
Adversarially Robust Spiking Neural Networks with
Sparse Connectivity

Mathias Schmolli1, Maximilian Baronig1,2, Robert Legenstein1, Ozan Özdenizci1,3
1 Institute of Machine Learning and Neural Computation, Graz University of Technology, Austria

2 TU Graz - SAL Dependable Embedded Systems Lab, Silicon Austria Labs, Austria
3 Chair of Cyber-Physical-Systems, Montanuniversität Leoben, Austria

m.schmolli@alumni.tugraz.at,{baronig,robert.legenstein,oezdenizci}@tugraz.at

Deployment of deep neural networks in resource-constrained embedded systems
requires innovative algorithmic solutions to facilitate their energy and memory ef-
ficiency. To further ensure the reliability of these systems against malicious actors,
recent works have extensively studied adversarial robustness of existing architec-
tures. Our work focuses on the intersection of adversarial robustness, memory-
and energy-efficiency in neural networks. We introduce a neural network conver-
sion algorithm designed to produce sparse and adversarially robust spiking neu-
ral networks (SNNs) by leveraging the sparse connectivity and weights from a
robustly pretrained artificial neural network (ANN). Our approach combines the
energy-efficient architecture of SNNswith a novel conversion algorithm, leading to
state-of-the-art performancewith enhanced energy andmemory efficiency through
sparse connectivity and activations. Our models are shown to achieve up to 100×
reduction in the number of weights to be stored inmemory, with an estimated 8.6×
increase in energy efficiency compared to dense SNNs, whilemaintaining high per-
formance and robustness against adversarial threats.

1. Introduction
Resource-efficient deep learning often requires novel algorithmic solutions that can jointly address
various considerations of a machine learning system, such as energy efficiency, memory usage, or
security and reliability. Considering the latter, recent works have extensively studied adversarial
training based algorithms with traditional artificial neural network (ANN) architectures, to im-
prove robustness against adversarial attacks [1]. In the context of adversarially robust optimization,
achieving memory efficiency through sparsity in the utilized ANN architecture has been shown to
be a challenging problem, since robustness typically improves with increasing network complex-
ity [2, 3]. Consequently, several studies have explored robustness aware pruning methods for ad-
versarially pretrained dense neural networks [4–6].
Following another line of work, there has been increasing interest in achieving adversarial robust-
ness with spiking neural network (SNN) architectures [7–11]. The primary motivation of this re-
search problem is the energy-efficiency potential of these models in reliable edge computing appli-
cations, since SNNs operate using binary signals that are transmitted over time, which reduces the
need for computationally expensive matrix multiplications found in traditional ANNs, and yields
energy-efficient event-driven processing capabilities [12, 13]. Along this direction, ourwork focuses
on the intersection of achieving adversarial robustness with inherently energy-efficient SNN architec-
tures using sparse connectivity structures, which has not been previously studied.
Our initial empirical analyses reveal that achieving robustness through standard end-to-end adver-
sarial training with highly sparse feedforward SNNs is computationally challenging and infeasi-
ble with spike-based backpropagation through time (BPTT) [14, 15]. Accordingly, we tackle this
problem by exploiting stable adversarial training capabilities of ANNs. We introduce a neural net-
work conversion algorithm that leverages the sparse connectivity structure andweights of a robustly
pretrained and pruned ANN, to obtain an adversarially robust and sparse SNN. Our method can

Second Conference on Parsimony and Learning (CPAL 2025).

successfully generate feedforward SNNs with layerwise uniform or non-uniform sparse connec-
tivity structures, by utilizing existing adversarial training and robustness aware pruning methods
designed for ANNs. Contributions of this work are summarized as follows:

• We present a robust and sparse ANN-to-SNN conversion algorithm, combinedwith a post-
conversion sparse SNN finetuning phase. Our method can inherit robustness properties of
an adversarially pretrained ANN to the resulting SNN under strict sparsity constraints.

• Our algorithm offers the first solution to the problem of achieving sparsity with adver-
sarially robust feedforward SNNs, and scales to larger benchmarks such as TinyImageNet
classification, which is not commonly explored in previous SNN robustness studies. Our
models are shown to achieve up to 100× compression rates, with an estimated 8.6× increase
in energy-efficiency over their dense SNN counterparts.

• Our approach is agnostic to the adversarial ANN pretraining and robust ANN pruning
methods, thus allows the integration of existing and future advancements in adversarially
robust training methods in the ANN domain.

2. Background

2.1. Spiking Neural Networks
Spiking neural networks perform event-based information processing with binary activations [16].
Leaky-integrate-and-fire (LIF) neurons in feed-forward SNNs operate according to the dynamics:

vl(t−) = τvl(t− 1) +W lol−1(t), (1)
ol(t) = H(vl(t−)− V l

th), (2)
vl(t) = vl(t−)(1− ol(t)), (3)

where the output spikes from the previous layer ol−1(t) are weighted by the synaptic connectivity
matrix W l, the membrane potential leak factor is denoted by τ , the neuron membrane potential
before and after firing of a spike at time t is denoted by vl(t−) and vl(t),H(.) denotes the Heaviside
step function, and the neuron firing threshold is denoted by V l

th. For LIF neurons with a hard-reset
mechanism, if the neuron emits a spike at time step t, the membrane potential is reset to zero via
Eq. (3). We provide the input o0(t) to the first layer via direct coding, i.e., the input signal intensity
(e.g., image pixel) values are applied to the first layer neurons for T simulation timesteps.
Gradient based SNN training can be accomplished via backpropagation through time (BPTT) [14,
15, 17], which requires the use of surrogate gradient functions to approximate the discontinuous
derivative of the spike function [18]. Another line of methods obtain SNNs via ANN-to-SNN con-
version [19]. This is achieved by harnessing pretrained ANN weights and tuning the firing rates
of spiking neurons in SNNs to be approximately proportional to the pretrained ANN neuron ac-
tivations [20]. Although earlier conversion methods required high inference latencies [21], recent
hybrid conversionmethods alleviated this by using post-conversion BPTT-based finetuning, such that
good performance with short inference latencies (<10 timesteps) can be achieved [22, 23].
Energy-Efficiency of SNNs: Deep ANNs often require large weight matrix multiplications with
floating point multiplication and accumulation (MAC) operations. In SNNs, however, layer activa-
tions are binary, thus only accumulation operations (AC) are performed at the synaptic connections
in an event-drivenmanner, i.e., only when a spike is emitted from pre-synaptic neurons. Overall en-
ergy consumption of MAC operations are significantly higher than AC operations on various types
of hardware [24]. Taking this into account, feedforward SNNs can result in an advantage of energy-
efficiency if the spiking activity across the simulation duration remains sufficiently low [12, 13].

2.2. Adversarial Robustness of Neural Networks
Neural networks are vulnerable against adversarial examples with imperceptible test-time pertur-
bations that lead to incorrect decisions [1]. Prominent white-box threats such as fast gradient

2

sign method (FGSM) [25] and projected gradient descent (PGD) [2] generate l∞-norm bounded
perturbations based on the gradient, where x̃ = x + ϵ · sign (∇xL(f(x;θ), y))) indicates the
FGSM attack with an ϵ > 0 perturbation strength, and PGD is an iterative variant: x̃k+1 =∏∞

ϵ [x̃k + α · sign (∇x̃k
L (f(x̃k;θ), y))] ,with∏∞

ϵ being the clipping onto the l∞-norm ϵ-ball around
x, and α is the perturbation step size. To counter these attacks, most effective empirical defenses
rely on adversarial training (AT), by incorporating adversarial examples into the training process:

min
θ

E(x,y)∼D

[
max

x̃∈B∞
ϵ (x)
Lrobust(f(x̃;θ), y)

]
, (4)

with the inner maximization obtaining adversarial samples in B∞
ϵ (x) := {x̃ : ∥x̃ − x∥∞ ≤ ϵ}.

Standard AT [2] only uses adversarial samples via LAT
robust = − log p(y|x̃;θ). Later methods such

as TRADES [26], MART [27], or consistency regularization [28] introduced unique regularization
methods to achieve better robustness-accuracy trade-offs.
Adversarial Robustness of SNNs: Earlier works aimed to improve adversarial robustness of SNNs
based onmethods designed forANNs [29, 30] (e.g., standardATwith BPTT [31, 32]). Subsequently,
various studies examined structural SNN components and their contributions to robustness [7, 33,
34]. Majority of recent methods to improve robustness in SNNs rely on regularized end-to-end AT
approaches with BPTT [8–10, 35], which requires computationally heavy optimization procedures
for large-scale problems. Accordingly, fromadifferent perspective, hybridANN-to-SNNconversion
with adversarially pretrained robust ANNs has achieved state-of-the-art adversarial robustness in
SNNs [11], alleviating the computational burden of end-to-end AT with BPTT.

