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Abstract

This paper studies the problem of performing a sequence of optimal interventions in
a causal dynamical system where both the target variable of interest and the inputs
evolve over time. This problem arises in a variety of domains e.g. system biology
and operational research. Dynamic Causal Bayesian Optimization (DCBO) brings
together ideas from sequential decision making, causal inference and Gaussian
process (GP) emulation. DCBO is useful in scenarios where all causal effects
in a graph are changing over time. At every time step DCBO identifies a local
optimal intervention by integrating both observational and past interventional data
collected from the system. We give theoretical results detailing how one can
transfer interventional information across time steps and define a dynamic causal
GP model which can be used to quantify uncertainty and find optimal interventions
in practice. We demonstrate how DCBO identifies optimal interventions faster than
competing approaches in multiple settings and applications.

1 Introduction Causal Dimension
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Figure 1: DAG representation of a
dynamic causal global optimisation
(DCGO) problem (a) and the DAG
considered when using CBO, ABO
or BO to address the same prob-
lem. Shaded nodes gives observed
variables while the arrows represent
causal effects.

Solving decision making problems in a variety of domains
requires understanding of cause-effect relationships in a system.
This can be obtained by experimentation. However, deciding
how to intervene at every point in time is particularly complex
in dynamical systems, due to the evolving nature of causal
effects. For instance, companies need to decide how to allocate
scarce resources across different quarters. In system biology,
scientists need to identify genes to knockout at specific points
in time. This paper describes a probabilistic framework that
finds such optimal interventions over time.

Focusing on a specific example, consider a setting in which Yt
denotes the unemployment-rate of an economy at time t, Zt is
the economic growth and Xt the inflation rate. Fig. 1a depicts
the causal graph [26] representing an agent’s understanding of
the causal links between these variables. The agent aims to
determine, at each time step t ∈ {0, 1, 2}, the optimal action to
perform in order to minimize the current unemployment rate
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Yt while accounting for the intervention cost. The investigator could frame this setting as a sequence
of global optimization problems and find the solutions by resorting to Causal Bayesian Optimization
[CBO, 2]. CBO extends Bayesian Optimization [BO, 30] to cases in which the variable to optimize is
part of a causal model where a sequence of interventions can be performed. However, CBO does not
account for the system’s temporal evolution thus breaking the time dependency structure existing
among variables (Fig. 1b). This will lead to sub-optimal solutions, especially in non-stationary
scenarios. The same would happen when using Adaptive Bayesian Optimization [ABO, 25] (Fig. 1c)
or BO (Fig. 1d). ABO captures the time dependency of the objective function but neither considers
the causal structure among inputs nor their temporal evolution. BO disregards both the temporal and
the causal structure. Our setting differs from both reinforcement learning (RL) and the multi-armed
bandits setting (MAB). Differently from MAB we consider interventions on continuous variables where
the dynamic target variable has a non-stationary interventional distribution. In addition, compared
to RL, we do not model the state dynamics explicitly and allow the agent to perform a number of
explorative interventions which do not change the underlying state of the system, before selecting the
optimal action. We discuss these points further in §1.1.

Dynamic Causal Bayesian Optimization2, henceforth DCBO, accounts for both the causal relationships
among input variables and the causality between inputs and outputs which might evolve over time.
DCBO integrates CBO with dynamic Bayesian networks (DBN), offering a novel approach for decision
making under uncertainty within dynamical systems. DBN [19] are commonly used in time-series
modelling and carry dependence assumptions that do not imply causation. Instead, in probabilistic
causal models [27], which form the basis for the CBO framework, graphs are buildt around causal
information and allow us to reason about the effects of different interventions. By combining CBO
with DBNs, the proposed methodology finds an optimal sequence of interventions which accounts
for the causal temporal dynamics of the system. In addition, DCBO takes into account past optimal
interventions and transfers this information across time, thus identifying the optimal intervention
faster than competing approaches and at a lower cost. We make the following contributions:

• We formulate a new class of optimization problems called Dynamic Causal Global Optimization
(DCGO) where the objective functions account for the temporal causal dynamics among variables.

• We give theoretical results demonstrating how interventional information can be transferred across
time-steps depending on the topology of the causal graph.

• Exploiting our theoretical results, we solve the optimization problem with DCBO. At every time
step, DCBO constructs surrogate models for different intervention sets by integrating various sources
of data while accounting for past interventions.

• We analyze DCBO performance in a variety of settings comparing against CBO, ABO and BO.

