offset in the target domain at
different pruning rates. Once the target pruning rate
is attained, we select the best initialization method
based on performance evaluation.

The base model we utilize in our study is
llama?2 (Touvron et al., 2023b). We perform fine-
tuning on three distinct domains: mathematics, fi-
nance and law. The experimental results show that
our approach retains only 20% of the specific do-
main parameters, yet achieves comparable perfor-
mance to other methods that retain 90% of the spe-
cific domain parameters. Furthermore, our method,
due to its exceptional performance after pruning,
also achieves a significant improvement of nearly
20% in model merging. We also validate the ef-
fectiveness of DPA on DARE, although it does not
achieve the same level of performance as DPPA.
Nonetheless, it still improves performance to a cer-
tain extent. We conducted experiments in three-
domain and two-domain Merging, and the results
indicate that the impact of the additional domain



on our method can be considered negligible.

2 Related Work

2.1 Pruning Technique

Traditional pruning techniques are a type of model
compression that aim to decrease the number of
parameters in a model (Zhu et al., 2023). There
have been several studies conducted on this topic,
both in the era of pretrained language models and
before (Hubara et al., 2021; Mozer and Smolen-
sky, 1988; Han et al., 2015a; Lin et al., 2019).
However, progress in these studies has been rel-
atively slow in the era of large language models,
as pruning requires a substantial amount of data
for fine-tuning, which is not feasible for such mod-
els. To tackle this issue, LORA fine-tuning was
proposed by Ma et al. (2023) to restore the original
performance. Recently, some studies have shifted
their focus to pruning methods that do not necessi-
tate fine-tuning. For instance, SparseGPT (Frantar
and Alistarh, 2023) utilizes the Hessian matrix for
pruning and reduces reconstruction error through
subsequent weight updates. Wanda (Sun et al.,
2023) combines weight magnitudes with input acti-
vations to retain parameters that better align with
the current data distribution. DSOT (Zhang et al.,
2023c) proposes a parameter adjustment method
to minimize the discrepancy between the source
model parameters and the pruned model param-
eters. OWL (Yin et al., 2023) introduces non-
uniform layered sparsity, which is advantageous
for higher pruning rates.

2.2 Special Domain Fine-tune Model

Since the advent of the machine learning era, mod-
els have required adjustments on specific data to
achieve desired performance. In the era of pre-
trained language models, this approach has been
slightly modified. Researchers first pretrain a gen-
eral model and then fine-tune it on domain-specific
data, with the primary goal of leveraging the capa-
bilities of the pretrained model. This is even more
crucial in the era of large language models, result-
ing in the development of numerous models in dif-
ferent domains. For example, in the code domain
(Roziere et al., 2023; Yu et al., 2023c; Luo et al.,
2023b), mathematics domain (Luo et al., 2023a;
Yue et al., 2023; Yu et al., 2023a; Gou et al., 2023;
Yuan et al., 2023), medical domain (Kweon et al.,
2023; Chen et al., 2023; Toma et al., 2023), and
finance domain (Zhang et al., 2023a; Yang et al.,

2023b; Xie et al., 2023).

Although we have obtained many fine-tuned
models in specific domains, if we want a single
model to have the capability to handle multiple
domains, the fundamental approach is to fine-tune
the model on all domain data together. However,
this requires a significant amount of computational
resources. Therefore, model fusion methods have
gained attention.

2.3 Model Merge

The mainstream model fusion methods can be di-
vided into four sub-domains: alignment (Li et al.,
2016), model ensemble (Pathak et al., 2010), mod-
ule connection (Freeman and Bruna, 2017), and
weight averaging (Wang et al., 2020). Among these
methods, only weight averaging reduces the num-
ber of model parameters, while the others require
the coexistence of model parameters from multi-
ple domains (Li et al., 2023b). Within the weight
averaging sub-domain, there are also several ap-
proaches, such as subspace weight averaging (Li
et al., 2023a), SWA(Izmailov et al., 2018), and task
arithmetic (Ilharco et al., 2023). We are particu-
larly interested in the task arithmetic sub-domain
because it does not require the fusion of multiple
models during the training process. Instead, it only
requires obtaining the weights of a fully trained
model.

