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ABSTRACT

Statistical fairness harnesses a classifier to accommodate parity requirements by
equalizing the model utility (e.g., accuracy) across disadvantaged and advantaged
groups. Due to privacy and security concerns, recently there has arisen a need
for learning fair classifiers without ready-to-use demographic information. Exist-
ing studies remedy this challenge by introducing various side information about
groups and many of them are found fair by unavoidably comprising model utility.
Can we improve fairness without demographics and without hurting model util-
ity? To address this problem, we propose to center on minimizing the variance
of training losses, allowing the model to effectively eliminate possible accuracy
disparities without knowledge of sensitive attributes. During optimization, we de-
velop a dynamic harmless update approach operating at both loss and gradient
levels, directing the model towards fair solutions while preserving its intact util-
ity. Through extensive experiments across four benchmark datasets, our results
consistently demonstrate that our method effectively reduces group accuracy dis-
parities while maintaining comparable or even improved utility.

1 INTRODUCTION

Fairness in machine learning has gained significant attention owing to its multifaceted ethical im-
plications and its far-reaching potential to shape and influence various aspects of society (Dwork
et al., 2012; Barocas & Selbst, 2016; Ntoutsi et al., 2020). In high-stakes decision-making domains,
algorithms that merely prioritize model utility may yield biased models, resulting in unintentional
discriminatory outcomes concerning factors such as gender and race. Group fairness, a.k.a. statisti-
cal fairness (Carey & Wu, 2023), addresses this issue by explicitly encouraging the model behavior
to be independent of group indicators, such as disparate impact (Feldman et al., 2015), or equalized
odds (Hardt et al., 2016). However, with increasing privacy concerns applied in practical situations,
sensitive attributes are not accessible which raises a new challenge for fairness learning.

According to literature, numerous efforts have been directed towards achieving fairness without
relying on demographic information, which can be mainly categorized into two branches. One
branch is to employ proxy-sensitive attributes (Yan et al., 2020; Grari et al., 2021; Zhao et al., 2022;
Zhu et al., 2023). These works assume that estimated or selected attributes are correlated with the
actual sensitive attributes and thus can serve as a proxy of potential biases. The other branch follows
Rawlsian Max-Min fairness (Rawls, 2001) whose main idea is to enhance the utility of the worst-
off group. Existing studies (Hashimoto et al., 2018; Martinez et al., 2021; Chai & Wang, 2022b)
following this principle commonly leverage a prior about group size to identify the worst-group
members, which has been however argued at a non-negligible cost on overall utility (Chai et al.,
2022).

The trade-off nature between model utility and fairness has emerged as a subject of dynamic dis-
course (Dutta et al., 2020; Wei & Niethammer, 2022; Zhao & Gordon, 2022), even in the context
of no demographics (Martinez et al., 2021). Instead of walking on the Pareto frontier of utility
and fairness, in this work, we advocate how much we can improve fairness during training without
hurting the model’s utility, which is particularly preferred in utility-intensive scenarios (Li & Liu,
2022). We also emphasize that fairness here refers to group utility disparity (e.g., accuracy differ-
ence across groups) following John Rawls’s theory on distributive justice while no additional prior
about demographics is introduced.
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(a) Per-example training loss sorted in an ascend-
ing order.

(b) Loss distribution with Gaussian kernel density
estimation.

Figure 1: The effect of VFair by comparing with four methods on the training set of Law School.

Our idea. In this paper, we approach the problem from a novel perspective. The crux of the desired
fairness lies in the pursuit of minimum group utility disparity across all groups. Since during the
training phase, we are not aware of what the actual sensitive attributes are used for test data, the
safest way is to ensure every possible disjoint group of training data has the same utility. To this
end, we expect the training loss for each individual example to be approximately uniform, meaning
that the variance of losses is sufficiently small. Considering such expectations may deteriorate the
overall model performance, we prioritize keeping the overall average loss at a low value. Hence, the
main idea can be summarized as minimizing loss distribution’s second moment while not increasing
its first moment, dubbed as VFair in this paper.

Observation. The implementation of VFair is presented in Section 3. Figure 1 here showcases the
effect of our model VFair in contrast to Empirical Risk Minimization (ERM), DRO (Hashimoto
et al., 2018), ARL (Lahoti et al., 2020), and FairRF (Zhao et al., 2022) on the training set of the
Law School dataset (Wightman, 1998). To align with the requirement of harmless fairness, each
trained model is kept with its average loss equal to ERM (with a maximal gap of 5e-3 in practical
implementations). And we have the following findings.

(1) Our method VFair exhibits a more flattened curve compared to others while upholding a compa-
rable area under the curve (filled with pink), signifying a harmless fairness solution. From Fig 1 (a),
we observe that minimizing the variance of losses efficiently flattens the loss curve, showing a fairer
solution for unknown group partitions on the test phase. Fig 1 (b) shows that the distribution mode
(sharper than others) of our VFair slightly shifts towards a larger loss but keeps a distance from the
decision boundary, which is an affordable cost demonstrated by its generalization in Section 4.2).

(2) Our method VFair experimentally implies the worst-case fairness, proved in Fig. 1 (a) that the
average loss of the worst-off group for VFair will be consistently lower than any other method
(Please also refer to the results on other datasets shown as Fig. 4 in Section 4.2). Given a prior
about the minimal group size, the loss of worst-case fairness is defined as averaging the largest
losses within this size. Our claim is obviously true if the group size is small, e.g., the worst-group
examples are picked from 16k to end. Regarding a larger group size, e.g., picking training examples
from 6k, thanks to the fact the total area under each curve is nearly equal and the curve of VFair is
always above others before 16k, we conclude that the worst-group loss for VFair is also the lowest.

Our contributions. The primary contributions of our research can be outlined as follows.

‚ We highlight the setting of harmless fairness without prior knowledge about demographics. To
well position this setting, we study its connection with existing literature from different views.

‚ We advocate that minimizing the variance of prediction losses is a straightforward yet effective
fairness proxy. By incorporating it as a secondary objective, the overall model performance remains
uncompromised.

‚ We develop a dynamic approach to do harmless update, which is operated at both the loss and
gradient levels, comprehensively guiding the model towards a harmless fairness solution.
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‚ We evaluate our framework across four benchmark datasets. The experimental results consistently
demonstrate it rivals state-of-the-art methods.