1.1 Related Work

Dynamic Optimization Optimization in dynamic environments has been studied in the context of
evolutionary algorithms [14, 16]. More recently, other optimization techniques [28, 32, 10] have been
adapted to dynamic settings, see e.g. [9] for a review. Focusing on BO, the literature on dynamic
settings [3, 7, 25] is limited. The dynamic BO framework closest to this work is given by Nyikosa et al.
[25] and focuses on functions defined on continuous spaces that follow a more complex behaviour
than a simple Markov model. ABO treats the inputs as fixed and not as random variables, thereby
disregarding their temporal evolution and, more importantly, breaking their causal dependencies.

Causal Optimization Causal BO [CBO, 2] focuses instead on the causal aspect of optimization and
solves the problem of finding an optimal intervention in a DAG by modelling the intervention functions
with single GPs or a multi-task GP model [1]. CBO disregards the existence of a temporal evolution
in both the inputs and the output variable, treating them as i.i.d. overtime. While disregarding time
significantly simplifies the problem, it prevents the identification of an optimal intervention at every t.

Bandits and RL In the broader decision-making literature, causal relationships have been considered
in the context of bandits [4, 20–22] and reinforcement learning [23, 8, 13, 36, 24]. In these cases,
actions or arms, correspond to interventions on a causal graph where there exists complex relationships
between the agent’s decisions and the received rewards. While dynamic settings have been considered
in acausal bandit algorithms [5, 33, 35], causal MAB have focused on static settings. Dynamic settings
are instead considered by RL algorithms and formalized through Markov decision processes (MDP).

2A Python implementation is available at: https://github.com/neildhir/DCBO.
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In the current formulation, DCBO does not consider an MDP as we do not have a notion of state
and therefore do not require an explicit model of its dynamics. The system is fully specified by the
causal model. As in BO, we focus on identifying a set of time-indexed optimal actions rather than
an optimal policy. We allow the agent to perform explorative interventions that do not lead to state
transitions. More importantly, differently from both MAB and RL, we allow for the integration of both
observational and interventional data. An expanded discussion on the reason why DCBO should be
used and the links between DCBO, CBO, ABO and RL is included in the supplement (§8).

2 Background and Problem Statement

Let random variables and values be denoted by upper-case and lower-case letters respectively. Vectors
are represented shown in bold. do(X = x) represents an intervention on X whose value is set to
x. p(Y | X = x) represents an observational distribution and p(Y | do(X = x)) represents an
interventional distribution. This is the distribution of Y obtained by intervening on X and fixing
its value to x in the data generating mechanism (see Fig. 2), irrespective of the values of its parents.
Evaluating p(Y | do(X = x)) requires “real” interventions while p(Y | X = x) only requires
“observing” the system. DO and DI denote observational and interventional datasets respectively.
Consider a structural causal model (SCM) defined in Definition 1.
Definition 1. (Structural Causal Model) [27, p. 203]. A structural causal model M is a triple
〈U,V, F )〉 where U is a set of background variables (also called exogenous), that are determined
by factors outside of the model. V is a set {V1, V2, . . . , V|V|} of observable variables (also called
endogenous), that are determined by variables in the model (i.e., determined by variables in U ∪V).
F is a set of functions {f1, f2, . . . , fn} such that each fi is a mapping from the respective domains
of Ui ∪ Pa(Vi) to Vi, where Ui ⊆ U and Pa(Vi) ⊆ V \ Vi and the entire set F forms a mapping from
U to V. In other words, each {fi ∈ vi ← fi(Pa(vi) , ui) | i = 1, . . . , n}, assigns a value to Vi that
depends on the values of the select set of variables (Ui ∪ Pa(Vi)).

M is associated to a directed acyclic graph (DAG) G, in which each node corresponds to a variable and
the directed edges point from members of Pa(Vi) and Ui to Vi. We assume G to be known and leave
the integration with causal discovery [15] methods for future work. Within V, we distinguish between
three different types of variables: non-manipulative variables C, which cannot be modified, treatment
variables X that can be set to specific values and output variable Y that represents the agent’s outcome
of interest. Exploiting the rules of do-calculus [27] one can compute p(Y | do(X = x)) using
observational data. This often involves evaluating intractable integrals which can be approximated
by using observational data to get a Monte Carlo estimate p̂(Y | do(X = x)) ≈ p(Y | do(X = x)).
These approximations will be consistent when the number of samples drawn from p(V) is large.

