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Abstract

The restructuring of scientific data is crucial for
scientific applications such as literature review au-
tomation, hypothesis generation, and experimen-
tal data integration. As pre-trained Large Lan-
guage Models (LLMs) have been improved and
become more accessible, they have the potential
to enhance these processes by efficiently inter-
preting and combining large amounts of data. In
this work, we present a comprehensive overview
of this restructuring framework, exploring ap-
proaches designed to gather, augment, and restruc-
ture unstructured scientific data. We explore how
LLMs can better integrate diverse unstructured
sources of data into a comprehensive document
or improve existing knowledge graphs. As a way
of exploring these approaches, we study the spe-
cific case of synthesizing documents for chemical
reactions, where organized data is lacking. We
observed that improvements in web page parsers
significantly reduce the cost of using LLMs. By
developing a parser for chemical reactions, we
construct a framework for document augmenta-
tion and knowledge graph completion, and sig-
nificantly reduce the usage costs (in terms of in-
put/output tokens) of LLMs.

1. Introduction

In scientific research, the task of gathering information from
various sources and reconstructing it into structured data
is crucial for many processes, including literature review
automation (Qureshi et al., 2023; Wang et al., 2024; Lu
et al., 2023), hypothesis generation (Zhou et al., 2024), and
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experimental data integration (Bran et al., 2023). The recent
advent of pre-trained Large Language Models (LLMs) has
enabled the use of their advanced text processing capabil-
ities to reorganize unstructured data into desired formats
for these tasks. Most scientific information resides on the
internet, often scattered across different webpages without
proper organization. This fragmented nature of data poses a
significant challenge for researchers who need to compile
comprehensive datasets from these unstructured sources.

LLM-based development frameworks, such as
LangChain (Chase, 2022), provide methods to col-
lect this scattered information by searching for and parsing
site data, and then utilizing LLMs to reconstruct it into
structured formats like text documents or knowledge
graphs. These frameworks leverage the ability of LLMs
to understand context and semantics, making them ideal
for synthesizing coherent representations of data from
disparate sources. However, several choices and limitations
exist within this process. For instance, there are various
parsers available for site data extraction, each with its
own strengths and weaknesses. The data reconstruction
process typically relies on text-based data, often neglecting
tabular or image data. Additionally, the use of LLMs incurs
additional costs associated with inference requiring GPU or
API usage, which can be prohibitive for large-scale data
processing tasks.

In this study, we explore how to effectively gather diverse
information through web search and reconstruct it into struc-
tured data in scientific contexts. Our focus is specifically
on the domain of chemical reactions, a field where well-
organized and comprehensive data is often not readily avail-
able. Based on these observations, we found that an HTML
parser for parsing web pages significantly reduces the cost
required when using LLMs. Therefore, we developed a
specialized parser for chemical reaction websites called Re-
actionParser. Using this parser, we evaluate the cost of us-
ing LLMs in document augmentation and knowledge graph
completion through a data reconstruction pipeline.



2. Background
2.1. Large Language Models (LLMs)

Large language models (LLMs) have been predominantly
trained on massive datasets collected from the internet and
are mostly utilized for natural language processing tasks,
such as question answering or summarization. Recently,
decoder-only models (Radford et al., 2018; 2019; Brown
et al., 2020) have demonstrated superior performance in
generation tasks compared to traditional encoder-decoder
models (Vaswani et al., 2017). LLMs operate using a fun-
damental unit known as a ‘token‘, which typically com-
prises subword-level combinations of characters, depending
on the specific tokenizer used. For instance, tokenizing
the sentence “Hello, world!” would result in the tokens
["Hello", ",", "world", "!"]. Due to the at-
tention mechanism present in language models, which es-
sentially encodes all tokens by their relationship with other
tokens in the input sequence, this architecture scales quadrat-
ically in computation with respect to the number of input
tokens. Therefore, the number of tokens is crucial when
working with LLMs, as it significantly dictates the compu-
tational inference cost. Many proprietary LLMs services,
such as Claude-Opus or GPT, charge per input/output token.
For example, Claude-Opus charges $75 per 1 million output
tokens (Anthropic), while GPT-4 charges $60 per 1 million
tokens. Decoder-only LLMs learn and predict the proba-
bility of the next token with a causal mask, thus emulating
plausible text completions. In other words, it can be consid-
ered a model p(t| P) that predicts the probability of the next
token ¢ appearing when prompt P is given. However, to
perform arbitrary tasks defined by the user, such as in a chat-
bot system, an instruction-tuning phase is needed. When
trained with large amounts of instruction-output formatted
text, these LLMs become probabilistic models that predict
the likelihood of the next token given an instruction. Such
LLMs are referred to as instruction-tuned LLMs.