2.3. Sparsity and Adversarial Robustness
Neural networks often need to meet certain resource constraints in terms of their memory usage on
embedded systems. This has been widely studied in the context of achieving sparsity in models to
reduce the number of weights that need to be stored in memory [36]. Accordingly, previous works
have also explored sparsity in adversarially trained models via robust pruning algorithms [5, 6].
NeuralNetwork Pruning: Given amodel f(x;θ), a pruning algorithm aims to find a global pruning
mask m consisting of per-layer binary matrices {M (l)}Ll=1, which flags a desired global sparsity
ratio κ ∈ [0, 1) of parameters θ from the dense model that will be set to zero. The goal is to obtain
a well-performing new model f(x;m ⊙ θ′) with ∥m ⊙ θ′∥0 ≤ (1 − κ) · n, where n is the total
number of parameters and κ ∈ [0, 1) (e.g., κ = 0.99 indicates 99% sparsity, κ = 0 indicates the dense
model). After determining m, remaining parameters are finetuned to recover performance, such
that θ′ deviates from the original θ. During pruning, the significance of each parameter is generally
quantified via an importance score vector s, which determines the mask indicesmj based on sj :

mj = 1[sj − ŝσ ≥ 0], ∀j ∈ {1, . . . , n}, (5)
where σ = (1− κ) · n, ŝ = SortDescending(s), thus ŝσ is the σ-th largest element in s, and 1[.] is the
indicator function. A baseline approach is least weight magnitude (LWM) based pruning [36]:

sj = |θj |, ∀j ∈ {1, . . . , n}. (6)
Here, the pruning rate κ is generally applied per-layer to the model such that layerwise uniform
sparsity is maintained. Importantly, LWM can not consider any adversarial robustness criterion
while choosing which parameters to prune.
Robust Pruning with Learned Importance Scores: One of the earlier robustness-aware pruning
methods, HYDRA [5], optimizes s as a learnable parameter under an AT objective. Specifically, the
importance scores are updated with gradient descent (without updating model weights) via:

min
s

E(x,y)∼D

[
max

x̃∈B∞
ϵ (x)
Lrobust(f(x̃;m(s)⊙ θ), y)

]
, (7)

where in each forward pass the currentmaskm(s) is obtained via Eq. (5) bymaintaining uniform per-
layer sparsity (i.e., highest ranked σ(l) = (1−κ) ·n(l) scores in the l-th layer remain). All scores sj are
optimized by using a straight-through estimator through the mask during backpropagation [37].

3

The recent holistic adversarially robust pruning (HARP)method [6] advanced this idea by simulta-
neously optimizing howmany andwhich parameters to prune individually in each layer. This yields
non-uniform per-layer sparsity ratios that differ from the global sparsity rate κ. This is performed by
introducing a learnable, continuous-valued representation of layerwise compression rates, such that
Eq. (7) is modified to also optimize layerwise compression quotas r(l) alongside s, together with an
additional regularizer term that enforces the global sparsity constraint of κ based on r(l).
Finally, the resulting mask m based on the optimized s⋆ is used for final pruning and subsequent
adversarial finetuning, yielding an adversarially robust and sparse model with parametersm⊙ θ′.

3. Adversarially Robust and Sparse ANN-to-SNN Conversion
Our approach requires a baseline ANN for conversion, hence we first perform dense ANN adver-
sarial pretraining and pruning. We then leverage this sparse connectivity and weights via ANN-to-
SNN conversion. Finally, we adversarially finetune the sparse SNN to improve performance.

3.1. Pretraining Robust and Sparse ANNs
The initial stage of our method can exploit any existing AT algorithm designed for ANNs, follow-
ing the objective in Eq. (4) for any chosen adversarial perturbation budget ϵ. After dense ANN
adversarial pretraining, we perform robust pruning with learned importance scores via Eq. (7) to
determine which connections to prune from the dense ANN for a given global sparsity ratio κ. This
is achieved either by preserving layerwise uniform sparsity [5], or by learning layer compression rates
(i.e., layerwise non-uniform sparsity [6]), such that we obtain per-layer sparsity masks {M (l)}Ll=1.

3.2. Converting Pretrained ANNs to SNNs
Our conversion approach relies on the conventional threshold-balancing algorithm [21, 23], which
was also recently explored for robust ANN-to-SNN conversion with dense connectivity [11].
Parameter Initialization from Pretrained ANN:We use the same network architecture for the SNN
using the weights {W (l)}Ll=1 from the pretrained, sparse and robust ANN as the synaptic connec-
tivity weights, considering the per-layer sparsities imposed via {M (l)}Ll=1. We exchange ReLU acti-
vations of the ANN with LIF spiking neuron dynamics. We use threshold-dependent batch-norm
operations in the SNN [38] to replace ANN batch-norm layers, where weighted spiking inputs are
temporally gathered in Ōl = [W lol−1(1), . . . ,W lol−1(T)], and batch-norm is performed on Ōl, i.e.,
mean and variance statistics are estimated over both mini-batches and time. We then re-use the pre-
trained ANNbatch-norm affine transformation parameters φl and ωl for the SNN, but now estimate
the running average statistics from scratch during SNN finetuning based on the spiking data [11].
Initialization of Firing Thresholds: Following weight initialization, we calibrate per-layer firing
thresholds of the SNN by using a number of training mini-batch forward passes. Specifically, we
generate inputs to the network via direct coding for a number of calibration timesteps Tc > T .
Subsequently, starting from the first layer, we observe the pre-activation values (sumof theweighted
spiking inputs) across Tc timesteps, and set the firing threshold for neurons in that layer to be the
ρ-th percentile value of the distribution of pre-activations, as performed in [39]. We then set the
firing thresholds for all other layers in the same way, and thus estimate proportionally balanced
firing threshold values as in [21, 23]. Finally, we scale our initial estimates with a factor λ < 1 in
order to promote a better spike flow early on during finetuning, and make these firing thresholds
{V l

th}
L−1
l=1 trainable during the finetuning process (seeAppendixA.2 for details on hyperparameters).

3.3. Adversarial Finetuning of Sparse SNNs
We perform post-conversion robust finetuning of our sparse SNNs, similar to hybrid ANN-to-SNN
conversion methods. This is mainly necessary to calibrate the restructured spatio-temporal SNN
batch-norm layers, and to adversarially finetune the weights and firing thresholds for a desired T .

4

Wedenote themodel predictions for an adversarial and a clean example as f(x̃;m⊙θ) and f(x;m⊙
θ). These values are estimated by the sparse SNN via the integrated non-leaky membrane potential
of output neurons over T timesteps. Accordingly, we use a regularized robust finetuning objective
that facilitates stability of the output neuron membrane potentials under adversarial attacks [26]:

min
θ

E
[
L (f(x;m⊙ θ), y) + β · max

x̃∈B∞
ϵ (x)

DKL (f(x̃;m⊙ θ)∥f(x;m⊙ θ))

]
, (8)

such that β controls the robustness-accuracy trade-off during finetuning. Specifically, we adversar-
ially finetune parameters θ which consist of {W l, φl, ωl}Ll=1 and {V l

th}
L−1
l=1 . The computational load

of finetuning is mainly determined by the method used for inner maximization to obtain x̃, which
can be performed efficiently via single-step attacks as conventionally done in SNN studies [8, 35].
Our finetuning objective is optimized via spike-based BPTT, which necessitates surrogate gradients
to backpropagate the error through the non-differentiable function in Eq. (2). We use piecewise
linear surrogate gradients via: ∂ol(t)

∂vl(t)
= 1

γ2
w
· max{0, γw − |vl(t−)− V l

th|
}
, with γw = 1 during

training. For attack evaluations, we consider adaptive SNN adversaries that can vary both γw and
the shape of the surrogate function to reliably estimate adversarial perturbations.
Maintaining Sparsity During Finetuning: We preserve the transferred sparse ANN connectivity
during the finetuning phase and keep the network connectivity frozen. This is performed by apply-
ing the global pruning mask m, consisting of per-layer binary masks {M l}Ll=1 that were obtained
during the robust ANN pruning phase, at each forward pass operation and weight update:

W l ←W l − η
(
∆W l ⊙M l

)
. (9)

Our resulting SNN therefore maintains the same sparsity as the pretrained ANN, but with new
parameters θ′ which are adversarially finetuned via spike-based BPTT.