The task arithmetic approach suggests that there
is a domain-specific offset between the fine-tuned
model weights and the base model weights. By
adding or subtracting these offsets from multiple
domains, it is possible to fuse or selectively ex-
clude the capabilities of certain domains. Subse-
quent works have explored the application of task
arithmetic to LORA (Zhang et al., 2023b; Chitale
et al., 2023; Chronopoulou et al., 2023), as well
as how to better fuse models and reduce conflicts
between parameters. Ortiz-Jiménez et al. (2023)
achieved this by scaling the coefficients of different
models during the fusion process to mitigate con-
flicts between models. Yang et al. (2023a) further
proposed adjusting the scaling coefficients at the
model hierarchy level to address conflicts caused
during model fusion at a finer granularity. Yadav
et al. (2023) selected which model weights to re-
tain at specific positions by comparing the absolute
values of conflicting weights. Jin et al. (2023) ad-
justed the entire conflicting vector in vector space
to ensure that the L2 distance between this vector
and multiple original vectors remains equal.



2.4 Federated Learning

Federated learning is a setup where multiple clients
collaborate to solve machine learning problems,
coordinated by a central aggregator. This setup
also allows for decentralized training data to en-
sure privacy of data on each device (Zhang et al.,
2021). Model fusion methods naturally possess the
ability to combine locally trained models together.
Furthermore, since the central aggregator receives
locally trained weights, there is no need to worry
about data leakage issues.

3 Methodology

The purpose of our approach is to integrate multiple
fine-tuned models from various domains into a sin-
gle model. Therefore, we first review the definition
of model merging.

Our approach consists of four parts, as shown
in Fig. 1. Firstly, we calculate the delta parameter,
which represents the weight difference between
the fine-tuned models and the Base model. Sec-
ondly, we introduce a variant of magnitude pruning
method, known as DP, which exhibits superior per-
formance at high pruning rates. This method is
used to prune delta parameter in order to reduce
conflicts in parameter space during model merging.
Next, we present a method, DPA, for amplifying
the pruned delta parameter, which yields improved
performance. Finally, we combine the parameter
from different fine-tuned models and add them to
the Base model, resulting in a single model with
multi-domain capabilities.

3.1 Model Merging Problem

The purpose of model Merging is to enhance the ca-
pability of a single model by combining fine-tuned
models from multiple domains. Specifically, for
fine-tuned models M ' ~ M¥, each associated with
different domains D! ~ D¥, where each domain
comprises a set of tasks D' = {1} ~ T}. Here,
k represent the number of domain, ¢ represents a
specific domain, and n represents the number of
tasks within that domain.

By merging M ~ M¥, we obtain the integrated
model M™, which possesses the ability to handle
tasks from D' ~ D¥ simultaneously.

3.2 Delta Parameter

For each fine-tuned model in each domain, we can
find the corresponding pre-trained model, known as
the Base model. For domain ¢, we have the weights

W of the fine-tuned model M and the weights
W5 of the base model MP. We define the delta
parameter as the transition of the parameter space
distribution from the base model to the fine-tuned
model, represented as A’ = W5 — W, Analyzing
the delta parameter allows for a better understand-
ing of the changes brought about by the fine-tuning
process.

3.3 DPPA

First, we introduce Dynamically Pruning (DP), an
improved approach based on magnitude pruning
which aim is to enhance performance at higher
pruning rates. Subsequently, we propose Dynam-
ically Partition Amplification (DPA), a rescaling
technique that aims to dynamically amplify parti-
tions of parameters based on their varying levels of
significance.

