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ABSTRACT

In this paper, we introduce the Context-Aware Video Instance Segmentation
(CAVIS), a novel framework designed to enhance instance association by inte-
grating contextual information adjacent to each object. To efficiently extract and
leverage this information, we propose the Context-Aware Instance Tracker (CAIT),
which merges contextual data surrounding the instances with the core instance
features to improve tracking accuracy. Additionally, we introduce the Prototypical
Cross-frame Contrastive (PCC) loss, which ensures consistency in object-level
features across frames, thereby significantly enhancing instance matching accu-
racy. CAVIS demonstrates superior performance over state-of-the-art methods on
all benchmark datasets in video instance segmentation (VIS) and video panoptic
segmentation (VPS). Notably, our method excels on the OVIS dataset, which is
known for its particularly challenging videos. Source code: this anonymous URL

1 INTRODUCTION

Video Instance Segmentation (VIS) is a crucial task that involves segmenting and identifying individ-
ual objects within video sequences, applicable in a variety of fields including video understanding,
autonomous driving, and video editing (Yang et al., 2019). VIS has seen considerable advancements,
with developments in both online methods (Yang et al., 2019; Cao et al., 2020; Yang et al., 2021b;
Huang et al., 2022; Wu et al., 2022c; Ying et al., 2023; Kim et al., 2024), which process videos
frame-by-frame to adapt in real-time, and offline methods (Wang et al., 2021; Hwang et al., 2021;
Wu et al., 2022b; Cheng et al., 2021a; Heo et al., 2022), which analyze entire videos to understand
inter-frame dependencies thoroughly.

Recent advances have brought robust query-based segmentation architectures (Cheng et al., 2021b;
2022), designed to detect instance centers and cluster pixels into instance-specific groups within
images. These modern VIS approaches increasingly employ instance center associations across
frames to improve tracking accuracy. Techniques such as contrastive learning (Wu et al., 2022c;
Ying et al., 2023) and transformer-based trackers (Heo et al., 2023; Zhang et al., 2023a) leverage the
similarities between instance centers for consistent identification of objects across frames. However,
challenges persist in scenarios with significant occlusions or when multiple similar objects are present,
leading to potential tracking inaccuracies as shown in the top row of Fig. 1. While some strategies
(Heo et al., 2022; 2023) attempt to use instance features for tracking across segments or entire videos,
difficulties remain.

To address this issue, we propose Context-Aware Video Instance Segmentation (CAVIS), a novel
framework designed to improve object identification by incorporating contextual information sur-
rounding each instance into the tracking process. This approach draws from insights in neuroscience
and cognitive science (Bar, 2004; Oliva & Torralba, 2007), emphasizing the importance of contextual
cues in human perception for deciphering complex scenes and resolving visual ambiguities. An
example of the practical application of this principle is shown in Fig. 1, where recognizing a person
is riding a bicycle, rather than just identifying the bicycle, greatly enhances the accuracy of object
identification.

To achieve this, we design the Context-Aware Instance Tracker (CAIT), featuring advanced modules
for extracting and matching context-aware instance features. The context-aware instance feature
extractor combines the contextual information at the object’s boundary with the core features of
each instance. Then, we incorporate these context-aware instance features into a transformer-based
tracking architecture (Wu et al., 2022b; Heo et al., 2023; Zhang et al., 2023a), enhanced by our
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Figure 1: Importance of contextual information. Comparative results showing the state-of-the-art
model (Zhang et al., 2023b) (Top) and CAVIS (Bottom). The frame on the left precedes the right by
four frames, during which an occlusion takes place. The standard model, lacking contextual data, fails
to consistently track the same bicycle post-occlusion, while CAVIS effectively maintains accurate
instance tracking.

novel context-aware cross-attention mechanism. This adjustment allows for the precise utilization of
detailed contextual nuances within each scene.

Furthermore, we introduce the Prototypical Cross-frame Contrastive (PCC) loss to ensure temporal
consistency across frames on high-level feature maps. Tracking methods in video tasks have predomi-
nantly focused on object feature representation learning (Wu et al., 2022c; Fischer et al., 2023; Ying
et al., 2023; Li et al., 2023c), with recent studies exploring pixel-level representation learning on low-
level feature maps (Kim et al., 2025). Building on this context, our PCC loss emphasizes high-level
feature maps, inspired by the observation that object features and high-level feature maps are closely
linked, as their similarity drives mask predictions. By constructing instance-wise prototypes from
high-level feature maps, this loss maintains frame-to-frame consistency, enhancing training efficiency
and ensuring robust performance in dynamic environments.

Our extensive testing shows that CAVIS significantly outperforms existing state-of-the-art methods
across major video segmentation benchmarks, including YTVIS19 (Yang et al., 2019), YTVIS21
(Yang et al., 2021a), OVIS (Qi et al., 2022), and VIPSeg (Miao et al., 2021), particularly excelling on
OVIS dataset that include complex video sequences. Our contributions to the field are manifold and
can be summarized as follows:

1. We present Context-Aware Instance Tracker (CAIT), a novel framework designed to extract
context-aware instance features and utilize them for enhanced instance matching.

2. We propose a Prototypical Cross-frame Contrative (PCC) loss that enhances the learning of
instance matching by ensuring consistency in object-level features across frames.

3. Our model demonstrates robustness in challenging videos environments, establishing state-of-the-
art performance in Video Instance Segmentation and Video Panoptic Segmentation.

2 RELATED WORKS

Video Instance Segmentation. VIS methods learn to associate features frame-to-frame based on
instance segmentation architectures. The pioneering MaskTrack R-CNN (Yang et al., 2019) integrates
a tracking head into Mask R-CNN (He et al., 2017), utilizing heuristic cues for instance association
Following advancements include SipMask (Cao et al., 2020) and CrossVIS (Yang et al., 2021b), which
enhance temporal links through cross-frame learning. IDOL(Wu et al., 2022c) a contrastive learning
approach with query-based architectures (Zhu et al., 2020), boosting online method performance.
Conversely, offline approaches like VisTR (Wang et al., 2021) and Seqformer (Wu et al., 2022b) use
the entire video for mask trajectory predictions, with VisTR applying DETR (Carion et al., 2020) at
the clip level and Seqformer aggregating temporal information via inter-frame queries. Innovations
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like IFC (Hwang et al., 2021) and TeViT (Yang et al., 2022) improve efficiency by adjusting attention
mechanisms within transformer architectures.