4. Experiments

4.1. Experimental Setup
Datasets and Models: We experimented with CIFAR-10/100 and TinyImageNet datasets, using
VGG-11, VGG-16 andWideResNet architectures with depth 28 and widening factor of 4, i.e., WRN-
28-4. All SNNs considered in this study were run for T = 8 timesteps with IF neurons (τ = 1).
Adversarial Pretraining of Dense ANNs: We trained baseline ANNs via the TRADES loss [26]
for 100 epochs, using 10-step PGD with ϵ = 2/255 to craft adversarial examples in the inner maxi-
mization stage. For dense ANNs pretrained on CIFAR-10, additional pseudo-labeled data samples
during AT were also utilized, which was shown to improve robustness [40].
Pruning Adversarially Robust ANNs: We optimize robust weight importance scores for 20 epochs
based on the configurations from HYDRA (for layerwise uniformly sparse) and HARP (for layer-
wise non-uniformly sparse) models. We also perform naive LWM based pruning as a baseline. We
consider all dense and convolutional layer weights subject to unstructured pruning. After pruning
the ANNs to a desired sparsity ratio κ, we finetune sparse ANNs for 30 epochs following [5, 6].
Adversarial Finetuning of Sparse SNNs: Weperform adversarial SNNfinetuning following Eq (8)
with BPTT for 80 epochs, using random-step FGSM (RFGSM) [41] with ϵ = 2/255 in the inner
maximization stage. We set β = 2 in all experiments, unless specified otherwise. During conversion,
we initialized per-layer firing thresholds with the ρ = 99.7% percentile of the pre-activation values
that we observed over Tc = 100 calibration timesteps, and use λ = 0.3 as the scaling factor.
Baseline Comparisons to End-to-End Sparse AT:As there are no existing solutions to this problem,
we compare our conversion-based approach with end-to-end adversarial SNN training with a static
sparse connectivity, using the same objective in Eq. (8). This connectivity was determined either
randomly by uniform sampling, or set as the same sparse connectivity from the pretrained sparse
ANN. These networks were adversarially trained from scratch for at most 350 epochs.

5

4.2. Evaluating Adversarial Robustness of SNNs
The success of gradient-based attacks on SNNs strictly depend on the surrogate gradient used for
BPTT [34]. The naive common practice is to use the same surrogate gradient for the attack as the
one used during training [8, 9], which might lead to ineffective attacks and give a false sense of
security for SNNs. Accordingly, recent works have assessed SNN robustness using an ensemble
attack benchmark, where the adversary does not only utilize a single gradient approximation path,
but via an ensemble of various surrogate gradient options during BPTT until successful [10, 11] (see
Appendix A.3 for details). This significantly increases attack effectiveness against SNNs and yields
a worst case evaluation scenario [42, 43] (see Table A1 for an ensemble attack analysis).
Accordingly, we evaluate SNNs against ensemble attacks with FGSM [25], PGD [2], Auto-PGDwith
difference of logits ratio (APGD-DLR), andwith cross-entropy loss (APGD-CE) [44]. Main PGD at-
tacks were runwith 10 steps (independently for each surrogate gradient in the ensemble), with step
sizeα = 2.5×ϵ/# steps. In TinyImageNet experiments, we also evaluated SNNs against rate gradient
approximation (RGA) attacks combined with 10-step PGD, which are designed for SNNs [45]. We
evaluated black-box robustness with Square Attack [46], using various numbers of limited queries.

4.3. Estimation of Energy Consumption in SNNs
Energy-efficiency in feedforward SNNs is tightly coupled with the overall spiking activity during
inference. Besides the memory-efficiency offered by sparse connectivities, we assess the impact
of sparsity on the model’s spiking activity, to verify that targeting sparsity does not degrade the
energy-efficiency of the robust SNN as opposed to its dense counterpart due to higher spike rates.
Following the notation from [47], we denote the number of active outgoing connections from the
i-th neuron in layer l by ψl,i, i.e., the number of non-zero elements in the matrix (W l+1)∗,i. For
densely connected feedforward SNNs with κ = 0 this would result in:

ψl,i = ψl = cl+1 (linear layer), (10)

ψl,i ≃ ψl =
wl+1hl+1

wlhl
cl+1k

2
l+1 (conv layer), (11)

where cl is the number of filters, wl, hl are the feature map dimensions, and kl is the kernel width.
We use wl+1hl+1

wlhl
for normalization if pooling is performed between layers. For sparse SNNs, we

specifically take into account the exact connectivity structure and calculate all outgoing connections
for every neuron to obtain ψl,i. This yields an accurate estimate since only spikes over non-zero
synaptic weights result in AC operations. Subsequently, we estimate the energy consumption via:

ESNN :=

L∑
l=1

T · EAC · E
x∈X

[
dl∑
i=1

ψl,iol,i

]
, (12)

where EAC denotes the energy consumption of a single accumulate operation, dl is the number of
neurons in the l-th layer, ol,i ∈ {0, 1} are the output spikes emitted by neuron i in the l-th layer, and
Ex∈X [.] indicates taking the empirical expectation over the available test dataset X .
It is important to note that we will use Eq. (12) to estimate relative energy-efficiency gains of achiev-
ing sparsity in the SNNs, in relation to their dense SNN counterparts, in the context of preserving
adversarial robustness under sparsity constraints. We do not intend to compare SNNs with ANNs,
since this would require some heuristic assumption on the relationship betweenEAC andEMAC [24].

5. Experimental Results

5.1. Robust ANN-to-SNN Conversion Outperforms End-to-End Sparse AT
We compare our approach with end-to-end AT of sparse SNNs, to empirically demonstrate the
necessity of a novel ANN-to-SNN conversion-based solution, to the problem of achieving spar-
sity in robust SNNs. Figure 1 shows that for 90% sparse SNNs (layerwise uniform sparsity), our

6

Table 1: Detailed evaluations of 90% sparse VGG-16 models with layerwise uniform sparsity on
CIFAR-10. We used white-box attacks with ϵ = 2/255 / 4/255 / 8/255, and black-box SquareAttack
with ϵ = 8/255 using 500 / 1000 / 5000 queries. For SNNs, white-box attacks are implemented using
a surrogate gradient ensemble. SquareAttack was run identically for SNNs and ANNs.

Sparse & Robust SNN
Sparse &

Robust ANNEnd-to-End Adv. Training Conversion +
Sparse FT (Ours)Random Conn. ANN Conn.

Clean Acc. 87.4 88.2 89.5 Clean Acc. 92.3
FGSMens 65.6 / 50.8 / 27.8 64.9 / 49.8 / 26.5 71.6 / 61.0 / 41.1 FGSM 81.3 / 67.4 / 42.5
PGDens 62.4 / 42.2 / 11.9 61.1 / 40.1 / 9.70 69.9 / 54.7 / 26.1 PGD 79.8 / 59.5 / 22.2
APGD-DLRens 58.3 / 40.8 / 12.8 57.9 / 38.8 / 10.4 65.2 / 52.0 / 26.9 APGD-DLR 79.4 / 58.5 / 21.2
APGD-CEens 55.7 / 36.5 / 8.80 54.7 / 34.2 / 7.10 62.6 / 47.9 / 21.1 APGD-CE 79.5 / 57.9 / 19.3
SquareAttack 47.9 / 42.4 / 32.2 49.8 / 43.8 / 33.9 52.3 / 46.5 / 36.3 SquareAttack 61.1 / 51.6 / 32.7

method outperforms both end-to-end AT models throughout training (i.e., clean/robust acc. at the
end of training, E2E w/random conn.: 87.4/11.9, E2E w/ANN conn.: 88.2/9.7, Ours: 89.5/26.1).
Our results highlight the importance of the robust ANN based weight initialization alongside the
sparse connectivity structure. Importantly, we achieve this result with a more computationally

0 50 100 150 200 250 300 350

Training Epoch

0

20

40

60

80

A
cc

u
ra

cy
(%

)

en
d

o
f

fi
n

et
u

n
in

g
E2E Training (Random Conn.)

E2E Training (ANN Conn.)

Conversion + Sparse FT (Ours)

E2E Training (Random Conn.)

E2E Training (ANN Conn.)

Conversion + Sparse FT (Ours)

Figure 1: Comparing our method with end-to-end
(E2E) AT, via clean (solid) and robust (dashed) accu-
racies evaluated with PGDens at ϵ = 8/255 (90% sparse
VGG-16 SNN on CIFAR-10). Sparsity in E2E training
was initialized either randomly, or by using the ANN
connectivity as in our method.

efficientmethod (i.e., totalwall-clock time:
E2E SNN AT: 40.6 hours vs Ours: 24.5
hours, see Appendix A.2 for details). This
is due to the majority of our robust opti-
mization process being performed in the
ANN domain, without the computational
overhead of AT with BPTT.
Wedemonstrate in Table 1 that our conver-
sionmethod is superior in terms of robust-
ness across different attacks. We obtained
sparse SNNs that are more than twice
as robust against strong adversaries, than
E2E adversarially trained models (e.g., ro-
bust acc. under APGD-CEens with ϵ =
8/255, E2E w/random conn.: 8.8%, E2E
w/ANN conn.: 7.1%, Ours: 21.1%). Note
that we tried adapting existing end-to-
end regularizedATbased SNN robustness
methods [8, 10] to improve performance of E2E trainedmodels with 90% sparsity. However, we ob-
served that such regularization schemes made the highly sparse training process sensitive to hyper-
parameters and unstable, and we were not successful in adapting these methods to this problem.
Robustness Against Black-box Attacks: Evaluations with white-box attacks on SNNs and ANNs
are not necessarily identical or directly comparable, since SNN adversaries require a surrogate gra-
dient ensemble approach. However, Square Attack presents a fairer comparison since these query-
based attacks are run identically without the use of gradients. We observe that upon conversion
our sparse SNN shows higher resilience after a high volume of available queries (robust acc. at
5000 queries, Our SNN: 36.3%, ANN: 32.7%). For completeness, we also compared the 90% sparse
ANN and converted SNN with layerwise non-uniform sparsity. Our SNNs yielded stronger robust-
ness than its ANN counterpart also in this setting (at 5000 queries, our SNN: 42.2%, ANN: 37.0%).