2 RELATED WORK

Max-Min fairness without demographics. In alignment with Rawlsian Max-Min fairness (Rawls,
2001) principle, a sequence of studies has addressed the challenge of fairness without demographics
by focusing on improving the performance of the worst-off group. DRO (Hashimoto et al., 2018)
identified the worst-off group members with the assistance of a lower bound for the minimal group
ratio. The behind insight is that examples yielding larger losses are more likely sampled from
an underprivileged group and thus should be up-weighted, which inherits the fairness strategy for
handling group imbalance (Abernethy et al., 2022; Chai & Wang, 2022a). Similarly, Martinez et al.
(2021) also considered training a fair model with a given ratio of the protected group and connected
such a fairness learning setting with the subgroup robustness problem (Liu et al., 2021). In contrast
to these studies, ARL (Lahoti et al., 2020) presented an adversarial reweighing method for achieving
fairness without resorting to any prior knowledge about demographic information. This embodies
the genuine essence of achieving fairness without demographics and is closest to our setting.

Harmless fairness. In utility-intensive scenarios, a fair model is meaningful only when it pre-
serves good utility. A few studies have engaged in discussing the extent to which fairness can be
achieved without compromising model utility. Martinez et al. (2020; 2021) searched for the so-
called minimax Pareto fair optimality for off-the-shelf binary attributes and then upgraded their
method to the multi-value attribute cases with only side information about group size. Li & Liu
(2022) accomplished cost-free fairness through a pre-processing strategy that involves reweighing
training examples based on both fairness-related measures and predictive utility on a validation set.
Based on the concept of Rashomon Effect, Coston et al. (2021) achieved fairness from good-utility
models through a constrained optimization perspective, needing a proper upper bound for the av-
erage loss. Notably, these works more or less require direct or implicit demographic information
and cannot adapt to our problem setting. Gong & Liu (2021) introduced a unified dynamic barrier
gradient descent algorithm allowing models to prioritize must-satisfactory constraints. Inspired by
this, we conceptualize harmless fairness within a similar framework, enabling us to move beyond
a utility-only solution and obtain a fairer model which can narrow the utility gaps among possible
data partitions.

3 VFAIR METHODOLOGY

3.1 PROBLEM SETUP

Consider a supervised classification problem from input space X to a label space Y , with training
set tziu

N
i“1, where zi “ pxi, yiq P X ˆ Y . For a model parameterized by θ P Θ and a training

point z1, let ℓpz; θq be the associated loss. In the context of fairness learning, we assume that for
each zi, a sensitive attribute si P S exits, and a K-value sensitive attribute s naturally partitions
data into K disjoint groups. We highlight such sensitive attributes are not observed during training
but can be used for fairness testing. For example, let ak be the accuracy of the k-th group, and
we can define the maximum accuracy disparity, i.e., MAD “ maxi,jPrKs pai ´ ajq, as a fairness
metric. The fundamental objective of this work is to develop a classifier that maintains high overall
predictive accuracy (compared to ERM) while minimizing group accuracy disparity (Lahoti et al.,
2020; Martinez et al., 2021) to the greatest extent possible.

3.2 FAIRNESS VIA MINIMIZING VARIANCE OF LOSSES

An ERM model may exhibit variable predictive accuracy across different groups. Normally, a fair
counterpart is achievable by properly incorporating the objective of minimizing group accuracy
disparity (e.g., MAD), which is however not applicable when demographics are not accessible. It is
worth noting that a classifier that can be fair for any possible partitions in testing implies that the loss
of each training example should be close to each other. A compelling piece of evidence is that if all

1Throughout this paper, random variables are represented with lowercase letters unless otherwise specified.
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training examples are correctly classified, each individual loss ℓpz; θq should be small enough and
no disparity should appear, i.e., MAD “ 0. Although taking the risk of being overfitting, this case
inspires us to bypass the unobserved sensitive attribute s by requiring the loss values to be restricted
in a relatively narrow range. One can move to Appendix A for a further justification.

As already mentioned in Section 1, we consider penalizing the variance of training losses to reduce
the group accuracy disparity. Supposing that we intend to get a small MAD through minimizing
the maximum group loss disparity, denoted by ℓMAD, the following proposition shows that deviation
Vzrℓpz; θqs actually serves as a useful proxy.

Proposition 1 @s P S,@θ P Θ, ℓMAD ď C
a

Vzrℓpz; θqs, where C is a constant.

Please refer to Appendix B.1 for the proof. Notably, although ℓMAD is upper-bounded in the form of
standard deviation as stated in Proposition 1, we use variance for convenience in statements where it
does not introduce ambiguity. Further discussions on the adoption of alternative loss options can be
referred to Appendix B.2. Since penalizing the variance of loss will not necessarily decrease the ex-
pectation of losses Ezrℓpz; θqs, which could lead to the emergence of a uniform classifier (Martinez
et al., 2021), we formulate the full objective as follows:

min
θPΘ

a

Vzrℓpz; θqs s.t. Ezrℓpz; θqs ď δ, (1)

where δ controls how much we can tolerate the harm on the overall predictive accuracy, and the sense
that δ “ infθPΘ Ezrℓpz; θqs suggests a zero-tolerance. In particular, we fold in any regularizers into
ℓp¨q to make our method easily adapt to specific scenarios. The empirical risk of Eq. 1 is written as

min
θPΘ

g

f

f

e

1

N

N
ÿ

i“1

pℓpzi; θq ´ µ̂pθqq
2

loooooooooooooooomoooooooooooooooon

σ̂pθq

s.t.
1

N

N
ÿ

i“1

ℓpzi; θq

looooooomooooooon

µ̂pθq

ď δ. (2)

We use µ̂pθq and σ̂pθq to denote the primary and secondary objectives, respectively. Since we
minimize σ̂pθq inside the optimal set of minimizing µ̂pθq, the eventually learned model is viewed to
be harmlessly fair with regard to the overall performance. Recall that Fig. 1 visualizes the effect of
variance penalization and the training loss distribution of our VFair method.

