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Abstract

Neural Machine Translation (NMT) has been001
through great revolutions in recent years. Ac-002
companied with improvements in translation003
quality are works that attempted to understand004
the working mechanism of various aspects of005
the NMT framework. In our paper, we survey006
those efforts on unveiling the black box of the007
standard NMT framework. To begin with, we008
briefly introduce the three critical components009
of the holistic NNT framework; nextly, we de-010
liver a clear component-centric categorization011
and clean summary of these specific works012
guided by frequently-asked questions (FAQs)013
that aim at making up lack of understanding;014
finally, we discuss several limitations, future015
directions and inspirations. We believe this pa-016
per could facilitate the community to weave017
a holistic and clear picture of our current un-018
derstandings of the standard NMT framework019
and shed light on its future improvements020
and developments. Please check this website021
https://nmtology.github.io/ for a022
visual guidance of the FAQs.023

1 Introduction024

Machine Translation is an extremely challenging025

task. Statistical Machine Translation (SMT), which026

models translation in a pipelined manner, was his-027

torically one of the popular approaches (Koehn028

et al., 2003; Chiang, 2005). In the SMT pipeline,029

each module plays a clear role and is parameterized030

by a relatively simple model, leading to easy inter-031

pretability. Recently, Neural Machine Translation032

(NMT) framework establishes new state-of-the-art033

performances (Barrault et al., 2019, 2020). The034

strengths of NMT come from its strong modeling035

power with complex deep encoder-decoder archi-036

tecture and holistic end-to-end training, which lead037

to poor interpretability. Consequently, the poor in-038

terpretability prevents us from elegantly debugging039

the model, trusting its outputs, and particularly fur-040

ther improving performance (Ding et al., 2017).041

This paper conducts a thorough survey on under- 042

standing components of the NMT framework, cov- 043

ering a hundred papers published in recent years. 044

Our survey is component-centric, that is, we orga- 045

nize related papers in terms of every NMT compo- 046

nent and highlight important questions frequently- 047

asked w.r.t. that component. We want our readers 048

to treat this paper as instructional FAQs about un- 049

derstanding the black-box of the NMT framework, 050

so they can quickly zoom into certain question and 051

find the corresponding papers to complement their 052

lack of understanding. §2 briefly introduces every 053

components of the NMT framework, while §3, §4, 054

§5, §6 summarize works in terms of model archi- 055

tecture, training, inference and behavior. In §7, we 056

discuss limitations and future directions. 057

Related surveys Lertvittayakumjorn and Toni 058

(2021); Danilevsky et al. (2020); Luo et al. (2021) 059

are more general surveys on principles for explain- 060

able NLP, as they mainly discuss general desiderata 061

and possible explanation paradigms or frameworks. 062

Sajjad et al. (2021) survey specific neuron-level 063

interpretation methods for NLP models, while Be- 064

linkov and Glass (2019) and Sun et al. (2021) focus 065

on surveying a broad range of general techniques 066

and methods for interpreting NLP models on vari- 067

ous tasks. The closest work in organization to us 068

might be Rogers et al. (2020). They deliver a thor- 069

ough survey on research questions, directions, and 070

solutions around large pretrained models. In our pa- 071

per, we organize research works guided by research 072

questions that are more related to the interpretation 073

and understanding side, so that researchers can 074

gain in-depth insights in various components and 075

learning phenomena of the NMT framework. 076

2 The NMT Framework 077

The NMT framework is proposed as a sequence-to- 078

sequence transduction task (Sutskever et al., 2014). 079

To make the framework clean to readers, we divide 080
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it roughly into three independent and indispensable081

modules: i) model architecture; ii) model training,082

and iii) inference mechanism.083

Model architecture The NMT model is usually084

implemented with the encoder-decoder with atten-085

tion architecture. Recurrent neural networks are086

used to parameterize the model (Bahdanau et al.,087

2014; Wu et al., 2016). Then convolutional and088

self-attention neural networks are proposed respec-089

tively (Gehring et al., 2017; Vaswani et al., 2017).090

Model training Typical training uses maximum091

likelihood estimation (MLE) to minimize the neg-092

ative log-likelihood: L(θ) = − logPθ(y|x) =093

−
∑

t logPθ(yt|x, y<t). Reinforcement Learning094

(RL) is also leveraged for optimizing the evaluation095

metric based loss: L(θ) = −Eŷ∼Pθ(y|x)m(ŷ, y∗),096

where m(·, y∗) denotes certain evaluation met-097

ric, e.g., BLEU. Like RL, minimum risk train-098

ing (MRT) is also used to optimize metric (Shen099

et al., 2016). Besides, many tricks such as learning100

rate schedule, normalization techniques, and label101

smoothing are also used. For Non-Autoregresstive102

neural machine Translation (NAT), knowledge dis-103

tillation (KD) is used for performance boosting.104

Model inference Beam search is used to find an105

approximate solution of the ŷ = argymaxPθ(y|x)106

problem. Due to several issues of the vanilla beam107

search, tricks like the length penalty are proposed.108

3 Understanding Model Architecture109

3.1 Understanding encoder/decoder110

Q. Does encoder’s representation entail linguis-111

tic knowledge? Most of the works on this topic112

use certain linguistic tasks to assess the power of113

the learned hidden representations. Early on, Shi114

et al. (2016) begin to answer whether string-based115

NMT models learn about source syntax. They test116

hidden states’ ability to predict syntactic labels,117

e.g., voice, tense, smallest phrase constituent. Be-118

linkov et al. (2017) deliver thorough analyses us-119

ing the method of probing on what encoder learns120

about morphology knowledge of source languages.121

Main conclusions like the depth of the layer, the122

input representation (word, character), and the lan-123

guage types are important factors influencing the124

learned knowledge of morphology can be drawn125

from their analyses. Belinkov et al. (2020a) ar-126

range together the analyses on the power of learned127

representation across various granularities of lin-128

guistic knowledge based on probing mainly for the129

encoder. They further add syntactic and semantic 130

tasks . Bisazza and Tump (2018) also study mor- 131

phology knowledge captured by embedding layer. 132

Q. Can encoder learn word sense disambigua- 133

tion? Several works attempt to understand word 134

sense disambiguation (WSD) ability of NMT mod- 135

els. Rios Gonzales et al. (2017) construct a con- 136

trastive dataset where references are accompanied 137

with a rewritten one that has an incorrect transla- 138

tion of a source ambiguous word. They find that 139

the model ranks 70% of such contrastive pairs cor- 140

rectly, indicating the model’s strong WSD ability. 141

Marvin and Koehn (2018) further investigate the 142

hidden activations’ WSD ability through visualiza- 143

tion of hidden vector clusters. Tang et al. (2019a) 144

take the encoder as a whole for WSD ability analy- 145

ses under different model architectures via probing. 146

Q. Does decoder’s representation entail linguis- 147

tic knowledge? Belinkov et al. (2017) study the 148

linguistic properties of decoder’s representation 149

compared to encoder’s. They probe and find that 150

decoder’s representation falls back a lot in accuracy 151

of predicting POS tags. In contrast, in their later 152

work (Belinkov et al., 2020a), they find that de- 153

coder’s representation is similar to or better than en- 154

coder’s for morphological tag prediction. Instead, 155

Li et al. (2019a) study the possibly learned coarse- 156

to-fine characteristics of decoder’s layer-wise repre- 157

sentation with probes on hierarchical probing tasks. 158

Q. Can a single neuron entail linguistic knowl- 159

edge? Instead of taking vector representation as 160

a whole, Bau et al. (2019) leverage an unsuper- 161

vised method to identify important neurons and use 162

GMM to find neurons that controls linguistic fea- 163

tures in prediction. Dalvi et al. (2019) also propose 164

supervised methods to extract salient neurons and 165

analyze their linguistic properties through probing. 166

Q. Can linguistic knowledge be preserved after 167

pruning? Movva and Zhao (2020) study the rep- 168

resentation of modules of the Transformer model 169

while being pruned. They observe that pruning de- 170

grades semantic knowledge before affecting BLEU, 171

and representation in higher layers changes most. 172

Q. Which component of NMT is more critical, 173

encoder or decoder? Tang et al. (2019b) attempt 174

to reveal the representational power of the encoder 175

by removing it, so as a result, the encoder is just 176

word and position embeddings. They find that the 177

non-contextualized encoder representation largely 178
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degrades performance; however, the attention mod-179

