
Under review as a conference paper at ICLR 2024

NEUROSURF: NEURAL UNCERTAINTY-AWARE
ROBUST SURFACE RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural implicit functions have become popular for representing surfaces because
they offer an adaptive resolution and support arbitrary topologies. While previous
works rely on ground truth point clouds, they often ignore the effect of input
quality and sampling methods on the reconstruction. In this paper, we introduce
NeuroSURF, which generates significantly improved qualitative and quantitative
reconstructions driven by a novel sampling and interpolation technique. We show
that employing a sampling technique that considers the geometric characteristics
of inputs can enhance the training process. To this end, we introduce a strategy that
efficiently computes differentiable geometric features, namely, mean curvatures, to
augment the sampling phase during the training period. Moreover, we augment
the neural implicit surface representation with uncertainty, which offers insights
into the occupancy and reliability of the output signed distance value, thereby
expanding representation capabilities into open surfaces. Finally, we demonstrate
that NeuroSURF leads to state-of-the-art reconstructions on both synthetic and
real-world data.

1 INTRODUCTION

It is important to reconstruct surfaces for downstream tasks. Finding a suitable surface representation
is also crucial. Many methods have been proposed to train a neural network to reconstruct the surface
using point cloud or mesh data. Moreover, most of the methods consider only dense and clean input.
How to deal with sparse and noise input is undiscussed. Some methods require (oriented) surface
normals to produce satisfactory results. However, in real-world scenarios, the requirement on (high
quality) point cloud and its (oriented) normals is often hard to fulfill, which leads to failure cases
of recent reconstruction methods Gropp et al. (2020); Chibane et al. (2020b). Moreover, training
data might be unevenly distributed. The selection of sampling strategies impacts both the efficacy
of training and the quality of the outcomes. A natural question arises: can we adjust the sampling
method according to the features of the input data and enhance the training? To address these
questions, in this paper, we propose a technique that utilizes depth images as basic input and predicts
the signed distance value of query points. Depth images enable us to easily estimate point normals
and other surface geometry features such as curvatures. We propose a curvature-guided sampling
strategy, which enhances the training process and reduces the uneven sampling problem. Moreover,
this method effectively interpolates among inputs to counter the low-quality data issues. We also
incorporate an uncertainty value in neural implicit representation to ascertain the reliability of the
prediction. This augments the capabilities of the signed distance field to depict open surfaces without
additional effort, as shown in Fig. 1. In summary, our contributions are the following.

• We introduce NeuroSURF, which can deal with sparse input data to reconstruct surfaces
ranging from single objects to large scenes using the same framework.

• We propose a method that computes mean curvature directly from input depth images and
uses it as a curvature-guided sampling strategy, which considers the geometric feature of the
input to enhance the training efficiency.

• We introduce an uncertainty-aware implicit neural representation that gives an uncertainty
of predictions and enables open surface presentation.

• Extensive experimental studies show that our proposed method achieves state-of-the-art
reconstruction results on challenging synthetic and real-world datasets.

1

Under review as a conference paper at ICLR 2024

Figure 1: Reconstructed the surface (middle) of the proposed method with only a sparse input (left,
∼ 6k points) together with the uncertainty of each surface point (right).

2 RELATED WORK

2.1 SURFACE REPRESENTATIONS AND RECONSTRUCTIONS

Surface representation Surface representation can be classified into two categories based on the
stored surface properties: explicit surface representation (e.g., polygon mesh or point clouds) and
implicit surface representation (e.g., signed distance field). Explicit methods struggle with complex
topologies, resolution adjustments, local modifications, and potential high memory consumption
when storing high-resolution surfaces. In contrast, implicit representations represent the surfaces by
storing indirect information about the surface, which overcomes the shortages of explicit methods.
However, classical implicit methods still suffer from fixed resolution and high memory consumption
issues. For example, the memory consumption isO(n3) for a n resolution voxel grid. Luckily, neural
implicit representations can encode the surface implicit information such as occupancies Mescheder
et al. (2018); Genova et al. (2019); Chibane et al. (2020a), signed/unsigned distance functions Park
et al. (2019); Gropp et al. (2020); Novello et al. (2022); Chen & Zhang (2019); Michalkiewicz et al.
(2019); Chibane et al. (2020b) into neural networks. One can query any 3D points in space to obtain
the corresponding attributes. This approach allows for recovering highly detailed surfaces at a lower
memory cost than traditional surface representation methods such as classical signed distance field
(SDF). Moreover, it is a continuous representation suitable for further mathematical analysis of the
represented surface. (Signed/unsigned) Distance Field stores the shortest (signed) distance of a given
point to a surface, The gradients of an SDF provide a normal vector of the surface, but using SDF
requires well-defined "inside" and "outside" notions, which restrict representing open surfaces. An
unsigned distance field (UDF) does not distinguish the inside or outside. However, the lack of a sign
introduces ambiguity in surface reconstruction, such as the correct surface orientation.

Surface Reconstructions Much like with surface representations, surface reconstructions tech-
niques can be categorized into traditional approaches, including classical methods like Poisson
surface reconstructions (Kazhdan et al., 2006) and SSD (Calakli & Taubin, 2011). These techniques
commonly utilize point clouds as input to create a polygon mesh. Unfortunately, these traditional
methods are considerably reliant on the quality of input data, often failing when faced with com-
plex geometries. Moreover, using traditional methods is hard to modify output resolution without
repeating the complete reconstruction process. On the other hand, learning-based implicit surface
reconstruction approaches train neural networks to generate surface features Chibane et al. (2020a);
Gropp et al. (2020); Sitzmann et al. (2020); Michalkiewicz et al. (2019); Park et al. (2019), allowing
for changing the output resolution without retraining the network. Additionally, they can handle
relatively complicated geometry. The typical input of these methods is 3D data, e.g., a point cloud or
a mesh. Some methods also need a point cloud with normals information to ensure a satisfactory
result Sitzmann et al. (2020); Gropp et al. (2020). However, obtaining point clouds with normals is
not straightforward if the ground-truth mesh is not given or the point cloud quality is poor, which
often happens in real-world applications.