Advancements in Query-based Networks. Strong query-based segmentation networks have become
prevalent in current VIS methods, with many relying on Mask2Former (Cheng et al., 2022) as their
foundation. MinVIS (Huang et al., 2022) achieves tracking through simple post-processing based on
cosine similarity between object features, without video learning. VITA (Heo et al., 2022) temporally
associates frame-level queries to find instance prototypes within a video. GenVIS (Heo et al., 2023)
adopts object association approach of VITA and designs a tracking network at the sub-clip level.
Inspired by SimCLR (Chen et al., 2020), CTVIS (Ying et al., 2023) utilizes contrastive learning
with a larger number of frames for comprehensive frame association. DVIS (Zhang et al., 2023a)
introduces a decoupled framework for VIS, dividing it into segmentation, tracking, and refinement
tasks, thereby enabling efficient and effective learning.

Object Tracking with Additional Cues. Tracking methodologies have been developed across various
domains, including video object segmentation (VOS) (Xu et al., 2018; Oh et al., 2019; Cheng et al.,
2021c), multiple object tracking (MOT) (Milan et al., 2016; Bergmann et al., 2019; Zhou et al., 2020;
Zhang et al., 2021), and VIS. Despite advancements, many challenging cases persist, prompting
research into object association with supplementary data. Early approaches leverage spatial-temporal
information such as geometric relation between adjacent frames (Tang et al., 2017) and aggregated
object features of previous frames (Xu et al., 2019). BeyondPixel (Sharma et al., 2018) improves
inter-frame object matching by proposing a new cost that captures 3D pose and shape based on
monocular geometry. BATMAN (Yu et al., 2022) combines optical flow and object query features to
encode motion and appearance information into bilateral space. CAROQ (Choudhuri et al., 2023)
employs a context feature defined as a memory bank of multi-level image features extracted by a
pixel decoder. However, such a full-context-based approach can lead to increased complexity and
memory limitations. In contrast, our method takes a memory-efficient approach by focusing on the
surrounding features of each object during tracking, enabling effective object matching.

3 PRELIMINARY

This section offers a concise introduction to the fundamentals of a query-based instance segmentation
pipeline and outlines a VIS approach that incorporates contrastive learning (Wu et al., 2022c; Li et al.,
2023b; Ying et al., 2023; Li et al., 2023c).

3.1 QUERY-BASED INSTANCE SEGMENTATION

Modern VIS methods adopt a query-based instance segmentation pipeline (Cheng et al., 2021b; 2022),
including three main components: a backbone encoder, a pixel decoder, and a transformer decoder.
The backbone encoder and pixel decoder are responsible for extracting multi-scale feature maps from
the input image. The transformer decoder employs object queries—sequences of latent vectors—as
initial guesses for object centers and utilizes these features to generate object-level features. These
queries undergo refinement through multiple transformer blocks via a cross-attention mechanism
between the object queries and the feature maps. The refined instance features are then used for
classification and segmentation tasks through respective prediction heads. Typically, the number of
object queries, N , exceeds the actual number of objects, NGT , present in the image. Traditionally, the
process involves finding a permutation of N elements, σ ∈ SN , that optimally assigns the prediction
set {ŷi}Ni=1 to maximize total similarity to the ground truth (GT) set {yi}NGT

i=1 . This is achieved by
minimizing a pair-wise matching cost LMatch, as defined in (Cheng et al., 2021a):

σ̂ = argmin
σ∈SN

NGT∑
k=1

LMatch
(
yk, ŷσ(k)

)
. (1)

The network is trained with an objective function, LInst, which consists of a categorical loss (LCls), a
binary cross-entropy loss for masks (LBce), and a dice loss (LDice) with the weights λCls, λBce, and
λDice balancing the contributions of each loss component as follows:

LInst = λClsLCls + λBceLBce + λDiceLDice. (2)

3
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Figure 2: Overview of CAVIS. (a) The extraction of context-aware instance features from the
output of an instance segmentation network. (b) CAVIS pipeline through context-aware instance
matching. This includes the organization of the surrounding instance features Q̃t, facilitated by
Hungarian matching between the ordered instance features Q̂∗

t and unordered instance features Q̂t.

The loss is used to train VIS framework with the frame-wise matching relation σ̂t as follows:

LVIS =

T∑
t=1

NGT∑
n=1

LInst

(
ytn, ŷ

t
σ̂t(n)

)
. (3)

3.2 CONTRASTIVE LEARNING FOR VIS

In query-based architectures, the order of instance features effectively serves as the identity of each
object. By aligning the sequence of instance features across frames, we can facilitate object tracking.
Since instance features represent specific objects, inter-frame feature association is used for this
alignment. To enhance the robustness of instance features for matching objects between frames, the
following contrastive loss is integrated within the VIS framework (Wu et al., 2022c):

LEmb(vt) = − log

∑
k+∈K+

vt
exp (vt · k+)∑

k+∈K+
vt
exp (vt · k+) +

∑
k−∈K−

vt
exp (vt · k−)

,

= log

1 + ∑
k+∈K+

vt

∑
k−∈K−

vt

exp
(
vt · k− − vt · k+

) , ∀t ∈ {1, ..., T},
(4)

where K+
vt

represents the sets of positive embeddings corresponding to the same object as vt from
frames other than the t-th frame, while K−

vt includes negative embeddings featuring characteristics of
objects different from that of vt.

4 METHOD

This section describes our Context-Aware Video Instance Segmentation (CAVIS) whose overall
pipeline is illustrated in Fig. 2. Our CAVIS consists of two key components: Context-Aware Instance
Tracker (CAIT) and Prototypical Cross-frame Contrastive (PCC) loss, which are detailed in Sec. 4.1
and Sec. 4.2, respectively. We describe the training losses for each network in Sec. 4.3. We provide a
notation table in Tab. 1 for better readability.
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Symbol Description Symbol Description

Q̂ : instance features M : mask predictions
Q̃ : instance surrounding features Ḿ : boundary scores processed from M
Q : context-aware instance features F : the last feature maps from pixel decoder
Q∗ : aligned context-aware instance features F̄ : feature maps processed by average filter

Table 1: Notations used in our method.