5.2. Adversarial Robustness of Sparse SNNs

Figure 2 presents detailed evaluations of ourmethodwith both layerwise uniform and non-uniform
robust ANN pruning strategies, at various compression rates. We also indicate a dense ANN-to-

7

10% 70% 90% 95% 99%

Sparsity of the SNN

10

30

50

70

90

A
cc

u
ra

cy
(%

)
Dense SNN

LWM

Uniform

Non-Uniform

Dense SNN

LWM

Uniform

Non-Uniform

(a) CIFAR-10 with VGG-16

10% 50% 70% 90% 95%

Sparsity of the SNN

20

30

60

70

A
cc

u
ra

cy
(%

)

Dense SNN

LWM

Uniform

Non-Uniform

Dense SNN

LWM

Uniform

Non-Uniform

(b) CIFAR-100 with WRN-28-4
Figure 2: Clean (solid lines) and robust (dashed lines) accuracies of converted SNNs evaluatedwith
PGDens at ϵ = 8/255 for CIFAR-10 and ϵ = 4/255 or CIFAR-100, for different sparsity levels. ANNs
used for conversionwere either dense, prunedwith LWM, or layerwise uniformly or non-uniformly
sparse through learned importance scores (see Appendix B.1 for numerical details of all results).

SNN conversion baseline, and LWM as a naive ANN pruning baseline. Overall, we empirically
validate that our approach generalizes well across different robust ANN pruning strategies, and we
can reach any desired compression rate with an anticipated trade-off in clean and robust accura-
cies. Notably, in our CIFAR-10 experiments, SNN robustness was not impacted up to 70% sparsity
(i.e., clean/robust acc., Dense SNN: 92.0/27.9, Uniform (70%): 90.9/28.2). We observed that lay-
erwise non-uniform sparsity (shown with red lines) helps in maintaining robustness at high com-
pression rates. Specifically, we achieved clean/robust acc. under PGDens for CIFAR-10 with 99%
sparsity (100× compression), LWM: 44.9/9.2, Uniform: 69.1/15.3, Non-Uniform: 85.2/22.9, and
for CIFAR-100 with 90% sparsity (10× compression), LWM: 56.6/17.6, Uniform: 63.8/20.7, Non-
Uniform: 66.1/21.1 (see Table B3 for PGDens attack evaluations under various number of iterations).
InAppendix B.2, we investigate the influence of ANNpretraining on the robustness of the converted
SNN. We observed that more robust ANN weights result in better SNNs. Specifically, we obtained
90% sparse SNNs with clean/robust acc. of 83.2/40.0, when we performed heavier adversarial pre-
training of the ANN using ϵ = 8/255, as opposed to the 89.5/26.1 from Table 1.

5.3. Experiments on TinyImageNet

We validate our method on the larger scale TinyImageNet dataset, which is generally not explored
in the field of robust SNNs since existingmethods that are based on end-to-end regularizedATwith
BPTT are not computationally feasible at this scale [8–10, 35]. In Table 2 we present our results ob-
tained by converting robustly pretrained ANNs with layerwise uniform sparsity. Our sparse SNNs
yield clean/robust accuracies that proportionally scale with the performance of the baseline ANN,

Table 2: Evaluations on TinyImageNet with VGG-11 mod-
els at different layerwise uniform sparsity levels. We
present robust accuracies (%) under white-box attacks
with perturbation budgets of ϵ = 2/255 and ϵ = 4/255.

Robust ANN Robust SNN (Ours)
Clean PGD Clean RGA PGDens

Dense 57.7 39.6 / 23.5 58.0 34.7 / 16.4 25.8 / 8.9

Sp
ar
se

50% 56.1 37.6 / 21.9 57.3 34.7 / 17.2 26.1 / 10.1
70% 55.8 37.6 / 21.9 56.9 34.0 / 17.3 25.9 / 10.1
90% 54.4 35.8 / 20.1 53.7 32.0 / 15.7 23.0 / 9.2
95% 52.5 33.7 / 19.4 49.4 28.2 / 13.3 19.6 / 7.2

highlighting the importance of the pre-
trained ANN based sparse weight ini-
tialization, e.g., clean/robust acc. un-
der PGDens with ϵ = 2/255, our 50%
sparse SNN: 57.3/26.1 and 90% sparse
SNN: 53.7/23.0, while the clean/robust
acc. under PGD with 50% sparse
ANN: 56.1/37.6 and 90% sparse ANN:
54.4/35.8. Notably, we also show that
PGDens attacks demonstrated a more
rigorous evaluation baseline than RGA
attacks [45], e.g., our 90% sparse SNN
with ϵ = 4/255, RGA: 15.7%, PGDens:
9.2%, and even FGSMens: 14.7%.

8

5.4. Impact of SNN Sparsity on Energy-Efficiency

Table 3 presents our spiking activity and energy efficiency analyses of VGG-16models on CIFAR-10.
Firstly, we calculate the total number of spikes elicited by each SNN on average for a test sample.
Although the spiking activity of models appeared to increase with higher sparsity (see #Spikes col-
umn), we also observed that our adversarially robust SNNs generally depicted high coding efficiency,

Table 3: Relative energy efficiency estimates of our SNNs
with respect to a dense SNN. #Spikes column indicates
the total # of spikes elicited on average for a test sample.

Sparsity #Spikes #SpikesDenseSNN
#SpikesSparseSNN

EDenseSNN
ESparseSNN

Dense SNN 0% 2.76×105 1.00 1.00

Sparse SNN
(Uniform)

50% 3.04×105 0.91 1.50
60% 3.05×105 0.90 1.84
70% 3.08×105 0.89 2.42
80% 2.87×105 0.96 4.13
90% 3.17×105 0.87 6.12

Sparse SNN
(Non-Uniform)

90% 3.02×105 0.91 2.15
95% 3.07×105 0.90 3.10
99% 3.14×105 0.88 8.61

individually. Specifically, VGG-16 con-
sists of 276,992 IF neurons operating for
T = 8 timesteps, which could induce a
total of∼2.2Mpossible spikes for a single
inference. However, the dense SNN (top
row) was only approx. 12.5% actively
spiking (2.76 × 105/2.2 × 106), or simi-
larly the 99% sparse SNN (bottom row)
was only 14.3% actively spiking.
Considering the sparsity structure of
each SNNand based on Eq. (12), we then
estimate the relative energy efficiency
with respect to the dense SNN (see right-
most column in Table 3). We observed
that despite the increase in #Spikes, spar-
sity in fact consistently yielded more
energy-efficient models. This was due to the decrease in the number of synaptic connections (hence
less propagated spikes) largely outweighing the increase in spiking activity (see Appendix B.3 for
per-layer spike rates). Overall, we obtained adversarially robust SNNswith layerwise uniform com-
pression rates of up to 10×, which were also up to ∼6.1× more energy efficient than a dense and
robust SNN. Our SNNs with non-uniform per-layer sparsities achieved up to 100× reduction in the
number of parameters, with an estimated 8.6× energy efficiency increase relative to the dense SNN.

6. Discussion

We introduce a solution to the problem of achieving sparsity in adversarially robust SNNs, which
has not been investigated before. We show that the sparse and robust network connectivity and
weights optimized in the ANN domain can be effectively used in a novel hybrid ANN-to-SNN con-
version algorithm with post-conversion sparse finetuning. Our approach is superior to end-to-end
AT of sparse SNNs in terms of performance and training efficiency, and achieves state-of-the-art ro-
bustness against rigorous adversaries. Our energy consumption estimations reveal that the resulting
SNNs are also more energy-efficient at high compression rates, than their dense counterparts.
Our robust SNN finetuning method can also be extended with dynamic robust and sparse train-
ing methods that enable rewiring of the transferred ANN connectivity [48]. In this work, we focus
on unstructured sparsity, since existing robust ANN pruning algorithms exclusively consider these
methods. One can also consider structured sparsity in the pretrained ANN, which might be more
suitable for hardware orientedmemory efficiency gains [49], albeit with limited robustness capabil-
ities [50]. Our work fundamentally differs from recent SNN pruning methods, as these approaches
do not consider robustness objectives [51, 52], and we perform robust pruning in the ANN domain.
We evaluate feedforward SNNs on standardmachine learning tasks similar to previous SNN robust-
ness studies [8, 9, 35], as opposed to spike-based data streams [53–55]. This enables us to use tradi-
tional ANNarchitectures pretrained on the same task, which is needed for conversion. Through this
ANN, we can incorporate existing robust training and pruning schemes from the domain of ANNs
to improve the robustness and structure the sparsity of the resulting SNNs. Thus, our contribution
is suitable to incorporate existing and future advances in the field of adversarial machine learning
with traditional ANNs, towards energy and memory efficient, reliable AI applications.