2.2 TRAINING DATA SAMPLING

Sparse training data Learning-based methods sample data from the given input to train the network
to predict underlying surface features. Sampling the training data is easy when the input format,
such as a mesh Novello et al. (2022), allows for infinite sampling. When only a limited sample is
available, such as in point clouds Sitzmann et al. (2020); Gropp et al. (2020), random sampling from
the point cloud is the most common way. It leads to one problem: inefficient training data leads to
bad reconstruction results Chibane et al. (2020b;a).

2

Under review as a conference paper at ICLR 2024

Biased Sampling Another problem of the random sampling is that points in the point cloud,
especially the points acquired from real-world data, are not uniformly located on the surface, as
discussed by Yang et al. (2021) and Novello et al. (2022). Points extracted from the iso-surface will
likely be gathered near high-curvature areas Yang et al. (2021). Plus, complex surface areas need
more points to represent their features. Random sampling does not consider these effects. To avoid
this issue, (Yang et al., 2021) samples on and near the iso-surface with some tolerance. Novello
et al. (2022) proposes to sample according to principal curvatures of the surface points such that
the sampled points are evenly distributed according to the curvatures. They divide points into low,
medium, and high curvature categories according to the absolute sum of two principal curvature κ1
and κ2. However, ground-truth meshes are required in their computation pipeline.

To tackle the challenges mentioned above, in this paper, we focus on more practical inputs: depth
images, which can be directly acquired from hardware. We initiate a coarse voxel grid that retains
initial SDF values, normals, and curvatures derived from depth images, effectively addressing the
issues related to input points with (oriented) normals. The voxel grid structure allows us to locate any
query points in space to get the related attributes by efficiently interpolating within voxels, thereby
resolving the sparse input problem. Our approach leverages a hybrid representation combining point
clouds and voxels, improving implicit surface reconstruction accuracy. Moreover, we embed an
uncertainty value into implicit surface representation to indicate the reliability of the SDF value.
The uncertainty value helps to eliminate redundant areas and facilitates the reconstruction of open
surfaces. The paper is structured as follows: we introduce our method in Sec. 3, the experiments and
evaluation results are stated in Sec. 4, we summarize our method in Sec. 5, more results and analysis
are in Appendix A.

3 METHOD

Our goal is to train a network f(x, θ) : R3 → R×[0, 1], which predicts the SDF value and uncertainty
of this value, such that the wanted surface S lies on the level-set {x|f(x) = 0}. We assume the shape
S is captured by a set of depth images {Dk}. We first utilize a coarse voxel grid from depth images.
During the process, points normals and curvatures are computed and merged to the coarse voxels.
Then we introduce a curvature-guided sampling method together with a novel interpolating method
to create and select training data for each epoch. Last, we talk about extracting surface considering
uncertainty. We also show that our method can easily be transplanted to other methods to improve
the results.

3.1 VOXEL UTILIZATION

We utilize a coarse voxel grid {vi} ⊂ R3 for i ∈ V containing SDF value for each voxel following the
method described in Sommer et al. (2022). For each voxel vi ∈ R3, we initialize two local properties:
the SDF value ψvi ∈ R of that voxel and the uncertainty of the SDF value wvi ∈ [0, 1]. Larger wvi
means the SDF value is reliable, and wvi = 0 indicates the voxel properties are not updated. Different
from the traditional voxel grid, a gradient of distance gvi ∈ R3 is also integrated for each voxel after
computing the normal vector of each pixel in the depth images using FALS method (Badino et al.,
2011). The point cloud contained in the voxel can be extracted by

xi = vi − ĝvi ψ
v
i (1)

where ĝvi =
gv
i

∥gv
i ∥

. For details, please refer to Sommer et al. (2022) and the Appendix A

Curvature integration Depth images can provide more geometric information other than nor-
mals Kurita (1999); Di Martino et al. (2014). To solve the biased sampling problem mentioned
in Sec. 2.2, we propose directly incorporating mean curvature during the voxelization step to help
with the sampling procedure during training. The mean curvature and other differential geometry
features, such as the Gaussian curvature, are closely related to principal curvatures, often denoted
as κ1 and κ2. The mean curvature H is the average of the principal curvatures, while the Gaussian
curvature K is their product. They are both local geometry properties of the surface and reveal
the local topology characteristics. In this way, we do not need a ground-truth mesh for computing
curvature information. To our knowledge, we are the first to integrate mean curvatures, computed
from depth images, with voxels for efficient sampling afterward. A depth image can be viewed as
a Monge patch of a surface, i.e. z = D(m,n), (m,n) ∈ Ω ⊂ R2 with pixel coordinates (m,n) lay

3

Under review as a conference paper at ICLR 2024

Gaussian curvature mean curvature Gaussian
curvature

mean
curvature

Figure 2: The visualization of Gaussian curvatures and mean curvatures of each point. The red color
indicates a high curvature area, and the blue color indicates a low curvature area. A positive mean
curvature (H > 0) signifies a convex surface, while a negative mean curvature (H < 0) indicates a
concave surface. Positive Gaussian curvature (K > 0) indicates that the surface is locally shaped like
a dome or sphere at that point, and negative Gaussian curvature (K < 0) indicates that the surface is
locally saddle-shaped or hyperbolic at the point.

in the image domain Ω (do Carmo, 1976; Spivak, 1999). Thus, the Monge patchM : Ω → R3 is
M(m,n) = (m,n,D(m,n)). To compute the two types of curvatures from the depth

K(m,n) =
DmmDnn −D2

mn

(1 +Dm +Dn)2
, (2)