Causality in time One can encode the existence of causal mechanisms across time steps by
explicitly representing these relationships with edges in an extended graph denoted by G0:T . For
instance, the DAG in Fig. 1(a) can be seen as one of the DAGs in Fig. 1(b) propagated in time. The DAG
in Fig. 1(a) captures both the causal structure existing across time steps and the causal mechanism
within every “time-slice” t [19]. In order to reason about interventions that are implemented in a
sequential manner, that is at time t we decide which intervention to perform in the system and so
define:
Definition 2. Mt is the SCM at time step t defined asMt = 〈U0:t,V0:t,F0:t〉 where 0 : t denotes the
union of the corresponding variables or functions up to time t (see Fig. 2). V0:t includes X0:t = Xt,
Y0:t = Yt and C0:t = Ct ∪C0:t−1. The functions in F0:t corresponding to intervened variables are
replaced by constant values while the exogenous variables related to them are excluded from U0:t.
Definition 3. Gt is the causal graph associated to Mt. In Gt, the incoming edges in variables
intervened at 0 : t− 1 are mutilated while intervened variables are represented by deterministic nodes
(squares) – see Fig. 2.

Dynamic Causal Global Optimization (DCGO) The goal of this work is to find a sequence of
interventions, optimizing a target variable, at each time step, in a causal DAG. Given Gt and Mt, at
every time step t, we wish to optimize Yt by intervening on a subset of the manipulative variables Xt.
The optimal intervention variables X?

s,t and intervention levels x?
s,t are given by:

X?
s,t,x

?
s,t = argmin

Xs,t∈P(Xt),xs∈D(Xs,t)

E[Yt | do(Xs,t = xs,t) ,1t>0 · I0:t−1] (1)
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Figure 2: Structural equation models considered by DCBO at every time step t ∈ {0, 1, 2}. Exogenous
noise variables εi are depicted here but are omitted in the remainder of the paper, to avoid clutter.
For every t, Gt is a mutilated version of Gt−1 reflecting the optimal intervention implemented in the
system at 0 : t− 1 which are represented by squares. The SCM functions in F0:t corresponding to
the intervened variables are set to constant values. The exogenous variables that only related to the
intervened variables are excluded from Ut. C0:t is given by the set {Ct∪C0:t−1∪Y0:t−1∪X0:t−1}.

where I0:t−1 =
⋃t−1

i=0 do
(
X?

s,i = x?
s,i

)
denotes previous interventions, 1t>0 is the indicator function

and P(Xt) is the power set of Xt. D(Xs,t) represents the interventional domain of Xs,t. In the
sequel we denote the previously intervened variables by IV0:t−1 =

⋃t−1
i=0 X

?
s,i and implemented

intervention levels by IL0:t−1 =
⋃t−1

i=0 x
?
s,i. The cost of each intervention is given by cost(Xs,t,xs,t).

In order to solve the problem in Eq. (1) we make the following assumptions :
Assumptions 1. Denote by G(t) the causal graph including variables at time t in G0:T and let
Y PT
t = Pa(Yt) ∩ Y0:t−1 be the set of variables in G0:T that are both parents of Yt and targets at

previous time step. Let the set Y PNT
t = Pa(Yt) \Y PT

t be the complement and denote by fYt
(·) the

functional mapping for Yt in Mt. We make the following assumptions:

1. Invariance of causal structure: G(t) = G(0),∀t > 0.

2. Additivity of fYt
(·) that is Yt = fYt

(Pa(Yt)) + ε with fYt
(Pa(Yt)) = fYY (Y PT

t ) + fNY
Y (Y PNT

t )
where fYY and fNY

Y are two generic unknown functions and ε ∼ N (0, σ2).

3. Absence of unobserved confounders in G0:T .

Assumption (3) implies the absence of unobserved confounders at every time step. For instance,
this is the case in Fig. 1a. Still in this DAG, Assumption (2) implies fYt(Pa(Yt)) = fYY (Yt−1) +
fNY
Y (Zt) + εYt

,∀t > 0. Finally, Assumption (1) implies the existence of the same variables at every
time step and a constant orientation of the edges among them for t > 0.

Notice that Assumptions 1 imply invariance of the causal structure within each time-slice, i.e. the
structure, edges and vertices, concerning the nodes with the same time index. This means that, across
time steps, both the graph and the functional relationships can change. Therefore, not only can the
causal effects change significantly across time steps, but also the input dimensionality of the causal
functions we model, might change. For instance, in the DAG of Fig. 3(c), the target function for Y2
has dimensionality 3 and a function fYt

(·) that is completely different from the one assumed for Y1
that has only two parents. We can thus model a wide variety of settings and causal effects despite this
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assumption. Furthermore, even though we assume an additive structure for the functional relationship
on Y , the use of GPs allow us to have flexible models with highly non-linear causal effects across
different graph structures. In the causality literature, GP models are well established and have shown
good performances compared to parametric linear and non-linear models (see e.g. [31, 34, 37]). The
sum of GPs gives a flexible and computationally tractable model that can be used to capture highly
non-linear causal effects while helping with interpretability [12, 11].