9

Acknowledgments
This research was funded in whole or in part by the Austrian Science Fund (FWF)
[10.55776/COE12]. This work was supported by the Graz Center for Machine Learning (GraML),
theNSF EFRI grant #2318152, and the “University SALLabs” initiative of SiliconAustria Labs (SAL)
and its Austrian partner universities for applied fundamental research for electronic based systems.

References
[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian

Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[2] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

[3] Preetum Nakkiran. Adversarial robustness may be at odds with simplicity. arXiv preprint
arXiv:1901.00532, 2019.

[4] Shaokai Ye, Kaidi Xu, Sijia Liu, HaoCheng, Jan-Henrik Lambrechts, HuanZhang, AojunZhou,
Kaisheng Ma, Yanzhi Wang, and Xue Lin. Adversarial robustness vs. model compression, or
both? In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019.

[5] Vikash Sehwag, Shiqi Wang, Prateek Mittal, and Suman Jana. Hydra: Pruning adversarially
robust neural networks. Advances in Neural Information Processing Systems, 33, 2020.

[6] Qi Zhao and Christian Wressnegger. Holistic adversarially robust pruning. In The Eleventh
International Conference on Learning Representations, 2022.

[7] Souvik Kundu et al. Hire-snn: Harnessing the inherent robustness of energy-efficient deep
spiking neural networks by training with crafted input noise. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5209–5218, 2021.

[8] Jianhao Ding, Tong Bu, Zhaofei Yu, Tiejun Huang, and Jian Liu. SNN-RAT: Robustness en-
hanced spiking neural network through regularized adversarial training. Advances in Neural
Information Processing Systems, 35:24780–24793, 2022.

[9] Jianhao Ding, Zhaofei Yu, Tiejun Huang, and Jian K Liu. Enhancing the robustness of spiking
neural networks with stochastic gating mechanisms. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 492–502, 2024.

[10] Yujia Liu, Tong Bu, Jianhao Ding, Zecheng Hao, Tiejun Huang, and Zhaofei Yu. Enhancing
adversarial robustness in SNNs with sparse gradients. In International Conference on Machine
Learning. PMLR, 2024.

[11] OzanÖzdenizci andRobert Legenstein. Adversarially robust spiking neural networks through
conversion. Transactions on Machine Learning Research, 2024.

[12] Kaushik Roy et al. Towards spike-based machine intelligence with neuromorphic computing.
Nature, 575(7784):607–617, 2019.

[13] Mike Davies, Andreas Wild, Garrick Orchard, Yulia Sandamirskaya, Gabriel A Fonseca
Guerra, Prasad Joshi, Philipp Plank, and Sumedh R Risbud. Advancing neuromorphic com-
puting with Loihi: A survey of results and outlook. Proceedings of the IEEE, 109(5):911–934,
2021.

[14] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

10

[15] Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, Yuan Xie, and Luping Shi. Direct training for spik-
ing neural networks: Faster, larger, better. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 1311–1318, 2019.

[16] WolfgangMaass. Networks of spiking neurons: the third generation of neural networkmodels.
Neural Networks, 10(9):1659–1671, 1997.

[17] Chankyu Lee, Syed Shakib Sarwar, Priyadarshini Panda, Gopalakrishnan Srinivasan, and
Kaushik Roy. Enabling spike-based backpropagation for training deep neural network archi-
tectures. Frontiers in Neuroscience, page 119, 2020.

[18] Emre O Neftci et al. Surrogate gradient learning in spiking neural networks: Bringing the
power of gradient-based optimization to spiking neural networks. IEEE Signal ProcessingMag-
azine, 36(6):51–63, 2019.

[19] Peter UDiehl, Daniel Neil, Jonathan Binas, MatthewCook, Shih-Chii Liu, andMichael Pfeiffer.
Fast-classifying, high-accuracy spiking deep networks through weight and threshold balanc-
ing. In International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2015.

[20] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, Michael Pfeiffer, and Shih-Chii Liu.
Conversion of continuous-valued deep networks to efficient event-driven networks for image
classification. Frontiers in Neuroscience, 11:682, 2017.

[21] Abhronil Sengupta, Yuting Ye, Robert Wang, Chiao Liu, and Kaushik Roy. Going deeper in
spiking neural networks: Vgg and residual architectures. Frontiers in Neuroscience, 13:95, 2019.

[22] Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling
deep spiking neural networks with hybrid conversion and spike timing dependent backprop-
agation. arXiv preprint arXiv:2005.01807, 2020.

[23] Nitin Rathi and Kaushik Roy. Diet-snn: A low-latency spiking neural network with direct
input encoding and leakage and threshold optimization. IEEE Transactions on Neural Networks
and Learning Systems, 2021.

[24] Mark Horowitz. Computing’s energy problem (and what we can do about it). In IEEE Inter-
national Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pages 10–14, 2014.

[25] Ian J Goodfellow et al. Explaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572, 2014.

[26] HongyangZhang, YaodongYu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, andMichael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference
on Machine Learning, pages 7472–7482. PMLR, 2019.

[27] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In International Conference
on Learning Representations, 2019.

[28] Jihoon Tack, Sihyun Yu, Jongheon Jeong, Minseon Kim, Sung Ju Hwang, and Jinwoo Shin.
Consistency regularization for adversarial robustness. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pages 8414–8422, 2022.

[29] Saima Sharmin, Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Inherent adversarial ro-
bustness of deep spiking neural networks: Effects of discrete input encoding and non-linear
activations. In European Conference on Computer Vision, pages 399–414, 2020.

[30] Ling Liang, Kaidi Xu, XingHu, Lei Deng, and Yuan Xie. Toward robust spiking neural network
against adversarial perturbation. Advances in Neural Information Processing Systems, 35, 2022.

11

[31] Saima Sharmin, Priyadarshini Panda, Syed Shakib Sarwar, Chankyu Lee, Wachirawit Ponghi-
ran, and Kaushik Roy. A comprehensive analysis on adversarial robustness of spiking neural
networks. In International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

[32] Alberto Marchisio, Giorgio Nanfa, Faiq Khalid, Muhammad Abdullah Hanif, Maurizio Mar-
tina, and Muhammad Shafique. Is spiking secure? a comparative study on the security vul-
nerabilities of spiking and deep neural networks. In International Joint Conference on Neural
Networks (IJCNN), pages 1–8. IEEE, 2020.

[33] Rida El-Allami, Alberto Marchisio, Muhammad Shafique, and Ihsen Alouani. Securing deep
spiking neural networks against adversarial attacks through inherent structural parameters.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 774–779. IEEE,
2021.

[34] Nuo Xu, Kaleel Mahmood, Haowen Fang, Ethan Rathbun, Caiwen Ding, and Wujie Wen. Se-
curing the spike: On the transferabilty and security of spiking neural networks to adversarial
examples. arXiv preprint arXiv:2209.03358, 2022.

[35] Jianhao Ding, Zhiyu Pan, Yujia Liu, Zhaofei Yu, and Tiejun Huang. Robust stable spiking
neural networks. In International Conference on Machine Learning. PMLR, 2024.

[36] Song Han, Jeff Pool, John Tran, andWilliam Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 28, 2015.

[37] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad
Rastegari. What’s hidden in a randomly weighted neural network? In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11893–11902, 2020.

[38] Hanle Zheng, YujieWu, Lei Deng, YifanHu, and Guoqi Li. Going deeper with directly-trained
larger spiking neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pages 11062–11070, 2021.

[39] Sen Lu and Abhronil Sengupta. Exploring the connection between binary and spiking neural
networks. Frontiers in Neuroscience, 14:535, 2020.

[40] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unla-
beled data improves adversarial robustness. Advances in Neural Information Processing Systems,
32, 2019.

[41] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017.

[42] Battista Biggio et al. Security evaluation of pattern classifiers under attack. IEEE Transactions
on Knowledge and Data Engineering, 26(4):984–996, 2013.

[43] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
robustness. arXiv preprint arXiv:1902.06705, 2019.