H(m,n) =
(1 +D2

m)Dnn − 2DmDnDmn + (1 +D2
n)Dmm

2(1 +D2
m +D2

n)
3/2

, (3)

where Dm = ∂D(m,n)
∂m is the partial derivative of depth w.r.t. x-axis in the image plane; similarly,

Dn = ∂D(m,n)
∂n , Dmn = ∂2D(m,n)

∂m∂n for Dmm and Dnn. The computation is done on-the-fly per depth
image. After associating a curvature to each point from every depth image, we update voxel curvature
attributes by averaging all points inside the same voxel Kv

i = 1
N

∑
j K(M(m,n)j), where i is the

voxel index and j is the pixel index. Curvatures are computed using local image coordinates, and
we can still fuse curvatures into voxel (world) coordinates because the mean curvature H(m,n) and
Gaussian curvature K(m,n) are invariant to changes of the parameterization on the smooth surface
represented byM(m,n) do Carmo (1976). A detailed explanation is provided in the Appendix A.
The normal and curvature computation time for a 480 × 640 depth image, plus updating voxel
attributes according to this incoming depth, is around 50 millisecond. Fig. 2 displays that the
computed curvature indeed captures the local geometric properties of the surface.

3.2 VOXEL-BASED SAMPLING

Figure 3: Illustration of equation 4

Interpolating Sampling In this section, we introduce
an interpolation strategy that deals with the sparse input
and uses the gradient and curvature information. With
the initialized coarse voxel representation {vi}, we first
sample a random point p ∈ Γ in 3D space, where Γ ⊂
R3 is the sampling domain. With the help of the voxel
grid structure, we can localize in which voxel the point
p ∈ R3 lies and denote the coordinate of the voxel center
as v(p) ∈ R3. Then, the signed distance value of the
sampled point p can be easily computed by Taylor expansion with the help of the stored gradient gv
as Fig. 3

ψp = ψv + ⟨ĝv,p− v(p)⟩ , (4)

where ĝv = gv

∥gv∥ is the normalized gradient of the distance field. The uncertainty of the sampled
point is interpolated using

wp =
vs − ψx

vs
wv , (5)

where vs is the voxel size, wv is initial voxel uncertainty as mentioned in Sec. 3.1. The equation 5
sets the maximum value to the points on the surface (ψp = 0) and reduces the value when points are

4

Under review as a conference paper at ICLR 2024

moved away from the surface. Meanwhile, the point p inherits the curvatures of its voxel Kv and Hv .
Thus, we are not restricted to sampling only from a fixed set of points but can pick any point in the
space for training. Furthermore, locating v(p) can be done by one-step calculation, see Appendix A.
Our method does not require any additional nearest neighbor search or access to neighbor voxels.
The equation 4 is within its own voxel. Hence it is free from the voxel resolution since the training
inputs are points-signed distance value pairs.

Figure 4: Points gathering on high curvature effect
(left) and our sampling results after considering
points mean curvature (right).

Curvature-guided sampling To avoid the un-
even sampling problem, we divide sampled
points into low, median, and high curvature re-
gions, similar to Novello et al. (2022), we use
the mean (or Gaussian) curvature instead of prin-
ciple curvatures. Due to the page constraint
and the similarity of the mean and Gaussian
curvatures (see Fig. 2), in the following, we
only show the results based on the mean curva-
ture. For each epoch, m points (see Sec. 3.2)
are sampled from low curvature category p̂ ∼
{p ∈ Γ |Hp <

¯
H}, median curvature category

p̂ ∼ {p ∈ Γ |
¯
H ≤ Hp < H̄}, and high cur-

vature category p̂ ∼ {p ∈ Γ | Hp ≥ H̄}. The
threshold

¯
H and H̄ are chosen by the curvature

range of 0.3 and 0.7 percentile. The visualized sampling results are shown in Fig. 4.

3.3 UNCERTAINTY-AWARE IMPLICIT SURFACE RECONSTRUCTION

Loss with uncertainty We would like to recover the neural implicit function f : R3 → (ψ,w) ⊂
R× [0, 1], such that the surface lies on the level-set {x|f(x) ∈ 0× (τ, 1]}, and w is the uncertainty
of the predicted signed distance value ψ. τ is the uncertainty threshold. Given a point p in the sample
domain Γ, as described in Sec. 3.2, its corresponding voxel v(p) with the interpolated SDF value ψp
and uncertainty wp (using equation 4 and equation 5), we define the loss function of the geometric
and the normal constraints as

lX (θ) =
1

|Γ+|

∫
Γ+

(|ψ − ψp|)dΓ , (6)

lN (θ) =
1

|Γ+|

∫
Γ+

(1− ⟨ ∇ψf(p, θ)
∥∇ψf(p, θ)∥

, ĝ⟩)dΓ , (7)

lW(θr) =

∫
Γ

|w − wp|dΓ , (8)

where Γ+ indicates the area with the sampled uncertainty wp > 0. The equation 7 evaluates the
cosine similarity of surface normal and implicit function gradient. The final loss is

l(θ, θr) = lX (θ) + τnlN (θ) + τwlW(θr) + τelE(θ) . (9)

Figure 5: surface extraction with uncer-
tainty. Black vertices represent zero uncer-
tainty points. Red and blue vertex mean
points with negative and positive SDF values,
respectively.

Surface extraction with uncertainty It is reason-
able to consider uncertainty when extracting surface
using the Marching cubes algorithm Lorensen &
Cline (1987), as the uncertainty indicates the reli-
ability of the signed distance value. Moreover, we
also need to deal with the voxel grid with w = 0.
As shown in Fig. 5, A single zero uncertainty vertex
leads to a line (instead of a triangle), while two of
this kind lead to a point Botsch et al. (2010); Farin
(2002). Therefore, we can naturally reconstruct open
surfaces, thanks to our uncertainty estimation.