3.3.1 DP: Dynamically Pruning

We propose to use linear layers as the minimum
unit and adjust the pruning rate based on the sig-
nificance of different linear layers. Here, the linear
layers, such as Q, K, V, O in Attention and up/down
sampling in MLP, are more fine-grained units com-
pared to model layers. We first describe how to
define the significance of parameters and then ex-
plain the method for adjusting the pruning rate.

In the context of owl (Yin et al., 2023), the impor-
tance of a weight is defined as the quantity that ex-
ceeds N times the average magnitude of the weight.
Taking inspiration from owl, we have modified the
notion of importance from the number of parame-
ters to the sum of magnitude multiples of param-
eters that exceed N times the average magnitude.
This enhancement further incorporates the magni-
tude information of weight parameters. Following
the experimental results from previous studies, we
set N to be 5. By doing so, we obtain the impor-
tance of parameters at both the model layer level
and the linearlayer level.

Once the significance of the parameters has been
determined, we can adjust the pruning rate accord-
ingly. Following the principle that higher parame-
ter importance corresponds to lower pruning rates,
we define the pruning rate fluctuation at the model
level as:

n
> sig(A) (1)

=1

dif(A;) = —sig(Ar) +

S|

where di f represents the difference between impor-
tance and its mean, for briefly, we reduce domain-



specific A’ to A, thus A; represents paremeters
in model layer I, sig() represents significance of
the parameter, n represents the number of model
layers, respectively.

Furthermore, since the number of parameters
in different linearlayers may vary, we introduce a
weighting factor for the parameter importance, as
shown:

mean(Ay;) 2= 21 519(Ay) * Al
1j) = ] i
] S S 18,

)

dif'(Ayj) = —sig(Ayj) + mean(Aj),  (3)

where Ay; represents paremeters in model layer /
linearlayer j, m represents the number of linear lay-
ers in model layer, || X ||, represents the parameter
count of X, respectively.

Finally, we define the maximum value of pruning
rate fluctuation, denoted as ), based on previous
experimental findings, and set it to 0.08. By consid-
ering both the fluctuation within linearlayer-level
and layer-level, we derive the final pruning rate for
each linear layer as follows:

norm(x) = zx

4

mazx abs(x)

0y = a+ norm(dif(A;)) + norm(dif'(A;)),

(%)
where « represents original pruning rates, abs rep-
resents absolute value.

3.3.2 DPA: Dynamically Partition
Amplification

After DP, we obtain the pruned delta parameters
at various pruning rates. Moving forward, our ob-
jective is to achieve improved performance while
maintaining a consistent pruning rate.

It is evident that the performance of the model
exhibits an initial increase and subsequent decrease
as the scaling rate is increased. This phenomenon is
observed across different pruning rates, as depicted
in Fig. 2. Furthermore, we believe that during the
fine-tuning stage, parameters with larger offsets
have a significant impact on the respective field.

Therefore, we propose DPA, a technique that
partitions the parameters at different pruning rates
and dynamically adjusts the amplification factors
for each partition. We consider two initialization
methods to achieve dynamic adjustment, aiming to
find the optimal results. Ultimately, we will select
the best method based on the outcomes obtained.
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Figure 2: We utilize green and lines to represent
the trajectories of amplification rate search. Among
them, the blue star represents the optimal rate searched
at a 90% pruning parameter, while the red star represents
the optimal rate searched at an 80% pruning parameter.
The contour lines depict the specific performance in the
mathematical domain.

Method 1 We consider that partitions with higher
pruning rates are more crucial in the respective
field. Therefore, we prioritize the sorting of par-
titions based on their pruning rates. For instance,
the parameters in the 90% pruning rate partition
are deemed more important than those in the 80%
pruning rate partition. Hence, we first adjust the
parameters in the 90% pruning rate partition by
setting the rest to zero. After obtaining the optimal
amplification ratio, we incrementally add the pa-
rameters in the 80% pruning rate partition and only
scale the newly added parameters. This process
continues until the target pruning rate is achieved.
The resulting curve of this method is illustrated by
the green line in Fig. 2.