3.3 HARMLESS UPDATE

Directly calculating the optimal set of µ̂pθq ď δ in Eq. 2 can be very expensive. A common approach
is to consider the unconstrained form of Eq. 2, i.e., Lagrangian function, which however needs to
not only specify a proper δ beforehead but also optimize the Lagrange multiplier to best satisfy
the constraint. Recognizing that such re-balancing between two loss terms essentially operates on
gradients, in a manner analogous to the approach outlined by Gong & Liu (2021), we consider the
following gradient update paradigm

θt`1 Ð θt ´ ηt
`

λt∇µ̂pθtq ` ∇σ̂pθtq
˘

, (3)

where ηt is a step size and λtpλt ě 0q is the dynamic coefficient we aim to get. For simplicity, we
omit the t when it is not necessary to emphasize the step.

(a) (b)

Figure 2: Two situations when updating primary
and secondary gradient simultaneously.

Our aim is to ensure the gradient updates in
a direction that aligns with the primary objec-
tive’s gradient without causing conflicts. As
depicted in Fig. 2 (a), when the angle between
gradients ∇σ̂ and ∇µ̂ forms an obtuse angle,
a detrimental component emerges in the direc-
tion of ∇µ̂. Conversely, in Fig. 2 (b), the up-
date will not conflict. Consequently, λ should
be sufficiently large to guarantee the combined force’s component in the primary direction remains
non-negative:

λ∇µ̂ ` Proj∇µ̂p∇σ̂q ě ϵ∇µ̂ ùñ λ ě ϵ ´
∇µ̂ ¨ ∇σ̂

||∇µ̂||2
:“ λ1. (4)
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Here, ϵ represents the extent to which we wish to update ∇µ̂ when it reaches a right angle. Thus,
Eq. 4 can be simplified as λ ě ϵ. Throughout the experiments of this paper, we simply apply ϵ by
checking its performance in the range of [-1,3] with a step size of 1.

The combined gradient on each instance is in the form of (detailed derivation is referred to Ap-
pendix C.)

∇ “ λ∇µ̂ ` ∇σ̂ “
1

N

N
ÿ

i“1

ˆ

λ `
1

σ̂
pℓi ´ µ̂q

˙

loooooooooomoooooooooon

wi

Bℓi
Bθ

. (5)

From Eq. 5, we observe that our objective (i.e., Eq. 1) implicitly leads to an example re-weighing
scheme. As we can see that wi ă 0 if ℓi ă µ̂ ´ λσ̂, two concerns follow.

(1) Each weight wi ought to be non-negative for stable optimization (Ren et al., 2018). A conven-
tional approach is to further project the weights into a N -dimensional simplex and adopt the derived
probabilities, which is however dependent on the choice of distance measurement.

(2) As shown in Fig. 3 (a), simply minimizing variance inevitably incurs the examples with rela-
tively smaller losses to shift towards the decision boundary. This poses a risk to the generalization,
especially when ℓ is implemented with a maximum-margin principle (Elsayed et al., 2018).

Detailedly, Fig. 3 (a) serves as an illustrative diagram depicting examples with a shared ground truth
label. Notably, well-classified instances with losses smaller than the average loss are positioned
far from the decision boundary, yet also contribute significantly to variance components. Simply
penalizing variance will pull all samples towards the average loss. Green arrows represent desir-
able upgrading direction, while purple arrows represent well-classified samples moving towards the
decision boundary, which has a negative impact on generalization.
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Figure 3: The necessity and effectiveness of λ2

To address these two concerns, we propose to directly consider the sign of wi by adjusting λ. Instead
of exhaustively making every wi non-negative, for each iteration, we filter out the examples that have
been confidently classified and let the weights for the remaining ones be non-negative. Specifically,
if the predicted probability of the ground truth class surpasses τ , which is empirically set to 0.9, the
sample will be filtered out from updating in this iteration.

Let us say there remain M samples that have not been confidently classified at the current iteration,
and we have

@i P rM s λ `
1

σ̂
pℓi ´ µ̂q ě 0

ùñλ ě max
iPrMs

µ̂ ´ ℓi
σ̂

“
1

σ̂

ˆ

µ̂ ´ min
iPrMs

ℓi

˙

:“ λ2.
(6)
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Interestingly, Eq. 6 can be viewed as a conditional update to λ based on the loss of the primary
objective µ̂. Specifically, if µ̂ is close to the loss of well-classified samples, the primary objective
is satisfactory and the secondary objective should be focused on. Thus λ should be close to 0. By
contrast, if µ̂ is relatively larger, we have a positive λ to update the primary objective. As shown in
Fig. 3 (b), the inclusion of λ2 effectively prevents correctly classified samples from approaching the
decision boundary, in contrast to those not utilizing λ2.

By combining Eq. 4 and Eq. 6, we derive a dynamic constraint parameter that ensures harmless
fairness update:

λ “ max pλ1, λ2, 0q “ max

ˆ

ϵ ´
∇µ̂ ¨ ∇σ̂

||∇µ̂||2
,
1

σ̂
pµ̂ ´ min

iPrMs
ℓiq, 0

˙

. (7)

3.4 IMPLEMENTATION

Regarding the implementation of Eq. 7, it necessitates the computation of gradients for both µ̂ and
σ̂, as well as determining the mean loss (i.e., the value of µ̂) and the minimum loss value within
the training samples which have not been confidently classified. Nonetheless, computing gradients
across the entire dataset is time-intensive and fails to leverage the benefits offered by mini-batch
processing. During the implementation phase, we compute the gradients and choose the minimum
loss within the mini-batch. However, when it comes to the mean loss for variance computation,
it’s worth noting that the mean loss encompasses global information that could guide the update
direction for each sample. As such, it should not be calculated based solely on the mini-batch.
Consequently, we employ Exponential Moving Average (EMA) as an approximation for the global
mean loss:

µ̂t “ βµ̂t´1 `
1 ´ β

b

b
ÿ

i“1

ℓi, (8)

where the decay parameter β is set 0.99 for all datasets, and b denotes batch size. The detailed
algorithm is left to Appendix D.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. Four benchmark datasets encompassing both binary and multi-class classification tasks
are employed. (i) UCI Adult (binary classification) (Asuncion & Newman, 2007): Predicting
whether an individual’s annual income is above or below 50,000 USD. (ii) Law School (binary
classification) (Wightman, 1998): Predicting the success of bar exam candidates. (iii) COMPAS
(binary classification) (Barenstein, 2019): Predicting recidivism for each convicted individual. (iv)
CelebA (multi-classification) (Liu et al., 2015): By combining certain binary attributes, we design
different multi-classification tasks, such as the prediction of hair color and beard type. Following
the convention of Lahoti et al. (2020), we select sex (or gender) and race (or Young on CelebA) as
sensitive attributes, splitting each dataset into 4 groups.