3.4 INCORPORATING WITH OTHER METHODS

Our curvature-guided sampling can seamlessly incorporate popular implicit surface reconstruction
methods such as Gropp et al. (2020); Sitzmann et al. (2020). These methods take point clouds as

5

Under review as a conference paper at ICLR 2024

input. The points with curvature can be extracted using equation 1 and the geometric loss equation 6
is

lX (θ) =
1

|V|
∑
i∈V
∥f(xi; θ)∥1 . (10)

Additionally, our interpolating method simplifies the method that needs nearest neighbor search, such
as Neural-Pull (Ma et al., 2020). Neural-Pull proposes to train a network to learn the pulling direction
and the distance to the iso-surface. During training, the method samples random points p and uses
nearest neighbor search to find the closest surface point x. Then, a network f is trained to minimize
the loss

lX (θ) =
1

|Γ|

∫
Γ

|x− ∇f(p)
∥∇f(p)∥

f(p)|dΓ , (11)

with τn = 0, τe = 0. Our interpolating method (Sec. 3.2) eliminates the nearest neighbor search
required in the original Neural-Pull. As for a random point p, after finding the corresponding voxel
v(P), the closest surface point x can be easily located using equation 1. In Sec. 4, we show that it
effectively reduces the noise during training and leads to better reconstruction quality. The modified
Neural-Pull outperformed the original implementation, especially under sparse inputs.

Even though it is based on voxel representation, the proposed sampling method can access surface
points without a surface extraction step such as Marching cubes. During the interpolating step, there
is no nearest neighbor search or cubic interpolation, which needs to access 8 voxel vertices like in
most voxel-based methods. The only interpolation step is done within its voxel by equation 4. We
use this hybrid representation to lead an efficient sampling step.

4 EVALUATION

To demonstrate that our sampling method improves the robustness and accuracy of the implicit
surface learning. We validate our method on synthetic and real-world datasets, including objects and
scene scenarios. For synthetic datasets with ground-truth mesh, we rendered perfect depth images
and camera poses using the ground-truth mesh to initialize voxel grid {vi}. To test low-quality input,
we initialed two different voxel resolutions, 643 (sparse) and 2563 (dense), to vary the sparsity of
the input. The real-world datasets contain RGB-D sequences with noisy, sparse depth images and
noise camera poses. To compare with the method that takes a point cloud as input, the point cloud
is extracted from voxels using equation 1 with normals. We use an 8-layer multi-layer perceptron
(MLP) with ReLU activations. Each layer has 256 nodes, and the last layer has 2 output nodes for the
SDF and uncertainty. We set the learning rate to 10−4 with decay and use the mean curvature for
curvature-guided sampling. The batch size is 10k, and we train for 10k epochs for each dataset. Our
PyTorch implementation takes approximately 15 minutes to train on a GeForce GTX TITAN X GPU
with CUDA for each dataset. All meshes are extracted with the Marching cube algorithm with grid
resolution 1283.

4.1 VOXEL-BASED INTERPOLATING SAMPLING

To verify that interpolating sampling helps when the input data is noisy and sparse, we compare against
the classical methods, SSD Calakli & Taubin (2011) and Poisson surface reconstruction Kazhdan
et al. (2006), as well as learning-based methods, IGR Gropp et al. (2020) and SIREN Sitzmann et al.
(2020), which take a point cloud with normals as the input. IF-NET Chibane et al. (2020a) also uses
a voxelized point cloud as input. We test our method on 4 synthetic datasets to get the quantitative
error. After extracting the mesh, we computed the Chamfer distance (CD) and Hausdorff distance
(HD) of the reconstructed mesh with respect to the ground-truth mesh in two different input (sparse
and dense) resolutions. Fig. 6 shows the visual comparison and the Tab. 1 shows the quantitative
comparison. All methods produce satisfactory results when the input points are dense. However, our
method still gives satisfactory results when the input is sparse. NDF Chibane et al. (2020b) trains
a network to learn UDF of a surface to represent an open surface. However, the output is only a
denser point cloud, and we failed to recover the mesh using Ball-Pivoting Algorithm as the author
described in the paper. Additionally, we show that our interpolating method improves the previous
method. The Neural-Pull method (Ma et al., 2020) outperforms the methods use equation 10 as
the geometric loss Gropp et al. (2020); Sitzmann et al. (2020), when the normal information is not
available. However, nearest neighbor search fails easily when the points are too sparse or noisy, while

6

Under review as a conference paper at ICLR 2024

Metric Dataset Method
SSD Poisson IF-NET SIREN IGR IGR (curv) OURS OURS (curv)

CD
(×102)

Bunny sparse 0.204 0.278 0.303 8.745 0.481 0.447 0.068 0.067
dense 0.224 0.242 0.315 7.582 0.501 0.491 0.073 0.068

Armadillo sparse 0.038 0.031 0.025 2.396 0.060 0.034 0.039 0.037
dense 0.024 0.025 0.026 2.331 0.035 0.034 0.031 0.030

Dragon sparse 0.210 0.206 0.158 2.710 0.209 0.198 0.179 0.157
dense 0.151 0.150 0.181 2.784 0.162 0.154 0.130 0.126

Happy
Buddha

sparse 0.180 0.240 0.258 2.717 0.307 0.259 0.135 0.125
dense 0.210 0.202 0.258 2.720 0.248 0.240 0.214 0.267

HD

Bunny sparse 0.057 0.074 0.112 0.817 0.149 0.142 0.026 0.016
dense 0.071 0.065 0.107 0.816 0.153 0.155 0.020 0.012

Armadillo sparse 0.014 0.006 0.007 0.357 0.018 0.008 0.015 0.006
dense 0.005 0.006 0.004 0.301 0.014 0.013 0.007 0.007

Dragon sparse 0.043 0.050 0.037 0.340 0.037 0.039 0.030 0.040
dense 0.040 0.039 0.036 0.317 0.056 0.045 0.030 0.025

Happy
Buddha

sparse 0.048 0.061 0.059 0.338 0.092 0.081 0.023 0.017
dense 0.075 0.057 0.058 0.332 0.059 0.057 0.054 0.044

Table 1: Error numbers for our method with (last column) and without curvature sampling (last
second column) and comparison methods. It shows that our method achieves better accuracy under
sparse and dense inputs.