ule complements this as a strong feature extractor.180

Kasai et al. (2020) study encoder/decoder with var-181

ied depths. They find that a sufficiently deep en-182

coder with a single-layer decoder can achieve com-183

parable performance with balanced layer depth.184

3.2 Understanding attention185

3.2.1 Cross-attention186

Q. Does attention learn alignments? When at-187

tention was first introduced into NMT models (Bah-188

danau et al., 2014), it was believed as a word align-189

ment module inside NMT. Liu et al. (2016); Mi190

et al. (2016); Li et al. (2018); Baan et al. (2019)191

try to improve NMT’s translation quality by im-192

proving the alignment performance of its attention193

module. However, the attention module in NMT194

was far from qualified as a good word aligner com-195

pared with statistical word aligners (Koehn and196

Knowles, 2017; Li et al., 2019b). Although the197

AER of attention is dissatisfactory, Li et al. (2019b)198

did successfully induce decent alignments from199

NMT models by the method Prediction Difference200

(PD). Notably, Li et al. (2019b) empirically showed201

that, towards predictions instead of references, the202

performance of alignments induced by PD could203

surpass well-performed traditional statistical align-204

ers. This result rekindled the confidence in induc-205

ing accurate alignments from the attention mod-206

ule. By improving training (Garg et al., 2019) and207

modeling (Alkhouli et al., 2018; Chen et al., 2020;208

Kobayashi et al., 2020) methods, the alignment209

performance of NMT’s attention are constantly im-210

proved. In the situation where translation quality211

is not as important as alignment performance, at-212

tention can also be extremely helpful in building a213

well-performed word aligner (Zenkel et al., 2020).214

Q. Do attention weights reflect NMT’s reason-215

ing? Since Bahdanau et al. (2014) introduced216

attention to NMT, attention weights were often217

claimed to explain the inner-working mechanism218

of neural models (Li et al., 2016). Jain and Wallace219

(2019) are the first to question attention’s ability220

to provide transparency for model predictions by221

showing a weak correlation between intuitive fea-222

ture importance measures and attention weights in223

text classification, question answering, and natural224

language inference tasks. However, Wiegreffe and225

Pinter (2019) argue that Jain and Wallace (2019)226

does not disprove the usefulness of attention for227

explainability by showing the attention weights can-228

not be easily hacked adversarially. Based on this 229

observation, Moradi et al. (2020) provide a mea- 230

sure of the faithfulness of NMT and an adversarial 231

regularization that can lead to more trustworthy at- 232

tention heatmaps without reducing the translation 233

quality. Current analyses are mainly focused on 234

simpler single-head RNN based models. In the fu- 235

ture, checking whether the current understanding 236

holds on multi-head attention of Transformer could 237

be an interesting direction. 238

3.2.2 Self-attention 239

Q. Is self-attention network better than RNN? 240

The common suspicion is that self-attention can 241

connect distant words via shorter network paths 242

than RNNs to improve the ability to model long- 243

range dependencies. However, this theoretical ar- 244

gument is not tested empirically. Tang et al. (2018) 245

evaluate RNNs, CNNs, and multi-head attention 246

networks (SAN) on two tasks: subject-verb agree- 247

ment and word sense disambiguation to measure 248

the ability to extract semantic features from the 249

source text. Their experimental results show that 250

the SAN performs distinctly better than RNNs and 251

CNNs on word sense disambiguation. However, 252

all of them are similar in modeling subject-verb 253

agreement over long distances. Besides, SAN is 254

ascribed to be weak at learning positional informa- 255

tion of words for sequence modeling compared to 256

the models with recurrence structure. Yang et al. 257

(2019) show that although SAN trained on word re- 258

ordering detection has difficulty learning positional 259

information, SAN trained on machine translation 260

learns better positional information than RNN. 261

Q. Is multi-head better than single-head? In 262

Transformer, multi-head attention strengthens the 263

expressive power of a model by extending a single 264

head to multiple parallel heads. From a Bayesian 265

perspective, An et al. (2020) understands why one 266

needs multi-head attention by showing it is equiva- 267

lent to using more samples to approximate an un- 268

derlying posterior distribution. Snell et al. (2021) 269

explain why attention obtained by MLE often cor- 270

relates well with saliency and how attention can 271

increase performance by improving its training 272

dynamics rather than expressiveness. Raganato 273

et al. (2020) deliver a finding that for the encoder’s 274

multi-head attention, fixing other heads’ weight 275

and only learning one head can achieve similar 276

performance in high-resource translation tasks and 277

even improve performance up to 3.5 BLEU points 278
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in low-resource scenarios. Behnke and Heafield279

(2020) propose simple heuristics for pruning atten-280

tion heads at the early stage of training. It confirms281

that most attention heads are not confident in their282

decisions. Michel et al. (2019); Voita et al. (2019b);283

Liu et al. (2021) empirically show that multi-heads284

are redundant at test time but are greatly helpful285

in training. This opens up many opportunities for286

downsizing these humongous models for inference.287

4 Understanding Training288

4.1 Training data289

Q. How does data noise affect NMT? Noise in290

bitext corpus impacts NMT a lot. Khayrallah and291

Koehn (2018) investigate the impact of various292

types of noise of the training data on the perfor-293

mance of the NMT model and an SMT model. By294

adding many controlled types of noise to the origi-295

nal high-quality data, they find that the NMT model296

is very susceptible to noise and can degrade up to297

9 BLEU points, whereas the SMT model can even298

obtain 1 BLUE improvement. They build five types299

of noise and analyze how these noises can impact300

translation quality. They find copy noise, where the301

target is just the copy of the source, is most harm-302

ful. Ott et al. (2018) reemphasize the harmfulness303

of copy noise in training data. They also find that304

beam search puts too much probability mass over305

the whole search space due to data uncertainty, not306

concentrating on accurate and relevant translations.307

Q. How does the src/tgt divergence affect NMT?308

Briakou and Carpuat (2021) study fine-grained se-309

mantic divergences in bitext. They propose three310

typical divergences, lexical substitution, phrase re-311

placement, and subtree deletion. They study their312

effects on NMT and find subtree deletion degrade313

performance the most. In a semi-supervised setting,314

due to extra monolingual data, the textual domains315

of src/tgt might exhibit topic divergence. Shen et al.316

(2021) propose a metric to measure such mismatch317

phenomenon and study its effects, particularly with318

varying data scales and find it can severely degrade319

performance in a low-resource setting.320

Q. Why does DA training help? Data Augmen-321

tation (DA) methods are effective in training NMT322

with few theory-oriented understanding. Li et al.323

(2019a) borrow empirical evidence that input sen-324

sitivity and prediction margin can measure gener-325

alization ability from the learning theory commu-326

nity and apply them to test intrinsic changes of the327

model before and after DA. DA methods generally 328

lead to better insensitivity and a larger margin. 329

Q. What factors of BT data matter? Amongst 330

all DA methods, Back-Translation (BT) is the most 331

extensively adopted one in challenges and deploy- 332

ments to obtain state-of-the-art translation qual- 333

ity. Edunov et al. (2018a) conducts a large-scale 334

analysis of practical BT training. They argue that 335

randomness is an essential factor for improving per- 336

formance, so they use sampling rather than beam 337

search to obtain pseudo bitext. However, Caswell 338

et al. (2019) argues that randomness might not be 339

the reason for better practice in synthetic data gen- 340

eration in BT. They claim that the NMT model 341

can automatically distinguish synthetic or real data 342

and learn different attention patterns over them. So 343

they propose tagged BT to improve standard BT. 344

Following this work, Marie et al. (2020) further 345

proves that tagged BT can prevent the NMT model 346

from over-fitting to those machine-generated data. 347

Besides, Graça et al. (2019) proposes a math in- 348

terpretation of back-translation, which links BT to 349

variational inference and motivates multi-turn BT. 350

4.2 Training loss 351

Q. What are the issues of NLL? Negative log- 352

likelihood (NLL) loss is the default loss function 353

to train NMT models with MLE. NLL is a token- 354

level loss that is locally normalized and defined 355

on ground-truth prefix. Such characteristics make 356

NLL suffer from the following issues as discussed 357

in Ranzato et al. (2015); Wiseman and Rush (2016): 358

i) exposure bias: the model is never exposed to its 359

own errors during training, and so the inferred his- 360

tories at test-time do not resemble the gold training 361

histories; ii) train-test mismatch: training uses a 362

token-level loss, while at test-time, we target im- 363

proving sequence-level evaluation metrics, such as 364

BLEU; iii) label bias: the model score is locally 365

normalized at the token level, whereas the search 366

algorithm cares about the sequence level score. 367

Edunov et al. (2018b) investigate other token-level 368

loss choices such as margin-based losses and find 369

they do not lead to significant improvement over 370

NLL. Afterward, a large set of works have tried 371

to propose methods based on RL to overcome the 372

above three issues, though they seem to leave NLL 373

unshakeable (Bengio et al., 2015; Shen et al., 2016; 374

Wu et al., 2018; Zhang et al., 2019). 375

Q. Can RL-oriented loss be better than NLL? 376

RL is used for solving pitfalls of NLL loss. How- 377
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ever, large-scale experiments in Wu et al. (2016)378

do not find promising performance improvements.379

Later on, Wu et al. (2018) study effective training380

tricks that can stably improve RL over NLL, but381

analyses on why RL cannot reach our expectation is382

still lacking. More recently, Choshen et al. (2020)383

deliver a novel understanding of the limitations384

of RL-based training. They find a peaking effect385

statistics to clarify the poor exploration problem of386

RL training due to the model distribution, which387

renders reward for being less critical. Following388

their work, Kiegeland and Kreutzer (2021) provide389

several counter-evidences in terms of claims that390

regard model distribution to be more critical than391

reward in Choshen et al. (2020). They revisit tricks392

like variance reduction, explore-exploitation trade-393

off and find that peakiness cannot solely explain394

improvements, and successful exploration can also395

improve the likelihood of low-ranked tokens.396

Q. How does KD help with NAT? Knowledge397

Distillation at sequence-level (KD) (Kim and Rush,398

2016) is another loss used to train a student NMT399

model from the output distribution or prediction of400

a teacher model. In Non-Autoregressive machine401

Translation (NAT), KD is a crucial training tech-402

nique to bring the NAT model’s performance close403

to autoregressive ones (Gu et al., 2017). Zhou et al.404

(2020b) investigate the critical role of KD in non-405

autoregressive NMT training. They find that KD406

reduces the complexity of the training bitext cor-407

pora to alleviate the learning/optimization burden408

of the NAT model due to its less powerful modeling409

power. They also propose improved KD loss func-410

tions for improved training. Xu et al. (2021) further411

analyze the impacts of KD training over the intrin-412

sic characteristics of the NAT model. By defining413

two measures, namely word ordering agree and414

lexical diversity, they empirically demonstrate that415

KD is actually reducing training data complexity416

in terms of word ordering and lexical choices.417

4.3 Training tricks418

Since Transformer has already become the de-facto419

architecture for NMT best practice, several works420

attempt to dig deeper into those tricks for making421

Transformer training really work.422

Q. How does LN help? As for the trick of Layer423

Normalization (LN), Wang et al. (2019b) calculate424

the instability of gradient mathematically when425

putting LN layer after residual block (post-LN) and426

empirically prove the effectiveness of pre-LN for427

scaling up Transformer with deeper layers. Then, 428

Xiong et al. (2020) take advantage of the mean field 429

theory to prove that post-LN connection at initial- 430

ization leads to a large gradient. They find that the 431

warming-up stage is avoiding such a problem. 432

Q. How residual blocks cause training instabil- 433

ity? Besides the position of LN, Liu et al. (2020) 434

provide comprehensive analyses of what compli- 435

cates Transformer training theoretically and empir- 436

ically. Their analyses find that the residual blocks 437

can also lead to the unbalanced gradient issue. 438

Q. How does label smoothing help? As for the 439

typical trick label smoothing, Müller et al. (2019) 440

find that label smoothing can help calibrate training 441

instances. Gao et al. (2020) investigate its theo- 442

retical and empirical role. Theoretically, they find 443

what objective label smoothing is optimized for and 444

derive an analytical solution for visualization for 445

picking a better probability mass hyper-parameter 446

for smoothing (e.g., from usual 0.1 to 0.3). 447

5 Understanding Inference 448

5.1 Prediction explanation 449

Q. How to attribute NMT model’s prediction? 450

One effective way to interpret the NMT model’s 451

behavior is to understand why the model predicts 452

specific tokens step-wise regarding input tokens. 453

At the beginning of NMT, attention is leveraged to 454

visualize output-input correlation (Bahdanau et al., 455

2014). Then, Alvarez-Melis and Jaakkola (2017) 456

propose a perturbation-based method to collect 457

correlation pairs from relating every target token 458

to every source token so that the explanation is 459

model-agnostic. They exemplify with a case study 460

that model debugging could be conducted based 461

on such attention-like visualizations. Ding et al. 462

(2017) leverage the so-called layer-wise relevance 463

propagation (LRP) to capture the correlation of any 464

two nodes in the computation graph of the model. 465

They further use this method to visualize the re- 466

lationship between prediction and input. Several 467

translation errors are analyzed using LRP visual- 468

ization to show the power of this method. Treviso 469

and Martins (2020) proposes sparse/selective at- 470

tention as a better way than gradient and erasure 471

methods that relate prediction to input features (se- 472

quence) in terms of a success rate of a communi- 473

cation game (in Sec. G of the paper). Abnar and 474

Zuidema (2020) propose a new method for visual- 475

izing the flow of the information from each input 476
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token to the output. Their proposed methods corre-477