Metrics. During the evaluation phase, we gain access to the sensitive attributes that partition the
dataset into K disjoint groups. As discussed in Section 3.1, our training objective is to uphold a high
level of overall predictive accuracy while simultaneously minimizing group accuracy disparities to
the greatest extent feasible. Henceforth, we assess the performance of our method across five distinct
metrics: (i)ACC: The overall prediction accuracy. (ii) WACC: The minimum group accuracy among
all K groups, i.e., WACC “ minkPrKs ak. (iii) MAD: Maximum accuracy disparity, as described in
Section 3.1. (iv) TAD: Total accuracy disparity. TAD “

ř

kPrKspak ´ āq, where ā is the average
group accuracy. (v) VAR: The variance of prediction loss. Since we are not able to exhaustively
enumerate all possible sensitive attributes and test fairness via the metrics (ii-iv), VAR necessarily
serves as a fairness proxy for any other possible selected sensitive attributes during the test phase.

Baselines. We simply represent our method as VFair, and compare it against four baselines including
ERM, DRO (Hashimoto et al., 2018), ARL (Lahoti et al., 2020), and FairRF (Zhao et al., 2022). Note
that DRO and FairRF are slightly different from our group fairness setting. DRO necessitates the
identification of the worst group through a bound of group ratio, which is viewed as side information
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about the protected group. FairRF selects some observed features as pseudo-sensitive attributes,
constraining its application to image datasets. The detailed model structure is left in Appendix E.

4.2 PERFORMANCE COMPARISON

To ensure the reliability of the findings, we repeated all the experiments 10 times and averaged the
outcomes. The summarized results are presented in Table 1. The best result is highlighted in red,
while the second-best result is in blue. The standard deviation is shown in the bracket as σ except
for CelebA, whose σ is smaller than 1e-4. Further comparison experiments are left in Appendix F.

Table 1: Comparison of overall accuracy and group fairness on four benchmark datasets.

ACC Ò(σ) WACC Ò(σ) MAD Ó(σ) TAD Ó(σ) VAR Ó(σ)

UCI Adult

ERM 84.67%(0.58%) 80.20%(0.82%) 16.13%(0.82%) 20.78%(0.99%) 0.3389(4.77%)

DRO 84.71%(0.26%) 80.34%(0.36%) 15.76%(0.35%) 20.92%(0.24%) 0.1900(2.05%)

ARL 84.60%(0.63%) 80.11%(0.91%) 16.17%(1.05%) 20.91%(0.95%) 0.3618(8.41%)

FairRF 84.27%(0.13%) 80.01%(0.15%) 15.73%(0.18%) 20.26%(0.58%) 0.2583(1.38%)

VFair 84.74%(0.34%) 80.36%(0.49%) 15.71%(0.73%) 20.71%(0.80%) 0.0817(0.98%)

Law School

ERM 85.59%(0.67%) 74.49%(1.84%) 12.08%(2.74%) 21.50%(3.35%) 0.3695(1.37%)

DRO 85.37%(0.88%) 74.76%(2.08%) 11.53%(1.91%) 20.83%(2.37%) 0.2747(1.43%)

ARL 85.27%(0.71%) 74.78%(2.12%) 11.52%(2.21%) 21.52%(1.97%) 0.3795(1.80%)

FairRF 81.91%(0.27%) 68.75%(1.61%) 14.48%(1.65%) 26.84%(2.20%) 0.3080(1.59%)

VFair 85.40%(0.99%) 75.25%(1.51%) 11.00%(1.92%) 19.91%(2.43%) 0.0629(0.24%)

COMPAS

ERM 66.70%(0.66%) 63.20%(1.64%) 07.15%(1.46%) 09.12%(1.79%) 0.1563(3.38%)

DRO 66.37%(0.50%) 62.41%(1.27%) 07.51%(1.08%) 09.58%(1.77%) 0.1535(2.39%)

ARL 66.65%(0.55%) 63.27%(1.99%) 06.93%(1.83%) 09.09%(3.71%) 0.1442(3.64%)

FairRF 62.90%(0.43%) 61.55%(1.06%) 02.64%(1.55%) 03.69%(2.10%) 0.0693(1.26%)

VFair 66.80%(0.27%) 63.86%(0.57%) 06.25%(0.80%) 08.47%(1.23%) 0.0186(0.12%)

CelebA

ERM 92.80% 89.77% 03.64% 04.77% 0.4008
DRO 93.04% 90.16% 03.27% 04.74% 0.3190
ARL 93.26% 89.84% 04.02% 05.41% 0.3738

FairRF - - - - -
VFair 93.43% 91.09% 02.74% 03.85% 0.1170

Achieving small group accuracy disparity. Our method VFair consistently outperforms other
baselines on MAD and TAD except for three instances, where FairRF achieves the best. But please
note FairRF sacrifices ACC significantly, showing a remarkable performance drop of around 4% on
COMPAS and Law School compared to others, which is not desirable under the harmless fairness
setting. We also observe that our method reduces more accuracy disparities on the CelebA dataset.
A reasonable explanation is that our method has the chance to find better solutions in a relatively
larger solution space, where more diverse minimums can be examined by fairness criteria.

Maintaining high accuracy. Our method VFair also achieves competitive and even better ACC and
WACC compared to baselines, representing the success in improving worst-case group performance
while maintaining high overall accuracy. This highlights the effectiveness of the proposed harmless
update approach. In particular, regarding the case of the COMPAS dataset whose labels are found
to be noisy (Lahoti et al., 2020), Max-Min fairness methods, i.e., DRO, is prone to amplify such
noises and eventually achieve worse performance than ERM. ARL remedies this issue by relying
on an extra model to help identify unreliable examples. Our dynamic parameter λ can prevent the
model from excessively concentrating on noisy examples that produce large losses, which is further
discussed in the ablation study (See Section 4.3). On the CelebA dataset, which is a more complex
image dataset, our model achieves the highest accuracy without deepening the model layers. In
contrast, ARL, which has a larger model capacity due to the addition of an adversarial network,
takes second place, demonstrating the effectiveness of our method.