2.2. Knowledge Graphs

Knowledge graphs (KGs) represent sets of entities and their
relationships through nodes and edges. Due to the com-
plex interactions and semantic relations contained in sub-
graphs, KGs can be used for higher-level reasoning tasks,
integrating dense information at both the node and edge
levels. Knowledge graphs play a crucial role in various
Al applications, including search engines, recommendation
systems, and question answering. In the context of chatbot
systems, they can help identify connections within data and
better contextualize user queries, providing more accurate
and meaningful responses. Recently, there has been much
interest in integrating knowledge graphs with LLMs, lead-
ing to various real-world use cases. For example, Google
uses language models, like BERT (Devlin et al., 2018), to

incorporate knowledge graphs into its search algorithms,
thereby better understanding the intent of user queries and
providing more relevant search results. Additionally, in the
medical field, knowledge graphs and LLMs are combined
to extract meaningful patterns from vast amounts of data,
including medical records, research documents, and clinical
trial results. This integration helps decision support systems
in disease diagnosis and treatment development. Thus, the
value of KGs is greatly enhanced when used in conjunction
with LLMs. In this work, we explore the task of improving
existing KGs from web data, referred to as knowledge graph
completion.

3. LLM-based Data Restructuring

In this section, we share our observations and considerations
for each step of data reconstruction using LLMs.

3.1. Webpage Domain Restriction

The first consideration is selecting the websites from which
to fetch information. It is crucial to differentiate between
sites that intentionally block access and those that do not.
A webpage’s address consists of a domain and a path, con-
catenated together, with the {domain}/robots. txt file
implicitly specifying which paths are allowed or disallowed
for access. Search services like Google and Bing use this
information to display results. Another important factor is
the reliability of the information on these sites. The internet
hosts a variety of sites with different purposes. It is es-
sential to distinguish between sites containing professional
information and those with a community-oriented nature.

3.2. HTML Parser

After obtaining website addresses through search, the next
step is to fetch information from these websites. Websites
are composed of HTML code, and an HTML parser is neces-
sary to convert this into text. There are various open-source
parsers available, such as Pandoc, html2markdown,
html2text, Markdownify, and Beautiful Soup
4, which can be chosen based on the purpose. However, a
webpage contains not only the main information but also
text from menus, tables of contents, buttons, etc. These
parsers generally cannot distinguish between these differ-
ent parts. To address this, using an LLMs to organize the
content from HTML code is possible; however, HTML to-
kenization consumes a significant number of tokens. For
instance, tokenizing the HTML code of Wikipedia’s Oxygen
page with tiktoken requires nearly 200,000 tokens, which is
beyond the capacity of most LLMs to handle at once.



3.3. Image and Tabular Data

Webpages contain not only text but also images and tables,
which also need to be processed. Images might or might not
include descriptive text, and their URLs can be very lengthy,
necessitating additional handling. Tables come in various
formats, and even tables with the same format can have
different meanings for the data in the same cells. This should
also be considered. The parser used here must effectively
extract the main content of the web page to maintain the
essential information while reducing the number of tokens
used in subsequent LLLMs operations, thereby minimizing
the cost of using the LLMs.

3.4. Summarization

Although we collected text stripped of HTML tags using an
HTML parser, the length of the content varied across differ-
ent websites. Aggregating the content from multiple sites
at once resulted in duplication and inclusion of irrelevant
information. Therefore, it is challenging to use this directly
for data reprocessing with LLMs. There is a need for an ad-
ditional step to extract only the relevant information. LLMs
can also be utilized in this process, and the type of LLMs
used does not significantly affect the content variation.

3.5. Utilization of Prior Data

It is possible to reconstitute the data into the desired format
using only information obtained through searches. However,
if existing related data is already available, leveraging it is
also an option. We found that when creating documents,
the format (such as section titles, markdown format, etc.)
of the generated document varied significantly when using
only information obtained from searches. On the other hand,
when integrating existing documents with information found
through searches, the LLM tended to adhere to the format
of the existing documents while incorporating additional
information.

3.6. Data Integration

Finally, it is necessary to integrate all the data into the de-
sired format. LLMs are used in this process, and it is crucial
to ensure that the LLM generates data in the required for-
mat. For instance, when recomposing into a document, the
content needs to be well-organized by sections. If the data
is stored in the form of a knowledge graph, the relation-
ships between entities must be correctly expressed, or the
query commands for storing in a graph database must be
accurately generated. Our experience indicates that mod-
els with well-tuned instruction sets adhere better to these
formats. Additionally, when index numbers are assigned
to information obtained through searches and instructions
are given to mark these index numbers in the integrated

content, high-performance LLMs generally adhered to these
instructions well.

4. Framework Design

Based on the consideration described in Section 3, we design
a new data restructuring framework. Section 4.1 describes
the methodology for identifying unique chemical reaction
types, which helps in gathering essential keywords where
the information is generally scarce. In Section 4.2 we exam-
ine web domains containing information specific to chemi-
cal reactions or organic chemistry/synthesis. Subsequently,
Section 4.3 details the process of developing specialized
parsers for each domain page. Lastly, Sections 4.4 and 4.5
explain the use of parser outputs for document supplemen-
tation and knowledge graph completion, respectively.

4.1. Named Chemical Reactions

We obtained 2,146 unique reaction types from chem-
ical reaction records extracted from the Pistachio
database (NextMove), where we randomly sampled for our
experiments. Due to the specificity of these reaction classes,
most of them do not have well-structured entries in sites
like Wikipedia, and performing downstream tasks based on
LLMs, such as QA or mechanism elucidation, can become
a challenge without access to factual/structured sources.