3 Methodology

In this section we introduce Dynamic Causal Bayesian Optimization (DCBO), a novel methodology
addressing the problem in Eq. (1). We first study the correlation among objective functions for two
consecutive time steps and use it to derive a recursion formula that, based on the topology of the
graph, expresses the causal effects at time t as a function of previously implemented interventions (see
square nodes in Fig. 2). Exploiting these results, we develop a new surrogate model for the objective
functions that can be used within a CBO framework to find the optimal sequence of interventions.
This model enables the integration of observational data and interventional data, collected at previous
time-steps and interventional data collected at time t, thereby accelerating the identification of the
current optimal intervention.

3.1 Characterization of the time structure in a DAG with time dependent variables

The following result provides a theoretical foundation for the dynamic causal GP model introduced
later. In particular, it derives a recursion formula allowing us to express the objective function at time
t as a function of the objective functions corresponding to the optimal interventions at previous time
steps. The proof is given in the appendix (§2).
Definition 4. Consider a DAG G0:T and the objective function E[Yt | do(Xs,t = xs,t) , I0:t−1] for
a generic time step t ∈ {0, . . . , T}. Denote by Y PT

t = (Pa(Yt) ∩ Y0:t−1) the parents of Yt that
are targets at previous time steps and by Y PNT

t = Pa(Yt) \Y PT
t the remaining parents. For any

Xs,t ∈ P(Xt) and IV0:t−1 ⊆ X0:t−1 we define the following sets:

• XPY
s,t = Xs,t ∩ Pa(Yt) includes the variables in Xs,t that are parents of Yt.

• IPY
0:t−1 = IV0:t−1 ∩ Pa(Yt) includes the variables in IV0:t−1 that are parents of Yt.

• W ⊂ Pa(Yt) such that Pa(Yt) = (Pa(Yt) ∩ Y0:t−1) ∪XPY
s,t ∪ IPY

0:t−1 ∪W . W includes variables
that are parents of Yt but are not targets nor intervened variables.

The values of I0:t−1, XPY
s,t , I

PY
0:t−1 and W will be denoted by i, xPY, iPY and w respectively.

Theorem 1. Time operator. Consider a DAG G0:T and the related SCM satisfying Assump-
tions 1. It is possible to prove that, ∀Xs,t ∈ P(Xt), the intervention function fs,t(x) =
E[Yt | do(Xs,t = x) ,1t>0 · I0:t−1] with fs,t(x) : D(Xs,t)→ R can be written as:

fs,t(x) = fYY (f?) + Ep(w|do(Xs,t=x),i)

[
fNY
Y (xPY, iPY,w)

]
(2)

where f? = {E
[
Yi|do

(
X?

s,i = x?
s,i

)
, I0:i−1

]
}Yi∈Y PT

t
that is the set of previously observed optimal

targets that are parents of Yt. fYY denotes the function mapping Y PT
t to Yt and fNY

Y represents the
function mapping Y PNT

t to Yt.

Eq. (2) reduces to Ep(w| do(Xs,t=x),i)

[
fNY
Y (xPY, iPY,w)

]
when Yt does not depend on previous

targets. This is the setting considered in CBO that can be thus seen as a particular instance of DCBO.
Exploiting Assumptions (1), it is possible to further expand the second term in Eq. (2) to get the
following expression. A proof is given in the supplement (§2).
Corollary 1. Given Assumptions 1, we can write:

Ep(w| do(Xs,t=x),i)

[
fNY
Y (xPY, iPY,w)

]
= Ep(U0:t)

[
fNY
Y (xPY, iPY, {C(W )}W∈W)

]
(3)

where p(U0:t) is the distribution for the exogenous variables up to time t and C(W ) is given by:

C(W ) =





fW (uW ,xPW, iPW) if R = ∅
fW (uW ,xPW, iPW, r) if R ⊆ Xs,t ∪ IV0:t−1
fW (uW ,xPW, iPW, C(R)) if R 6⊆ Xs,t ∪ IV0:t−1
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where fW represents the functional mapping for W in the SCM and uW is the set of exogenous
variables with edges into W . xPW and iPW are the values corresponding to XPW

s,t and IPW
0:t−1 which in

turn represent the subset of variables in Xs,t and IV0:t−1 that are parents of W . Finally r is the value
of R = Pa(W ) \(XPY

s,t ∪ IPW
0:t−1).