Method 2 We acknowledge that Method 1 may
result in excessively large amplification factors for
partitions of higher importance, leading to a sig-
nificant displacement in the parameter space of
partitions with lower pruning rates. This, in turn,
can even lead to a decrease in performance when
adding parameters from lower pruning rate parti-
tions. To address this concern, during the adjust-
ment of the 90% partition, instead of setting the
rest of the positions to zero, we directly utilize the
partition corresponding to the target pruning rate.
With this approach, when adjusting partitions of
higher importance, we take into account the param-
eter distribution of partitions of lower importance.
This method outperforms Method 1 when the tar-



get pruning rate is low. The resulting curve of this
method is illustrated by the line in Fig. 2.

3.4 Model Merging with DPPA

After applying DPPA, we only need to merge the
parameters from different models together. In Sec-
tion 2.3, it is mentioned that there are various ex-
isting methods for model fusion. However, our fo-
cus is on improving the pruning technique. There-
fore, we adopt the state-of-the-art merging method,
AdaMerging(Yang et al., 2023a), to validate the
merging of parameters after pruning. It is impor-
tant to note that the fine-tuned models to be merged
need to be fine-tuned from the same pre-trained
model, and the existing fusion methods do not sup-
port the fusion of heterogeneous models.

Thus, we get the final merging model:

W™ =w58 4+ xF  DPPA(OY) (6)

4 Experiments

4.1 Experimental Setup

Pre-Trained Backbone and Fine-tune Models
‘We have taken into consideration the need to fine-
tune the same base model for different domains and
the impact of the base model’s performance. There-
fore, we have decided to choose LLLaMa 2(Tou-
vron et al., 2023b) as the base model, instead
of LLaMa(Touvron et al., 2023a), Mistral(Jiang
et al., 2023), or other pre-trained models. For the
three domains, mathematics, finance and law, we
have selected three models with good performance,
namely Abel(Chern et al., 2023), Finance-chat and
Law-chat(Cheng et al., 2023).

Datasets For each domain, we have chosen
two datasets. In the mathematics domain, we
have selected GSM8k(Cobbe et al., 2021) and
MATH(Hendrycks et al., 2021). We evaluate the
models’ performance using zero-shot accuracy and
utilize the testing script provided by Abel(Chern
et al., 2023). As for the finance domain, we have
chosen FIQA_SA(Maia et al., 2018) and FPB(Malo
et al.,, 2014). As for the law domain, we have
chosen SCOTUS (Spaeth et al., 2020) and the
UNFAIR_ToS (Lippi et al., 2019). Similarly, we
evaluate the models’ performance using zero-shot
accuracy. Since AdaptLLM(Cheng et al., 2023)
does not provide a testing script, we consider the
multiple-choice question to be correct when the
predicted sentence contains the correct choice.

Evaluation Metric In order to demonstrate the
model’s generalization ability within each domain,
we selected two datasets. Additionally, to assess the
relationship between pruned model and fine-tuning
pruned, we defined Domain-Ratio as a metric to
measure the pruned model’s capability within a spe-
cific domain. The formula for Domain-Accuracy
is as follows:

R(Mprunech 7})

Task-Ratio; =
»® O R(Mdensea T])

)

Domain-Ratio = 7\1/H§L:1Task—Rati0j, (8)

where R(M,T) represents the performance of
model M on task T', M jo, s refers to the fine-tuned
model, M,,;.,neq represents the pruned model, and
T} represents task j within the given domain, re-
spectively.

Implementation Details In our study, we em-
ployed the vLLM framework for reasoning. For
the datasets GSM8k and MATH, we set the batch
size to 32. As for the FiQA_SA, FPB, SCOTUS
and UNFAIR_ToS datasets, we set the batch size to
1. We utilized a greedy decoding approach with a
temperature of 0. The maximum generation length
for all tasks was set to 2048. Our experiments were
conducted using the NVIDIA Tesla A100 GPU.