Efficiency in decreasing the variance of losses. Our method VFair showcases a substantial reduc-
tion in the variance of losses, proving that: 1) penalizing the variance of losses on the training set
can effectively generalize to the testing set (Similar to Fig. 1 (a), we depict the training losses for
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the rest of three datasets in Fig. 4). 2) other partitions through randomly selected sensitive attributes
also enjoy better fairness results. From Fig. 4, we surprisingly see that across different datasets our
VFair is the unique one that has the flattened curve while DRO, ARL, and FairRF are essentially
close to ERM.
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Figure 4: Per-example losses for all compared methods sorted in ascending order on the training set
of UCI Adult, COMPAS, and CelebA, respectively. Dash lines represent their average losses.

4.3 A CLOSER LOOK AT VFAIR

Method efficacy. We monitor the performance of VFair every 5 steps during the training phase by
evaluating it with four accuracy-related metrics on the test set. The results are shown in Fig. 5, which
indicate these curves naturally improve in the desired direction under the variance penalty, thus
verifying the effectiveness of our method. One can also move to Appendix G for the experiments on
CelebA where the training loss and test performance can be compared directly.
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Figure 5: Test performance curves of four accuracy-related metrics during the training process on
three benchmark datasets. The results on CelebA are left to Appendix G

Ablation study. We train our model under four settings: λ “ 1, λ “ maxpλ1, 0q, λ “ maxpλ2, 0q,
and λ “ maxpλ1, λ2, 0q. As presented in Table 2, our method already achieves competitive results
by solely employing λ2. The full version which integrates both λ1 and λ2 demonstrates more stable
results. Notably, on the Law School and COMPAS datasets, there exist situations when the model
converges towards a uniform classifier, as indicated by the gray region. These uniform classifiers
predict all the samples near the decision boundary, causing their losses to share very similar values
and form variances at a scale of around 1e-7. This phenomenon underscores the effectiveness of λ2

in preventing the model from collapsing to a low-utility model. One can refer to Fig. 7 for a more
vivid explanation. Moreover, by adding λ1, our model consistently improved in four accuracy-
related metrics. These results show that λ1 effectively guides the model to converge to a better point
at the gradient level.

Model examination. We further examine the learned fair models through VFair by studying their
parameter similarity and prediction similarity with ERM. The results (See Appendix H) demonstrate
that VFair takes a chance to explore a large model space when it is necessary.
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Table 2: Ablation experiments on four benchmark datasets. All of the results are averaged over
10 repeated experiments to mitigate randomness, with the best results highlighted in red and the
second-best in blue (excluding the uniform situation).

λ1 λ2 ACC Ò(σ) WACC Ò(σ) MAD Ó(σ) TAD Ó(σ) VAR Ó(σ)

UCI Adult

λ “ 1 84.71%(0.32%) 80.36%(0.44%) 15.85%(0.65%) 20.94%(0.72%) 0.0300(0.32%)

✓ 84.68%(0.36%) 80.27%(0.50%) 15.91%(0.63%) 20.97%(0.89%) 0.0775(0.81%)

✓ 84.52%(0.44%) 80.08%(0.65%) 15.99%(0.73%) 20.92%(0.56%) 0.0658(1.15%)

✓ ✓ 84.74%(0.34%) 80.36%(0.49%) 15.71%(0.73%) 20.71%(0.80%) 0.0817(0.98%)

Law School

λ “ 1 84.36%(0.11%) 74.30%(0.84%) 10.88%(0.95%) 20.73%(1.63%) 0.0005(0.02%)

✓ 85.40%(0.30%) 75.09%(0.58%) 11.20%(0.82%) 20.43%(1.66%) 0.0630(0.14%)

✓ 45.39%(28.53%) 32.03%(14.79%) 30.31%(3.41%) 53.12%(5.08%) 0(0%)

✓ ✓ 85.40%(0.99%) 75.25%(1.51%) 11.00%(1.92%) 19.91%(2.43%) 0.0629(0.24%)

COMPAS

λ “ 1 55.21%(2.43%) 49.90%(3.44%) 10.51%(4.34%) 13.28%(5.51%) 0(0%)

✓ 64.29%(0.99%) 60.44%(3.63%) 7.34%(3.76%) 9.67%(4.87%) 0.0003(0.02%)

✓ 66.45%(0.85%) 63.49%(1.90%) 6.60%(2.40%) 8.40%(3.12%) 0.0191(0.24%)

✓ ✓ 66.80%(0.27%) 63.86%(0.57%) 6.25%(0.80%) 8.47%(1.23%) 0.0186(0.12%)

CelebA

λ “ 1 92.04% 89.22% 3.66% 4.65% 0.1269
✓ 93.46% 90.62% 3.49% 4.67% 0.1161

✓ 93.23% 90.08% 3.70% 5.14% 0.0753
✓ ✓ 93.43% 91.09% 2.73% 3.85% 0.1170

5 DISCUSSION

Note that the objective of Eq. 1 that minimizes the empirical risk as well as the variance of losses
looks similar to variance-bias research (Maurer & Pontil, 2009). Following Bennett’s inequality, the
expected risk can be upper bounded by the empirical risk plus a variance-related term (also a small
variable) with a high probability:

Ezrℓpz; θqs ď
1

N

N
ÿ

i“1

ℓpz; θq ` C1

c

Vzrℓpz; θqs

N
`

C2

N
, (9)

where C1 and C2 are some constants which reflect the confidence guarantee. We emphasize Eq. 9
is apparently distinct from our fairness motivation by recalling Eqs. 1 and 2. Interestingly, a convex
surrogate of the right-hand side of Eq. 9 is presented in Namkoong & Duchi (2017), serves as the
main methodology of DRO (Hashimoto et al., 2018), providing supportive evidence of our claim:
small variance, big fairness.

Recent studies (Hashimoto et al., 2018; Lahoti et al., 2020; Martinez et al., 2021; Chai & Wang,
2022a) that follow Rawlsian Max-Min fairness without demographic all can be summarized to es-
sentially upweight the training examples whose losses are relatively larger. We have pointed out
through Eq. 5 that our minimizing the variance of losses arrives at the same place, indicating that
variance penalty also achieves a form of implicit examples re-weighting scheme (Lin et al., 2022).
This observation further underscores the significance of our dynamic parameter λ, which mitigates
the drawbacks of plainly penalizing variance.