late well with attention and gradient-based method.478

More broadly speaking, various kinds of so-called479

attribution methods in Sec. B.1 can all be adapted480

to explain step-wise prediction of NMT. Vafa et al.481

(2021) propose a combinatorial optimization for-482

mulation for finding a subset of input that correlates483

most with a given output token. Their experiments484

show that the proposed method is most faithful485

among other explanation methods.486

Q. How to properly evaluate prediction attribu-487

tion of NMT model? As mentioned in the previ-488

ous question, various prediction attribution meth-489

ods can be used to explain model prediction. How-490

ever, in practice which method to choose? There491

seems to be no fixed answer currently since there492

are already several issues found with attributions.493

Regardless of these issues, several works have pro-494

posed methods to evaluate attributions from differ-495

ent perspectives. Li et al. (2020) propose to use the496

word-to-word correlation rules extracted by vari-497

ous attribution methods to train models close to the498

original NMT model and uses the closeness as a499

way to evaluate the attribution results. Treviso and500

Martins (2020)’s communication game can also501

be used as an evaluation method. Beyond NMT,502

several works propose methods and benchmarks503

for evaluating attribution (Hao, 2020; Arras et al.,504

2019; Ismail et al., 2020; Ding and Koehn, 2021).505

5.2 Decoding explanation506

Q. Do larger beams lead to better results? Af-507

ter widely adoption of NMT, Koehn and Knowles508

(2017) describe a common phenomenon of beam509

search decoding across various language pairs, that510

is, by increasing beam size, the BLEU score will511

rise up a little and then jump down quite a lot,512

compared to SMT. This represents the so-called513

length bias problem which has been investigated to514

show its correlation with i) decoding scoring func-515

tion (Huang et al., 2018; Yang et al., 2018) and ii)516

beam size. Murray and Chiang (2018) further find517

that label bias is one factor of such a problem and518

propose a simple heuristic to alleviate it. Cohen519

and Beck (2019) deliver a more detailed analysis520

on beam search using the concept of search discrep-521

ancies, which is computed through the difference522

between the maximum log probability and log prob-523

ability of the ground-truth token at every time-step524

under force decoding. They find that a larger beam525

size may cause larger and more discrepancies at526

the beginning of decoding, degrading performance. 527

Q. Is beam search good enough? Stahlberg and 528

Byrne (2019) analyze the impacts of model/search 529

errors on performance, based on exact inference 530

for vanilla beam search. They find the model error 531

is more responsible. Meister et al. (2020) cleverly 532

frame beam search as exact solution to a different 533

decoding objective to gain insights into why high 534

probability under a model alone may not guaran- 535

tee adequacy. Eikema and Aziz (2020) attempt to 536

clarify the problem of maximum a posterior (MAP) 537

based beam search. They find that translation distri- 538

butions of the model do reproduce various statistics 539

of the training data, but beam search strays from 540

such statistics. They also propose to use Minimum 541

Bayes Risk (MBR) decoding instead. Müller and 542

Sennrich (2021) study the properties of MBR de- 543

coding. They find that MBR decoding still exhibits 544

length and token frequency bias due to the bias of 545

evaluation metrics, but MBR also increases robust- 546

ness against copy noise and domain shift. 547

6 Understanding Model Behavior 548

Model behavior understanding is generally an ef- 549

fort to characterize and analyze certain property of 550

the model’s predictions in terms of certain aspect or 551

factor in concern. Currently, we can divide those re- 552

search works into three main categories according 553

to their adopted analysis methodologies: a). static 554

analysis: that tries to directly analyze properties 555

of the model’s predictions, e.g., fluency, grammat- 556

icality, word choice, the degree of literalness or 557

creativity, etc.; b). controlled analysis: that tries 558

to characterize the model’s reaction to inputs con- 559

structed with certain properties in concern, e.g., 560

compositionality, specific linguistic phenomenon, 561

etc.; c). dynamic analysis: that attempts to do in- 562

terventions and manipulation to the inputs or the 563

model, which might help reveal weaknesses of the 564

model when making predictions about these inputs, 565

e.g., adversarial examples, syntactic/semantic vari- 566

ants, hallucinations, noise in training data, etc. 567

6.1 Static analysis 568

Q. Is NMT model’s prediction linguistically nat- 569

ural? Toral and Sánchez-Cartagena (2017) con- 570

duct a comparative study between the predictions 571

of NMT and SMT models in terms of fluency, re- 572

ordering, sentence length among 9 language direc- 573

tions. It highlights the power of NMT models on 574
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generating more fluent, accurately reordered predic-575