4.1 CONTEXT-AWARE INSTANCE TRACKER

4.1.1 CONTEXT-AWARE FEATURE EXTRACTION

Following the method outlined in previous VIS studies (Huang et al., 2022; Heo et al., 2022;
2023; Ying et al., 2023; Zhang et al., 2023a), we employ Mask2Former (Cheng et al., 2022) as our
segmentation network S. This framework ingests a series of input frames {It}Tt=1, with T denoting
the total number of frames. It extracts feature maps F , identifies instance features Q̂, and computes
both classification scores O and generates segmentation masks M as follows:{

Ft, Q̂t, Ot,Mt

}T

t=1
= S

(
{It}Tt=1

)
,

Ft ∈ RH×W×C , Q̂t ∈ RN×C , Ot ∈ RN×K , Mt ∈ RN×H×W ,

(5)

where H , W , and C denote the height, width, and channel dimensions of the feature maps, respectively.
N indicates the maximum number of detactable objects in a single frame, and K signifies the number
of object classes. We then extract the instance surrounding features Q̃t ∈ RN×C capturing data
around the object’s boundaries essential for detailed context analysis as follows:

Q̃n
t =

∑H
h=1

∑W
w=1 F̄

{h,w}
t ∗ 1

(
Ḿ

{n,h,w}
t > 0

)
∑H

h=1

∑W
w=1 1

(
Ḿ

{n,h,w}
t > 0

) , ∀n = {1, ..., N},

where F̄ = Avg(F ), Ḿ = Lap(M),

(6)

where Avg(·) denotes an average filtering process over spatial dimensions, Lap(·) signifies the
application of a Laplacian filter, and 1(·) is the indicator function that tests for the presence of the
object within the filtered mask. We employ the average filter specifically configured with a 9 × 9
kernel size.

Finally, we combine the core and surrounding features to further enhance instance representations. The
context-aware instance feature Qn

t ∈ RC is generated by concatenating the core instance feature Q̂n
t

and the instance surrounding feature Q̃n
t along the channel dimension, and subsequently processing

this combined feature through a multi-layer perceptron (MLP) as follows:

Qn
t = MLP

(
Concat

(
Q̂n

t , Q̃
n
t

))
, ∀n = {1, ..., N}. (7)

The MLP is structured with three linear layers, each followed by a ReLU activation function. To
promote the learning of discriminative context-aware instance features, we implement a contrastive
loss specifically for these features. The context-aware contrastive loss, denoted as LCTX, leverages
the established contrastive loss framework LEmb detailed in Eq. (4) as follows:

LCTX =

T∑
t=1

NGT∑
n=1

LEmb

(
Q

σ̂t(n)
t

)
, (8)

where σ̂t is a frame-wise matching relation as described in Eq. (1). This design enhances our ability
to identify and track the same instances across the entire video. By not solely relying on instance
centers, and instead utilizing context-aware instance embeddings, we can more accurately recognize
instances throughout the video sequence.

5
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4.1.2 CONTEXT-AWARE INSTANCE MATCHING

We introduce our context-aware tracking network T , which employs a transformer-based tracking
network (Heo et al., 2023; Zhang et al., 2023a) to learn associations across adjacent frames. The
network comprises six transformer blocks, each featuring cross-attention, self-attention, and feed-
forward layers. The conventional cross-attention mechanism, denoted as Attn(Q,K, V ), traditionally
aligns the current unordered instance features, Q̂t, (serving as both the key and value), with the
ordered instance features from the previous frame, Q̂∗

t−1, (used as the query). To enhance accuracy,
our model employs context-aware instance features, Q∗

t−1 and Qt, as the query and key, respectively
while we still use the instance features Q̂t as value. This modification leads to a context-aware
cross-attention mechanism, formulated as:

Attn(Q∗
t−1, Qt, Q̂t) = softmax

(
Q∗

t−1 · (Qt)
T

√
C

)
Q̂t, (9)

where C is the channel dimensions of the feature maps. The aligned context-aware instance features
Q∗

t is built by concatenating the aligned instance features Q̂∗
t and the aligned instance surrounding

features Q̃∗
t same as in Eq. (7). We obtain the aligned instance surrounding features Q̃∗

t by using
Hungarian matching algorithm (Kuhn, 1955) on cosine similarity between Q̂t and Q̂∗

t as follows:

Q̃∗σH (n)

t = Q̃n
t , ∀n = {1, ..., N}, where σH = Hungarian(Q̂∗

t , Q̂t), σH ∈ RN . (10)

This process is similarly applied to the aligned context-aware features Q∗
t−1 for the previous frame.

4.2 PROTOTYPICAL CROSS-FRAME CONTRASTIVE LOSS

Current VIS methodologies emphasize the importance of object feature representation learning,
especially in tracking tasks where matching object features across frames is crucial. In a query-based
segmenter, object features Q̂n

t ∈ RC are semantically correlated with each pixel embedding of the
feature map F

{h,w}
t ∈ RC from the pixel decoder, as they are used for mask prediction. This ensures

consistent feature representation within object-containing regions and introduces an intra-frame
constraint that reflects similarity within the feature map. By examining the inter-frame relationships
of pixel embeddings, our method improves object association, essential for contrastive learning
methods that strive to differentiate between similar and dissimilar objects across frames.

Given the memory-intensive nature of maintaining individual pixel consistency, we introduce Proto-
typical Cross-frame Contrastive (PCC) loss. This loss LPCC maintains frame-to-frame consistency of
pixel embeddings for each instance feature by constructing instance-wise prototypes from predicted
masks, defined as follows:

LPCC =

T∑
t=1

NGT∑
n=1

LEmb

(
η
σ̂t(n)
t

)
, ηnt =

∑H
h=1

∑W
w=1 F

{h,w}
t ∗ 1

(
M

{h,w}
t == 1

)
∑H

h=1

∑W
w=1 1

(
M

{h,w}
t == 1

) . (11)

4.3 TRAINING LOSS

To train the segmentation network S, we implement an objective function that incorporates the
standard video instance segmentation loss LVIS in Eq. (3), context-aware constrative loss LCTX in
Eq. (8) and Prototypical Cross-frame Contrastive (PCC) loss in Eq. (11) as follows:

LS = LVIS + λCTXLCTX + λPCCLPCC, (12)

where λCTX and λPCC are the weights assigned to balance these losses.