6 CONCLUSION

In summary, we have introduced a straightforward yet effective variance-based method VFair that
accomplishes harmless fairness without demographic information. Our approach harnesses the prin-
ciple of decreasing the variance of losses to steer the model’s learning trajectory, thereby bridging
the utility gaps appearing at potential group partitions. The optimization with a devised dynamic
weight parameter operated at both the loss and gradient levels, ensuring the model converges at the
fairest point within the optimal solution set. The comprehensive experimental analysis underscores
the efficacy of our method, which succeeds in attaining elevated fairness metrics while upholding
model utility. Future work may explore if VFair works on other tasks, e.g., regression.
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A INSTANCE LOSSES FOR REDUCING GROUP ACCURACY DISPARITY

Note that MAD “ 0 can be also understood as encouraging the group accuracy a and group index
k to be independent conditional on the sensitive attribute s, i.e., a K k|s. Without presuming what a
sensitive attribute is interested in testing, we show in the following proposition the desired fairness
can be instance-wise characterized.

Proposition 2 For any s that splits data into K groups, a K k|s holds if and only if the loss ℓ is
(approximately) independent of the training example z, i.e., ℓ K z.

Proof. We prove the statement by the following two steps.

Step 1. Since proving “@s, a K k|s ñ ℓ K z” is difficult, we consider its contrapositive, i.e.,
“ℓ M z ñ Ds, a M k”. If the value of ℓ spreads across a large range, indicating some examples are
correctly (small losses) classified while others are not (large losses), we can simply let s split them
according to if correctly classified. Since a1 ‰ a2, a M k follows.

Step 2. The assertion, “ℓ K z ñ @s, a K k”, is correct when the condition ℓ K z is strictly satisfied,
as exemplified by the scenario of a uniform classifier. When ℓ exhibits approximate dependence on
z, two distinct scenarios arise. (i) All losses are concentrated in proximity to the decision boundary,
resembling the characteristics of a uniform classifier. In the context of a finite partition by s, the
accuracy of each subgroup within a uniform classifier statistically converges towards 0.5. (ii) All
losses are conspicuously distanced from the decision boundary, akin to an ideal classifier. In this
case, an ideal classifier consistently achieves a subgroup accuracy of 1, irrespective of the chosen
split. In both situations, we can indeed conclude that @s, a K k|s. □

Thereby, we bypass the unobserved sensitive attribute s in the model training phase by requiring the
loss value to be approximately independent of its input, e.g., ℓ is restricted in a small range.

B MORE ABOUT PROPOSITION 1

B.1 PROOF OF PROPOSITION 1

Proof. Let rk denote the expected loss of k-th group. We have

ℓMAD :“ max
kPrKs

rk ´ min
kPrKs

rk ď max
iPrNs

ℓi ´ min
iPrNs

ℓi

ď

N´1
ÿ

i“1

|ℓi ´ ℓi`1| (10)

ď

N
ÿ

iăj

|ℓi ´ ℓj |
1
ď

g

f

f

eC2
N

N
ÿ

iăj

|ℓi ´ ℓj |2

2
“ N

b

C2
NVzrℓpz; θqs (11)

3
ď

C2
NN2

L
Vzrℓpz; θqs (12)

where 1 follows the norm inequality of ||x||1 ď
a

dimpxq||x||2, 2 uses the fact that Vzrℓpz; θqs “
1

N2

řN
iăjpℓi ´ ℓjq2, and 3 is similar to 1 and further uses

řN
iăj |ℓi ´ ℓj | ě L. □

B.2 OPTION OF LOSS FOR FAIRNESS OBJECTIVE

According to Proof B.1, Eqs. (10), (11), and (12) all upper bound the maximum group loss disparity
ℓMAD. We denote these objective as π, σ̂2, and σ̂ respectively:

• π “
řN´1

i“1 |ℓi ´ ℓi`1|

12
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• σ̂ “ 1?
N

b

řN
i“1pℓi ´ µ̂q2

• σ̂2 “ 1
N

řN
i“1pℓi ´ µ̂q2

Here, we analyze the choice of the objective from both theoretical and experimental levels. The
experiment results are shown in Table 3.

Table 3: Comparison of objective selection on five fairness metrics and four benchmark datasets.

objective ACC Ò WACCÒ MADÓ TADÓ VARÓ

UCI Adult
π 82.98% 78.35% 16.19% 21.10% 0
σ̂2 84.70% 80.34% 15.72% 20.79% 0.0718
σ̂ 84.74% 80.36% 15.71% 20.71% 0.0817

Law School
π 84.05% 72.96% 11.92% 22.51% 0.0003
σ̂2 85.33% 74.60% 11.67% 20.91% 0.0691
σ̂ 85.40% 74.81% 11.24% 20.31% 0.1935

COMPAS
π 55.78% 51.60% 8.70% 12.24% 0
σ̂2 63.45% 59.14% 8.71% 11.36% 0.0004
σ̂ 66.80% 63.86% 6.25% 8.47% 0.0186

CelebA
π 44.88% 20.16% 49.16% 53.85% 0
σ̂2 92.45% 89.53% 3.44% 4.63% 0.1440
σ̂ 93.43% 91.09% 2.73% 3.85% 0.117

Pairwise difference objective. We denote Eq. 10 as π “
řN´1

i“1 |ℓi ´ ℓi`1| for pairwise difference
objective.

Derivation of λ2. Similar to Eq. 6, the λ2 is set to guarantee samples won’t be assigned negative
weights.

∇π “ ∇
N´1
ÿ

i“1

|ℓi ´ ℓi`1| “

N
ÿ

j“1

N´1
ÿ

i“1

|ℓi ´ ℓi`1|
Bℓj
Bθ

“

N
ÿ

j“1

ϕj
Bℓj
Bθ

(13)

By discussing the possible combination of the absolute equation, it’s obvious that ϕ1, ϕN P t´1, 1u,
and ϕi P t´2, 0, 2u,@i P p1, Nq. Consequently, λ2 can be simply calculated as:

@i P rN s λ ` ϕi ě 0 ùñ λ ě 2 :“ λ2 (14)

Discussion of results. When operated on a mini-batch, unlike σ̂ and σ̂2, the pairwise difference
objective does not take global information into consideration, losing the relative relationships when
attempting to identify the worst-case group (also discussed in Section 3.4). The instability arising
from the difference of pairwise sample losses might mislead the upgrading process, as evidenced
in our experiments. On challenging datasets such as COMPAS and CelebA, the model tends to
converge towards a uniform classifier, even constrained by dynamic parameters.