4.2 Baseline Method

We establish two methods of pruning-base, and one
of randomly deleting and scaling as baseline. they
are described below:

* Magnitude (Han et al., 2015b) sorts weights
based on their absolute values, keeping
weights with larger absolute values and re-
moving weights with smaller absolute values.

* OWL (Yin et al., 2023) building upon magni-
tude pruning, this method considers that pa-
rameter importance varies across different lay-
ers of the model. Thus, it adjusts the pruning
rate of each layer based on the importance of
its parameters.

* DARE (Yu et al., 2023b) suggests that after
pruning, the sum of parameter values should
remain the same. Therefore, it initially per-
forms random pruning and then expands the
remaining parameters based on the pruning
rate to achieve the original sum of parameter
values.



Sparse ratio Magnitude @ OWL  DARE DPPA
Math-Dense

10% 96.46 96.69 96.64 -
80% 80.12 77.11 87.41 97.08
90% 53.41 54.09 73.44 86.85
Fin-Dense

10% 90.81 89.12 91.04 -
80% 71.04 74.92 84.01 96.65
90% 54.71 56.74 82.90 92.11
Law-Dense

10% 95.74 110.74  116.02 -
80% 113.98 12497 79.93 116.02
90% 84.35 12142  69.33 110.55

Table 1: Domain-Ratio of different pruning methods at
various pruning rates. Additional results under different
pruning rates and the performance on a single dataset
are presented in Appendix A.

4.3 Main Result of DPPA

The results of the pruning methods are shown in
Table 1. We compare the results of DPPA with two
magnitude-based pruning methods, as well as com-
pare the results of DARE. The experimental results
show that our approach retains only 20% of the
specific domain parameters, yet achieves compara-
ble performance to other methods that retain 90%
of the specific domain parameters. Due to space
limitation, we place the completed experimental
table in Appendix A.

4.4 Abnormal Situations in Law Domain

We believe that our method can achieve perfor-
mance levels as close as possible to the dense
model itself. However, for tasks that require per-
formance beyond what the dense model can offer,
our method may not be as effective. In contrast to
the expected results from normal pruning, in the
law domain, the pruned models significantly out-
performed the dense model. The best performance
was observed in the range of 120-140% of the dense
model’s performance, without any specific pattern,
as pruning rates varied from 10% to 90%. We at-
tribute this phenomenon to two factors: first, the
relatively low performance of the law domain fine-
tune model itself, and second, the possibility that
the model was in a local minimum, causing any off-
set introduced by pruning to enhance the model’s
performance.

4.5 The Effectiveness of DP

As shown in Table 2, DP to achieve better per-
formance at high pruning rates. This is because

Domains Magnitude @ OWL DP

Math 53.41 54.09 54.97
Fin 54.71 56.74  62.06
Law 84.35 12142  110.55

Table 2: Domain-Ratio of DP at a pruning rate of 90%.

Domains DARE DARE+DPA  DPPA
Math 73.44 83.63 86.85
Fin 82.90 85.08 92.11
Law 69.33 120.89 110.55

Table 3: Domain-Ratio of DARE using DPA at a prun-
ing rate of 90%.

DP adjusts the significance of linear layer parame-
ters within each layer, allowing for the retention of
more crucial parameters at high pruning rates.

4.6 The Universality of DPA

We investigated the generality of the DPA method
by applying it to the state-of-the-art model, DARE.
Considering that the DARE method already ampli-
fies the parameters and achieves significant ampli-
fication at high pruning rates (5 times for 80% and
10 times for 90%), we modified the approach to
dynamic reduction instead. Following the method-
ology, we conducted experiments, and the results
are presented in Table 3.

4.6.1 When can DP replace DARE?

According to the DARE paper, the method’s per-
formance is not satisfactory when the parameter
deviation from the base model exceeds 0.03. Our
observations indicate that the larger the offset, the
poorer the performance. This is evident from the
model offset presented in Table4. Certainly, we will
present more comprehensive results in Appendix B.
When DARE falls below 90% performance at a
pruning rate of 90%, our method can serve as a
viable alternative.