To train the tracking network T , we calculate the matching cost only for objects that appear for the
first time to ensure consistent video-level matching pairs, as implemented in prior work (Zhang et al.,
2023a). The objective function LT incorporating the matching relation σ̂con is defined as follows:

LT =

T∑
t=1

NGT∑
n=1

LInst

(
ytn, ŷ

t
σ̂con(n)

)
, σ̂con = argmin

σ∈SN

NGT∑
k=1

LMatch

(
y
f(k)
k , ŷ

f(k)
σ(k)

)
, (13)

where f(k) denotes the frame in which the k-th instance first appears.

6
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Table 2: Comparisons on the validation sets of YouTube-VIS 2019, 2021, and OVIS datasets. The best
and second-best scores are highlighted in red and blue, respectively. † denotes the model trained with
the temporal refiner (Zhang et al., 2023a). Rows in cyan indicate comparisons with a top-performing
model.

Methods OVIS YTVIS19 YTVIS21
AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

R
es

N
et

-5
0

MaskTrack R-CNN (Yang et al., 2019) 10.8 25.3 8.5 7.9 14.9 30.3 51.1 32.6 31.0 35.5 28.6 48.9 29.6 26.5 33.8
SipMask (Cao et al., 2020) 10.2 24.7 7.8 7.9 15.8 33.7 54.1 35.8 35.4 40.1 31.7 52.5 34.0 30.8 37.8
IFC (Hwang et al., 2021) 13.1 27.8 11.6 9.4 23.9 41.2 65.1 44.6 42.3 49.6 35.2 55.9 37.7 32.6 42.9

CrossVIS (Yang et al., 2021b) 14.9 32.7 12.1 10.3 19.8 36.3 56.8 38.9 35.6 40.7 34.2 54.4 37.9 30.4 38.2
EfficientVIS (Wu et al., 2022a) - - - - - 37.9 59.7 43.0 40.3 46.6 34.0 57.5 37.3 33.8 42.5
SeqFormer (Wu et al., 2022b) 15.1 31.9 13.8 10.4 27.1 47.4 69.8 51.8 45.5 54.8 40.5 62.4 43.7 36.1 48.1
VISOLO (Han et al., 2022) 15.3 31.0 13.8 11.1 21.7 38.6 56.3 43.7 35.7 42.5 36.9 54.7 40.2 30.6 40.9

Mask2Former-VIS (Cheng et al., 2021a) 17.3 37.3 15.1 10.5 23.5 46.4 68.0 50.0 - - 40.6 60.9 41.8 - -
VITA (Heo et al., 2022) 19.6 41.2 17.4 11.7 26.0 49.8 72.6 54.5 49.4 61.0 45.7 67.4 49.5 40.9 53.6

MinVIS (Huang et al., 2022) 25.0 45.5 24.0 13.9 29.7 47.4 69.0 52.1 45.7 55.7 44.2 66.0 48.1 39.2 51.7
CAROQ (Choudhuri et al., 2023) 25.8 47.9 25.4 14.2 33.9 46.7 70.4 50.9 45.7 55.9 43.3 64.9 47.1 39.3 52.7

IDOL (Wu et al., 2022c) 28.2 51.0 28.0 14.5 38.6 49.5 74.0 52.9 47.7 58.7 43.9 68.0 49.6 38.0 50.9
DVIS (Zhang et al., 2023a) 30.2 55.0 30.5 14.5 37.3 51.2 73.8 57.1 47.2 59.3 46.4 68.4 49.6 39.7 53.5
TCOVIS (Li et al., 2023a) 35.3 60.7 36.6 15.7 39.5 52.3 73.5 57.6 49.8 60.2 49.5 71.2 53.8 41.3 55.9
CTVIS (Ying et al., 2023) 35.5 60.8 34.9 16.1 41.9 55.1 78.2 59.1 51.9 63.2 50.1 73.7 54.7 41.8 59.5
GenVIS (Heo et al., 2023) 35.8 60.8 36.2 16.3 39.6 50.0 71.5 54.6 49.5 59.7 47.1 67.5 51.5 41.6 54.7
VISAGE (Kim et al., 2025) 36.2 60.3 35.3 16.1 40.3 55.1 78.1 60.6 51.0 62.3 51.6 73.8 56.1 43.6 59.3

Ours 37.6 63.4 38.2 16.5 43.5 55.7 78.3 61.7 51.5 63.3 50.5 74.1 54.9 42.6 58.5

Sw
in

-L

SeqFormer (Wu et al., 2022b) - - - - - 59.3 82.1 66.4 51.7 64.4 51.8 74.6 58.2 42.8 58.1
Mask2Former-VIS (Cheng et al., 2021a) 25.8 46.5 24.4 13.7 32.2 60.4 84.4 67.0 - - 52.6 76.4 57.2 - -

VITA (Heo et al., 2022) 27.7 51.9 24.9 14.9 33.0 63.0 86.9 67.9 56.3 68.1 57.5 80.6 61.0 47.7 62.6
CAROQ (Choudhuri et al., 2023) 38.2 60.7 39.5 17.7 44.1 61.4 82.8 68.6 55.2 68.1 54.5 75.4 60.5 45.5 61.4

MinVIS (Huang et al., 2022) 39.4 61.5 41.3 18.1 43.3 61.6 83.3 68.6 54.8 66.6 55.3 76.6 62.0 45.9 60.8
IDOL (Wu et al., 2022c) 40.0 63.1 40.5 17.6 46.4 64.3 87.5 71.0 55.6 69.1 56.1 80.8 63.5 45.0 60.1