Deviation objective. For Eq. 12, regarding the constants, we employ σ̂2 “ 1
N

řN
i“1pℓi ´ µ̂q2 as

secondary regularization.

Derivation of λ2. Eq. 5 change into:

∇ “ λ∇µ̂ ` ∇σ̂2 “
λ

N

N
ÿ

i“1

Bℓi
Bθ

`
2

N

N
ÿ

i“1

pℓi ´ µ̂q
B pℓi ´ µ̂q

Bθ

“
λ

N

N
ÿ

i“1

Bℓi
Bθ

`
2

N

N
ÿ

i“1

ppℓi ´ µ̂qq ¨

˜

Bℓi
Bθ

´
1

N

N
ÿ

j“1

Bℓj
Bθ

¸

“
1

N

N
ÿ

i“1

pλ ` 2 pℓi ´ µ̂qq
Bℓi
Bθ

`
1

N

N
ÿ

i“1

pℓi ´ µ̂q

looooomooooon

“0

¨

N
ÿ

j“1

Bℓj
Bθ

(15)
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Consequently, Eq. 6 turns into λ2 “ 2
`

µ̂ ´ miniPrKs ℓi
˘

Discussion of results. It can be observed in 3 in Eq. 12 that σ̂2 serves as a broader constraint for
ℓMAD. As a result, it’s a less restrictive objective for group disparity compared to σ̂. However, the
square-version term penalizes more on the variance, resulting in a more restrictive objective for the
variance of losses. All of these can be proved in the experiments that using σ̂2 as objective results
in lower variance but higher group disparity.

C DERIVATION OF EQ. 5

Based on the form of µ̂pθq and σ̂pθq in Eq. 2, we have

∇µ̂ “
1

N

N
ÿ

i“1

Bℓi
Bθ

(16)

∇σ̂ “
1

2
b

1
N

řN
i“1pℓi ´ µ̂q2

1

N

N
ÿ

j“1

2pℓj ´ µ̂q
Bpℓj ´ µ̂q

Bθ

“
1

N

N
ÿ

j“1

ℓj ´ µ̂

σ̂

Bℓj
Bθ

´
1

Nσ̂

N
ÿ

j“1

˜

pℓj ´ µ̂q
1

N

N
ÿ

k“1

Bℓk
Bθ

¸

“
1

N

N
ÿ

j“1

ℓj ´ µ̂

σ̂

Bℓj
Bθ

´
1

Nσ̂

˜˜

N
ÿ

j“1

ℓj

¸

´ Nµ̂

¸

looooooooooomooooooooooon

“0

˜

1

N

N
ÿ

k“1

Bℓk
Bθ

¸

(17)

The combined gradient in Eq. 5 follows by unifiying Eq. 16 and 17.

D THE PROPOSED ALGORITHM

The comprehensive implementation of our harmless fairness is elucidated in the following algorithm.

Data: Training set D “ tziu
N
i“1, where zi “ pxi, yiq P X ˆ Y

Result: Learned model parameterized by θ P Θ
Initialize parameters θ;
Initialize µ̂0 Ð 0;
for epoch Ð 1 to Nepochs do

foreach mini-batch B Ă D do
Compute the softmax prediction tsiu

N
i“1;

Filter out well-classified samples satisfy siryis ą τ ;
Compute the losses for the remaining M samples tℓiu

M
i“1;

Update µ̂t as in Eq. 8;

Compute σ̂ Ð

b

1
M

řM
i“1pℓi ´ µ̂tq2;

Compute primary gradient ∇µ̂;
Compute secondary gradient ∇σ̂;
Compute λ1 as in Eq. 4;
Compute λ2 as in Eq. 6;
Compute final gradient ∇ as in Eq. 5;
Update parameters θ as in Eq. 3;

end
end

Algorithm 1: Harmless Fairness without Demographics via Decreasing Variance of Losses
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E DETAILS ABOUT MODEL STRUCTURE

All the models, excluding FairRF, which operates within a distinct problem setting, conform to
a shared neural network framework. Specifically, for binary classification tasks, the core neural
network architecture consists of an embedding layer followed by two hidden layers, with 64 and
32 neurons, respectively. In the ARL model, an additional adversarial component is integrated,
detailed in its respective paper, featuring one hidden layer with 32 neurons. For multi-classification
tasks, the primary neural network transforms into resnet18, and the embedding layer transitions
to a Conv2d-based frontend. Throughout these experiments, the Adagrad optimizer was employed.
FairRF, utilizing its officially published code implementation, maintains the same backbone network
with nuanced variations in specific details.

As For the loss function, we implemented Binary Cross-Entropy for binary classification and Cross-
Entropy for multi-class classification. However, our method is general and is compatible with any
other forms of loss.

F MORE COMPARISON EXPERIMENTS

Maintaining superiority consistently under random partitioning.

Given that our focus is on fairness without demographic considerations, our model excels not only
in the specific divisions on attributes of race and gender but also in other possible divisions. Thus,
we conducted additional experiments involving over 100 iterations, randomly splitting the data into
K groups, ranking the metrics in terms of accuracy and prediction error, and calculating the average
rank. For each iteration, we rank the results from the top to the bottom as 1, 2, 3, 4. It’s essential to
note that FairRF is not included because this method relies on selecting related attributes and is not
suitable for this setting. The results shown in Table 4 indicate that our method consistently performs
well regardless of the choice of K.

Table 4: Average rank of randomly splitting into 4, 10, and 20 groups.