Examples for Eq. (2): For the DAG in Fig. 1(a), at time t = 1 and with IV0:t−1 = {Z0}, we
have E[Y | do(Z1 = z) , I0] = fYY (y?0) + fNY

Y (z). Indeed in this case W = ∅, xPY = z and
f? = {y?0 = E[Y0|do(Z0 = z0)]}. Still at t = 1 and with IV0:t−1 = {Z0}, the objective function
for Xs,t = {X1} can be written as fYY (y?0) + Ep(z1| do(X1=x),I0)

[
fNY
Y (z1)

]
as W = {Z1}. All

derivations for these expressions and alternative graphs are given in the supplement (§2).

3.2 Restricting the search space

The search space for the problem in Eq. (1) grows exponentially with |Xt| thus slowing down the
identification of the optimal intervention when G includes more than a few nodes. Indeed, a naive
approach of finding X?

s,t at t = 0, . . . , T would be to explore the 2|Xt| sets in P(Xt) at every t and
keep 2|Xt| models for the objective functions. In the static setting, CBO reduces the search space
by exploiting the results in [21]. In particular, it identifies a subset of variables M ⊆ P(X) worth
intervening on thus reducing the size of the exploration set to 2|M|.

In our dynamic setting, the objective functions change at every time step depending on the previously
implemented interventions and one would need to recompute M at every t. However, it is possible
to show that, given Assumptions 1, the search space remains constant over time. Denote by Mt the
set M at time t and let M0 represent the set at t = 0 which corresponds to M computed in CBO. For
t > 0 it is possible to prove that:
Proposition 3.1. MIS in time. If Assumptions 1 are satisfied, Mt = M0 for t > 0.

3.3 Dynamic Causal GP model

Here we introduce the Dynamic Causal GP model that is used as a surrogate model for the objective
functions in Eq. (1). The prior parameters are constructed by exploiting the recursion in Eq. (2). At
each time step t, the agent explores the sets in Mt ⊆ P(Xt) by selecting the next intervention to be
the one maximizing a given acquisition function. The DCBO algorithm is shown in Algorithm 1.

Prior Surrogate Model At each time step t and for each Xs,t ∈ Mt, we place a GP prior on the
objective function fs,t(x) = E[Yt|do(Xs,t = x) ,1t>0 · I0:t−1]. We construct the prior parameters
exploiting the recursive expression in Eq. (2):

fs,t(x) ∼ GP(ms,t(x), ks,t(x,x
′)) where

ms,t(x) = E
[
fYY (f?) + Ê[fNY

Y (xPY, iPY,w)]
]

ks,t(x,x
′) = kRBF(x,x

′) + σs,t(x)σs,t(x
′) with

σs,t(x) =

√
V[fYY (f?) + Ê

[
fNY
Y (xPY, iPY,w)

]

and kRBF(x,x
′) := exp(− ||x−x

′||2
2l2 ) represents the radial basis function kernel [29]. We have it that

Ê
[
fNY
Y (xPY, iPY,w)

]
= Êp(w| do(Xs,t=x),i)

[
fNY
Y (xPY, iPY,w)

]

represents the expected value of fNY
Y (xPY, iPY,w) with respect to p(w | do(Xs,t = x) , i) which

is estimated via the do-calculus using observational data. The outer expectation in ms,t(x) and
the variance in σs,t(x) are computed with respect to p(fYY , f

NY
Y ) which is also estimated using

observational data. In this work we model fYY , fNY
Y and all functions in the SCM by independent GPs.

Both ms,t(x) and σs,t(x) can be equivalently written by exploiting the equivalence in Eq. (3). In
both cases, this prior construction allows the integration of three different types of data: observational
data, interventional data collected at time t and the optimal interventional data points collected in
the past. The former is used to estimate the SCM model and p(w | do(Xs,t = x) , i) via the rules of
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do-calculus. The optimal interventional data points at 0 : t− 1 determine the shift fYY (f?) while the
interventional data collected at time t are used to update the prior distribution on fs,t(x). Similar
prior constructions were previously considered in static settings [2, 1] where only observational and
interventional data at the current time step were used. The additional shift term appears here as
there exists causal dynamics in the target variables and the objective function is affected by previous
decisions. Fig. 2 in the appendix shows a synthetic example in which accounting for the dynamic
aspect in the prior formulation leads to a more accurate GP posterior compared to the baselines,
especially when the the optimum location changes across time steps.

Algorithm 1: DCBO

Data: DO, {DI
s,t=0}s∈{0,...,|M0|}, G0:T , H .