tions. Later on, Martindale et al. (2019) also study576

the fluency-adequacy dilemma of neural models.577

Wei et al. (2018) investigate the grammaticality of578

NMT outputs. They leverage the so-called English579

Resource Grammar as a reference for comparison.580

They find that over 93% of the model translations581

are parseable, suggesting that the model learns to582

generate conforming to grammar; however, rare583

syntactic rules are seldom learned.584

Q. Can NMT model generate long-tailed trans-585

lation? Long-tailed translations can be predic-586

tions that contains low-frequent tokens, complex587

phrases, and advanced sentence structures. Rau-588

nak et al. (2020) characterize the hardness of NMT589

to predict long-tailed words and tokens through590

token-level and sentence-level metrics. Agrawal591

and Carpuat (2019) study text complexity of predic-592

tions and focus on controlling the outputs towards593

less complexity. Vanmassenhove et al. (2021) give594

a detailed and sufficient analysis on the richness of595

word choices and synonyms etc.. They also design596

several metrics to evaluate linguistic complexity.597

Long-tailed translations can also be indirect trans-598

lations of phrases that are seldom in the common599

bitext corpus. Zhai et al. (2020) investigate whether600

NMT models are capable of producing non-literal601

translations. They propose methods to detect those602

non-literal translation phenomena in bitext.603

Q. Can model’s prediction be well calibrated?604

Calibration is a sound property of a learned model605

to predict the probability of the true correctness606

likelihood (Guo et al., 2017). Kumar and Sarawagi607

(2019) analyze the sources of surprising miscali-608

bration in NMT. They find that the severe miscal-609

ibration of the EOS token and the suppression of610

attention uncertainty are two main reasons. Wang611

et al. (2020) further study the fine-grained calibra-612

tion of the model predictions. They characterize613

miscalibrated tokens with linguistic features, such614

as questions about how part-of-speech, frequency,615

word position, word granularity affect calibration.616

6.2 Controlled analysis617

Q. Can NMT model handle inputs with differ-618

ent types of linguistic phenomenon? Inputs to619

an NMT model can be linguistically sophisticated.620

Burchardt et al. (2017) manually construct a test621

suite with different kinds of linguistic phenomenon622

of the source input sentences, for instances, multi-623

word expressions, verb tense/aspect/mood, named624

entity, and terminology in German⇔English trans- 625

lation tasks. They compare the performance of the 626

Google NMT system at that time with SMT and 627

rule-based models on this test suite. They find that 628

neural models handle multiword expressions much 629

better than rule-based and SMT models, while 630

rule-based ones can handle verb tense/aspect/mood 631

structure the best, and SMT handles named enti- 632

ties the best. Similarly, Isabelle et al. (2017) con- 633

struct a challenge set with yes/no questions for an- 634

alyzing both phrase and neural translation models’ 635

capability to handle three categories of linguistic 636

phenomenon in English⇒French task. They find 637

NMT models are much better at tackling subject- 638

verb agreement and perform well on handling both 639

lexico-syntactic and syntactic divergences. They 640

also identify some weaknesses of neural models; 641

please refer to Table 3 in that paper for details. 642

Q. Can NMT model handle inputs composition- 643

ally? Raunak et al. (2019) measure two distinct 644

traits of compositionality - productivity and sys- 645

tematicity - of the NMT model by comparing per- 646

formance before and after sentence concatenation. 647

Their experiments quantitatively attribute the poor 648

performance to the weakness of the encoder’s rep- 649

resentational power. Li et al. (2021) build a bench- 650

mark for training and testing the model’s compo- 651

sitional capability to tackle compounds, which are 652

constructed through pre-defined atoms and syntac- 653

tic rules. Dankers et al. (2021) evaluate the model’s 654

compositionality through the lens of the model’s 655

local/global processing of the input. Voita et al. 656

(2019a) focus on a problem of NMT model trained 657

on sentence-level, that is, while the model can ac- 658

curately translate sentences A and B, but can not 659

when A and B are concatenated in a broader con- 660

text, which can be also regarded as a problem of 661

compositionality in discourse translation. All the 662

above works find that Transformer or more or other 663

NMT models have poor compositionality. 664

6.3 Dynamic analysis 665

Q. Is NMT model robust to inputs? Adversar- 666

ial examples are an essential direction for testing 667

the NMT model’s robustness where the adversar- 668

ial inputs are created through input manipulation. 669

Belinkov and Bisk (2018) is the first to investi- 670

gate how realistic, natural adversarial input (e.g. 671

character-level keyboard typing errors) can break 672

the char-based translation model. Zhao et al. (2017) 673

and Cheng et al. (2020) investigate model-based 674

7



methods for generating adversarial examples; while675

Ebrahimi et al. (2018) focus on attacking the char-676

based NMT models. Besides adversarials, He et al.677

(2019) use different input word replacement strate-678

gies to identify important source words that guaran-679

tee the translation quality of the source input. They680

argue that the so-called importance words are cru-681

cial to guarantee fertility and should not be ignored.682

Fadaee and Monz (2020) study the so-called volatil-683

ity of NMT models where the input is semantically684

and syntactically transformed while the prediction685

can have unexpected disastraous changes. They686

find RNN and Transformer display volatile behav-687

ior in 26% and 19% of sentence variations.688

Q. When or why does NMT model hallucinate?689

Hallucination is a recently identified phenomenon690

in Lee et al. (2018). It is the problem of an NMT691

model that outputs irrelevant sentence predictions692

or textual spans with respect to certain constructed693

input. They analyze the attention patterns that dis-694

tinguish hallucinated and normal predictions. Rau-695

nak et al. (2021) connect this phenomenon to long-696

tailed memorization effect of the model. Wang and697

Sennrich (2020) regard exposure bias as one factor698

of hallucination and find domain-shift amplifies its699

harmfulness. Zhou et al. (2020a) tackle the identifi-700

cation problem of hallucination of neural sequence701

model in general. They construct datasets for token-702

wise annotation of hallucination and explore some703

basic methods for detecting hallucinated tokens.704

7 Limitations, Future and Conclusion705

In this part, we summarize several current limita-706

tions of those aforementioned understandings, in-707

terpretations and findings, and propose a few future708

directions on the understanding course of NMT.709

• Vacuousness of representation probing: prob-710

ing measures the feature generalization ability711

of the NMT learned representations on certain712

concerned linguistic task, however, does do-713

ing well on that task really help the model with714

the translation task? Such direct correlation715

between probing task and translation is very716

vague as well. Elazar et al. (2021) attempt717

to resolve this issue through explicit remov-718

ing certain linguistic knowledge in the learned719

representation of BERT to see its utility on720

the downstream classification tasks. So, how721

about using such analysis in more complex722

translation tasks (Ravichander et al., 2021).723

• Usability of prediction attribution: § 5’s first 724

question discusses many methods for attribut- 725

ing predicted tokens to previous input tokens. 726

Besides the evaluation issue of these methods, 727

how to use such attributions to debug model, 728

moreover, to improve user trust beyond sole 729

alignment or to improve interactive transla- 730

tion (Santy et al., 2019) is not well explored. 731

• Insufficient understanding on learning dynam- 732

ics: by exploring learning dynamics, theorists 733

have found critical learning phases that deter- 734

mine final generalization (Achille et al., 2017; 735

Hu et al., 2020; Jastrzebski et al., 2021). How- 736

ever, investigations of learning dynamics are 737

largely neglected in NMT, except for Saphra 738

and Lopez (2019); Zhu et al. (2020); Voita 739

et al. (2021). We think gaining more insights 740

in the learning dynamics of NMT model might 741

help with better curriculum, data selection, in- 742

stance reweighting, noise-based learning, etc.. 743

• Lack of data-centric understanding: many of 744

the current understandings leverage a model- 745

centric analysis, i.e., only considering archi- 746

tectural inductive bias without knowing char- 747

acteristics of the training data, however, the 748

ultimate model behavior is largely determined 749

by the training instances as well (Yona et al., 750

2021). In NLP, there have been works that 751

using dataset attribution techniques like in- 752

fluence function (Koh and Liang, 2017) to 753

find artifacts in the training set for text clas- 754

sification (Han et al., 2020). Thus how to 755

adopt similar methods to the complex ma- 756

chine translation task should be studied. We 757

think this direction may help researchers cu- 758

rate more compact and continuously-updated 759

datasets for sample-efficient training and con- 760

tinual learning (Cao et al., 2021) of NMT. 761

As a conclusion, the understanding of the evolv- 762

ing NMT framework should be always on its way 763

and, to find limitations of the current best prac- 764

tice, emerging topics with multilingual, continual 765

and discourse NMT (Dabre et al., 2020; Garcia 766

et al., 2021; Yin et al., 2021) require better under- 767

standing, theory-oriented and empirical analyses as 768

well, so the FAQs here (https://nmtology. 769

github.io/) might and should be revisited and 770

updated in new scenarios. The authors believe that 771

knowing the historic understandings could help the 772

community pave the way towards the future. 773
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Filip Graliński, Anna Wróblewska, Tomasz 1109
Stanisławek, Kamil Grabowski, and Tomasz 1110

11

https://aclanthology.org/2020.aacl-main.46
https://aclanthology.org/2020.aacl-main.46
https://aclanthology.org/2020.aacl-main.46
https://doi.org/10.18653/v1/W19-5201
https://doi.org/10.18653/v1/W19-5201
https://doi.org/10.18653/v1/W19-5201
https://doi.org/10.18653/v1/P17-1106
https://doi.org/10.18653/v1/P17-1106
https://doi.org/10.18653/v1/P17-1106
https://www.aclweb.org/anthology/C18-1055
https://www.aclweb.org/anthology/C18-1055
https://www.aclweb.org/anthology/C18-1055
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/D18-1045
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.18653/v1/2020.coling-main.398
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.1162/tacl_a_00359
https://doi.org/10.18653/v1/2020.ngt-1.10
https://doi.org/10.18653/v1/2020.ngt-1.10
https://doi.org/10.18653/v1/2020.ngt-1.10
https://doi.org/10.18653/v1/2020.ngt-1.10
https://doi.org/10.18653/v1/2020.ngt-1.10
https://www.aclweb.org/anthology/2020.aacl-main.25
https://www.aclweb.org/anthology/2020.aacl-main.25
https://www.aclweb.org/anthology/2020.aacl-main.25
https://www.aclweb.org/anthology/2020.aacl-main.25
https://www.aclweb.org/anthology/2020.aacl-main.25
https://doi.org/10.18653/v1/2021.naacl-main.93
https://doi.org/10.18653/v1/2021.naacl-main.93
https://doi.org/10.18653/v1/2021.naacl-main.93
https://doi.org/10.18653/v1/2021.naacl-main.93
https://doi.org/10.18653/v1/2021.naacl-main.93
https://doi.org/10.18653/v1/D19-1453
https://doi.org/10.18653/v1/D19-1453
https://doi.org/10.18653/v1/D19-1453
https://doi.org/10.18653/v1/2020.acl-demos.10
https://doi.org/10.18653/v1/2020.acl-demos.10
https://doi.org/10.18653/v1/2020.acl-demos.10
https://doi.org/10.18653/v1/W19-5205
https://doi.org/10.18653/v1/W19-5205
https://doi.org/10.18653/v1/W19-5205


Górecki. 2019. GEval: Tool for debugging NLP1111
datasets and models. In Proceedings of the 20191112
ACL Workshop BlackboxNLP: Analyzing and Inter-1113
preting Neural Networks for NLP, pages 254–262,1114
Florence, Italy. Association for Computational1115
Linguistics.1116

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-1117
tor OK Li, and Richard Socher. 2017. Non-1118
autoregressive neural machine translation. arXiv1119
preprint arXiv:1711.02281.1120

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-1121
berger. 2017. On calibration of modern neural net-1122
works. In International Conference on Machine1123
Learning, pages 1321–1330. PMLR.1124

Xiaochuang Han, Byron C. Wallace, and Yulia1125
Tsvetkov. 2020. Explaining black box predictions1126
and unveiling data artifacts through influence func-1127
tions. In Proceedings of the 58th Annual Meet-1128
ing of the Association for Computational Linguistics,1129
pages 5553–5563, Online. Association for Computa-1130
tional Linguistics.1131

Yiding Hao. 2020. Evaluating attribution methods us-1132
ing white-box LSTMs. In Proceedings of the Third1133
BlackboxNLP Workshop on Analyzing and Interpret-1134
ing Neural Networks for NLP, pages 300–313, On-1135
line. Association for Computational Linguistics.1136

Shilin He, Zhaopeng Tu, Xing Wang, Longyue Wang,1137
Michael Lyu, and Shuming Shi. 2019. Towards un-1138
derstanding neural machine translation with word1139
importance. In Proceedings of the 2019 Confer-1140
ence on Empirical Methods in Natural Language1141
Processing and the 9th International Joint Confer-1142
ence on Natural Language Processing (EMNLP-1143
IJCNLP), pages 953–962, Hong Kong, China. As-1144
sociation for Computational Linguistics.1145

Wei Hu, Lechao Xiao, Ben Adlam, and Jeffrey Pen-1146
nington. 2020. The surprising simplicity of the1147
early-time learning dynamics of neural networks.1148
arXiv preprint arXiv:2006.14599.1149

Liang Huang, Kai Zhao, and Mingbo Ma. 2018. When1150
to finish? optimal beam search for neural text1151
generation (modulo beam size). arXiv preprint1152
arXiv:1809.00069.1153

Pierre Isabelle, Colin Cherry, and George Foster. 2017.1154
A challenge set approach to evaluating machine1155
translation. In Proceedings of the 2017 Conference1156
on Empirical Methods in Natural Language Process-1157
ing, pages 2486–2496, Copenhagen, Denmark. As-1158
sociation for Computational Linguistics.1159

Aya Abdelsalam Ismail, Mohamed Gunady, Hector1160
Corrada Bravo, and Soheil Feizi. 2020. Benchmark-1161
ing deep learning interpretability in time series pre-1162
dictions. In Advances in Neural Information Pro-1163
cessing Systems, volume 33, pages 6441–6452. Cur-1164
ran Associates, Inc.1165

Sarthak Jain and Byron C. Wallace. 2019. Attention is 1166
not Explanation. In Proceedings of the 2019 Con- 1167
ference of the North American Chapter of the Asso- 1168
ciation for Computational Linguistics: Human Lan- 1169
guage Technologies, Volume 1 (Long and Short Pa- 1170
pers), pages 3543–3556, Minneapolis, Minnesota. 1171
Association for Computational Linguistics. 1172

Stanislaw Jastrzebski, Devansh Arpit, Oliver Astrand, 1173
Giancarlo B Kerg, Huan Wang, Caiming Xiong, 1174
Richard Socher, Kyunghyun Cho, and Krzysztof J 1175
Geras. 2021. Catastrophic fisher explosion: Early 1176
phase fisher matrix impacts generalization. In In- 1177
ternational Conference on Machine Learning, pages 1178
4772–4784. PMLR. 1179

Jungo Kasai, Nikolaos Pappas, Hao Peng, James Cross, 1180
and Noah A Smith. 2020. Deep encoder, shallow 1181
decoder: Reevaluating non-autoregressive machine 1182
translation. arXiv preprint arXiv:2006.10369. 1183