GenVIS (Heo et al., 2023) 45.2 69.1 48.4 19.1 48.6 64.0 84.9 68.3 56.1 69.4 59.6 80.9 65.8 48.7 65.0
DVIS (Zhang et al., 2023a) 45.9 71.1 48.3 18.5 51.5 63.9 87.2 70.4 56.2 69.0 58.7 80.4 66.6 47.5 64.6
TCOVIS (Li et al., 2023a) 46.7 70.9 49.5 19.1 50.8 64.1 86.6 69.5 55.8 69.0 61.3 82.9 68.0 48.6 65.1
CTVIS (Ying et al., 2023) 46.9 71.5 47.5 19.1 52.1 65.6 87.7 72.2 56.5 70.4 61.2 84.0 68.8 48.0 65.8

Ours 48.6 74.0 52.5 19.5 53.3 66.0 89.5 73.3 56.8 71.4 61.1 84.1 69.2 48.2 66.3

V
iT

-L

MinVIS (Huang et al., 2022) 42.9 65.7 45.4 19.8 46.5 65.6 85.4 72.7 57.5 70.6 59.2 79.9 66.7 47.8 64.1
DVIS++ (Zhang et al., 2023b) 49.6 72.5 55.0 20.8 54.6 67.7 88.8 75.3 57.9 73.7 62.3 82.7 70.2 49.5 68.0

Ours 53.2 75.9 59.1 20.9 58.2 68.9 89.3 76.2 58.3 73.6 64.6 85.6 72.5 49.5 69.3
DVIS++† (Zhang et al., 2023b) 53.4 78.9 58.5 21.1 58.7 68.3 90.3 76.1 57.8 73.4 63.9 86.7 71.5 48.8 69.5

Ours† 57.1 82.6 63.5 21.2 61.8 69.4 90.9 77.2 58.3 74.7 65.3 87.3 73.2 49.7 70.3

5 EXPERIMENTS

We evaluate CAVIS on two major tasks: video instance segmentation (VIS) and video panoptic
segmentation (VPS) on four benchmark datasets recognized for their challenges and prevalence in the
research community: YouTubeVIS-2019 (Yang et al., 2019), YouTubeVIS-21 (Yang et al., 2021a),
OVIS (Qi et al., 2022), and VIPSeg (Miao et al., 2021). For VIS, performance metrics include average
precision (AP) and average recall (AR) as established in previous studies (Yang et al., 2019). In the
realm of VPS (Kim et al., 2020), we further examine our model’s capabilities using the Segmentation
and Tracking Quality (STQ) metric, and the Video Panoptic Quality (VPQ) metric.

5.1 IMPLEMENTATION DETAILS

We employ Mask2Former (Cheng et al., 2022) as our segmentation network, utilizing three distinct
backbone encoders: ResNet-50 (He et al., 2016), Swin-L (Liu et al., 2021), and ViT-L (Dosovitskiy
et al., 2021). The ResNet-50 and Swin-L backbones are initialized with parameters pre-trained on
the COCO dataset (Lin et al., 2014), while the ViT-L backbone uses initialization parameters from
DINOv2 (Oquab et al., 2023). Additionally, for the ViT-L backbone, we employ a memory-efficient
version of VIT-Adapter (Chen et al., 2022), aligning with recent advancements in network efficiency
(Zhang et al., 2023b). Further details are described in Sec. A.2.2.

5.2 COMPARISON TO STATE-OF-THE-ART METHODS

Video Instance Segmentation (VIS). We benchmark CAVIS against leading methods on three
established VIS datasets, as detailed in Tab. 2. CAVIS sets a new state-of-the-art, outperforming
the previous top model, DVIS++, by margins of 1.1, 1.4, and 3.7 average precision (AP) points on
YouTube-VIS2019, YouTube-VIS2021, and OVIS, respectively. Particularly noteworthy is CAVIS’s
performance on the OVIS dataset, where it significantly outstrips all competitors. This dataset is
renowned for its diversity and the complexity of its video sequences. Fig. 3 illustrates how our model
proficiently tracks objects even in scenarios marked by severe occlusion. This capability underscores
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Table 3: Comparison on VIPSeg validation sets. ‘Th’ and ‘St’ denote ‘things’ and ‘stuff’ classes. †
denotes the model trained with the temporal refiner (Zhang et al., 2023a).

Method ResNet-50 ViT-L
VPQ VPQTh VPQSt STQ VPQ VPQTh VPQSt STQ

VPSNet-SiamTrack(Woo et al., 2021) 17.2 17.3 17.3 21.1 - - - -
VIP-Deeplab(Qiao et al., 2021) 16.0 12.3 18.2 22.0 - - - -
Clip-PanoFCN(Miao et al., 2022) 22.9 25.0 20.8 31.5 - - - -
Video K-Net (Li et al., 2022) 26.1 - - 31.5 - - - -
TarVIS(Athar et al., 2023) 33.5 39.2 28.5 43.1 - - - -
Tube-Link(Li et al., 2023c) 39.2 - - 39.5 - - - -
Video-kMax (Shin et al., 2024) 38.2 - - 39.9 - - - -
DVIS (Zhang et al., 2023a) 39.4 38.6 40.1 36.3 - - - -
DVIS++ (Zhang et al., 2023b) 41.9 41.0 42.7 38.5 56.0 58.0 54.3 49.8
Ours 42.4 43.1 41.8 39.7 56.9 60.1 54.2 51.0
DVIS † (Zhang et al., 2023a) 43.2 43.6 42.8 42.8 - - - -
DVIS++ † (Zhang et al., 2023b) 44.2 44.5 43.9 43.6 58.0 61.2 55.2 56.0
Ours † 45.3 47.5 43.4 45.3 58.5 63.1 54.5 56.1

Figure 3: Qualitative comparisons of CAVIS (ours) against state-of-the-art methods: CTVIS (Ying
et al., 2023) and DVIS++ (Zhang et al., 2023b) on the OVIS dataset.

the strength of our context-aware video learning approach, which effectively leverages information
from surrounding objects for accurate instance matching, even under severe occlusion.