GT
mesh Input SSD Poisson IF-NET NDF SIREN IGR ours

Figure 6: Comparison results with IGR Gropp et al. (2020), SIREN Sitzmann et al. (2020) and
IF-NET Chibane et al. (2020a) with two different density input on synthetic datasets. Sparse input
happy_buddha Curless & Levoy (1996) has ∼ 5k points, and dense one has ∼ 96k points.

our interpolating sampling strategy overcomes the problem of sparsity and noise. In Fig. 7, we show
the performance of our sampling method with loss equation 11 compared to the original Neural-Pull
method and the baseline method IGR. Our method and Neural-Pull do not use normals in their loss
terms, while IGR still uses point normals. The first two rows are synthetic datasets, and the last
two rows are real-world datasets vase and sokrates Zollhöfer et al. (2015). These two datasets are
RGB-D sequences filming a real object. Each dataset contains around 40 depth images. The noise
originates from both the depth images and camera poses. IGR Gropp et al. (2020) works well for
sparse and dense inputs on synthetic datasets, whereas Neural-Pull fails in sparse situations. Our
method compares favorably across all scenarios.

4.2 RANDOM SAMPLING VS. CURVATURE-GUIDED SAMPLING

We show that curvature-guided sampling helps in two aspects. First, it stabilizes the learning proce-
dure, leading to a faster convergence of the minimum solution. We show this visually by rendering re-
constructed meshes during early training epochs to see the learning efficiency of the different sampling
methods. We compute these rendered meshes’ Chamfer distance (CD) and Hausdorff distance (HD)
to show that curvature-guided sampling has a smoother error curve. Fig. 9 shows that the network
converges faster with curvature sampling than with a random sample. In Fig. 8, the solid lines and dash
lines are Chamfer distance errors of curvature-guided sampling and random sampling, respectively.
We normalized the CD errors by dividing the maximum error within each dataset to draw all lines in
one figure. The curvature-guided sampling lines have a smoother trend and reach a lower error faster.

7

Under review as a conference paper at ICLR 2024

Sparse
Input IGR Neural-

Pull Ours Dense
Input IGR Neural-

Pull Ours

Figure 7: Comparison results with NeuralPull Ma et al. (2020) and IGR Gropp et al. (2020) with two
different density input. Sparse input on synthetic dataset bunny has ∼ 5k points and dense one with
∼ 100k points. Two real-world datasets sokrates have ∼ 9k points and 150k points in sparse and
dense situations, vase has ∼ 4k and ∼ 81k in two situations. The figure shows the results are largely
improved by only changing to our sampling strategies.

ra
nd

om

ra
nd

om

w
ith

cu
rv

w
ith

cu
rv

30 epochs 50 epochs 70 epochs 70 epochs 90 epochs 120 epochs
Figure 9: We extract surface during training to compare the effect of curvature-guided sampling and
random sampling.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Epochs

C
ha

m
fe

rE
rr

or

bunny
armadillo
buddha
dragon

Figure 8: The CD error during different train-
ing epochs.

Second, we show that curvature-guided sampling also
increases the accuracy of reconstructed meshes. We
test our method with and without curvature-guided
sampling (last two columns in Tab. 1) for a compar-
ison. Moreover, we test on IGR Gropp et al. (2020)
and change its sampling method during training from
randomly choosing points to curvature-guided sam-
pling as described in Sec. 3.2(last third and fourth
columns in Tab. 1). Both comparison pairs show that
considering curvature information during training im-
proves the results.

4.3 UNCERTAINTY PREDICTION

In this section, we show the uncertainty prediction
result, which illustrates that the uncertainty helps to eliminate redundant areas. We focus on showing
the results on the scene dataset to show that with the help of uncertainty, we can also represent

8

Under review as a conference paper at ICLR 2024

Input SIREN Uncertainty Ours

Input IGR Uncertainty Ours

Figure 10: Scene reconstruction results with different density input on real-world dataset TUM_rgbd
(first two rows, sparse points∼ 14k, dense points∼ 330k) with noisy camera poses as well. Synthetic
dataset icl_nium (last two rows, sparse points ∼ 14k and dense points ∼ 215k) with ground truth
camera poses.

an open surface. Many previous works Sitzmann et al. (2020); Chibane et al. (2020b) have also
trained neural networks to represent scene-level surfaces. However, a method such as Sitzmann et al.
(2020) produces extra artifacts outside the surface. Although the authors propose one term in the loss
function to penalize off-surface points for creating SDF values close to 0, it can not eliminate all
artifacts, especially when the input is sparse and noisy. This problem can be solved by considering
uncertainty during surface extraction as described in Sec. 3.3. Due to space constraints, we show a
subset of comparison results. For more results, please refer to Appendix A.

5 CONCLUSION

Summary In this work, we have presented a novel surface reconstruction method which integrated
with a sampling method that can efficiently deal with low-quality inputs. Our approach operates on
depth images, which can be directly acquired from hardware. We propose a method that computes
surface geometric properties: normals and curvatures on depth images instead of using ground truth
mesh. We integrate normals and curvatures into a coarse voxel grid to enable interpolating in sparse
point clouds. The proposed method efficiently deals with sparse and noisy input and improves the
reconstructed quality. Moreover, the curvature-guided sampling and interpolating method can be
easily incorporated into different implicit surface reconstruction methods. The by-product uncertainty
gives a reliability indication for the predicated signed distance value and can help with non-closed
surface representations.

Limitations Our approach does not specialize in surface completion and, therefore, fails to recover
any missing areas in the input point cloud or depth data, which implies its inability to handle occlusion.