K=4 K=10 K=20
ACC WACC MAD TAD ACC WACC MAD TAD ACC WACC MAD TAD

UCI Adult

ERM 2.5 3.3 2.93 3.01 2.5 3.33 3.25 3.19 2.5 3.42 3.13 3.29
DRO 2.7 2 2.57 2.54 2.7 2 2.33 2.29 2.7 2 2.4 2.27
ARL 2.5 3.7 3.1 3.13 2.5 3.67 3.39 3.41 2.5 3.58 3.33 3.44
VFair 2.3 1 1.4 1.32 2.3 1 1.03 1.11 2.3 1 1.14 1

Law School

ERM 1.8 3.46 3.04 3.04 1.8 3.44 3.12 3.22 1.8 3.38 3.32 3.32
DRO 2.7 2.02 2.68 2.71 2.7 2.09 2.61 2.48 2.7 2.18 2.4 2.33
ARL 2.8 3.52 3.03 3.12 2.8 3.47 3.2 3.26 2.8 3.38 3.28 3.35
VFair 2.7 1 1.25 1.13 2.7 1 1.07 1.04 2.7 1.06 1 1

COMPAS

ERM 2.6 3.02 3.05 3.09 2.6 3.08 2.87 2.94 2.6 2.67 3.03 3.17
DRO 2.8 3.21 3.08 3 2.8 3.14 3.17 3.07 2.8 2.88 3.15 3.09
ARL 2.5 2.77 2.83 2.88 2.5 2.71 2.92 2.99 2.5 2.53 2.82 2.74
VFair 2.1 1 1.04 1.03 2.1 1.07 1.04 1 2.1 1.92 1 1

Comparison with fairness methods with accessible sensitive attributes.

We have further supplemented control experiments, where the model has access to sensitive at-
tributes and is optimized under constrained regularization. In detail, we reproduced the MMPF
in Martinez et al. (2020) and further designed experiments that penalize the losses of the minority
group, denoted as PMG. Take UCI Adult and Law School as two examples, the results are presented
in Table 5. By leveraging additional group information, MMPF achieves improved results. However,
MMPF is not a harmless approach, particularly evident on Law School, where it sacrifices model
utility for a fairer point. PMG yields unsatisfactory performance due to its excessive focus on the
minority group, missing general information from other groups.

Comparison of F1-score on CelebA.

On CelebA, which is observed as an imbalanced multi-classification task, we further compare the
F1-score of each method. Similar to the ACC-based metrics, we denote F, WF, MFD, and TFD as
F1-score, Worst F1-score, Max F1-score Disparity, and Total F1-score Disparity, respectively. As

15



Under review as a conference paper at ICLR 2024

Table 5: Comparison with methods with access to attributes.

ACC Ò WACC Ò MAD Ó TAD Ó VAR Ó

UCI Adult
PMG 79.48% 73.02% 22.36% 27.85% 4.1686

MMPF 85.19% 81.09% 12.73% 17.73% -
VFair 84.74% 80.36% 15.71% 20.71% 0.0817

Law School
PMG 78.52% 70.14% 9.47% 15.59% 0.8183

MMPF 82.85% 76.20% 8.42% 15.43% -
VFair 85.40% 75.25% 11.00% 19.91% 0.0629

shown in Table 6, our model significantly outperforms others, resulting in better utility and better
fairness. In detail, the imbalanced multiclassification task setting makes the fairness problem more
challenging. When evaluated under the F1-score, which considers the imbalance of each label, the
worst-performing groups exhibit a larger gap with the mainstream groups, providing our method
with more opportunity to address these disparities.

Table 6: Comparison of F1-score on CelebA.

FÒ WF Ò MFD Ó TFD Ó

ERM 91.40% 70.17% 19.39% 22.82%
DRO 91.57% 70.16% 20.68% 25.25%
ARL 91.60% 70.39% 20.14% 24.33%
VFair 91.91% 75.70% 14.39% 18.50%

G MORE CURVES DURING TRAINING

Fig. 6 (a) illustrates the convergence of training loss on the CelebA datasets. As the final combined
objective is updated directly at the gradient level, which does not have a unified loss form, we
display the curve of losses of the primary objective, representing the model’s utility. Combining
with 6 (b), we observe that our upgrading method in Equation 5 effectively steers the model towards
convergence.
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Figure 6: Test performance curves during the training process on CelebA.

To better illustrate the trend of λ changes during training, we plotted the curves of λ1 and λ2 on
the Law School dataset. As shown in Fig. 7, this visualization provides a vivid explanation for the
grayed block in Table 2. In this special case, λ2 is consistently higher than λ1, preventing the model
from collapsing into a uniform classifier.
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Figure 7: Curves of λ during training on Law School

H MODEL SIMILARITY WITH ERM.

Harmless implementation of baselines. To compare all baselines under the harmless fairness
setting, we implement them into the same scheme and select the step with the nearest loss compared
to a converged ERM. Detailedly, each method has an empirical loss, which in our method is denoted
as µ̂ and in ARL is denoted as learner loss (compared to adversarial loss). Based on this loss, we
select the harmless step which has the nearest loss value compared to a well-trained ERM model.

Similarity with ERM. Under the consistent harmless fairness setting, we examine the similarity
between a fair model and an ERM model. We conduct experiments comparing ERM, DRO, and
VFair, as they share the same model structure. By calculating the Cosine similarity and the predicted
label similarity between the parameters of a fair model and ERM, we get results shown in Table 7.

Table 7: Similarity between a fair model and an ERM model.

Cosine Similarity Prediction Similarity

DRO VFair DRO VFair

UCI Adult 0.9956 0.9955 91.75% 95.55%
Law School 0.7693 0.5839 95.25% 94.97%

The results indicate that though these models share similar overall average losses, their model sim-
ilarity varies across different tasks. This can be explained that there exist different minimums in
the whole model space, and our method VFair is able to find a relatively fairer one. The prediction
similarity also shows the upper bound of the value of fairness metrics under a harmless setting, like
MAD.

17


	Introduction
	Related Work
	VFair Methodology
	Problem Setup
	Fairness via Minimizing Variance of Losses
	Harmless Update
	Implementation

	Experiments
	Experimental Setup
	Performance Comparison
	A Closer Look at VFair

	Discussion
	Conclusion
	Instance losses for reducing group accuracy disparity
	More about Proposition 1
	Proof of Proposition 1
	Option of Loss for Fairness Objective

	Derivation of Eq. 5
	The Proposed Algorithm
	Details about model structure
	More Comparison Experiments
	More curves during training
	Model similarity with ERM.