[44] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In International Conference on Machine Learning,
pages 2206–2216. PMLR, 2020.

[45] Tong Bu, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Rate gradient approximation attack
threats deep spiking neural networks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7896–7906, 2023.

12

[46] Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion, and Matthias Hein. Square
attack: a query-efficient black-box adversarial attack via random search. In European Conference
on Computer Vision (ECCV), pages 484–501. Springer, 2020.

[47] Kazuma Suetake, Takuya Ushimaru, Ryuji Saiin, and Yoshihide Sawada. Synaptic interaction
penalty: Appropriate penalty term for energy-efficient spiking neural networks. Transactions
on Machine Learning Research, 2023.

[48] Ozan Özdenizci and Robert Legenstein. Training adversarially robust sparse networks via
Bayesian connectivity sampling. In International Conference on Machine Learning, pages 8314–
8324. PMLR, 2021.

[49] Yihui He et al. Channel pruning for accelerating very deep neural networks. In Proceedings of
the IEEE International Conference on Computer Vision, pages 1389–1397, 2017.

[50] Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost in
pruning: The effects of pruning neural networks beyond test accuracy. Proceedings of Machine
Learning and Systems, 3:93–138, 2021.

[51] Xinyu Shi, Jianhao Ding, Zecheng Hao, and Zhaofei Yu. Towards energy efficient spiking
neural networks: An unstructured pruning framework. In International Conference on Learning
Representations (ICLR), 2024.

[52] Ruokai Yin, Youngeun Kim, Yuhang Li, AbhishekMoitra, Nitin Satpute, AnnaHambitzer, and
Priyadarshini Panda. Workload-balanced pruning for sparse spiking neural networks. IEEE
Transactions on Emerging Topics in Computational Intelligence, 2024.

[53] Alberto Marchisio, Giacomo Pira, Maurizio Martina, Guido Masera, and Muhammad
Shafique. Dvs-attacks: Adversarial attacks on dynamic vision sensors for spiking neural net-
works. In International Joint Conference on Neural Networks (IJCNN), pages 1–9. IEEE, 2021.

[54] Ling Liang, Xing Hu, Lei Deng, Yujie Wu, Guoqi Li, Yufei Ding, Peng Li, and Yuan Xie. Ex-
ploring adversarial attack in spiking neural networks with spike-compatible gradient. IEEE
Transactions on Neural Networks and Learning Systems, 2021.

[55] Julian Büchel, Gregor Lenz, Yalun Hu, Sadique Sheik, and Martino Sorbaro. Adversarial at-
tacks on spiking convolutional neural networks for event-based vision. Frontiers in Neuro-
science, 16, 2022.

[56] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Report, Uni-
versity of Toronto, 2009.

[57] Ya Le and Xuan Yang. Tiny ImageNet visual recognition challenge, 2015.
[58] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. In International Conference on Learning Representations, 2015.
[59] Sergey Zagoruyko. Wide residual networks. arXiv preprint arXiv:1605.07146, 2016.
[60] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass.

Long short-term memory and learning-to-learn in networks of spiking neurons. Advances in
Neural Information Processing Systems, 31, 2018.

[61] Sumit B Shrestha andGarrickOrchard. Slayer: Spike layer error reassignment in time.Advances
in Neural Information Processing Systems, 31, 2018.

[62] Yoshua Bengio et al. Estimating or propagating gradients through stochastic neurons for con-
ditional computation. arXiv preprint arXiv:1308.3432, 2013.

[63] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International Conference on
Machine Learning, pages 274–283. PMLR, 2018.

13

A. Details on the Experimental Setup

A.1. Datasets and Models

We experimented with CIFAR-10/100 and TinyImageNet datasets. CIFAR datasets both consist of
32×32 dimensional 50,000 training and 10,000 test images, from 10 and 100 classes respectively [56].
TinyImageNet dataset consists of 64×64 dimensional 100,000 training and 10,000 test images from
200 classes [57]. We use conventional data augmentation approaches involving random cropping of
images into 32×32 dimensions by padding zeros for at most 4 pixels around it (or random resized
crop to 64×64 for TinyImageNet), and randomly performing a horizontal flip. We use VGG-11,
VGG-16 [58] and WideResNet [59] architecture with depth 28 and width 4 (i.e., WRN-28-4).

A.2. Implementation & Training Configurations

Our proposed adversarially robust and sparse ANN-to-SNN conversion methodology is outlined
in Algorithm 1. It is an extension of the robust ANN-to-SNN conversion method introduced for
densely connected neural network models [11], and the implementations are publicly available at:
https://github.com/IGITUGraz/RobustSNNConversion.
Adversarial Pretraining ofDenseANNs: Weperform adversarial training via the TRADES [26] us-
ing 10-step PGDwith l∞-normbounded perturbations ofmagnitude ϵ = 2/255. We set the TRADES
loss trade-off parameter λTRADES = 2 in the main results. We explore stronger AT with the baseline
ANN in later ablation experiments with higher ϵ and λTRADES = 6 in Table B4. We pretrain the
ANNs for 100 epochs via momentum SGD, with learning rate of 0.1 and a weight decay of 0.0001.
PruningAdversarially Robust ANNs: For layerwise uniformly and non-uniformly robust pruning,
we follow the training configurations from HYDRA [5] and HARP [6], respectively. We perform
robust importance score optimization using the same dense ANN training objective for 20 epochs.
Based on these learned importance scores, we prune the model for a given κ. Afterwards, we ad-
versarially finetune sparse ANNs for 30 epochs, using momentum SGD with a learning rate of 0.01
and a weight decay of 0.0001 [5].
Adversarial Finetuning of Sparse SNNs: During conversion, we estimate per-layer firing thresh-
olds with the use of 10 training mini-batches of size 64. We generate these inputs via direct coding
for Tc = 100, and observe the pre-activation values [23]. We choose our initial estimates as the max-
imum value in the ρ = 99.7% percentile of the distribution of observed values, similarly to [23, 39].
We use λ = 0.3 as the scaling factor on these initial estimates, while setting the trainable firing
thresholds. Adversarial end-to-end SNN training baselines were implemented with sparse models
initialized with V l

th = 1 for all layers, similar to [8, 9]. During conversion, we re-use the pretrained
ANNbatch-normparameters for the SNN, but now estimate themean and variancemoving average
statistics from scratch during robust SNN finetuning phase on the spiking data.
We set the simulation timesteps T = 8 and consider non-leaky IF neurons (τ = 1) in all SNNs.
We perform robust and sparse SNN finetuning for 80 epochs, using momentum SGD with a initial
learning rate of 0.001, a weight decay of 0.0001, and cosine annealing based learning rate schedulers
throughout. We use random-step FGSM (RFGSM) [41] based adversarial examples during robust
and sparse finetuning of all SNNmodels, using an l∞-boundedperturbation budget of ϵ = 2/255, on
the regularizer part of our finetuning objective function LRFGSM = DKL (f(x̃;m⊙ θ)∥f(x;m⊙ θ)).
Computational Overhead: Since our method also involves an adversarial finetuning stage, it par-
tially suffers from the same computational burden of AT with BPTT. To obtain our models, we per-
form 100 epochs of dense ANN adversarial training, 20 epochs of robust importance score opti-
mization, and 30 epochs of sparse ANN finetuning. After ANN-to-SNN conversion, we perform
adversarial finetuning of the sparse SNN via BPTT for 80 epochs. Given this experimental setting,
wall-clock training time comparisons on a singleNVIDIAQuadroRTX 8000GPUare: baselineANN
adversarial training (100 epochs) + robust ANN pruning (50 epochs) + robust SNN finetuning (80
epochs): ∼24.5 hours, whereas end-to-end SNN adversarial training for 350 epochs: ∼40.6 hours).

14

It is important to note that SNN-based parameter updates with AT is significantly more time con-
suming due to the temporal dimension and the need to unroll the network for BPTT also to compute
adversarial examples. However, since the majority of our parameter optimization is performed in
the ANN domain, our method eventually results in being the more efficient way to achieve sparsity
and adversarial robustness with SNNs.

Algorithm 1 Robust and Sparse ANN-to-SNN Conversion
1: Input: Dataset D, adversarially pretrained sparse ANN parameters {W l, φl, ωl}Ll=1, number

of calibration samples, calibration sequence length Tc, percentile ρ, threshold scaling factor λ,
number of finetuning iterations, simulation timesteps T , membrane leak factor τ , trade-off pa-
rameter β, attack perturbation strength ϵ.

2: Output: Robust and sparse SNN f with parameters θ′ consisting of {W l, φl, ωl}Ll=1 and
{V l

th}
L−1
l=1 .

▷ Converting adversarially pretrained sparse ANN
3: Initialize: Set weights of SNN f directly from adversarially pretrained ANN parameters
{W l, φl, ωl}Ll=1. Define spiking LIF neurons for the SNN layers with τ .