Future Work The techniques presented in this work can be easily integrated with other neural
reconstruction methods and shape completion techniques. Moving forward, our plan is to incorporate
shape completion and neural rendering techniques to deal with missing areas.

9

Under review as a conference paper at ICLR 2024

REFERENCES

H. Badino, Daniel Huber, Y. Park, and Takeo Kanade. Fast and accurate computation of surface
normals from range images. pp. 3084 – 3091, 06 2011.

M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy. Polygon Mesh Processing. CRC Press, 2010.
ISBN 9781439865316.

Fatih Calakli and Gabriel Taubin. Ssd: Smooth signed distance surface reconstruction. Comput.
Graph. Forum, 30(7):1993–2002, 2011.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
Shapenet: An information-rich 3d model repository, 2015.

Zhiqin Chen and Hao Zhang. Learning implicit fields for generative shape modeling. In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5932–5941,
2019.

Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. Implicit functions in feature space for 3d
shape reconstruction and completion. CoRR, abs/2003.01456, 2020a.

Julian Chibane, Aymen Mir, and Gerard Pons-Moll. Neural unsigned distance fields for implicit
function learning. In Advances in Neural Information Processing Systems (NeurIPS), December
2020b.

Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large dataset of object scans.
arXiv:1602.02481, 2016.

Brian Curless and Marc Levoy. A volumetric method for building complex models from range images.
In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’96, pp. 303–312, New York, NY, USA, 1996. Association for Computing Machinery.
ISBN 0897917464.

J. Matías Di Martino, Alicia Fernández, and José A. Ferrari. 3d curvature analysis with a novel
one-shot technique. In 2014 IEEE International Conference on Image Processing (ICIP), pp.
3818–3822, 2014.

Manfredo P. do Carmo. Differential geometry of curves and surfaces. Prentice Hall, 1976. ISBN
978-0-13-212589-5.

G.E. Farin. Curves and Surfaces for CAGD: A Practical Guide. Computer graphics and geometric
modeling. Elsevier Science, 2002. ISBN 9781558607378.

Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna, and Thomas A. Funkhouser. Deep
structured implicit functions. ArXiv, abs/1912.06126, 2019.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regular-
ization for learning shapes. In Proceedings of Machine Learning and Systems 2020, pp. 3569–3579.
2020.

A. Handa, T. Whelan, J.B. McDonald, and A.J. Davison. A benchmark for RGB-D visual odometry,
3D reconstruction and SLAM. In IEEE Intl. Conf. on Robotics and Automation, ICRA, Hong Kong,
China, May 2014.

Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruction. In
Alla Sheffer and Konrad Polthier (eds.), Proceedings of the Fourth Eurographics Symposium on
Geometry Processing, volume 256 of SGP ’06, pp. 61–70, Aire-la-Ville, Switzerland, Switzerland,
2006. Eurographics Association.

Takio Kurita. Computation of surface curvature from range images using geometrically intrinsic
weights. 09 1999.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

10

Under review as a conference paper at ICLR 2024

Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias Zwicker. Neural-pull: Learning signed distance
functions from point clouds by learning to pull space onto surfaces. CoRR, abs/2011.13495, 2020.

Lars M. Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. CoRR, abs/1812.03828, 2018.

Mateusz Michalkiewicz, Jhony K. Pontes, Dominic Jack, Mahsa Baktashmotlagh, and Anders P.
Eriksson. Deep level sets: Implicit surface representations for 3d shape inference. CoRR,
abs/1901.06802, 2019.

Tiago Novello, Guilherme Schardong, Luiz Schirmer, Vinicius da Silva, Helio Lopes, and Luiz Velho.
Exploring differential geometry in neural implicits, 2022.

Jeong Joon Park, Peter Florence, Julian Straub, Richard A. Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. CoRR,
abs/1901.05103, 2019.

Vincent Sitzmann, Julien N.P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit neural representations with periodic activation functions. In Proc. NeurIPS,
2020.

C Sommer, L Sang, D Schubert, and D Cremers. Gradient-SDF: A semi-implicit surface represen-
tation for 3d reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

M. Spivak. A Comprehensive Introduction to Differential Geometry. Number Bd. 1 in A Com-
prehensive Introduction to Differential Geometry. Publish or Perish, Incorporated, 1999. ISBN
9780914098706.

J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of
rgb-d slam systems. In Proc. of the International Conference on Intelligent Robot Systems (IROS),
Oct. 2012.

Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. Geometry processing with
neural fields. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Michael Zollhöfer, Angela Dai, Matthias Innmann, Chenglei Wu, Marc Stamminger, Christian
Theobalt, and Matthias Nießner. Shading-based refinement on volumetric signed distance functions.
ACM Transactions on Graphics (TOG), 34(4):1–14, 2015.

11

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 CODE, DATASETS AND BASELINE METHODS

Our code and evaluation scripts will be publicly available upon acceptance. We will also provide the
detailed information about the code of baseline methods.

name type year link license

Choi et al.
(2016)

Redwood dataset 2016 http://www.redwood-data.
org/3dscan/

Public Do-
main

Curless &
Levoy (1996)

The Stan-
ford 3D

dataset 1994 http://graphics.
stanford.edu/data/
3Dscanrep/

Public Do-
main

Zollhöfer et al.
(2015)

multi-
view
dataset

dataset 2015 http://graphics.
stanford.edu/projects/
vsfs/

CC BY-NC-
SA 4.0

Handa et al.
(2014)

ICL-
NUIM

dataset 2014 https://www.doc.ic.
ac.uk/~ahanda/VaFRIC/
iclnuim.html

CC BY 3.0

Sturm et al.
(2012)

TUM-
rgbd

dataset 2012 https://cvg.cit.tum.
de/data/datasets/
rgbd-dataset

CC BY 4.0

Sommer et al.
(2022)

gradient-
SDF

code 2022 https://github.com/
c-sommer/gradient-sdf

BSD-3

Gropp et al.
(2020)