Huda Khayrallah and Philipp Koehn. 2018. On the 1184
impact of various types of noise on neural machine 1185
translation. In Proceedings of the 2nd Workshop on 1186
Neural Machine Translation and Generation, pages 1187
74–83, Melbourne, Australia. Association for Com- 1188
putational Linguistics. 1189

Samuel Kiegeland and Julia Kreutzer. 2021. Revisiting 1190
the weaknesses of reinforcement learning for neu- 1191
ral machine translation. In Proceedings of the 2021 1192
Conference of the North American Chapter of the 1193
Association for Computational Linguistics: Human 1194
Language Technologies, pages 1673–1681, Online. 1195
Association for Computational Linguistics. 1196

Yoon Kim and Alexander M. Rush. 2016. Sequence- 1197
level knowledge distillation. In Proceedings of the 1198
2016 Conference on Empirical Methods in Natu- 1199
ral Language Processing, pages 1317–1327, Austin, 1200
Texas. Association for Computational Linguistics. 1201

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and 1202
Kentaro Inui. 2020. Attention is not only a weight: 1203
Analyzing transformers with vector norms. In 1204
Proceedings of the 2020 Conference on Empirical 1205
Methods in Natural Language Processing (EMNLP), 1206
pages 7057–7075, Online. Association for Computa- 1207
tional Linguistics. 1208

Philipp Koehn and Rebecca Knowles. 2017. Six chal- 1209
lenges for neural machine translation. In Proceed- 1210
ings of the First Workshop on Neural Machine Trans- 1211
lation, pages 28–39, Vancouver. Association for 1212
Computational Linguistics. 1213

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003. 1214
Statistical phrase-based translation. In Proceedings 1215
of the 2003 Human Language Technology Confer- 1216
ence of the North American Chapter of the Associa- 1217
tion for Computational Linguistics, pages 127–133. 1218

Pang Wei Koh and Percy Liang. 2017. Understanding 1219
black-box predictions via influence functions. In In- 1220
ternational Conference on Machine Learning, pages 1221
1885–1894. PMLR. 1222

12

https://doi.org/10.18653/v1/W19-4826
https://doi.org/10.18653/v1/W19-4826
https://doi.org/10.18653/v1/W19-4826
https://doi.org/10.18653/v1/2020.acl-main.492
https://doi.org/10.18653/v1/2020.acl-main.492
https://doi.org/10.18653/v1/2020.acl-main.492
https://doi.org/10.18653/v1/2020.acl-main.492
https://doi.org/10.18653/v1/2020.acl-main.492
https://doi.org/10.18653/v1/2020.blackboxnlp-1.28
https://doi.org/10.18653/v1/2020.blackboxnlp-1.28
https://doi.org/10.18653/v1/2020.blackboxnlp-1.28
https://doi.org/10.18653/v1/D19-1088
https://doi.org/10.18653/v1/D19-1088
https://doi.org/10.18653/v1/D19-1088
https://doi.org/10.18653/v1/D19-1088
https://doi.org/10.18653/v1/D19-1088
https://doi.org/10.18653/v1/D17-1263
https://doi.org/10.18653/v1/D17-1263
https://doi.org/10.18653/v1/D17-1263
https://proceedings.neurips.cc/paper/2020/file/47a3893cc405396a5c30d91320572d6d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/47a3893cc405396a5c30d91320572d6d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/47a3893cc405396a5c30d91320572d6d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/47a3893cc405396a5c30d91320572d6d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/47a3893cc405396a5c30d91320572d6d-Paper.pdf
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/W18-2709
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/2020.emnlp-main.574
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://doi.org/10.18653/v1/W17-3204
https://www.aclweb.org/anthology/N03-1017


Aviral Kumar and Sunita Sarawagi. 2019. Calibration1223
of encoder decoder models for neural machine trans-1224
lation. arXiv preprint arXiv:1903.00802.1225

Katherine Lee, Orhan Firat, Ashish Agarwal, Clara1226
Fannjiang, and David Sussillo. 2018. Hallucinations1227
in neural machine translation. OpenReview.net.1228

Piyawat Lertvittayakumjorn and Francesca Toni. 2021.1229
Explanation-based human debugging of nlp models:1230
A survey. arXiv preprint arXiv:2104.15135.1231

Guanlin Li, Lemao Liu, Xintong Li, Conghui Zhu,1232
Tiejun Zhao, and Shuming Shi. 2019a. Understand-1233
ing and Improving Hidden Representations for Neu-1234
ral Machine Translation. In Proceedings of the 20191235
Conference of the North American Chapter of the1236
Association for Computational Linguistics: Human1237
Language Technologies, Volume 1 (Long and Short1238
Papers), pages 466–477, Minneapolis, Minnesota.1239
Association for Computational Linguistics.1240

Jierui Li, Lemao Liu, Huayang Li, Guanlin Li, Guop-1241
ing Huang, and Shuming Shi. 2020. Evaluating ex-1242
planation methods for neural machine translation. In1243
Proceedings of the 58th Annual Meeting of the As-1244
sociation for Computational Linguistics, pages 365–1245
375, Online. Association for Computational Linguis-1246
tics.1247

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-1248
derstanding neural networks through representation1249
erasure. arXiv preprint arXiv:1612.08220.1250

Xintong Li, Guanlin Li, Lemao Liu, Max Meng, and1251
Shuming Shi. 2019b. On the word alignment from1252
neural machine translation. In Proceedings of the1253
57th Annual Meeting of the Association for Com-1254
putational Linguistics, pages 1293–1303, Florence,1255
Italy. Association for Computational Linguistics.1256

Xintong Li, Lemao Liu, Zhaopeng Tu, Shuming Shi,1257
and Max Meng. 2018. Target foresight based atten-1258
tion for neural machine translation. In Proceedings1259
of the 2018 Conference of the North American Chap-1260
ter of the Association for Computational Linguistics:1261
Human Language Technologies, Volume 1 (Long Pa-1262
pers), pages 1380–1390, New Orleans, Louisiana.1263
Association for Computational Linguistics.1264

Yafu Li, Yongjing Yin, Yulong Chen, and Yue Zhang.1265
2021. On compositional generalization of neural1266
machine translation. In Proceedings of the 59th An-1267
nual Meeting of the Association for Computational1268
Linguistics and the 11th International Joint Confer-1269
ence on Natural Language Processing (Volume 1:1270
Long Papers), pages 4767–4780, Online. Associa-1271
tion for Computational Linguistics.1272

Lemao Liu, Masao Utiyama, Andrew Finch, and Ei-1273
ichiro Sumita. 2016. Neural machine translation1274
with supervised attention. In Proceedings of COL-1275
ING 2016, the 26th International Conference on1276
Computational Linguistics: Technical Papers, pages1277
3093–3102, Osaka, Japan. The COLING 2016 Orga-1278
nizing Committee.1279

Liyuan Liu, Jialu Liu, and Jiawei Han. 2021. Multi- 1280
head or single-head? an empirical compari- 1281
son for transformer training. arXiv preprint 1282
arXiv:2106.09650. 1283

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu 1284
Chen, and Jiawei Han. 2020. Understanding the dif- 1285
ficulty of training transformers. In Proceedings of 1286
the 2020 Conference on Empirical Methods in Nat- 1287
ural Language Processing (EMNLP), pages 5747– 1288
5763, Online. Association for Computational Lin- 1289
guistics. 1290

Siwen Luo, Hamish Ivison, Caren Han, and Josiah 1291
Poon. 2021. Local interpretations for explainable 1292
natural language processing: A survey. arXiv 1293
preprint arXiv:2103.11072. 1294

Benjamin Marie, Raphael Rubino, and Atsushi Fujita. 1295
2020. Tagged back-translation revisited: Why does 1296
it really work? In Proceedings of the 58th Annual 1297
Meeting of the Association for Computational Lin- 1298
guistics, pages 5990–5997, Online. Association for 1299
Computational Linguistics. 1300

Marianna Martindale, Marine Carpuat, Kevin Duh, and 1301
Paul McNamee. 2019. Identifying fluently inade- 1302
quate output in neural and statistical machine trans- 1303
lation. In Proceedings of Machine Translation Sum- 1304
mit XVII: Research Track, pages 233–243, Dublin, 1305
Ireland. European Association for Machine Transla- 1306
tion. 1307

Rebecca Marvin and Philipp Koehn. 2018. Exploring 1308
word sense disambiguation abilities of neural ma- 1309
chine translation systems (non-archival extended ab- 1310
stract). In Proceedings of the 13th Conference of 1311
the Association for Machine Translation in the Amer- 1312
icas (Volume 1: Research Track), pages 125–131, 1313
Boston, MA. Association for Machine Translation 1314
in the Americas. 1315

Clara Meister, Ryan Cotterell, and Tim Vieira. 2020. 1316
If beam search is the answer, what was the question? 1317
In Proceedings of the 2020 Conference on Empirical 1318
Methods in Natural Language Processing (EMNLP), 1319
pages 2173–2185, Online. Association for Computa- 1320
tional Linguistics. 1321

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016. 1322
Supervised attentions for neural machine translation. 1323
In Proceedings of the 2016 Conference on Empiri- 1324
cal Methods in Natural Language Processing, pages 1325
2283–2288, Austin, Texas. Association for Compu- 1326
tational Linguistics. 1327

Paul Michel, Omer Levy, and Graham Neubig. 2019. 1328
Are sixteen heads really better than one? In Ad- 1329
vances in Neural Information Processing Systems, 1330
volume 32. Curran Associates, Inc. 1331

Grégoire Montavon, Sebastian Lapuschkin, Alexander 1332
Binder, Wojciech Samek, and Klaus-Robert Müller. 1333
2017. Explaining nonlinear classification decisions 1334
with deep taylor decomposition. Pattern Recogni- 1335
tion, 65:211–222. 1336