For each of the named reactions, we would like to gener-
ate structured documents from trustworthy sources, with
information such as reaction mechanism, conditions, cat-
alysts, solvents, and examples. As mentioned before, for
well-studied reactions, our focus is on augmenting exist-
ing documents, and for less-common named reactions, we
would like to synthesize new documents with information
freely available.

4.2. Gathering Accessible and Frequent Domains

To gather dispersed information from web pages, we utilize
the Google Search API since most search engines only index
web pages that are allowed in the {domain}/robots.txt of
each domain. From the web pages that appeared in these
search results, we identified those that returned errors when
accessed via a GET request. We specifically gathered the
domains of web pages that resulted in errors to exclude
them from future searches. The most common error we en-
countered was the 403 forbidden error (authorization error),
typically indicating that access was denied by the server,
possibly due to reasons such as copyright restrictions. De-
spite the existence of methods to bypass these errors (e.g.
using Selenium (Stewart et al., 2024)), we chose not to em-
ploy such methods in order to adhere to our ethical standards
and not violate any policies. After filtering out the domains
that produced errors, we analyze how other domains were
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Figure 1. Detailed process of document augmentation and knowledge graph completion. Parsed documents are chunked and related
sentences are extracted for both tasks. Cypher queries are generated to make new entities and relationships for KG. And outdated(old)

document is integrated with the related sentences.

distributed. The results of this distribution analysis are
plotted in Figure 3 in Appendix. The domain names are
represented on the x-axis and y-axis shows the number of
occurrences for each domain. We observed that responses
to queries regarding chemical reactions are predominantly
concentrated in specific domains. Given this result, we
decided to develop specialized parsers for these particular
domains. This strategy enabled us to tailor our searches
to these domains more effectively. We adjust the settings
of the Google Search API to preferentially retrieve results
from these targeted domains, thereby optimizing our data
collection process. This approach not only enhanced the
efficiency of our searches but also ensured the relevance and
accuracy of the information gathered.

4.3. Parser Implementation

We have implemented separate parsers for each of the top 17
chemical reaction-related domains identified in Section 4.2,
tailored to the specific needs of each domain. In this section,
we introduce the implementation process, image process-
ing techniques, and our method for parsing infoboxes that
summarize the information on a Wikipedia page.

4.3.1. IMPLEMENTATION PROCESS

The implementation process for a parser in each domain is
as follows. First, access one of the search result pages
using an internet browser(e.g., Google Chrome). Next,
use the Google Chrome development tool to identify the
lowest tag block that includes the main content (e.g., ti-
tle, abstract, contents), excluding elements like sidebars
or scripts. Then, store the attributes found in this tag.
For instance, if the tag found is <div id="main_id"
class="contents">, the tag is div, and the attributes
are 1d and class along with their values. Next, obtain
the web page’s HTML code via a GET request and use the
Beautiful Soup 4 Python library to exclude all tags except
the identified one. Additionally, remove any unnecessary

tags (e.g., button, link) within the identified tag. Finally,
modify the text to conform to markdown syntax based on the
characteristics of the remaining tags. For tags like <h1>,
<h2>, ..., <h6>,append a corresponding number of
asterisks “*‘ to signify markdown syntax. For <a> tags
representing links, remove the hyperlink to prevent it from
appearing in the text. For <ul> tags representing unordered
lists, prepend each item with ‘- and a newline character.
For <o1> tags representing ordered lists, prepend each item
with a number and a newline character. Tags that alter the
text’s appearance, such as <b>, <em>, <strong>, etc.,
are configured differently on the domain.

4.3.2. IMAGE PARSING

Images complement the descriptions in the text and contain
implicit information. They are also important for creating
interleaved text-image datasets when used together with
text, which can improve explainability. To obtain images,
the URL of the image, which is found in the src attribute is
needed. But often only the relative URL of the domain is
provided. Therefore, it is crucial to identify the base URL of
the domain hosting the image. For this, we manually verified
and set unique base URLSs for each domain. Another issue
is the excessive presence of irrelevant images, such as site
logos and button icons, in the content. To address this, we
excluded unrelated image tags using the method described
in Section 4.3.1.

4.3.3. WIKIPEDIA INFOBOX

Wikipedia features high-quality documents created collabo-
ratively by multiple contributors. Among these documents,
the infobox summarizes specific objects, encapsulating their
characteristics in tabular data. Parsing tables is challenging
due to the variety in size and shape, which makes it diffi-
cult to apply a single rule for parsing. However, based on
our observation that infoboxes are typically composed of
two columns, we have implemented a parser specifically



for two-column tables. As we iterate through each row
of the table, if there are only two columns, we designate
the value of the first column as the key and the value of
the second column as the value, and proceed with parsing.
This approach allows us to adequately maintain the essential
summary information provided in Wikipedia’s infoboxes.