4.7 Why DPPA is Useful?

To investigate this question, we conducted an anal-
ysis of the Delta parameters, as shown in Fig 3. We

Model Min 10% 90% Max

Math-Dense  -0.01733  -0.00114 0.00114  0.02014
Fin-Dense -0.02612  -0.00160  0.00160 0.02011
Law-Dense  -0.02185 -0.00158  0.00158  0.02027

Table 4: The offset of different models from the base
model at different position proportions.
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Figure 3: After analyzing the pruned parameters of the financial model, it is evident that there is a higher parameter
count in the initial and final 0, 31 layers, while the middle 17 layers have fewer parameters. Additionally, in the Q,
K, V components, it is observed that 90% of the parameters are concentrated in certain dimensions. To facilitate
observation, we have amplified the value by a factor of 1000.

Method & Pruning Rate  Math Fin Law
Mario 90% 7.89 5148 53.86
DPPA 90% 89.95 8524 122.08
Mario 80% 32.61 7449  78.11
DPPA 80% 91.28 9520 146.23

Table 5: Results of the model that combines domains
mathematics, finance and law.

Method & Pruning Rate  Math Fin

Mario 90% 21.10 64.88
DPPA 90% 89.25 79.40
Mario 80% 5843 177.16
DPPA 80% 92.75 9545

Table 6: Results of the model that combines domains
mathematics and finance.

explored the relationship between the remaining
parameters after DP at different pruning rates and
different linear layers. The graph indicates that
although DP is an unstructured pruning method, it
exhibits some characteristics of structured pruning
in the results of high pruning rates for the Delta
parameters. This dimension partitioning provides
some interpretability for the distribution of param-
eter space in specific domains. Therefore, when
we use DPA, by amplifying the parameters, we
strengthen the weights of the domain in these di-
mensions and restore certain capabilities.

4.8 Main Result of Merge Methods

We validate the effectiveness of our pruning method
for the task of model fusion by integrating models.
In Table 5, we present the merging results for three
domains, while in Table 6, we showcase the merg-
ing results for two domains. We choose pruning

rates of 80% and 90% to compare the results of
model fusion, as shown in the Table 6. Based on
the results, our method demonstrates an improve-
ment of nearly 20% in performance compared to
DARE at the same pruning rate. This finding sub-
stantiates the efficacy of our pruning approach in
the context of complex model fusion.

By comparing the results in Table 5 and Table 6,
we can observe that the introduction of a fine-tuned
model from an additional domain significantly im-
pacts the performance of DARE, leading to sub-
stantial performance degradation. In comparison,
our method achieves comparable performance. The
performance in other domains has decreased at dif-
ferent pruning rates. This outcome is consistent
with expectations as model fusion often encoun-
ters parameter conflicts, which inevitably lead to
performance degradation.

5 Conclusions

In this study, we introduce a pruning method called
DP, which is an improved approach based on am-
plitude pruning to enhance performance at higher
pruning rates. Subsequently, we propose DPA,
which focuses on dynamically amplifying parti-
tions of parameters based on their varying levels of
importance. using DPPA, we address the challenge
of model merging in complex fine-tuned models.
The experimental results show that our approach
retains only 20% of the specific domain parame-
ters, yet achieves comparable performance to other
methods that retain 90% of the specific domain pa-
rameters. Furthermore, our method also achieves
a significant improvement of nearly 20% in model
merging. Additionally, we investigate the under-
lying reasons behind the effectiveness of our pro-
posed method.



Limitations

Our method performs less effectively than DARE
on fine-tuned models with minimal differences
compared to the original model.

DAP requires a longer time to find the optimal
ratio.