Video Panoptic Segmentation (VPS). In the realm of VPS, CAVIS also achieves the best perfor-
mance on the VIPSeg dataset as shown in Tab. 3. For the ResNet-50 backbone, it achieves 45.3
in both Video Panoptic Quality (VPQ) and Segmentation and Tracking Quality (STQ). For the
ViT-L backbone, the figures reach 58.5 VPQ and 56.1 STQ, demonstrating substantial advancements.
Specifically, our model shows significant gains in VPQTh—which assesses performance on ‘thing’
classes—with increases of 3.0 and 1.9 for ResNet-50 and ViT-L backbones, respectively, over the
previous best models. These improvements highlight the versatility of our context-aware object
matching strategy across various video segmentation tasks.

5.3 ABLATION STUDY

We conduct ablation studies on the OVIS dataset (Qi et al., 2022) with the ResNet-50 (He et al., 2016)
backbone, detailed in Tab. 4. We use the same experimental setting as those in the main experiments.
To evaluate the segmentation network across these setups in Tab. 4-(a-c), we employ the minimal
post-processing method proposed by MinVIS (Huang et al., 2022).
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Table 4: Ablation studies on each component of CAVIS.

(a) CAIT, PCC loss

Segmenter (S) Tracker (T )
LCTX LPCC AP Context-aware matching AP

(i) 26.4 33.2
(ii) ✓ 28.1 34.2
(iii) ✓ 29.7 34.8
(iv) ✓ 29.7 ✓ 37.2
(v) ✓ ✓ 30.0 35.3
(vi) ✓ ✓ 30.0 ✓ 37.6

(b) Context filter size, the number of frames

Metric: AP # of frames
2 3 4

Fi
lte

rs
iz

e 3× 3 27.3 27.3 27.2
5× 5 28.3 28.7 28.1
7× 7 28.7 29.3 28.1
9× 9 29.5 30.0 28.7

11× 11 28.7 29.1 28.0

(c) Context filter type in S

Metric Context filter type in S
Average Max Median Learnable

AP 30.0 29.4 29.6 28.7

(d) Context alignment in T

Context alignment in T
✗ ✓

33.2 37.6

(e) Value for CAIT

Value for CAIT
Q Q̂

36.8 37.6

Ablation study on technical contributions of CAVIS. We conduct a series of experiments in
Tab. 4-(a) to demonstrate the effectiveness of our key components: the context-aware instance tracker
(CAIT) and prototypical cross-frame contrastive (PCC) loss.

Tab. 4-(a) includes six experiments (i- vi), where experiment (i) present our baseline performance of
retraining MinVIS (Huang et al., 2022) and DVIS (Zhang et al., 2023a) to match our settings. For
segmentation netowrk (S), experiments (iii- iv) show that implementing contrastive learning with
context-aware instance features results in a notable +3.3 AP improvement over the baseline MinVIS.
Further performance boosts are noted when PCC is introduced in experiments (v- vi), which records
the highest performance of 30.0 AP by utilizing both LCTX and LPCC. This highlights the synergistic
effect of integrating context-aware tracking with cross-frame contrastive loss, significantly enhancing
the system’s accuracy and effectiveness.

We also evaluate the tracking network (T ) by initially using each fixed pre-trained segmentation
network listed in Tab. 4-(i- vi). Comparing setups (v) and (vi), our newly designed context-aware
cross-attention improves performance by +2.3 AP over the standard cross-attention, achieving 37.6
AP. These findings validate the efficacy of the context-aware feature, confirming its significant
advantages for instance matching in complex video scenarios.

Context filter. Given that images feature objects at various scales, identifying the optimal receptive
field size that functions effectively across different scenarios is essential. Our experiments, detailed in
Tab. 4-(b), explore the effects of varying context filter sizes from 3 to 11. The optimal performance is
achieved with a filter size of 9; larger sizes led to decreased performance, suggesting that excessively
large receptive fields may detract from effective object matching by homogenizing the context features
across all objects. Extended analysis on this aspect is provided in Sec. A.3. Further investigation
into different types of context filters shown in Tab. 4-(c) reveals that the average filter, which evenly
reflects surrounding information, offers a well-defined benefit. In contrast, the learnable filter, which
lacks specific directives on characterizing surrounding information, performs similarly to scenarios
without enhanced context features, as demonstrated in Tab. 4-(a)-(ii). This indicates the importance
of a clearly defined context filter in improving the segmentation and tracking accuracy.

The number of adjacent frames used during training. Our fundamental assumption is that the
surrounding information between adjacent frames remains relatively stable, thereby aiding object
matching. Tab. 4-(b) details the performance comparison based on the number of adjacent frames used
during training. Utilizing three frames results in the highest performance, achieving 30.0 AP. Increas-
ing the number of frames decreases performance, likely due to larger gaps between sampled frames
which lead to more significant changes in the surrounding information, thus complicating object
matching. Consequently, we have found that using three frames optimizes training effectiveness.

Context feature alignment. The tracking network aligns instance features and produces outputs
in varying orders, necessitating the precise alignment of context features for accurate matching

9
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in subsequent frames. Misalignment of these features can lead to incorrect matching of context
information for each object, significantly impacting performance. As demonstrated in Tab. 4-(d),
misalignment results in a notable performance drop of 4.4 AP. This underscores the critical need for
accurate alignment of context information to ensure robust object tracking performance.

Value for context-aware instance matching. Context-aware features (Q), which include information
on instance features, could be used as the value in context-aware matching. However, during segmenter
training, the instance features (Q̂) specifically drive the segmentation prediction. Therefore, it is more
effective to use instance features as the value for matching, leading to better performance, as shown
in Tab. 4-(e).

6 COMPUTATIONAL COST

Method Time (ms) YTVIS19 (AP)
GenVIS 80.1 50.0
DVIS 78.9 51.2
Ours 85.6 55.7

Table 5: Inference speed.

We compare the inference speed of our approach against re-
cent state-of-the-art methods, GenVIS (Heo et al., 2023) and
DVIS (Zhang et al., 2023a), to evaluate the computational cost.
As shown in Tab. 5, the inference speeds were measured under
identical conditions on a 2080ti GPU. Our method requires an
additional time cost of 5.5ms and 6.7ms compared to GenVIS
and DVIS, respectively. However, this cost is justified by the performance gains of +5.7AP and
+4.5AP, demonstrating a reasonable trade-off between increased computation and improved accuracy.