4.3.4. SUBSCRIPT FOR CHEMICAL FORMULA

In chemical reactions, chemical formulas are commonly
used to represent the reaction in text. The numbers indi-
cating the number of molecules, displayed as subscripts,
are typically represented by the <sub> tag in HTML. The
<sub> tag is also commonly used in markdown syntax; con-
sequently, we have implemented a feature in our markdown
to ensure that sections wrapped in <sub> and </sub>
tags are displayed exactly as they appear, maintaining the
tag format.

4.4. Data Restructuring Task 1: Document
Augmentation

Here, we describe the first data restructuring task using
information obtained from the parser: document augmenta-
tion. The markdown documents obtained from web pages
are denoted as D = D4, D, --- , D, and the insufficient
or outdated documents are denoted as Doy, .

4.4.1. CONCATENATION

Although we used ReactionParser to convert raw HTML to
markdown format to reduce the number of tokens handled by
the LLM, including all parsed documents D and the original
document D, simultaneously can still result in a high token
count. This may prevent the LLM from processing them
all at once, especially if it does not support long contexts.
For example, the number of tokens of parsed document
sometimes exceeds 32k, while open-source LLMs such as
Llama-3 (Al@Meta, 2024) can only deal with 8k tokens.
Therefore, we consolidate the information by merging all
documents and then dividing the text into similarly sized
chunks, summarizing each one, and recombining them. To
achieve this, we first concatenate all the parsed documents.

4.4.2. IMAGE PLACEHOLDER SUBSTITUTION

The parsed documents D might include image syntax like
! [description] (URL), but some URLSs are extremely
long due to Unicode characters. We observed that these
lengthy URLSs often cause LLMs to output odd characters
when used for downstream tasks. To address this issue and
the difficulties LLMs have in interpreting lengthy URLs,
we simplified image syntax in all documents using regu-
lar expressions, replacing them with a simpler sequence,

!¢ is omitted for simplicity

<FIGURE_/>, where [ is the image index. We refer to the
replaced string <FIGURE_I > as an image placeholder and
the process of replacing it as image placeholder substitution.

4.4.3. EXTRACTING RELEVANT INFORMATION

To focus solely on information relevant to a query ¢ and
reduce unrelated content, we divided the concatenated doc-
ument into 10,000-character segments. Through the loop,
we use an instruction-tuned Llama-3 with a specific prompt,
Prxiract, to extract the related segments, {dy,da, - - ,di}.

4.4.4. INCOMPLETE DOCUMENT INTEGRATION

Subsequently, we use this extracted information along with
another prompt, Pipeegrate, t0 generate a new document, D',
by integrating the information into a prior document, D .

The overall process is mathematically represented as fol-
lows:

d17d2?”' 7dk:LLM(D17D27“' 7Dn‘Pextract) (1)

D' = LLM(Douta dh dg, to adk“:)imegrate) )

4.4.5. IMAGE PLACEHOLDER RESTORATION

The integration result may include the <F TGURE_I > string,
representing the image placeholder we saved. This image
placeholder is then replaced with the original syntax string
! [description] (URL), a process we call image place-
holder restoration. The whole process is shown in Figure 1
and the prompts Peyyact and Pipeegrate that we designed and
used are available at the public URLS Peyract and Rmegmez.

4.5. Data Restructuring Task 2: Knowledge Graph
Completion

In this subsection, we introduce a KG completion method
as another data restructuring task, which involves enhancing
an incomplete or prior knowledge graph by adding content
found based on search.

4.5.1. BASE KNOWLEDGE GRAPH

To create our base KG, we utilized Wikidata (Vrandeci¢
& Krotzsch, 2014). We downloaded the Wikidata dump
file and collected all entities pointing to chemical reactions
(QID 36534), thereby creating a KG that represents chemi-
cal reactions. Specifically, we utilize SPARQL (201, 2013)
to get the chemical reaction-related Wikidata pages. This
graph does not include unique chemical reactions discussed
in subsection 4.1 and mainly comprises well-known chemi-
cal reactions. We stored this KG using Neo4j (Neo4j, 2012),

Due to the length of the prompt, we share all prompts of LLMs
used in this paper via a public, anonymized URL


https://github.com/ReactionParser/ReactionParser/blob/main/prompt_extract.txt
https://github.com/ReactionParser/ReactionParser/blob/main/prompt_integrate.txt

which is advantageous for handling large-scale graph data.
Neo4j allows for various operations such as adding data
or finding relationships through the Cypher (Francis et al.,
2018) query language.

4.5.2. GENERATING CYPHER QUERY

To add data to the knowledge graph using Neo4j, Cypher
queries must be generated. Based on the capability of LLMs
to extract triplets from raw text, we used an LLM-based
integration and Cypher query generation method. Similar
to the documentation creation method described in section
4.4, we use the LLM(gpt-4-turbo-2024-04-09) with rela-
tive segments {d1, da, - - - , di }, which contain information
about query ¢, and the existing knowledge graph’s schema
(state of knowledge graph) S. The schema contains entity
types, properties of entities, relationship types, properties
of relationships. However, there is no way to get informa-
tion about existing entity names, so we additionally include
existing chemical reaction entity names with the schema.
This approach enables the integration of information found
through search with the existing knowledge graph. The de-
tailed prompt for Cypher query generation is represented at
the URL Peypher.