Result: Optimal intervention path
{X?

s,t,x
?
s,t, y

?
t }Tt=1

Initialise: M, DI
0 and initial optimal DI

? = ∅.
for t = 0, . . . , T do

1. Initialise dynamic causal GP models for all
Xs,t ∈Mt using DI

?,t−1 if t > 0.
2. Initialise interventional dataset
{DI

s,t}s∈{0,...,|Mt|}
for h = 1, . . . ,H do

1. Compute EIs,t(x) for each Xs,t ∈Mt.
2. Obtain (s?, α?)
3. Intervene and augment DI

s=s?,t
4. Update posterior for fs=s?,t

end
3. Return the optimal intervention (X?

s,t,x
?
s,t)

4. Append optimal interventional data
DI

?,t = DI
?,t−1 ∪ ((X?

s,t,x
?
s,t), y

?
t )

end

Likelihood Let DI
s,t = (XI ,YI

s,t) be the
set of interventional data points collected for
Xs,t with XI being a vector of intervention
values and YI

s,t representing the corresponding
vector of observed target values. As in stan-
dard BO we assume each ys,t in YI

s,t to be a
noisy observation of the function fs,t(x) that is
ys,t(x) = fs,t(x) + εs,t with εs,t ∼ N (0, σ2)
for s ∈ {1, . . . , |Mt|} and t ∈ {0, . . . , T}. In
compact form, the joint likelihood function for
DI

s,t is p(YI
s,t | fs,t, σ2) = N (fs,t(X

I), σ2I).

Acquisition Function Given our surrogate
models at time t, the agent selects the interven-
tions to implement by solving a Causal Bayesian
Optimization problem [2]. The agent explores
the sets in Mt and decides where to intervene by
maximizing the Causal Expected Improvement
(EI). Denote by y?t the optimal observed target
value in {YI

s,t}|Mt|
s=1 that is the optimal observed target across all intervention sets at time t. The

Causal EI is given by

EIs,t(x) = Ep(ys,t)[max(ys,t − y?t , 0)]/cost(Xs,t,xs,t).

Let α1, . . . , α|Mt| be solutions of the optimization of EIs,t(x) for each set in Mt and α? :=
max{α1, . . . , α|Mt|}. The next best intervention to explore at time t is given by s? =
argmaxs∈{1,··· ,|Mt|} αs. Therefore, the set-value pair to intervene on is (s?, α?). At every t, the agent
implement H explorative interventions in the system which are selected by maximizing the Causal EI.
Once the budget H is exhausted, the agent implements what we call the decision intervention It, that
is the optimal intervention found at the current time step, and move forward to a new optimization
at t+ 1 carrying the information in y?0:t−1. The parameter H determines the level of exploration of
the system and acts as a budget for the CBO algorithm. Its value is determined by the agent and is
generally problem specific.

Posterior Surrogate Model For any set Xs,t ∈Mt, the posterior distribution p(fs,t | DI
s,t) can be

derived analytically via standard GP updates. p(fs,t | DI
s,t) will also be a GP with parameters

ms,t(x | DI
s,t) = ms,t(x) + ks,t(x,X

I)[ks,t(X
I ,XI) + σ2I](YI

s,t −ms,t(X
I) and

ks,t(x,x
′ | DI

s,t) = ks,t(x,x
′)− ks,t(x,XI)[ks,t(X

I ,XI) + σ2I]ks,t(X
I ,x′).

4 Experiments

We evaluate the performance of DCBO in a variety of synthetic and real world settings with DAGs
given in Fig. 3. We first run the algorithm for a stationary setting where both the graph structure and
the SCM do not change over time (STAT.). We then consider a scenario characterised by increased
observation noise (NOISY) for the manipulative variables and a settings where observational data
are missing at some time steps (MISS.). Still assuming stationarity, we then test the algorithm in
a DAG where there are multivariate interventions in Mt (MULTIV.). Finally, we run DCBO for a
non-stationary graph where both the SCM and the DAG change over time (NONSTAT.). To conclude,
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we use DCBO to optimize the unemployment rate of a closed economy (DAG in Fig. 3d, ECON.)
and to find the optimal intervention in a system of ordinary differential equation modelling a real
predator-prey system (DAG in Fig. 3e, ODE). We provide a discussion on the applicability of DCBO to
real-world problems in §7 of the supplement together with all implementation details.

Baselines We compare against the algorithms in Fig. 1. Note that, by constructions, ABO and BO
intervene on all manipulative variables while DCBO and CBO explore only Mt at every t. In addition,
both DCBO and ABO reduce to CBO and BO at the first time step. We assume the availability of an
observational dataset DO and set a unit intervention cost for all variables.