IGR code 2020 https://github.com/
amosgropp/IGR

-

Sitzmann et al.
(2020)

SIREN code 2019 https://github.com/
vsitzmann/siren

MIT license

Chibane et al.
(2020a)

IF-NET code 2020 https://virtualhumans.
mpi-inf.mpg.de/ifnets/

-

Ma et al.
(2020)

Neural-
Pull

code 2021 https://github.
com/bearprin/
neuralpull-pytorch

-

Chibane et al.
(2020b)

NDF code 2020 https://virtualhumans.
mpi-inf.mpg.de/ndf/

-

Kazhdan et al.
(2006)

Poisson code 2006 http://www.open3d.org/ -

Calakli &
Taubin (2011)

SSD code 2011 http://mesh.brown.edu/
ssd/software.html

-

Table 3: Used datasets and code in our submission, together with reference, link, and license. We
did our real-world experiments on two datasets, multi-view dataset Zollhöfer et al. (2015) (for
which ground truth poses exist), and Redwood Choi et al. (2016) (without ground truth poses). Two
synthetic dataset, the Stanford 3D Curless & Levoy (1996), which is an object dataset, and ICL-NUIM
dataset Handa et al. (2014), which is a scene dataset. For the comparison methods, we use the code
listed in the table.

A.2 MATHEMATICAL DETAIL

A.2.1 MATH NOTATIONS

We summarize important math notation we used in the paper and appendix in Table 4.

12

http://www.redwood-data.org/3dscan/
http://www.redwood-data.org/3dscan/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/projects/vsfs/
http://graphics.stanford.edu/projects/vsfs/
http://graphics.stanford.edu/projects/vsfs/
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html
https://cvg.cit.tum.de/data/datasets/rgbd-dataset
https://cvg.cit.tum.de/data/datasets/rgbd-dataset
https://cvg.cit.tum.de/data/datasets/rgbd-dataset
https://github.com/c-sommer/gradient-sdf
https://github.com/c-sommer/gradient-sdf
https://github.com/amosgropp/IGR
https://github.com/amosgropp/IGR
https://github.com/vsitzmann/siren
https://github.com/vsitzmann/siren
https://virtualhumans.mpi-inf.mpg.de/ifnets/
https://virtualhumans.mpi-inf.mpg.de/ifnets/
https://github.com/bearprin/neuralpull-pytorch
https://github.com/bearprin/neuralpull-pytorch
https://github.com/bearprin/neuralpull-pytorch
https://virtualhumans.mpi-inf.mpg.de/ndf/
https://virtualhumans.mpi-inf.mpg.de/ndf/
http://www.open3d.org/
http://mesh.brown.edu/ssd/software.html
http://mesh.brown.edu/ssd/software.html

Under review as a conference paper at ICLR 2024

Symbol Description Symbol Description
x ∈ R3 3D points P ⊂ R3 point cloud set
V ⊂ N+ points index set S ⊂ R3 continuous surface
f(x, θ) neural implicit function θ ∈ Rn×m learnable parameter
wp ∈ [0, 1] points uncertainty wv ∈ [0, 1] voxel uncertainty
ψv ∈ R voxel SDF value ψp ∈ R point SDF value
ĝv ∈ R3 normalized distance gradient gv ∈ R3 voxel distance gradient
∇ differential operator Hp ∈ R point mean curvature
Γ ⊂ R3 sample domain γ ∈ R SDF threshold
K ∈ R Gaussian curvature H ∈ R mean curvature
k1, k2 principal curvature D ⊂ R2 depth image
Ω ⊂ R2 image domain M ⊂ R3 Monge path
dS(·) signed distance to surface S Γ+ ⊂ R3 sample domain with positive weight
H̄ ∈ R higher threshold

¯
H ∈ R lower threshold of curvature

ni ∈ R3 known points normal Q ∈ R3×3 camera intrinsic matrix
R ∈ SO(3) camera rotation matrix t ∈ R3 camera translation vector

Table 4: Summary of our notation in the main paper and the supplementary material.

A.2.2 VOXELIZATION DETAILS

Given an incoming depth D(m,n), (m,n) ∈ Ω with z = D(m,n) ∈ R and the estimated pose R, t,
the 3D points in world coordinates are

x = RQ−1

[
m
n
1

]
z , (12)

Q =

[
fx 0 cx
0 fy cy
0 0 1

]
, (13)

where Q is the camera intrinsic matrix. The SDF value of points xj and its normal nj and curvature
Kj computed from the depth image D, then the voxel grid {vi} SDF and weight is computed by

dS(vi) = (xj∗ − vi)
⊤ĝi (14)

∇dS(vi) = Rnj∗ (15)

wv(vi) =

1, dS(vi) > 0

1 + dS(vi)
vsT

, dS(vi) > −vsT
0, else

(16)

j∗ = argmin
j
∥xj − vi∥ (17)

where vs is the voxel size, T ∈ N+ is the truncate voxel number, in this paper, voxel size is set to
0.8cm for 643 grid and 0.2cm for 2563 grid with T = 5. Iterating over all depth image, the SDF ψvi ,
weight wvi , gradient gi and curvature Hv

i is updated by

ψvi ←−
wvi ψ

v
i + wv(vi)dS(vi)

wvi + wv(vi)
(18)

gi ←−
wvi g

v
i + wv(vi)Rgvi
wvi + wv(vi)

(19)

Kv
i ←−

wviK
v
i + wv(vi)Kj∗

wvi + wv(vi)
(20)

wvi ←− wvi + wv(vi) (21)

A.2.3 PROOF OF THE CURVATURE INTEGRATION

In the paper section 3.1, we mention that the transformation between two depth coordinates has
non-zero Jacobian (non-zero determinant); hence, integrating curvatures from depth images makes
sense. Here is the formulation and proof.

13

Under review as a conference paper at ICLR 2024

The determinant of the Jacobian of the parameter transformation of the parameterization in the
two depth images is non-zero; the mean curvature H(x, y) and Gaussian curvature K(x, y) are
invariant.