5. Experiment

In Section 3, we introduced various options to consider,
and in Section 4, we presented our final framework us-
ing ReactionParser as the HTML parser. However, in
our experiments, the main focus is on comparing differ-
ent HTML parsers, as this has the most significant impact
on data reconstruction. We conduct comparisons against
existing parsers, such as Pandoc, html2markdown,
html2text, Markdownify, and BeautifulSoup4
(BS) . All parsers, except for BS, are used to convert HTML
into markdown format, while BS is used to convert HTML
into plain text. Although ReactionParser utilizes BS to han-
dle HTML tags, in this context, BS is employed as a basic
text parser, and we use its function to convert directly to text
without preprocessing for comparison purposes.

In this section, first, we examine results generated using Re-
actionParser and compare them against existing alternatives.
Then we analyze the quality of the restructured documents®
and knowledge graphs after supplementing them with in-
formation from a parser. The key points of focus are as
follows: How effectively can the specialized parser supple-
ment incomplete documents? Section 5.1. Another point of
interest is how much information is added when the special-
ized parser supplements a knowledge graph, (Section 5.2).
Additionally, the effectiveness of ReactionParser in parsing

3All parsed text and generated documents can be found at
https://github.com/ReactionParser/ReactionParser/tree/main/results

relevant content compared to other methods is evaluated,
with detailed comparisons available in Appendix A.1.

5.1. Parsers’ Impact on Final Document Augmentation

In this experiment, we conduct a document augmentation
task to investigate the effects of web data parsers on LLM-
based document synthesis from factual sources. Specifi-
cally, we aim to analyze how well the LLM retrieves and
reprocesses useful information from different parsed web
data results. Due to the high variance in structure and con-
tent of documents produced solely from parsed results, we
started with an initial chemical reaction document and aug-
mented it. This serves as regularization, ensuring most
documents follow a similar pattern. We then compare the
augmented document results with data reprocessed by the
LLM. To create the base document, we used various closed
and open-source LLLM alternatives with different sizes and
performance. The closed LLMs used for document gener-
ation include gpt-4-turbo-2024-04-09, gpt-3.5-turbo-0125,
claude-3-haiku-20240307, claude-3-sonnet-20240229 and
claude-3-opus-20240229. The open-source LLMs used in-
clude Gemma-2B, Gemma-7B, Phi-3-3.8B, and Mistral-7B,
to explore models with different scales and general perfor-
mance.

5.1.1. METRICS

To assess the usefulness of the information identified by
ReactionParser in the document augmentation, we use an
LLM-based evaluation method. We conduct a relative eval-
uation using the LLM. We designed the evaluation prompt,
Pompare, t0 measure informativeness about chemical reac-
tion queries. The prompt is shown in URL Peompare. When
providing documents A to G in the prompt, the evaluation
LLM outputs the likelihood of selecting the next token. The
score is then calculated by summing the likelihoods of the
tokens representing each document’s identifier. However, a
single letter can be represented by various tokens. In this
experiment, using gpt-4-turbo-2024-04-09 for evaluation,
tokens such as "A" and "<A" are used to represent the
letter A. For an arbitrary letter X representing the index
of a document, we use T'x to denote the set of different
tokens representing the same letter. Given the augmented
documents D 4, Dpg, -+, D¢, and the base document D,
the score of a document S(Dx) is calculated as S(Dx) =

ZmETX p(t = $|DA7DBa"' 7DG7D07Pc0mpa.re)

In addition to the score, we introduce gain and gain per
token metrics to demonstrate how much information from
the parsed data is presented concisely related to the query.
Gain represents the relative preference of each augmented
document compared to the base document, which is set to
zero. It is calculated as S(Dx ) — S(Do) for any document
X. Gain per token is calculated by dividing the gain by


https://github.com/ReactionParser/ReactionParser/blob/main/prompt_cyhper.txt
https://github.com/ReactionParser/ReactionParser/tree/main/results
https://github.com/ReactionParser/ReactionParser/blob/main/prompt_document_comparison.txt

Table 1. Comparison with various open-source parsers when incor-
porating information found through search into document augmen-
tation.

GainT  Gain per token (M) T

LLM only 0.000 -

LLM-+Pandoc 0.078  2.345
LLM-+htmI2markdown  0.099  1.344
LLM+html2text 0.062 2.581
LLM+Markdownify 0.087 3.885
LLM+BS 0.059 3.942
LLM+ReactionParser  0.075  9.235

the total number of tokens (N7 ) used to generate the final
document: (S(Dx) — S(Do))/Nr. The total number of
tokens includes 1) tokens used when extracting relevant
sentences and 2) tokens used when generating the final
augmented document. We call 1) the extraction token count
(ETC). The ETC for all augmented documents is shown in
Table 5 in Appendix.