Performance metric We run all experiments for 10 replicates and show the average convergence
path at every time step. We then compute the values of a modified “gap” metric3 across time steps
and with standard errors across replicates. The metric is defined as

Gt =

[
y(x?

s,t)− y(xinit)

y? − y(xinit)
+
H −H(x?

s,t)

H

]/(
1 +

H − 1

H

)
(4)

where y(·) represents the evaluation of the objective function, y? is the global minimum, and xinit and
x?
s,t are the first and best evaluated point, respectively. The term

H−H(x?
s,t)

H with H(x?
s,t) denoting

the number of explorative trials needed to reach x?
s,t captures the speed of the optimization. This term

is equal to zero when the algorithm is not converged and equal to (H − 1)/H when the algorithm
converges at the first trial. We have 0 ≤ Gt ≤ 1 with higher values denoting better performances. For
each method we also show the average percentage of replicates where the optimal intervention set
X?

s,t is identified.

X0 X1 X2

Z0 Z1 Z2

Y0 Y1 Y2

W0 W1 W2

(a) MULTIV.

X0 X1 X2

Z0 Z1 Z2

Y0 Y1 Y2

(b) IND.

X0 X1 X2

Z0 Z1 Z2

Y0 Y1 Y2

(c) NONSTAT.

R0 R1 R2

U2U0 U1

G2G0 G1

T0 T1 T2

(d) ECON.

Nin,t−1

Nt−1

Pt−1

Jt−1

Dt−1

At−1

Nin,t

Nt

Pt

Jt

Dt

At

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Et−1

Et

· · ·· · ·

(e) ODE.

Figure 3: DAGs used in the experimental sections for the real (§4.2) and synthetic data (§4.1).

4.1 Synthetic Experiments

Stationary DAG and SCM (STAT.) We run the algorithms for the DAG in Fig. 1(a) with T = 3 and
N = 10. For t > 0, DCBO converges to the optimal value faster than competing approaches (see
Fig. 2 in the supplement, right panel, 3rd row). DCBO identifies the optimal intervention set in 93%
of the replicates (Table 2) and reaches the highest average gap metric (Table 1). In this experiment
the location of the optimum changes significantly both in terms of optimal set and intervention
value when going from t = 0 to t = 1. This information is incorporated by DCBO through the
prior dependency on y?0:t−1. In addition, ABO performance improves over time as it accumulates
interventional data and uses them to fit the temporal dimension of the surrogate model. This benefits
ABO in a stationary setting but might penalise it in non-stationary setting where the objective functions
change significantly.

Noisy manipulative variables (NOISY): The benefit of using DCBO becomes more apparent when
the manipulative variables observations are noisy while the evolution of the target variable is more
accurately detected. In this case both the convergence of DCBO and CBO are slowed down by noisy
observations which are diluting the information provided by the do-calculus making the priors less
informative. However, the DCBO prior dependency on y?0:t−1 allows it to correctly identify the shift
in the target variable thus improving the prior accuracy and the speed-up of the algorithm (Fig. 4).

Missing observational data (MISS.) Incorporating dynamic information in the surrogate model
allows us to efficiently optimise a target variable even in setting where observational data are missing.

3This metric is a modified version of the one used in [18].
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]

Figure 4: Experiment NOISY. Convergence of DCBO and competing methods across replicates. The
dashed black line (- - -) gives the optimal outcome y∗t ,∀t. Shaded areas are ± one standard deviation.

We consider the DAG in Fig. 1(a) with T = 6, N = 10 for the first three time steps and N = 0
afterwards. DCBO uses the observational distributions learned with data from the first three time steps
to construct the prior for t > 3. On the contrary, CBO uses the standard prior for t > 3. In this setting
DCBO consistently outperforms CBO at every time step. However, ABO performance improves over
time and outperforms DCBO starting from t = 4 due to its ability to exploit all interventional data
collected over time (see Fig. 3 in the supplement).

Multivariate intervention sets (MULTIV.) When the optimal intervention set is multivariate, both
DCBO and CBO convergence speed worsen. For instance, for the DAG in Fig. 3a, |M| = 5 thus both
CBO and DCBO will have to perform more explorative interventions before finding the optimum. At
the same time, ABO and BO consider interventions only on {Wt, Xt, Zt},∀t and need to explore an
even higher intervention space. The performance of all methods decrease in this case (Table 1) but
DCBO still identifies the optimal intervention set in 93% of the replicates (Table 2).

Independent manipulative variables (IND.): Having to explore multiple intervention sets signifi-
cantly penalises DCBO and CBO when there is no causal relationship among manipulative variables
which are also the only parents of the target. This is the case for the DAG in Fig. 3b where the optimal
intervention is {Xt, Zt} at every time step. In this case, exploring M and propagating uncertainty in
the causal prior slows down DCBO convergence and decreases both its performance (Table 1) and
capability to identify the optimal intervention set (Table 2).