7 CONCLUSION

In this paper, we introduce Context-Aware Video Instance Segmentation (CAVIS), a pioneering
framework designed to enhance the accuracy and reliability of object tracking in complex video
scenarios by integrating contextual information surrounding each instance. The introduction of the
Context-Aware Instance Tracker (CAIT) and the innovative Prototypical Cross-frame Contrastive
(PCC) loss are central to CAVIS’s effectiveness. CAIT leverages the surrounding context to enrich the
core features of each instance, providing a more holistic view that significantly improves instance de-
tection and segmentation under challenging conditions. Simultaneously, PCC loss ensures consistency
of these enriched features across frames, reinforcing the temporal linkage between instances and
enhancing the overall tracking robustness. Our experiments across multiple challenging benchmarks
demonstrate that CAVIS significantly outperforms existing state-of-the-art methods, particularly
excelling in scenarios that demand robust tracking capabilities. The integration of CAIT and PCC
not only addresses the primary challenges of occlusions and motion but also effectively manages the
presence of visually similar objects that can often mislead traditional VIS approaches.
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A APPENDIX

A.1 LIMITATION

Video Instance Segmentation (VIS) is an advanced technology designed to perform segmentation and
tracking concurrently, capturing the trajectories of individual instances within a video. While this
technology has significant benefits, it also poses potential risks if misused, particularly in surveillance
applications. Such misuse could lead to severe privacy infringements. It is important to note, however,
that the dataset used in this study is a standard one within the VIS community and does not include
any sensitive or personal information. This precaution helps mitigate the risk of our trained model
being used for harmful purposes. Nonetheless, the potential for negative impacts should not be
underestimated, and ethical considerations must guide the deployment of VIS technologies.

Potential error in prediction. Our model is designed to improve tracking accuracy by achieving pre-
cise object matching across frames rather than focusing on segmentation performance. Consequently,
if the pretrained segmentation network produces inaccurate segmentation results, performance may
decrease. However, even in scenarios with imprecise mask predictions, our proposed context-aware
modeling can robustly track objects, as demonstrated in Fig. 4.

Figure 4: Potential error due to inaccurate mask predictions from the segmentation network.

A.2 EXPERIMENTAL DETAILS

A.2.1 DATASETS

Youtube-VIS 2019 and 2021 YouTube-VIS was introduced by Yang et al. in their pioneering study on
the VIS task (Yang et al., 2019). This dataset comprises high-resolution YouTube videos, categorized
into 40 distinct classes. The 2019 version of the dataset includes 2,238 videos for training, 302
for validation, and 343 for testing (Yang et al., 2019). The 2021 update expands these numbers to
2,985, 421, and 453 videos for training, validation, and testing, respectively (Yang et al., 2021a).
YouTube-VIS is utilized across various pixel-level video understanding tasks, including VIS, video
semantic segmentation, and video object detection.

OVIS The OVIS dataset (Qi et al., 2022) presents a significant challenge with its frequent occlusions
and a realistic representation of common everyday objects. This makes it highly relevant for real-world
applications. OVIS videos are longer and contain more objects compared to those in YouTube-VIS,
which increases the complexity of segmentation and tracking tasks. The dataset is organized into
training, validation, and test sets, with 607, 140, and 154 videos, respectively.

VIPSeg VIPSeg (Miao et al., 2022) is a comprehensive Video Panoptic Segmentation dataset that
includes 3,536 videos and 84,750 frames, annotated with pixel-level panoptic labels. Unlike earlier
VPS datasets that primarily focus on street views, VIPSeg offers a broader range of challenges and
practical scenarios. It features 232 diverse settings and is annotated with 58 ‘thing’ classes and 66
‘stuff’ classes, making it one of the most diverse and challenging datasets available in the field.
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Figure 5: Visualization of object embeddings. Each point on the t-SNE (Van der Maaten & Hinton,
2008) plot represents the learned object embeddings. The three different colors of points indicate the
embeddings of three different elephants throughout the entire video.
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Figure 6: Comparison of VIS results for the video in Fig. 5. These results show that our model
robustly tracks objects even in scenes with severe occlusions.
A.2.2 IMPLEMENTATION

Our segmentation approach employs the Mask2Former architecture (Cheng et al., 2022), utilizing
the officially recommended hyperparameters. For all experimental settings, we follow established
practices by incorporating COCO joint training, as adopted in previous methodologies (Wu et al.,
2022b; Heo et al., 2022; 2023; Ying et al., 2023; Zhang et al., 2023a). The tracking network consists
of six transformer blocks. Within the tracking network’s transformer blocks, we innovate by replacing
the standard cross-attention layer with the referring cross-attention layer, as introduced in (Zhang
et al., 2023a). Additionally, we conduct experiments with the temporal refiner (Zhang et al., 2023a)
over 160k iterations, specifically analyzing sequences of 15 consecutive frames to enhance tracking
accuracy.

For efficient training, we adopt a staged approach where the segmentation network is trained first,
followed by the tracking network with all other parameters frozen, promoting stability and efficiency
in learning, as suggested by previous studies (Zhang et al., 2023a; Li et al., 2023a). Optimization is
carried out using the AdamW optimizer (Loshchilov & Hutter, 2017), with a starting learning rate
of 1e-4 and a weight decay of 5e-2. The training process spans 40k iterations for the segmentation
network and 160k iterations for the tracking network, with learning rate reductions scheduled at
28k and 112k iterations, respectively. During training, we sample three frames for the segmentation
network and five frames for the tracking network from each of eight batched videos. These frames
undergo resizing to ensure the shorter side is between 320 and 640 pixels, while the longer side does
not exceed 768 pixels. The loss function weights are set to λcls = 2.0, λbce = 5.0, λdice = 5.0, λctx =
2.0, and λpro = 2.0 to balance the contributions of each component during training. For inference, the
shorter side of input frames is scaled down to 448 pixels to maintain a consistent aspect ratio across
inputs. All experiments are conducted using 8 RTX2080Ti GPUs for the ResNet-50 backbone and 8
RTX3090 GPUs for the Swin-L and ViT-L backbones, ensuring adequate computational resources
are available for the demands of each model configuration.
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Figure 7: VIS results with various filter sizes.