5.1.2. RESULTS

We compare a total of seven final documents: five created
using open-source parsers, one with ReactionParser, and
one without any external source. The results are shown in
Table 1. For each document, we used a set of 20 queries
(named chemical reactions) and averaged the results across
them. In Table 1, the rows indicate which parser is used.
Compared to the base document, all parsers’ outputs showed
a relative improvement in terms of useful content, resulting
in a higher preference. However, in terms of Gain, there
were no significant differences in results among the different
parser methods. When comparing the number of tokens to
represent the same information, we can see that a specialized
parser offers advantages. The Gain per token column in
Table 1 shows the gain in score per token. For instance,
using Pandoc to extract content from the raw HTMLs
yields a similar amount of information as ReactionParser,
but with approximately four times more tokens used. This
indicates that using specialized parsers preserves the same
amount of information while also being more cost-effective
when restructured by the LLM. The left graph in Figure 2
shows a comparison of Gain per token for each parser, and
full results are available in Table 4 in Appendix.

5.2. Parsers’ Impact on Knowledge Graph Completion

This experiment, similar to the one in Section 5.1, aims
to examine the impact of the parsed content quality on the
task of knowledge graph completion. To create the initial
knowledge graph, we use Wikidata (Vrandeci¢ & Krotzsch,
2014) to produce a knowledge graph representing chemical

Table 2. Comparison of the number of newly obtained entities
(Entity gain) and triplets (Triplet gain) during knowledge graph
completion using each parser. In the Gain column, the number to
the left of the ’/° represents the Entity gain, while the number to
the right represents the Triplet gain.

Gaint Gain per token (K)T
Wikidata+Pandoc 254/158 1.382
Wikidata+html2markdown 337/143  0.690
Wikidata+Markdownify 308/122  2.050
Wikidata+html2text 269/116  1.981
Wikidata+BS 246/146  3.276
Wikidata+ReactionParser 293/166 6.810
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Figure 2. Comparison of Gain per token in different data restruc-
turing tasks.

reactions, as described in Section 4.5.1. The process for
generating entities and relationships is carried out using the
Llama-3 70B, as explained in Section 4.5.2.

5.2.1. METRICS

Unlike Section 5.1, where we explore how much informa-
tion was successfully preserved by each parser in raw text
form, here we focus on measuring the amount of information
added to the knowledge graph (KG) through new entities
and triplets. To ensure only chemical reaction-related infor-
mation is added during KG query generation, we designed
the prompt to specifically include information about chemi-
cal reactions, although this is not guaranteed. Additionally,
similar to the experiment in Section 5.1, we compare the
increase in information by measuring the growth in entities
and triplets (gain) and dividing it by the number of tokens
used for query generation. This ratio, gain per token, is
used as a metric for the amount of information per token.
The total number of tokens includes the extraction token
count (ETC), similar to 5.1, and the query generation token
count (QTC). We calculate the final gain per token using



the formula: (Entity gain + Triplet gain) /(ETC 4 QTC).

5.2.2. RESULTS

Similar to Section 5.1, we compare the augmented KGs,
which are enhanced by parsed information, against the base
KG created using only Wikidata. We use the same 20
queries as in Section 5.1. The results are shown in Table 2.
The chemical reaction KG created using only Wikidata has
8,243 entities and 22,043 triplets. When the parsed docu-
ment information is incorporated, approximately 200-300
entities and 110-160 triplets are added. The number of en-
tities added is about twice the number of triplets, which
is expected because adding two different entities results
in the addition of only one triplet. We find that Reaction-
Parser handles a larger amount of information with fewer
tokens, similar to the results in Section 5.1. Compared to
Wikidata + BS, which has the highest gain per token, Reac-
tionParser contains approximately 108% more information
given the same token usage. This indicates that, as in the
results of Section 5.1, using a specialized parser is more
cost-effective when the LLM reprocesses the parsed infor-
mation for downstream tasks. The right graph in Figure 2
shows a comparison of Gain per token for each parser, and
full results are available in Table 6 in Appendix.

6. Limitations

A primary consideration when developing our pipeline in-
cluding ReactionParser was the issue of data copyright and
licenses. Recently, copyright infringement related to the
use of news articles for training language models has be-
come a pressing issue, and companies are addressing this
by collaborating with data holders. In this work, we utilized
web pages’ content solely for research and experimental
purposes. We avoided instances where general access is
restricted by the server (e.g., a 403 error) or where licensing
issues were identified. For commercial use or training of
language models, it is imperative to verify the licensing
agreements of each site.

Additionally, the parser implementation explored here re-
quires extra modifications if it is to be extended to other
scientific topics. Even though we have structured our code
implementation in a way that can serve as a recipe when
building specialized parsers for new scientific topics, spe-
cial tuning is still required due to the diversity of internet
sources.

As for document synthesis, another issue concerns the un-
certainty associated with the use of language models. Even
though open-source and proprietary pre-trained language
models have improved at an unprecedented rate over the last
few years, natural issues such as hallucinations, instruction
following, steerability, and context length are still prevalent.

For instance, although we instruct LLMs to focus on certain
aspects when generating supplementary documents, there
is no guarantee that the LLMs will adhere to these instruc-
tions. Also, when extracting related content, there is a risk
of missing relevant details or not capturing the exact content
accurately. However, we believe the ability of these models
to perform these tasks will continue to improve and pars-
ing/restructuring data will still be a critical step for scientific
document synthesis.