Non-stationary DAG and SCM (NONSTAT.): DCBO outperforms all approaches in non-stationary
settings where both the DAG and the SCM change overtime – see Fig. 3c. Indeed, DCBO can timely
incorporate changes in the system via the dynamic causal prior construction while CBO, BO and ABO
need to perform several interventions before accurately learning the new objective functions.

Table 1: Average Gt across 10 replicates and time steps. See Fig. 1 for a summary of the baselines.
Higher values are better. The best result for each experiment in bold. Standard errors in brackets.

Synthetic data Real data

STAT. MISS. NOISY MULTIV. IND. NONSTAT. ECON. ODE

DCBO
0.88 0.84 0.75 0.49 0.48 0.69 0.64 0.67

(0.00) (0.01) (0.00) (0.01) (0.04) (0.00) (0.01) (0.00)

CBO
0.70 0.70 0.51 0.48 0.47 0.61 0.61 0.65

(0.01) (0.02) (0.02) (0.09) (0.07) (0.00) (0.01) (0.00)

ABO
0.56 0.49 0.49 0.39 0.54 0.38 0.57 0.48

(0.01) (0.02) (0.04) (0.21) (0.01) (0.02) (0.02) (0.01)

BO
0.54 0.48 0.38 0.35 0.50 0.38 0.50 0.44

(0.02) (0.03) (0.05) (0.08) (0.01) (0.03) (0.01) (0.03)

4.2 Real experiments

Real-World Economic data (ECON.) We use DCBO to minimize the unemployment rate Ut of a
closed economy. We consider its causal relationships with economic growth (Gt), inflation rate
(Rt) and fiscal policy (Tt)4. Inspired by the economic example in [17] we consider the DAG in

4The causality between economic variables is oversimplified in this example thus the results cannot be used
to guide public policy and are only meant to showcase how DCBO can be used within a real application.
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Table 2: Average % of replicates across time steps for which X?
s,t is identified. See Fig. 1 for a

summary of the baselines. Higher values are better. The best result for each experiment in bold.

Synthetic data Real data

STAT. MISS. NOISY MULTIV. IND. NONSTAT. ECON. ODE

DCBO 93.00 58.00 100.00 93.00 93.00 100.00 86.67 33.3
CBO 90.00 85.00 90.00 90.0 90.00 100.00 93.33 33.3
ABO 0.00 0.00 0.00 0.00 100.00 0.00 66.67 0.00
BO 0.00 0.00 0.00 0.00 100.00 0.00 66.67 0.00

Fig. 3d where Rt and Tt are considered manipulative variables we need to intervene on to minimize
log(Ut) at every time step. Time series data for 10 countries5 are used to construct a non-parametric
simulator and to compute the causal prior for both DCBO and CBO. DCBO convergences to the optimal
intervention faster than competing approaches (see Table 1 and Fig. 6 in the appendix). The optimal
sequence of interventions found in this experiment is equal to {(T0, R0) = (9.38,−2.00), (T1, R1) =
(0.53, 6.00), (T2) = (0.012)} which is consistent with domain knowledge.

Planktonic predator–prey community in a chemostat (ODE) We investigate a biological system
in which two species interact, one as a predator and the other as prey, with the goal of identifying
the intervention reducing the concentration of dead animals in the chemostat – see Dt in Fig. 3e.
We use the system of ordinary differential equations (ODE) given by [6] as our SCM and construct
the DAG by rolling out the temporal variable dependencies in the ODE while removing graph cycles.
Observational data are provided in [6] and are use to compute the dynamic causal prior. DCBO
outperforms competing methods in term of average gap metric and identifies the optimum faster
(Table 1). Additional details can be found in the supplement (§6).

5 Conclusions

We consider the problem of finding a sequence of optimal interventions in a causal graph where
causal temporal dependencies exist between variables. We propose the Dynamic Causal Bayesian
Optimization (DCBO) algorithm which finds the optimal intervention at every time step by intervening
in the system according to a causal acquisition function. Importantly, for each possible intervention
we propose to use a surrogate model that incorporates information from previous interventions
implemented in the system. This is constructed by exploiting theoretical results establishing the
correlation structure among objective functions for two consecutive time steps as a function of the
topology of the causal graph. We discuss the DCBO performance in a variety of setting characterized
by different DAG properties and stationarity assumptions. Future work will focus on extending our
theoretical results to more general DAG structures thus allowing for unobserved confounders and a
changing DAG topology within each time step. In addition, we will work on combining the proposed
framework with a causal discovery algorithm so as to account for uncertainty in the graph structure.
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