13

https://doi.org/10.18653/v1/N19-1046
https://doi.org/10.18653/v1/N19-1046
https://doi.org/10.18653/v1/N19-1046
https://doi.org/10.18653/v1/N19-1046
https://doi.org/10.18653/v1/N19-1046
https://doi.org/10.18653/v1/2020.acl-main.35
https://doi.org/10.18653/v1/2020.acl-main.35
https://doi.org/10.18653/v1/2020.acl-main.35
https://doi.org/10.18653/v1/P19-1124
https://doi.org/10.18653/v1/P19-1124
https://doi.org/10.18653/v1/P19-1124
https://doi.org/10.18653/v1/N18-1125
https://doi.org/10.18653/v1/N18-1125
https://doi.org/10.18653/v1/N18-1125
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2021.acl-long.368
https://doi.org/10.18653/v1/2021.acl-long.368
https://www.aclweb.org/anthology/C16-1291
https://www.aclweb.org/anthology/C16-1291
https://www.aclweb.org/anthology/C16-1291
https://doi.org/10.18653/v1/2020.emnlp-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.463
https://doi.org/10.18653/v1/2020.emnlp-main.463
https://doi.org/10.18653/v1/2020.acl-main.532
https://doi.org/10.18653/v1/2020.acl-main.532
https://doi.org/10.18653/v1/2020.acl-main.532
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://aclanthology.org/W19-6623
https://www.aclweb.org/anthology/W18-1812
https://www.aclweb.org/anthology/W18-1812
https://www.aclweb.org/anthology/W18-1812
https://www.aclweb.org/anthology/W18-1812
https://www.aclweb.org/anthology/W18-1812
https://www.aclweb.org/anthology/W18-1812
https://www.aclweb.org/anthology/W18-1812
https://doi.org/10.18653/v1/2020.emnlp-main.170
https://doi.org/10.18653/v1/D16-1249
https://proceedings.neurips.cc/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf


Pooya Moradi, Nishant Kambhatla, and Anoop Sarkar.1337
2020. Training with adversaries to improve faithful-1338
ness of attention in neural machine translation. In1339
Proceedings of the 1st Conference of the Asia-Pacific1340
Chapter of the Association for Computational Lin-1341
guistics and the 10th International Joint Conference1342
on Natural Language Processing: Student Research1343
Workshop, pages 93–100, Suzhou, China. Associa-1344
tion for Computational Linguistics.1345

Rajiv Movva and Jason Zhao. 2020. Dissecting lottery1346
ticket transformers: Structural and behavioral study1347
of sparse neural machine translation. In Proceed-1348
ings of the Third BlackboxNLP Workshop on Ana-1349
lyzing and Interpreting Neural Networks for NLP,1350
pages 193–203, Online. Association for Computa-1351
tional Linguistics.1352

Mathias Müller and Rico Sennrich. 2021. Understand-1353
ing the properties of minimum bayes risk decoding1354
in neural machine translation. In Proceedings of the1355
Joint Conference of the 59th Annual Meeting of the1356
Association for Computational Linguistics and the1357
11th International Joint Conference on Natural Lan-1358
guage Processing (ACL-IJCNLP 2021).1359

Rafael Müller, Simon Kornblith, and Geoffrey E. Hin-1360
ton. 2019. When does label smoothing help? In1361
NeurIPS.1362

Kenton Murray and David Chiang. 2018. Correct-1363
ing length bias in neural machine translation. In1364
Proceedings of the Third Conference on Machine1365
Translation: Research Papers, pages 212–223, Brus-1366
sels, Belgium. Association for Computational Lin-1367
guistics.1368

Myle Ott, Michael Auli, David Grangier, and1369
Marc’Aurelio Ranzato. 2018. Analyzing uncer-1370
tainty in neural machine translation. In Proceed-1371
ings of the 35th International Conference on Ma-1372
chine Learning, volume 80 of Proceedings of Ma-1373
chine Learning Research, pages 3956–3965. PMLR.1374

Alessandro Raganato, Yves Scherrer, and Jörg Tiede-1375
mann. 2020. Fixed encoder self-attention patterns1376
in transformer-based machine translation. In Find-1377
ings of the Association for Computational Linguis-1378
tics: EMNLP 2020, pages 556–568, Online. Associ-1379
ation for Computational Linguistics.1380

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,1381
and Wojciech Zaremba. 2015. Sequence level train-1382
ing with recurrent neural networks. arXiv preprint1383
arXiv:1511.06732.1384

Vikas Raunak, Siddharth Dalmia, Vivek Gupta, and1385
Florian Metze. 2020. On long-tailed phenomena in1386
neural machine translation. In Findings of the As-1387
sociation for Computational Linguistics: EMNLP1388
2020, pages 3088–3095, Online. Association for1389
Computational Linguistics.1390

Vikas Raunak, V. Kumar, Florian Metze, and Jaimie1391
Callan. 2019. On compositionality in neural ma-1392
chine translation. ArXiv, abs/1911.01497.1393

Vikas Raunak, Arul Menezes, and Marcin Junczys- 1394
Dowmunt. 2021. The curious case of hallucina- 1395
tions in neural machine translation. arXiv preprint 1396
arXiv:2104.06683. 1397

Abhilasha Ravichander, Yonatan Belinkov, and Eduard 1398
Hovy. 2021. Probing the probing paradigm: Does 1399
probing accuracy entail task relevance? In Proceed- 1400
ings of the 16th Conference of the European Chap- 1401
ter of the Association for Computational Linguistics: 1402
Main Volume, pages 3363–3377, Online. Associa- 1403
tion for Computational Linguistics. 1404

Annette Rios Gonzales, Laura Mascarell, and Rico Sen- 1405
nrich. 2017. Improving word sense disambigua- 1406
tion in neural machine translation with sense em- 1407
beddings. In Proceedings of the Second Conference 1408
on Machine Translation, pages 11–19, Copenhagen, 1409
Denmark. Association for Computational Linguis- 1410
tics. 1411

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 1412
2020. A primer in BERTology: What we know 1413
about how BERT works. Transactions of the Associ- 1414
ation for Computational Linguistics, 8:842–866. 1415

Hassan Sajjad, Narine Kokhlikyan, Fahim Dalvi, and 1416
Nadir Durrani. 2021. Fine-grained interpretation 1417
and causation analysis in deep NLP models. In Pro- 1418
ceedings of the 2021 Conference of the North Amer- 1419
ican Chapter of the Association for Computational 1420
Linguistics: Human Language Technologies: Tuto- 1421
rials, pages 5–10, Online. Association for Computa- 1422
tional Linguistics. 1423

Sebastin Santy, Sandipan Dandapat, Monojit Choud- 1424
hury, and Kalika Bali. 2019. INMT: Interactive neu- 1425
ral machine translation prediction. In Proceedings 1426
of the 2019 Conference on Empirical Methods in 1427
Natural Language Processing and the 9th Interna- 1428
tional Joint Conference on Natural Language Pro- 1429
cessing (EMNLP-IJCNLP): System Demonstrations, 1430
pages 103–108, Hong Kong, China. Association for 1431
Computational Linguistics. 1432

Naomi Saphra and Adam Lopez. 2019. Understand- 1433
ing learning dynamics of language models with 1434
SVCCA. In Proceedings of the 2019 Conference 1435
of the North American Chapter of the Association 1436
for Computational Linguistics: Human Language 1437
Technologies, Volume 1 (Long and Short Papers), 1438
pages 3257–3267, Minneapolis, Minnesota. Associ- 1439
ation for Computational Linguistics. 1440

Ramprasaath R Selvaraju, Michael Cogswell, Ab- 1441
hishek Das, Ramakrishna Vedantam, Devi Parikh, 1442
and Dhruv Batra. 2017. Grad-cam: Visual explana- 1443
tions from deep networks via gradient-based local- 1444
ization. In Proceedings of the IEEE international 1445
conference on computer vision, pages 618–626. 1446

Jiajun Shen, Peng-Jen Chen, Matthew Le, Junx- 1447
ian He, Jiatao Gu, Myle Ott, Michael Auli, and 1448
Marc’Aurelio Ranzato. 2021. The source-target do- 1449
main mismatch problem in machine translation. In 1450

14

https://www.aclweb.org/anthology/2020.aacl-srw.14
https://www.aclweb.org/anthology/2020.aacl-srw.14
https://www.aclweb.org/anthology/2020.aacl-srw.14
https://doi.org/10.18653/v1/2020.blackboxnlp-1.19
https://doi.org/10.18653/v1/2020.blackboxnlp-1.19
https://doi.org/10.18653/v1/2020.blackboxnlp-1.19
https://doi.org/10.18653/v1/2020.blackboxnlp-1.19
https://doi.org/10.18653/v1/2020.blackboxnlp-1.19
http://arxiv.org/abs/2105.08504
http://arxiv.org/abs/2105.08504
http://arxiv.org/abs/2105.08504
http://arxiv.org/abs/2105.08504
http://arxiv.org/abs/2105.08504
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
https://doi.org/10.18653/v1/W18-6322
http://proceedings.mlr.press/v80/ott18a.html
http://proceedings.mlr.press/v80/ott18a.html
http://proceedings.mlr.press/v80/ott18a.html
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/2020.findings-emnlp.49
https://doi.org/10.18653/v1/2020.findings-emnlp.276
https://doi.org/10.18653/v1/2020.findings-emnlp.276
https://doi.org/10.18653/v1/2020.findings-emnlp.276
https://doi.org/10.18653/v1/2021.eacl-main.295
https://doi.org/10.18653/v1/2021.eacl-main.295
https://doi.org/10.18653/v1/2021.eacl-main.295
https://doi.org/10.18653/v1/W17-4702
https://doi.org/10.18653/v1/W17-4702
https://doi.org/10.18653/v1/W17-4702
https://doi.org/10.18653/v1/W17-4702
https://doi.org/10.18653/v1/W17-4702
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://www.aclweb.org/anthology/2021.naacl-tutorials.2
https://www.aclweb.org/anthology/2021.naacl-tutorials.2
https://www.aclweb.org/anthology/2021.naacl-tutorials.2
https://doi.org/10.18653/v1/D19-3018
https://doi.org/10.18653/v1/D19-3018
https://doi.org/10.18653/v1/D19-3018
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/N19-1329
https://doi.org/10.18653/v1/2021.eacl-main.130
https://doi.org/10.18653/v1/2021.eacl-main.130
https://doi.org/10.18653/v1/2021.eacl-main.130


Proceedings of the 16th Conference of the European1451
Chapter of the Association for Computational Lin-1452
guistics: Main Volume, pages 1519–1533, Online.1453
Association for Computational Linguistics.1454

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua1455
Wu, Maosong Sun, and Yang Liu. 2016. Minimum1456
risk training for neural machine translation. In Pro-1457
ceedings of the 54th Annual Meeting of the Associa-1458
tion for Computational Linguistics (Volume 1: Long1459
Papers), pages 1683–1692, Berlin, Germany. Asso-1460
ciation for Computational Linguistics.1461

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does1462
string-based neural MT learn source syntax? In Pro-1463
ceedings of the 2016 Conference on Empirical Meth-1464
ods in Natural Language Processing, pages 1526–1465
1534, Austin, Texas. Association for Computational1466
Linguistics.1467