While it mitigates parameter conflicts in model
fusion, there still remains the issue of performance
degradation.
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0.6 0.578468537  0.574677786  0.570128886  0.557240334
0.7 0.546626232  0.542835481  0.545109932  0.558756634
0.8 0.501137225  0.495072024  0.489006823  0.53525398
0.9 0.343442002  0.342683851  0.351781653  0.498104625
MATH

0.1 0.1208 0.122 0.129 0.1236
0.2 0.1218 0.1212 0.1232 0.1298
0.3 0.125 0.1232 0.1238 0.1274
0.4 0.1262 0.1258 0.1276 0.1264
0.5 0.122 0.125 0.1248 0.1216
0.6 0.1254 0.124 0.1194 0.1184
0.7 0.1176 0.1148 0.1142 0.1134
0.8 0.0996 0.0934 0.095 0.111

0.9 0.0646 0.0664 0.0668 0.0842
FiQA_SA

0.1 0.608510638  0.595744681  0.595744681  0.629787234
0.2 0.612765957  0.642553191  0.629787234  0.621276596
0.3 0.629787234  0.646808511  0.621276596  0.634042553
0.4 0.629787234  0.621276596  0.629787234  0.625531915
0.5 0.582978723  0.561702128  0.34893617  0.561702128
0.6 0.595744681  0.540425532  0.54893617  0.685106383
0.7 0.540425532  0.510638298  0.195744681  0.587234043
0.8 0.519148936  0.557446809  0.493617021  0.570212766
0.9 0.365957447  0.395744681  0.438297872  0.574468085

Table 7: All pruning result for three domain.
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Model Min 10% 20% 30% 40% 50% 60% 70% 80% 90% Max

Math-Dense  -0.0173  -0.0011  -0.0007 -0.0004  -0.0002  1.175e-08 0.0002 0.0004  0.0007 0.0011 0.0201
Fin-Dense -0.0261  -0.0016 -0.0010 -0.0006  -0.0003 0.0 0.0003  0.0006  0.0010 0.0016 0.0201
Law-Dense  -0.0218 -0.0015 -0.0010 -0.0006  -0.0003 0.0 0.0003  0.0006 0.0010 0.0015 0.0202

Table 8: The offset of different models from the base model at different position proportions.

Sparse ratio Magnitude OWL DP DARE
FPB

0.1 0.642268041  0.631958763  0.58556701 0.62371134
0.2 0.620618557  0.616494845  0.611340206  0.634020619
0.3 0.597938144  0.608247423  0.628865979  0.627835052
0.4 0.610309278  0.609278351  0.601030928  0.644329897
0.5 0.590721649  0.57628866  0.605154639  0.611340206
0.6 0.597938144  0.579381443  0.579381443  0.615463918
0.7 0.534020619  0.550515464  0.537113402  0.607216495
0.8 0.460824742  0.477319588  0.471134021  0.586597938
0.9 0.387628866  0.38556701  0.416494845  0.567010309
UNFAIR_ToS

0.1 0.191860465  0.238372093  0.26744186  0.203488372
0.2 0.284883721  0.279069767  0.186046512  0.191860465
0.3 0.25 0.261627907  0.209302326  0.238372093
0.4 0.244186047  0.220930233 0.25 0.180232558
0.5 0.197674419  0.209302326  0.197674419  0.203488372
0.6 0.279069767  0.244186047  0.209302326  0.226744186
0.7 0.209302326  0.23255814  0.261627907  0.220930233
0.8 0.186046512 0.25 0.244186047  0.13372093
0.9 0.215116279  0.26744186  0.255813953  0.145348837
SCOTUS

0.1 0.216666667  0.233333333  0.233333333 0.3

0.2 0.316666667  0.283333333  0.283333333  0.266666667
0.3 0.283333333 0.25 0.283333333  0.266666667
0.4 0.266666667  0.316666667 0.35 0.25

0.5 0.25 0.233333333 0.35 0.166666667
0.6 0.316666667 0.35 0.3 0.116666667
0.7 0.35 0.35 0.35 0.233333333
0.8 0.316666667  0.283333333 0.25 0.216666667
0.9 0.15 0.25 0.216666667 0.15

Table 9: All pruning result for three domain.

B The Offset of Models

We presented ten different percentage values in
Tabel 8.
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