4: for l = 1 to L− 1 do
5: for c = 1 to #calibration_samples do
6: for t = 1 to Tc do
7: al ← Store pre-activation values at layer l during forward pass with direct input coding
8: end for
9: if max[ρ-percentile of the dist. in al] > V l

th then
10: V l

th = max[ρ-percentile of the dist. in al]
11: end if
12: end for
13: end for

▷ Initialize trainable firing threshold
14: for l = 1 to L− 1 do
15: V l

th ← λ · V l
th

16: end for
▷ Initialize binary sparsity mask M

17: for l = 1 to L do
18: Ml

j,i ←
{
1 if Wl

j,i ̸= 0

0 if Wl
j,i = 0

19: end for
▷ Robust and sparse finetuning of SNN after conversion

20: for i = 1 to #finetuning_iterations do
21: Sample a mini-batch of (x, y) ∼ D
22: x̃← Compute via RFGSM-based inner max. with ϵ
23: f(x̃;m⊙ θ)← Compute via direct coded x̃ for T
24: f(x;m⊙ θ)← Compute via direct coded x for T
25: Lreg(x, x̃)← DKL (f(x̃;m⊙ θ)∥f(x;m⊙ θ))
26: Lrobust ← L(f(x;m⊙ θ)) + β · Lreg(x, x̃)
27: ∆W l ←

∑
t
∂Lrobust
∂W l

28: ∆φl ←
∑

t
∂Lrobust
∂φl

29: ∆ωl ←
∑

t
∂Lrobust
∂ωl

30: ∆V l
th ←

∑
t
∂Lrobust
∂V l

th

▷Maintain sparse weight connectivity via masks
31: for l = 1 to L do
32: W l ←W l − η

(
∆W l ⊙M l

)
33: end for
34: end for

15

A.3. Ensemble Adversarial Attacks
We consider adaptive adversaries that implement an ensemble SNN attack strategy as introduced
in [11], where the adversary does not only utilize a single input gradient approximation path but
via an ensemble of various surrogate gradient options during BPTT.
The ensemble consists of the piecewise linear function [60] with γw ∈ {0.25, 0.5, 1.0, 2.0, 3.0}:

∂ol(t)

∂vl(t)
=

1

γ2w
·max{0, γw − |vl(t−)− V l

th|}, (13)

the exponential surrogate gradient function [61] with (γd, γs) ∈ {(0.3, 0.5), (0.3, 1.0), (0.3, 2.0),
(1.0, 0.5), (1.0, 1.0), (1.0, 2.0)}:

∂ol(t)

∂vl(t)
= γd · exp

(
−γs · |vl(t−)− V l

th|
)
, (14)

and the rectangular surrogate gradient function [14] with γw ∈ {0.25, 0.5, 1.0, 2.0, 4.0}:
∂ol(t)

∂vl(t)
=

1

γw
· sign

(
|vl(t−)− V l

th| <
γw
2

)
. (15)

We also included the straight-through estimator (STE), where an identity function is used as the
surrogate gradient for all spiking neurons during backpropagation [62], backward pass through
rate (BPTR), which performs a differentiable approximation by taking the derivative of the spike
functions directly from the average firing rate of the neurons between layers [8], and a conversion-
based approximation, where spiking neurons are replaced with ReLUs during BPTT [31].
We present a detailed decomposition of the individual components of the ensemble in Table A1.
Notably, we observed that altering the shape and parameters of the surrogate gradient can influence
the success of the overall adversary ondifferent test samples. Several SNN robustness studies simply
consider the only naive adversary case, which only utilizes Eq. (13) with γw = 1, i.e., identical
surrogate gradient function to the one used during SNN training.

B. Further Experimental Results

B.1. Evaluations of Sparse ANNs and SNNs
We present the numerical evaluation details corresponding to the Figure 2 of the main manuscript,
in Tables B1 and B2. These tables also include evaluations of the robust and sparse ANN models
used for conversion in obtaining the corresponding robust and sparse SNNs. Note that ANNs are
evaluated with standard PGD attacks (10-steps) only for completeness. Our primary goal was to
perform comparative analysis of sparse SNN models under ensemble attacks.
Our first observation is that robust ANN pruning with learned importance scores significantly out-
performs LWM-based pruning inmany aspects of the resulting SNN, particularly in terms of benign
performance at high model compression rates. Mainly, we successfully achieve models with very
high compression by using layerwise non-uniform sparsity structures, e.g., in Table B1 clean/robust
acc. under PGDens with ϵ = 8/255 at 99% SNN sparsity, LWM: 44.9/9.2, Uniform: 69.1/15.3, Non-
Uniform: 85.2/22.9.
Varying the PGDens Number of Iterations: We investigate the resilience of our SNNs against
PGDens attacks with increasing number of iterations, in Table B3. Our main goal is to verify the
reliability of gradient approximation with our white-box ensemble attacks. This analysis is com-
monly performed as a sanity check in robustness evaluations [43, 63], since our main results only
included 10-step PGDens.
We observe that in all models PGDens tends to get slightly more effective, hence demonstrating
reliable behavior without signs of misleading obfuscated gradients confounding our evaluations,
e.g., robust accuracy at 30% sparsity with PGDens at ϵ = 8/255, 7-steps: 28.9%, 10-steps: 27.9%,
20-steps: 26.2%, 40-steps: 25.4%.

16

Table A1: Detailed robust accuracy results for the individual components of an FGSM ensemble
attackwith ϵ = 8/255 onVGG-16modelswith 90% sparsity. Strongest individual attack components
in the ensemble against each model are underlined.

End-to-End Adv. Training Conversion +
Sparse FT (Ours)Random Conn. ANN Conn.

Clean Acc. 87.4 88.2 89.5
FGSMens 27.8 26.5 41.1

Pc
w.

Li
ne

ar γw = 1.0 38.79 38.30 54.81
γw = 2.0 54.49 54.44 68.01
γw = 3.0 67.60 67.13 75.65
γw = 0.5 44.18 42.51 54.87
γw = 0.25 81.28 82.12 84.04

Ex
po

ne
nt
ial

(γd, γs) = (0.3, 0.5) 68.10 68.33 76.40
(γd, γs) = (0.3, 1.0) 48.15 47.26 62.90
(γd, γs) = (0.3, 2.0) 34.29 33.61 50.40
(γd, γs) = (1.0, 0.5) 78.15 79.12 82.38
(γd, γs) = (1.0, 1.0) 56.36 56.35 69.66
(γd, γs) = (1.0, 2.0) 37.01 36.38 53.44

Re
cta

ng
ul
ar γw = 0.25 85.47 85.96 87.82

γw = 0.5 69.23 66.97 70.84
γw = 1.0 46.51 44.56 57.32
γw = 2.0 59.25 59.52 70.93
γw = 4.0 78.66 79.60 83.28

Straight-Through Estimation 85.78 86.58 88.83
Backward Pass Through Rate 42.80 41.15 57.20
Conversion-based Approx. 80.73 80.61 70.84

B.2. Influence of Adversarial ANN Pretraining on Sparse SNN Robustness
Wedemonstrate the impact of using heavier adversarial ANNpretraining on the resulting converted
SNN, in terms of the transferred robustness gains. In Table B4 we present evaluations of converted
SNNs that use different configurations when pretraining the baseline ANNs. The robust and sparse
finetuning configuration remains the same with β = 2, and ϵ = 2/255.
We show that SNNs obtained via conversion are able to leverage andmaintain the robustness prop-
erties of the baseline ANNs through our robust weight initialization approach. A higher ϵ during
ANN pretraining also proportionally yields SNNs with higher adversarial robustness as seen in
Table B4, although we observe a drop in benign accuracy with increasing ϵ as expected through
the robustness-accuracy trade-off. Specifically, we could obtain 90% sparse (uniform) SNNs with
clean/robust acc. up to 83.2/40.0, when we perform ANN AT using ϵ = 8 and λTRADES = 6, as
opposed to our previous 89.5/26.1.

B.3. Analysis of Layerwise Spike Rates
In Figure B1, we investigate the per-layer spiking rates of 90% sparse SNNs, to elaborate the emerg-
ing differences in energy consumption estimates of the two pruning approaches. Note that in this
particular setting, our estimates revealed that layerwise uniform sparsity yields 6.12× more, and
non-uniform sparsity yields 2.15×more energy-efficient models than the densely connected SNN.
For layerwise non-uniformly sparse models in Figure B1(b), we can observe higher spike rates in
the layers with higher connectivity. Since layers with higher connectivity contain more outgoing
connections where spikes are transmitted for AC operations, more energy is consumed overall.
Naturally, this effect can occur when we use pruning methods that optimize the connectivity on
a per-layer basis. In contrast, models obtained by layerwise uniform pruning in Figure B1(a) show
more variant layerwise spike rates. However, this model appears to be less prone to consume sig-
nificantly more energy in certain layers, since sparse connectivity is uniformly distributed overall.