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-1468
man. 2013. Deep inside convolutional networks: Vi-1469
sualising image classification models and saliency1470
maps. arXiv preprint arXiv:1312.6034.1471

Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob1472
Steinhardt. 2021. Approximating how single head1473
attention learns. arXiv preprint arXiv:2103.07601.1474

Felix Stahlberg and Bill Byrne. 2019. On NMT search1475
errors and model errors: Cat got your tongue? In1476
Proceedings of the 2019 Conference on Empirical1477
Methods in Natural Language Processing and the1478
9th International Joint Conference on Natural Lan-1479
guage Processing (EMNLP-IJCNLP), pages 3356–1480
3362, Hong Kong, China. Association for Computa-1481
tional Linguistics.1482

Hendrik Strobelt, Sebastian Gehrmann, Michael1483
Behrisch, Adam Perer, Hanspeter Pfister, and1484
Alexander M Rush. 2018. Seq2seq-vis: A visual1485
debugging tool for sequence-to-sequence models.1486
IEEE transactions on visualization and computer1487
graphics, 25(1):353–363.1488

Xiaofei Sun, Diyi Yang, Xiaoya Li, Tianwei Zhang,1489
Yuxian Meng, Qiu Han, Guoyin Wang, Eduard1490
Hovy, and Jiwei Li. 2021. Interpreting deep learn-1491
ing models in natural language processing: A review.1492
arXiv preprint arXiv:2110.10470.1493

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.1494
Axiomatic attribution for deep networks. In Inter-1495
national Conference on Machine Learning, pages1496
3319–3328. PMLR.1497

Madhumita Sushil, Simon Šuster, and Walter Daele-1498
mans. 2018. Rule induction for global explana-1499
tion of trained models. In Proceedings of the 20181500
EMNLP Workshop BlackboxNLP: Analyzing and In-1501
terpreting Neural Networks for NLP, pages 82–97,1502
Brussels, Belgium. Association for Computational1503
Linguistics.1504

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.1505
Sequence to sequence learning with neural networks.1506
In NIPS.1507

Gongbo Tang, Mathias Müller, Annette Rios, and Rico 1508
Sennrich. 2018. Why self-attention? a targeted 1509
evaluation of neural machine translation architec- 1510
tures. In Proceedings of the 2018 Conference on 1511
Empirical Methods in Natural Language Processing, 1512
pages 4263–4272, Brussels, Belgium. Association 1513
for Computational Linguistics. 1514

Gongbo Tang, Rico Sennrich, and Joakim Nivre. 2019a. 1515
Encoders help you disambiguate word senses in 1516
neural machine translation. In Proceedings of the 1517
2019 Conference on Empirical Methods in Natu- 1518
ral Language Processing and the 9th International 1519
Joint Conference on Natural Language Processing 1520
(EMNLP-IJCNLP), pages 1429–1435, Hong Kong, 1521
China. Association for Computational Linguistics. 1522

Gongbo Tang, Rico Sennrich, and Joakim Nivre. 2019b. 1523
Understanding neural machine translation by sim- 1524
plification: The case of encoder-free models. In 1525
Proceedings of the International Conference on 1526
Recent Advances in Natural Language Processing 1527
(RANLP 2019), pages 1186–1193, Varna, Bulgaria. 1528
INCOMA Ltd. 1529

Antonio Toral and Víctor M. Sánchez-Cartagena. 2017. 1530
A multifaceted evaluation of neural versus phrase- 1531
based machine translation for 9 language directions. 1532
In Proceedings of the 15th Conference of the Euro- 1533
pean Chapter of the Association for Computational 1534
Linguistics: Volume 1, Long Papers, pages 1063– 1535
1073, Valencia, Spain. Association for Computa- 1536
tional Linguistics. 1537

Marcos Treviso and André F. T. Martins. 2020. The ex- 1538
planation game: Towards prediction explainability 1539
through sparse communication. In Proceedings of 1540
the Third BlackboxNLP Workshop on Analyzing and 1541
Interpreting Neural Networks for NLP, pages 107– 1542
118, Online. Association for Computational Linguis- 1543
tics. 1544

Keyon Vafa, Yuntian Deng, David M Blei, and Alexan- 1545
der M Rush. 2021. Rationales for sequential predic- 1546
tions. arXiv preprint arXiv:2109.06387. 1547

Eva Vanmassenhove, Dimitar Shterionov, and Matthew 1548
Gwilliam. 2021. Machine translationese: Effects 1549
of algorithmic bias on linguistic complexity in ma- 1550
chine translation. In Proceedings of the 16th Con- 1551
ference of the European Chapter of the Association 1552
for Computational Linguistics: Main Volume, pages 1553
2203–2213, Online. Association for Computational 1554
Linguistics. 1555

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 1556
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz 1557
Kaiser, and Illia Polosukhin. 2017. Attention is all 1558
you need. arXiv preprint arXiv:1706.03762. 1559

Elena Voita, Rico Sennrich, and Ivan Titov. 2019a. 1560
When a good translation is wrong in context: 1561
Context-aware machine translation improves on 1562
deixis, ellipsis, and lexical cohesion. In Proceedings 1563
of the 57th Annual Meeting of the Association for 1564

15

https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/P16-1159
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/D16-1159
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/W18-5411
https://doi.org/10.18653/v1/W18-5411
https://doi.org/10.18653/v1/W18-5411
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D18-1458
https://doi.org/10.18653/v1/D19-1149
https://doi.org/10.18653/v1/D19-1149
https://doi.org/10.18653/v1/D19-1149
https://doi.org/10.26615/978-954-452-056-4_136
https://doi.org/10.26615/978-954-452-056-4_136
https://doi.org/10.26615/978-954-452-056-4_136
https://aclanthology.org/E17-1100
https://aclanthology.org/E17-1100
https://aclanthology.org/E17-1100
https://doi.org/10.18653/v1/2020.blackboxnlp-1.10
https://doi.org/10.18653/v1/2020.blackboxnlp-1.10
https://doi.org/10.18653/v1/2020.blackboxnlp-1.10
https://doi.org/10.18653/v1/2020.blackboxnlp-1.10
https://doi.org/10.18653/v1/2020.blackboxnlp-1.10
https://www.aclweb.org/anthology/2021.eacl-main.188
https://www.aclweb.org/anthology/2021.eacl-main.188
https://www.aclweb.org/anthology/2021.eacl-main.188
https://www.aclweb.org/anthology/2021.eacl-main.188
https://www.aclweb.org/anthology/2021.eacl-main.188
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/P19-1116
https://doi.org/10.18653/v1/P19-1116


Computational Linguistics, pages 1198–1212, Flo-1565
rence, Italy. Association for Computational Linguis-1566
tics.1567

Elena Voita, Rico Sennrich, and Ivan Titov. 2021. Lan-1568
guage modeling, lexical translation, reordering: The1569
training process of NMT through the lens of classi-1570
cal SMT. CoRR, abs/2109.01396.1571

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-1572
nrich, and Ivan Titov. 2019b. Analyzing multi-1573
head self-attention: Specialized heads do the heavy1574
lifting, the rest can be pruned. arXiv preprint1575
arXiv:1905.09418.1576

Changhan Wang, Anirudh Jain, Danlu Chen, and Ji-1577
atao Gu. 2019a. VizSeq: a visual analysis toolkit1578
for text generation tasks. In Proceedings of the1579
2019 Conference on Empirical Methods in Natu-1580
ral Language Processing and the 9th International1581
Joint Conference on Natural Language Processing1582
(EMNLP-IJCNLP): System Demonstrations, pages1583
253–258, Hong Kong, China. Association for Com-1584
putational Linguistics.1585

Chaojun Wang and Rico Sennrich. 2020. On exposure1586
bias, hallucination and domain shift in neural ma-1587
chine translation. In Proceedings of the 58th Annual1588
Meeting of the Association for Computational Lin-1589
guistics, pages 3544–3552, Online. Association for1590
Computational Linguistics.1591

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,1592
Changliang Li, Derek F. Wong, and Lidia S. Chao.1593
2019b. Learning deep transformer models for ma-1594
chine translation. In Proceedings of the 57th Annual1595
Meeting of the Association for Computational Lin-1596
guistics, pages 1810–1822, Florence, Italy. Associa-1597
tion for Computational Linguistics.1598

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu.1599
2020. On the inference calibration of neural ma-1600
chine translation. In Proceedings of the 58th Annual1601
Meeting of the Association for Computational Lin-1602
guistics, pages 3070–3079, Online. Association for1603
Computational Linguistics.1604

Johnny Wei, Khiem Pham, Brendan O’Connor, and1605
Brian Dillon. 2018. Evaluating grammaticality in1606
seq2seq models with a broad coverage HPSG gram-1607
mar: A case study on machine translation. In1608
Proceedings of the 2018 EMNLP Workshop Black-1609
boxNLP: Analyzing and Interpreting Neural Net-1610
works for NLP, pages 298–305, Brussels, Belgium.1611
Association for Computational Linguistics.1612

Sarah Wiegreffe and Yuval Pinter. 2019. Attention is1613
not not explanation. In Proceedings of the 2019 Con-1614
ference on Empirical Methods in Natural Language1615
Processing and the 9th International Joint Confer-1616
ence on Natural Language Processing (EMNLP-1617
IJCNLP), pages 11–20, Hong Kong, China. Associ-1618
ation for Computational Linguistics.1619

Sam Wiseman and Alexander M. Rush. 2016. 1620
Sequence-to-sequence learning as beam-search opti- 1621
mization. In Proceedings of the 2016 Conference on 1622
Empirical Methods in Natural Language Processing, 1623
pages 1296–1306. 1624

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie- 1625
Yan Liu. 2018. A study of reinforcement learning 1626
for neural machine translation. In Proceedings of 1627
the 2018 Conference on Empirical Methods in Nat- 1628
ural Language Processing, pages 3612–3621, Brus- 1629
sels, Belgium. Association for Computational Lin- 1630
guistics. 1631

Y. Wu, M. Schuster, Z. Chen, Quoc V. Le, Moham- 1632
mad Norouzi, Wolfgang Macherey, M. Krikun, Yuan 1633
Cao, Q. Gao, Klaus Macherey, J. Klingner, Apurva 1634
Shah, M. Johnson, X. Liu, Lukasz Kaiser, Stephan 1635
Gouws, Y. Kato, Taku Kudo, H. Kazawa, K. Stevens, 1636
George Kurian, Nishant Patil, W. Wang, C. Young, 1637
J. Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, 1638
G. Corrado, Macduff Hughes, and J. Dean. 2016. 1639
Google’s neural machine translation system: Bridg- 1640
ing the gap between human and machine translation. 1641
ArXiv, abs/1609.08144. 1642