7. Conclusions and Future Work

In this study, we share the considerations and our obser-
vations when reconstructing scientific data using LLMs.
Specifically, we developed an HTML parser called Reac-
tionParser, which has the most significant impact on the cost
of using LLMs, and based on this, we created an overall data
reconstruction framework. This framework demonstrated
that it can significantly reduce the cost of using LLMs in
two data restructuring tasks: document augmentation and
knowledge graph completion. We believe that the contents
of this paper will be helpful for other data reconstruction
tasks as well. Although we conducted our exploration and
experiments with the theme of chemical reactions in this
paper, we will expand to a broader range of scientific themes
in the future. Additionally, we will extend the framework
to handle not only text and graph data but also other forms
of structured data, which will provide a variety of data for
training Al models for science.
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A. Appendix
A.1. Parsers Comparison

We first evaluate how well ReactionParser processes the targeted web pages. To do this, we compare ReactionParser with
open-source parsers such as Pandoc, html2markdown, html2text, Markdownify, and BS. In our experiments, we
randomly select 100 web pages from the search results of named chemical reaction-related queries and benchmark across all
parsers.

A.1.1. METRICS

One major challenge in evaluating the quality of parser outputs is the lack of ground truth data, i.e., assessing the balance
between relevant and irrelevant information in terms of semantic content. Specifically, ReactionParser addresses the
underexplored topic of chemical reactions, which naturally leads to scarce reference answers. This issue is similarly
encountered in recent natural language generation tasks. G-Eval (Liu et al., 2023) offers a method to evaluate generated
text in scenarios lacking reference texts via LLMs. In G-Eval, different criteria are predefined depending on the task—for
example, fluency, coherence, and consistency are used in summarization tasks. Since we aim to measure the quality of the
parsed content, we use criteria such as structure—how well structured in the output text; relevance—relative to the full
parsed content how much of it is related to the original query; and coherence—how unified the content is. Specifically,
G-Eval completes the evaluation prompt using the Chain-of-Thought (CoT) (Wei et al., 2022) prompting technique. Here,
we explain how our evaluation prompts were defined. An example evaluation prompt for the output’s structure quality is
shown in URL Pyyycwre- As indicated in the input section of the file Pyycrre, We specify the evaluation criteria as a prompt
and generate an evaluation rubric (a series of evaluation points or steps) using a pretrained LLM. The generated
evaluation steps are then concatenated to the system message of an instruction-tuned LLM (gpt-4-turbo-2024-04-09) to
obtain our final evaluation prompt. Based on this prompt, an instruction-tuned LLM generates a score s € {1,2,3,4,5}
for the parsed document. However, this approach can result in scores being concentrated within a narrow range. To
address this, G-Eval proposes to multiply the generated score by the probability of the assigned score, leading to a more
uncertainty-informed metric. The final score can be defined as follows:

5
Z S p(t =75’ ‘D7 })structure) 3)
s=1

This formula allows us to obtain more representative and evenly distributed scores. Similarly, evaluation prompts for
relevance and coherence were generated and are available at: Piejevance and Proherence- Lhe final score reported for each
category is the mean score across all test data. The overall average score is calculated as the mean of the scores for Structure,
Relevance, and Coherence. Additionally, we calculate the number of tokens in the parsed results. The fewer tokens, the
better signal-to-noise ratio in the parsed contents which directly translates to lower computational costs for the downstream
LLM responsible for synthesizing our final documents. We measure the number of tokens using tiktoken (Shantanu et al.,
2024), which is used in GPT-3.5 and GPT-4.

A.1.2. RESULTS

We used a random sample of 100 web pages from search results and averaged their scores. The results of comparing different
parsers using the metrics described above are shown in Table 3. Overall, ReactionParser demonstrated the best performance
in Structure, Relevance, and Coherence, leading to superior average performance. The html2markdown parser produced
nearly unparsed HTML, showing particularly poor performance in terms of Coherence and resulting in a high token count
due to the presence of needless HTML tags. For Pandoc, while the structure of chemical reaction content was generally
well-maintained, a significant amount of unparsed CSS class code within the HTML still remained, leading to a lower
Relevance score. Both htm12text and Markdownify showed generally good performance with well-parsed markdown
formats, but they included a lot of irrelevant content, leading to slightly lower performance compared to ReactionParser and
a relatively higher token count. In the case of BS, it parsed only the text, excluding images, resulting in the second-lowest
token count after ReactionParser. However, its performance was hindered by irrelevant content, excessive whitespace, and
lack of proper formatting between section names and the main contents.
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Figure 3. Domain histogram of search results. z-axis shows the domain and y-axis represents its count.

Table 3. Comparison of HTML parsing performance between open source parsers and ReactionParser. The measurements include how

well the content is structurally parsed (Structure), the relevance of the parsed content to the searched chemical reactions (Relevance), and
the coherence of the parsed text (Coherence). The last column also shows the number of tokens representing the parsed content (# of

tokens).