17

Table B1: Detailed evaluations of robust and sparse VGG-16 models on CIFAR-10, for different ro-
bust ANN pruning approaches and sparsity levels. Robust SNNs are obtained with our conversion
method using the corresponding baseline ANNs.

Sparsity Robust ANN Robust SNN (Ours)
Clean PGD Clean FGSMens PGDens

Dense NN 0% 93.1 82.2 / 63.9 / 25.2 92.0 76.3 / 66.2 / 45.8 74.9 / 59.8 / 27.9

Sparse NN
(LWM)

10% 93.2 82.2 / 64.3 / 25.5 91.8 75.7 / 65.9 / 45.5 74.1 / 59.4 / 27.7
30% 93.2 82.3 / 63.8 / 25.7 92.0 76.2 / 65.9 / 45.7 74.4 / 59.3 / 28.8
50% 93.2 82.1 / 63.6 / 25.3 91.8 76.3 / 66.0 / 45.9 74.8 / 60.0 / 28.4
70% 92.8 81.5 / 62.3 / 24.5 92.0 77.3 / 67.3 / 47.3 75.3 / 60.9 / 30.0
90% 91.2 77.8 / 56.6 / 20.1 88.7 69.9 / 59.5 / 40.3 68.0 / 54.2 / 26.1
95% 88.7 73.4 / 51.1 / 16.1 78.7 54.2 / 46.1 / 31.9 52.6 / 42.0 / 23.0
99% 72.1 50.7 / 31.4 / 8.20 44.9 18.8 / 15.8 / 11.2 17.9 / 15.0 / 9.20

Sparse NN
(Uniform)

10% 93.2 82.3 / 64.2 / 25.6 91.2 75.3 / 64.8 / 43.8 73.6 / 59.0 / 28.1
30% 93.3 82.3 / 63.9 / 25.5 90.8 74.6 / 64.4 / 44.8 72.5 / 57.9 / 27.9
50% 93.2 81.9 / 63.0 / 25.3 90.7 74.7 / 64.8 / 44.6 72.8 / 58.8 / 27.9
70% 93.0 81.6 / 62.7 / 24.8 90.9 74.6 / 64.5 / 43.7 72.8 / 58.5 / 28.2
90% 92.3 79.8 / 59.5 / 22.2 89.5 71.6 / 61.0 / 41.1 69.9 / 54.7 / 26.1
95% 90.9 77.7 / 57.2 / 20.6 86.9 66.0 / 54.9 / 37.0 64.3 / 49.3 / 23.7
99% 84.8 68.5 / 47.0 / 14.4 69.1 40.2 / 33.2 / 23.2 38.5 / 29.7 / 15.3

Sparse NN
(Non-Uniform)

50% 93.8 83.2 / 64.9 / 27.0 89.0 73.3 / 62.2 / 43.0 71.4 / 55.8 / 25.1
90% 93.4 82.6 / 63.7 / 25.4 89.6 73.2 / 61.0 / 41.5 71.1 / 54.2 / 23.7
95% 93.7 82.8 / 63.4 / 25.8 88.1 69.9 / 58.3 / 38.9 68.1 / 52.5 / 23.9
99% 92.2 79.8 / 60.3 / 21.8 85.2 62.5 / 52.9 / 35.0 61.0 / 48.5 / 22.9

Table B2: Detailed evaluations of robust and sparse WRN-28-4 models on CIFAR-100, for different
robust ANN pruning approaches and sparsity levels. Robust SNNs are obtained with our conver-
sion method using the corresponding baseline ANNs.

Sparsity Robust ANN Robust SNN (Ours)
Clean PGD Clean FGSMens PGDens

Dense NN 0% 67.5 46.1 / 27.7 / 8.20 69.6 43.7 / 30.1 / 14.6 40.8 / 23.3 / 5.50

Sparse NN
(LWM)

10% 67.1 46.2 / 28.1 / 8.80 69.5 44.0 / 30.1 / 14.8 40.8 / 23.1 / 5.60
30% 67.3 46.2 / 27.9 / 8.60 69.2 43.8 / 30.0 / 14.9 40.7 / 22.8 / 5.70
50% 66.9 46.0 / 27.5 / 8.10 68.9 43.3 / 30.1 / 15.2 39.9 / 23.2 / 6.00
70% 66.6 44.8 / 26.4 / 7.90 67.9 41.9 / 28.9 / 14.2 38.6 / 21.6 / 5.10
90% 65.3 43.5 / 25.6 / 7.50 56.6 32.5 / 23.2 / 12.3 30.0 / 17.6 / 4.30

Sparse NN
(Uniform)

10% 67.5 46.3 / 27.9 / 8.70 69.6 43.6 / 30.2 / 14.5 40.6 / 23.0 / 5.70
30% 66.9 46.3 / 27.9 / 8.40 69.2 43.9 / 30.2 / 15.1 40.7 / 23.4 / 6.00
50% 66.8 46.0 / 27.5 / 8.10 69.1 43.6 / 30.2 / 15.0 40.5 / 22.8 / 5.90
70% 67.2 45.9 / 27.3 / 8.20 68.0 43.0 / 30.3 / 15.3 39.9 / 23.4 / 6.00
90% 66.8 46.2 / 27.7 / 8.20 63.8 38.3 / 27.5 / 14.6 35.0 / 20.7 / 5.60

Sparse NN
(Non-Uniform)

50% 67.1 46.0 / 27.3 / 8.20 68.9 43.0 / 30.4 / 14.8 40.2 / 23.1 / 6.20
90% 66.3 45.8 / 27.6 / 7.90 66.1 40.7 / 27.9 / 14.2 37.2 / 21.1 / 5.40
95% 66.8 46.6 / 28.4 / 7.8 62.9 36.9 / 25.0 / 12.0 33.2 / 18.0 / 3.70
99% 60.7 40.5 / 22.9 / 5.70 44.3 23.7 / 16.9 / 8.10 21.5 / 11.5 / 2.30

18

Table B3: Evaluations of robust VGG-16 SNNs on CIFAR-10, with increasing number of ensemble
PGD attack iterations.

Clean PGDens (7-steps) PGDens (10-steps) PGDens (20-steps) PGDens (40-steps)
Dense SNN (0%) 92.0 75.1 / 60.6 / 29.0 74.9 / 59.8 / 27.9 74.5 / 58.8 / 26.9 74.0 / 58.3 / 25.8
Sparse SNN (30%) 90.8 73.1 / 58.5 / 28.9 72.5 / 57.9 / 27.9 72.3 / 57.1 / 26.2 72.3 / 56.7 / 25.4
Sparse SNN (50%) 90.7 73.3 / 59.2 / 28.9 72.8 / 58.8 / 27.9 72.7 / 58.1 / 26.5 72.4 / 57.4 / 25.8
Sparse SNN (70%) 90.9 73.2 / 59.2 / 29.5 72.8 / 58.5 / 28.2 72.3 / 57.7 / 26.8 72.4 / 57.4 / 25.9
Sparse SNN (90%) 89.5 70.3 / 55.5 / 27.2 69.9 / 54.7 / 26.1 69.3 / 54.4 / 24.8 69.4 / 53.8 / 24.3

Table B4: Influence of heavier adversarial ANN pretraining, on the resulting converted SNN. We
explore the use of a higher TRADES loss regularization strength and larger perturbation ϵ values,
using VGG-16 with 90% sparsity on CIFAR-10.

Adversarial ANN Pretraining with TRADES
λTRADES = 2 λTRADES = 6

ϵ = 2/255 ϵ = 2/255 ϵ = 4/255 ϵ = 8/255

Clean Acc. 89.5 89.6 87.2 83.2
FGSMens 71.6 / 61.0 / 41.1 72.6 / 62.6 / 44.2 70.4 / 62.8 / 47.9 65.7 / 59.3 / 46.8
PGDens 69.9 / 54.7 / 26.1 70.9 / 58.0 / 31.9 69.2 / 59.7 / 38.3 64.8 / 57.3 / 40.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

S
p

ik
e

R
at

e

0.0

0.2

0.4

0.6

0.8

1.0

C
on

n
ec

ti
v
it

y

Spike Rate

Connectivity

(a) Layerwise uniform sparsity
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

2

3

4

5

S
p

ik
e

R
at

e

0.0

0.2

0.4

0.6

0.8

1.0
C

on
n

ec
ti

v
it

y

Spike Rate

Connectivity

(b) Layerwise non-uniform sparsity
Figure B1: Comparisons of per-layer average spiking rates of the resulting SNNswith the two prun-
ing approaches. Both models maintain 90% global sparsity (i.e., 10% connectivity) and trained on
CIFAR-10 using the VGG-16 architecture.

19