A.3 FURTHER STUDIES

Analysis on object embeddings. To demonstrate the effectiveness of our context-aware instance
learning, we compare the distribution of object embeddings from three different models, as shown
in Fig. 5. MinVIS does not engage in video learning, resulting in less effective distinction between
objects. Compared to MinVIS, CTVIS shows a clearer object distinction by employing contrastive
learning among object embeddings, but it still exhibits some overlaps in object clusters. In contrast,
CAVIS forms much more distinct object clusters, highlighting the advantage of leveraging contextual
information for object identification. This trends are reflected in the VIS results, as shown in Fig. 6.

Method CL with Q̂
✗ ✓

Baseline 26.4 28.2
with Appearance loss 26.9 (+0.5) 28.3 (+0.1)

with PCC loss 28.1 (+1.7) 28.9 (+0.7)

Table 6: Appearance loss vs PCC loss.

Comparison of PCC loss with VISAGE. VISAGE em-
ploys contrastive loss on appearance features extracted from
feature maps of the backbone encoder, which are also uti-
lized for object matching during inference. This approach
specifically aims to achieve more accurate object match-
ing using appearance features. In contrast, our proposed
PCC loss operates on feature maps extracted from the pixel
decoder, targeting representation learning at the semantic level. To investigate whether VISAGE’s
appearance-level contrastive learning also contributes to representation learning, we conducted addi-
tional experiments. Using the same baseline architecture and a basic loss function, we tested PCC loss
and VISAGE’s appearance loss separately, as shown in Tab. 6. The results indicate that our method
achieves a +1.7 AP gain over the baseline even without contrastive learning between object features.
When combined with contrastive learning, it demonstrates further synergy, achieving 28.9 AP. In
contrast, the appearance-level loss results in marginal performance improvements, with gains of only
+0.5 AP and +0.1 AP in both cases. These results highlight that the proposed PCC loss facilitates the
learning of object feature representations, distinguishing it from existing losses.

Effective filter size. Videos often contain objects of varying sizes, and for smaller objects, using an
excessively large context area can introduce noise, leading to inaccurate matching as shown in Fig. 7.
To better understand this effect, we analyze the impact of different filter sizes to identify the optimal
value. Our findings indicate that the overall trend remains consistent, regardless of variations in the
number of frames used during training, as shown in Tab. 4-(b).

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Ablation studies on each component of CAVIS. (a-d) present the results from the segmentation
network, while the others present those from the tracking network. “CL” denotes contrastive learning.

(a) Context-aware feature learning, PCC loss

CL with Q̂ LCTX LPCC AP
(i) 26.4
(ii) ✓ 27.9
(iii) ✓ 29.1
(iv) ✓ 27.6
(v) ✓ ✓ 28.3
(vi) ✓ ✓ 29.5

(b) Context filter size

Filter size AP

3 27.3
5 28.3
7 28.7
9 29.5

11 28.9

(c) Sampled frames

# of frames AP

2 29.5
3 30.0
4 28.7

(d) Context filter type

Metric Context filter type
Average Learnable

AP 29.5 28.4

(e) Cross-Attention for T

Metric Cross-Attention
Q̂ Q

AP 34.4 36.1

(f) Context alignment

Metric Context alignmnet
✗ ✓

AP 32.8 36.1

Figure 8: VIS results from our model on a video containing a fast-moving object.

Robustness of our model. Our method does not rely solely on context. By incorporating both context
and instance features, our approach shows robustness even in scenes containing fast-moving objects
where context changes rapidly, as shown in Fig. 8.

Ablation study with minimal setups. To simplify reproducibility, we additionally provide ablation
studies on the OVIS dataset (Qi et al., 2022) with the ResNet-50 (He et al., 2016) backbone, detailed in
Tab. 7. The results exhibit similar trends to those observed in Tab. 4, further validating the consistency
of our findings. For these experiments, we train the segmentation network with 2 frames over 40k
iterations, while the tracking network is trained with 5 frames over 40k iterations. Experiments (i-
iii) show that implementing contrastive learning, whether with standard or context-aware instance
features, leads to significant performance gains. Particularly, context-aware instance features result in
a notable +2.7 AP improvement over the baseline, a considerable increase compared to the +1.3 AP
improvement observed with standard instance features.

Method AP
MinVIS (Huang et al., 2022) 23.3
DVIS (Zhang et al., 2023a) 31.6

VITA (Heo et al., 2022) 32.6
DVIS++ (Zhang et al., 2023b) 37.2

GenVIS (Heo et al., 2023) 37.5
Ours 38.6

Table 8: Comparison on
YTVIS 2022 dataset.

Performance on long video. We additionally report the perfor-
mance on the YouTube-VIS 2022 dataset, a well-known benchmark
featuring long video sequences. Its validation set includes 71 addi-
tional videos compared to the YouTube-VIS 2021 dataset, making
it particularly challenging due to the need for accurately tracking
dynamically appearing and disappearing objects over extended peri-
ods. We evaluate our model on these 71 long videos and compare it
against existing state-of-the-art models with a ResNet-50 backbone.
As shown in Tab. 8, our approach outperforms existing methods,
demonstrating that our context-aware modeling remains effective for robust object matching even in
long-range video scenarios.

Additional qualitative results. We provide additional qualitative results of CAVIS across various
datasets, as depicted in Fig. 9-12. These results underscore the robust capability of CAVIS to track
objects in diverse scenarios for both VIS and VPS tasks. Notably, CAVIS excels in environments
featuring numerous similar objects, fast-moving objects, and significant occlusions, demonstrating its
effectiveness across complex dynamic scenes.
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Figure 9: Additional qualitative results on OVIS dataset.

Figure 10: Additional qualitative results on Youtube-VIS 2019 dataset.
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Figure 11: Additional qualitative results on Youtube-VIS 2021 dataset.

Figure 12: Additional qualitative results on VIPSeg dataset.
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