StructureT Relevancel Coherencel Avgl # of tokens|

36,719
70,889
26,837
26,173
16,232
11,280

2.95
2.27
3.26
3.23
2.87
3.82

3.31
1.74
3.73
3.15
2.80
4.00

245
2.76
2.58
3.60
3.25
3.86

3.11
2.33
3.48
2.95
2.57
3.61

Pandoc

html2markdown

html2text

Markdownify

BS

ReactionParser
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Table 4. Comparison with various open-source parsers when incorporating information found through search into document augmentation.
The LLMs listed in the columns represent the names of the LLMs that created the base documents without the added search information
(LLM only). For evaluation, another LLM (GPT-4) is used to assess how much sufficient information is included. Gain is a metric
normalized to zero for the base document, and Gain per token is the metric divided by the number of tokens used to create the document.

Informativeness

GPT-47 GPT-3.57 Claude-Opus? Claude-Sonnet?
LLM only 0.025 0.000 0.000 0.000
LLM-+Pandoc 0.074 0.071 0.104 0.050
LLM+html2markdown 0.100 0.136 0.023 0.125
LLM+html2text 0.075 0.125 0.118 0.025
LLM+Markdownify 0.050 0.062 0.125 0.075
LLM+BS 0.107 0.051 0.080 0.075
LLM+ReactionParser 0.069 0.055 0.050 0.149

Claude-Haikuf Gemma-2BT Gemma-7B71 Phi-3-3.8B1
LLM only 0.000 0.000 0.000 0.000
LLM-+Pandoc 0.050 0.123 0.050 0.180
LLM+html2markdown 0.108 0.154 0.099 0.099
LLM+html2text 0.075 0.101 0.051 0.000
LLM+Markdownify 0.093 0.042 0.150 0.100
LLM+BS 0.025 0.025 0.075 0.068
LLM-+ReactionParser 0.149 0.055 0.075 0.052

Mistral-7BT Average? Gain? Gain per token (M) 7
LLM only 0.025 0.006 0.000 -
LLM+Pandoc 0.051 0.084 0.078 2.345
LLM+html2markdown 0.100 0.105 0.099 1.344
LLM-+html2text 0.039 0.068 0.062 2.581
LLM+Markdownify 0.138 0.093 0.087 3.885
LLM+BS 0.075 0.064 0.059 3.942
LLM+ReactionParser 0.072 0.081 0.075 9.235
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Table 5. Comparison of token counts resulting from using different parsers in the document augmentation task. Extraction Token Count
(ETC) represents the number of tokens used by the LLM to extract content related to the searched chemical reactions query from each
parsed document.

Token spent

GPT-4| GPT-3.5] Claude-Opus| Claude-Sonnet]
LLM-+Pandoc 4,331 3,570 4,087 3,784
LLM+htmI2markdown 5,232 4,543 5,020 4,749
LLM-+html2text 3,871 3,105 3,623 3,346
LLM+Markdownify 3,730 3,012 3,501 3,182
LLM+BS 3,682 2,980 3,541 3,173
LLM-+ReactionParser 2,828 2,068 2,570 2,246

Claude-Haiku] Gemma-2B| Gemma-7B] Phi-3-3.8B
LLM-+Pandoc 3,840 4,015 4,122 3,708
LLM+html2markdown 4,807 4,942 4,987 4,634
LLM-+html2text 3,347 3,530 3,630 3,242
LLM+Markdownify 3,301 3,478 3,507 3,162
LLM+BS 3,242 3,390 3,470 3,082
LLM+ReactionParser 2,323 2,465 2,571 2,169

Mistral-7B| ETC| Average|
LLM+Pandoc 4,387 297,267 33,311
LLM+html2markdown 5,326 694,824 73,906
LLM-+html2text 3,959 208,903 24,056
LLM+Markdownify 3,875 193,432 22,418
LLM+BS 3,821 118,859 14,924
LLM+ReactionParser 2,850 59,365 8,146

Table 6. Comparison of the number of newly obtained entities (Entity gain) and triplets (Triplet gain) during knowledge graph completion
using each parser. Extraction Token Count (ETC) represents the number of tokens used by the LLM to extract content related to the
searched chemical reactions from each parsed document. Query Generation Token Count (QTC) represents the number of tokens used by
the LLM to generate Cypher queries for adding data to the knowledge graph database. The final Gain per token is calculated as (Entity
gain+Triplet gain)/(ETC+QTC), considering both the entity and triplet counts along with ETC and QTC.

ETC| QTC| Entity gainT Triplet gainT Gain per token (K)T Entities Triplets

Wikidata - - - - - 8,243 22,043
Wikidata+Pandoc 297,267 950 254 158 1.382 8,497 22,201
Wikidata+html2markdown 694,824 932 337 143 0.690 8,580 22,186
Wikidata+Markdownify 208,903 836 308 122 2.050 8,551 22,165
Wikidata+html2text 193,432 870 269 116 1.981 8,512 22,159
Wikidata+BS 118,859 787 246 146 3.276 8,489 22,189
Wikidata+ReactionParser 59,365 692 293 116 6.810 8,536 22,159
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