Proof. Given two depth images D1 and D2 taken at two different positions. Suppose the transforma-
tion from position 1 to position 2 is a rigid body motion T = [R, t], where R ∈ SO(3) is a rotation
matrix and t ∈ R3 is a translation vector. Let pixel p = (m,n) in D1, 0 ̸= z = D1(m,n), and
Q ∈ R3×3 be the camera intrinsic matrix, then the transformation of pixel p to p̄ = (x̄, ȳ) in D2 is

z̄

[
x̄
ȳ
1

]
= Qx , (22)

where x is computed using equation 12 and Q is same as equation 13. is invertible, fx, fy is the
camera focal length and cx, cy is the principal points. The pixel 3D coordinates in under two camera
view is Q−1(x, y, 1)⊤z and Q−1(x̄, ȳ, 1)⊤z̄. Let {rij}ij , i, j ∈ {1, 2, 3} be the element in R and
t = (t1, t2, t3)

⊤, compute the right side, we have z̄ = r31x+ r32y + r33z + t3 is the depth value
after a rigid body motion and z̄ ̸= 0 since it does not fall to image plane of D2 as we assume the
point is visible in both camera position.

det(QRQ−1) = det(Q) det(R) det(Q)−1 = 1 , (23)

it is because det(Q) ̸= 0, det(R) = 1 and det(Q−1) = det(Q)−1. Thus, the transformation
Jacobian of the 3D points is non-zero. For the Jacobian of the transformation from (x, y) to (x̄, ȳ),
we only need to consider the upper-left 2 × 2 submatrix of QRQ−1. Since the upper-left 2 × 2
matrix of R represents the rotation matrix in the xy plane, thus it is non-zero. The upper-left 2× 2
matrix of Q is diagonal also non-zero. Hence, we get the determinant of Jacobian from (x, y) to
(x̄, ȳ) is also non-zero.

A.2.4 VOXEL BASED INTERPOLATING SAMPLING DETAIL

Each property of the voxel grid is stored in a vector. Hence, to get an attribute of one voxel, we need
the index of the voxel. Given a random point p ∈ R3, the voxel index (i, j, k) for voxel v which
contain points p can be localized by

(i, j, k) = round(
1

vs
(p− c)) (24)

where c ∈ R3 is the center coordinates of voxel grid. Thus, we can localize the voxel in one step
without any nearest neighbor search.

A.3 MORE VISUALIZATION RESULTS

A.4 FAILING CASES ANALYSIS

Chibane et al. (2020b) shows successful results in ShapeNet Chang et al. (2015). However, we did
not get satisfactory results on both object and scene datasets. We suspect the method needs a lot of
training data, e.g., ShapeNet has multiple point clouds for a single shape. We only have one (sparse)
point cloud for a shape. We also see a similar issue reported in the authors’ Github issues. Fig. 14
shows different failing cases. The first line is the failing case on open surface reconstruction for
sparse input (∼ 6k) lr_kt0 datasets. IF-NET Chibane et al. (2020a) can not handle open surfaces.
Neural-Pull Ma et al. (2020) easily fails when there is a flat plane. SIREN Sitzmann et al. (2020)
tends to create artifices in non-surface areas when dealing with open surfaces. The second row is
failing cases for complicated shape Dragon (sparse input, ∼ 6k points). We also fail to recover
satisfactory results using our method (last column), and the modified Neural-Pull method with our
sampling strategy also fails to recover the correct shape of the Dragon (last second column). Our
analysis is that large details are gathered around the head part of the Dragon, and the interpolation
fails to overcome too sparse input.

14

Under review as a conference paper at ICLR 2024

Gaussian curv mean curv Gaussian curv mean curv

Figure 11: The visualization of Gaussian curvatures and mean curvatures of happy_buddha and
dragon dataset, computed using depth images as described in main paper section 3.1.

GT
mesh Input SSD Poisson IF-NET NDF SIREN IGR Ours

Figure 12: Comparison results with SSD Calakli & Taubin (2011), Poisson surface recontruc-
tion Kazhdan et al. (2006), NDF Chibane et al. (2020b), IGR Gropp et al. (2020), SIREN Sitzmann
et al. (2020) and IF-NET Chibane et al. (2020a) with two different density input on synthetic
datasets Curless & Levoy (1996). Armadillo has ∼ 8k in sparse input and ∼ 146k in dense input.
Bunny has ∼ 5k sparse points and dense one with ∼ 100k points

15

Under review as a conference paper at ICLR 2024

Input SIREN Neural-Pull IGR Uncertainty Ours

Figure 13: Two Real world Scene datasets Choi et al. (2016) results comparison with SIREN Sitz-
mann et al. (2020), Neural-Pull Ma et al. (2020) and IGR Gropp et al. (2020). Neural-Pull fails in
most of the cases, while SIREN creates a redundant area. Sofa has ∼ 6k points and ∼ 111k points in
sparse and dense situation, respectively. Washmachine with ∼ 8k sparse points and ∼ 180k dense
points.

NDF IF-NET Neural-Pull SIREN Ours

IGR SIREN Neural-Pull Modified
Neural-Pull Ours

Figure 14: Failing cases in different methods.

16

	Introduction
	Related Work
	Surface Representations and Reconstructions
	Training Data Sampling

	Method
	Voxel Utilization
	Voxel-based Sampling
	Uncertainty-Aware Implicit Surface Reconstruction
	Incorporating with Other Methods

	Evaluation
	Voxel-based Interpolating Sampling
	Random Sampling vs. Curvature-Guided Sampling
	Uncertainty Prediction

	Conclusion
	Appendix
	Code, Datasets and baseline methods
	Mathematical detail
	Math Notations
	Voxelization Details
	Proof of the Curvature Integration
	Voxel Based Interpolating Sampling Detail

	More Visualization Results
	Failing Cases Analysis