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, 1643
Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan 1644
Lan, Liwei Wang, and Tieyan Liu. 2020. On layer 1645
normalization in the transformer architecture. In In- 1646
ternational Conference on Machine Learning, pages 1647
10524–10533. PMLR. 1648

Weijia Xu, Shuming Ma, Dongdong Zhang, and Ma- 1649
rine Carpuat. 2021. How does distilled data com- 1650
plexity impact the quality and confidence of non- 1651
autoregressive machine translation? In Findings of 1652
the Association for Computational Linguistics: ACL- 1653
IJCNLP 2021, pages 4392–4400, Online. Associa- 1654
tion for Computational Linguistics. 1655

Baosong Yang, Longyue Wang, Derek F. Wong, 1656
Lidia S. Chao, and Zhaopeng Tu. 2019. Assessing 1657
the ability of self-attention networks to learn word 1658
order. In Proceedings of the 57th Annual Meet- 1659
ing of the Association for Computational Linguis- 1660
tics, pages 3635–3644, Florence, Italy. Association 1661
for Computational Linguistics. 1662

Yilin Yang, Liang Huang, and Mingbo Ma. 2018. 1663
Breaking the beam search curse: A study of (re-) 1664
scoring methods and stopping criteria for neural ma- 1665
chine translation. arXiv preprint arXiv:1808.09582. 1666

Kayo Yin, Patrick Fernandes, Danish Pruthi, Aditi 1667
Chaudhary, André F. T. Martins, and Graham Neu- 1668
big. 2021. Do context-aware translation models pay 1669
the right attention? In Proceedings of the 59th An- 1670
nual Meeting of the Association for Computational 1671
Linguistics and the 11th International Joint Confer- 1672
ence on Natural Language Processing (Volume 1: 1673
Long Papers), pages 788–801, Online. Association 1674
for Computational Linguistics. 1675

16

http://arxiv.org/abs/2109.01396
http://arxiv.org/abs/2109.01396
http://arxiv.org/abs/2109.01396
http://arxiv.org/abs/2109.01396
http://arxiv.org/abs/2109.01396
http://arxiv.org/abs/2109.01396
http://arxiv.org/abs/2109.01396
https://doi.org/10.18653/v1/D19-3043
https://doi.org/10.18653/v1/D19-3043
https://doi.org/10.18653/v1/D19-3043
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/2020.acl-main.278
https://doi.org/10.18653/v1/W18-5432
https://doi.org/10.18653/v1/W18-5432
https://doi.org/10.18653/v1/W18-5432
https://doi.org/10.18653/v1/W18-5432
https://doi.org/10.18653/v1/W18-5432
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D19-1002
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/2021.findings-acl.385
https://doi.org/10.18653/v1/2021.findings-acl.385
https://doi.org/10.18653/v1/2021.findings-acl.385
https://doi.org/10.18653/v1/2021.findings-acl.385
https://doi.org/10.18653/v1/2021.findings-acl.385
https://doi.org/10.18653/v1/P19-1354
https://doi.org/10.18653/v1/P19-1354
https://doi.org/10.18653/v1/P19-1354
https://doi.org/10.18653/v1/P19-1354
https://doi.org/10.18653/v1/P19-1354
https://doi.org/10.18653/v1/2021.acl-long.65
https://doi.org/10.18653/v1/2021.acl-long.65
https://doi.org/10.18653/v1/2021.acl-long.65


Gal Yona, Amirata Ghorbani, and James Zou. 2021.1676
Who’s responsible? jointly quantifying the contri-1677
bution of the learning algorithm and data. In Pro-1678
ceedings of the 2021 AAAI/ACM Conference on AI,1679
Ethics, and Society, AIES ’21, page 1034–1041,1680
New York, NY, USA. Association for Computing1681
Machinery.1682

Thomas Zenkel, Joern Wuebker, and John DeNero.1683
2020. End-to-end neural word alignment outper-1684
forms GIZA++. In Proceedings of the 58th Annual1685
Meeting of the Association for Computational Lin-1686
guistics, pages 1605–1617, Online. Association for1687
Computational Linguistics.1688

Yuming Zhai, Gabriel Illouz, and Anne Vilnat. 2020.1689
Detecting non-literal translations by fine-tuning1690
cross-lingual pre-trained language models. In1691
Proceedings of the 28th International Conference1692
on Computational Linguistics, pages 5944–5956,1693
Barcelona, Spain (Online). International Committee1694
on Computational Linguistics.1695

Wen Zhang, Yang Feng, Fandong Meng, Di You, and1696
Qun Liu. 2019. Bridging the gap between training1697
and inference for neural machine translation. arXiv1698
preprint arXiv:1906.02448.1699

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2017.1700
Generating natural adversarial examples. CoRR,1701
abs/1710.11342.1702

Chunting Zhou, Jiatao Gu, Mona T. Diab, P. Guzmán,1703
Luke Zettlemoyer, and Marjan Ghazvininejad.1704
2020a. Detecting hallucinated content in con-1705
ditional neural sequence generation. ArXiv,1706
abs/2011.02593.1707

Chunting Zhou, Jiatao Gu, and Graham Neubig.1708
2020b. Understanding knowledge distillation in1709
non-autoregressive machine translation. In 8th Inter-1710
national Conference on Learning Representations,1711
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,1712
2020. OpenReview.net.1713

Conghui Zhu, Guanlin Li, Lemao Liu, Tiejun Zhao,1714
and Shuming Shi. 2020. Understanding learning dy-1715
namics for neural machine translation.1716

A Mindmap of FAQs1717

Fig. 1 demonstrates a screenshot of the mindmap on1718

our website (https://nmtology.github.1719

io/). Visitors can zoom in or zoom out the tree by1720

the clicking inner nodes. And by clicking a specific1721

question, you will be guided to a separate webpage1722

that hosts the related papers under that question.1723

B Methodology1724

This section gives a focused introduction to several1725

commonly used methodologies for understanding1726

the NMT framework, which are commonly used in1727

our surveyed papers. Please refer to Belinkov et al. 1728

(2020b); Belinkov and Glass (2019) for a general 1729

introduction to interpretation methodologies. 1730

B.1 Attribution 1731

Attribution is one of the local explanation method- 1732

ologies for understanding and visualizing the deci- 1733

sion of predictive models, i.e., classifiers (Carvalho 1734

et al., 2019). It relates every model prediction to 1735

a subset of input features that might be the cause 1736

of that prediction. A large number of attribution 1737

methods are proposed recently in vision and learn- 1738

ing community (Simonyan et al., 2013; Bach et al., 1739

2015; Montavon et al., 2017; Selvaraju et al., 2017; 1740

Sundararajan et al., 2017). In NMT, the predic- 1741

tion ŷ could be seen as a sequence of classification 1742

steps. Given input x, predicted sequence ŷ, and the 1743

NMT modelM, an attribution method is defined 1744

as an algorithmic process A(x, ŷ,M), it outputs 1745

relevant scores over every token of x and y<t for 1746

each ŷt. Based on relevant scores, we can at least 1747

qualitatively know what ŷt is probably aligned to. 1748

Model-specific Methods Model-specific attribu- 1749

tions can have access to the inner computation of 1750

the NMT model. Gradient-based attribution uses 1751

the activation of ŷt for backward computation. It 1752

then uses the gradients on each embedding vector 1753

of every token in x and ŷ<t to compute its rele- 1754

vant score regarding ŷt (Ding et al., 2019). Layer- 1755

wise Relevance Propagation (LRP) uses activation 1756

vectors and model weights to compute neuron rele- 1757

vance, and then back-propagates the relevance back 1758

to the input tokens (Ding et al., 2017). 1759

Model-agnostic Methods Model-agnostic attri- 1760

butions regard the NMT model as a black-box. 1761

These methods usually calculate the relevant scores 1762

through manipulating model inputs (Alvarez-Melis 1763

and Jaakkola, 2017; Li et al., 2019b). For example, 1764

prediction difference (Li et al., 2019b) chooses a 1765

particular feature (token xt′), and observe the prob- 1766

ability difference of ŷt before and after removing 1767

that feature, the larger the probability is, the more 1768

relevant between ŷt and the removed one. 1769

B.2 Probing 1770

Probing is a method for investigating how much 1771

a component of the NMT model captures certain 1772

kind of knowledge. The main technique for probing 1773

is to train a classifier g which maps an intermedi- 1774

ate representation f(x) of the input x to certain 1775

property of interest z (Alain and Bengio, 2016; 1776

17
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Figure 1: A screenshot of the mindmap of FAQs on our website https://nmtology.github.io/.

Conneau et al., 2018). This network component1777

f(·) can be word embedding, sentence embedding,1778

hidden state, attention weight, etc. The property z1779

can be various linguistic features, such as part-of-1780

speech tags, morphological information, or more1781

complicated syntactic or semantic features. Then,1782

the accuracy of g(f(x)) can reveal the quality of1783

representations f(x) with respect to the property1784

z, so that different model components can be com-1785

pared to each other. To show this accuracy is non-1786

trivial, it can be compared to feeding random in-1787

puts into the classifier g(·). Meanwhile, comparing1788

with state-of-the-art on that task can inform us how1789

much is missing from the representation.1790

B.3 Others1791

In addition to attribution and probing which are1792

most commonly used, several other methodolo-1793

gies are used in specific analysis scenarios (Be-1794

linkov and Glass, 2019). i) Visualization is always1795

used accompanied with attribution to show the re-1796

lationship between predicted and input tokens; it is1797

also used to visualize clustering effects of learned1798

representations through dimension reduction tech-1799

niques (Alvarez-Melis and Jaakkola, 2017; Ding1800

et al., 2017). ii) Challenge set is always used to1801

investigate certain desirable characteristic of the1802

model through data test suite construction (Isabelle1803

et al., 2017). i) Model extraction is to extract use1804

knowledge distillation to learn a transparent or in-1805

terpretable surrogate NMT model (e.g. rules, syn-1806

tactic trees) from the original one (Bastani et al.,1807

2017; Sushil et al., 2018). Besides, several works 1808

also build toolkits for visualization and model de- 1809

bugging (Strobelt et al., 2018; Wang et al., 2019a; 1810

Graliński et al., 2019; Gauthier et al., 2020). 1811

18
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