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Abstract

Robust and unobtrusive in-vehicle physiological monitoring is crucial for ensuring
driving safety and user experience. While remote physiological measurement
(RPM) offers a promising non-invasive solution, its translation to real-world driv-
ing scenarios is critically constrained by the scarcity of comprehensive datasets.
Existing resources are often limited in scale, modality diversity, the breadth of bio-
metric annotations, and the range of captured conditions, thereby omitting inherent
real-world challenges in driving. Here, we present PhysDrive, the first large-scale
multimodal dataset for contactless in-vehicle physiological sensing with dedicated
consideration of various modality settings and driving factors. PhysDrive collects
data from 48 drivers, including synchronized RGB, near-infrared camera, and raw
mmWave radar data, accompanied by six synchronized ground truths (ECG, BVP,
Respiration, HR, RR, and SpO2). It covers a wide spectrum of naturalistic driving
conditions, including driver motions, dynamic natural light, vehicle types, and road
conditions. We extensively evaluate both signal-processing and deep-learning meth-
ods on PhysDrive, establishing a comprehensive benchmark across all modalities,
and release full open-source code with compatibility for mainstream public tool-
boxes. We envision PhysDrive will serve as a foundational resource and accelerate
research on multimodal driver monitoring and smart-cockpit systems.

1 Introduction

As intelligent transportation moves toward human–machine co-driving, effective driver monitoring
becomes essential to ensure safety and enable timely driver intervention [1, 2]. Such monitoring
increasingly depends on understanding the driver’s internal state, where physiological signals offer an
objective and rich source of information for tasks like driver state monitoring [3], health assessment
[4], and in-vehicle interaction [5]. However, traditional contact-based acquisition methods for these
signals, such as electrocardiography (ECG) and respiratory belts [6], are often intrusive and costly,
potentially distracting drivers and hindering user acceptance [7]. Remote physiological measurement
(RPM) emerges as a compelling alternative, enabling the noninvasive, convenient, and simultaneous
acquisition of multiple biological signals (e.g., heart rate (HR) [8], respiration rate (RR) [9]) without
physical contact [10]. Compared to contact-based approaches, RPM’s noninvasive and convenient
nature [11, 12] facilitates its seamless integration into in-vehicle systems, thereby minimizing driver
disruption and broadening its applicability within smart vehicles [3].

Contactless in-vehicle physiological monitoring primarily utilizes vision-based approaches and radio
frequency (RF) sensing [10]. Vision-based methods include cost-effective RGB cameras for color
information-based remote photoplethysmography (rPPG) and near-infrared (NIR) cameras for more
stable imaging than RGB under dynamic in-vehicle lighting. Millimeter-wave (mmWave) radar,



as a typical RF technology, leverages its short wavelength to detect minute cardiorespiratory chest
displacements at the millimeter level, offering robustness to illumination and enhanced privacy. While
each modality has individual strengths, they also face distinct challenges: RGB is sensitive to light
variations [13], NIR can have lower signal-to-noise ratios for some rPPG estimations [14, 15], and
mmWave systems can be influenced by vehicle vibrations and incur higher costs [16, 17].

Considering the variety of driving scenarios, it is essential to collaboratively analyze the three
modalities towards a practical solution. Despite the growing interest in these technologies, the field is
significantly constrained by a lack of comprehensive public benchmark datasets. As shown in Table
1, existing datasets often focus on single-modality like RGB data [18, 9, 19, 20] or provide limited
coverage of NIR [21] or coarse-grained measurement for in-vehicle RF sensing [22]. Besides, they
are typically gathered in controlled indoor environments, which lack diversity in real-world settings.

In this paper, we propose PhysDrive, a multimodal non-intrusive dataset to facilitate the algorithm
development for contactless driving physiological sensing. PhysDrive contains data from 48 drivers
with over 1500k synchronized frames in total four conditions, from three contactless sensing modali-
ties: RGB camera, NIR camera, and mmWave radar as well as six contact ground truths: ECG, blood
volume pulse (BVP), respiration signals (RESP), HR, RR, and blood oxygen saturation (SpO2). To
the best of our knowledge, PhysDrive is the first dataset that comprises all the modalities across
real-world driving settings. The contributions and features of PhysDrive are as follows.

Diverse Sensing Modalities. PhysDrive aims to provide a comprehensive dataset considering the
various applicability of existing sensors. It contains three typical contactless modalities in vision and
RF sensors, with six contact ground truths as labeling across ECG, BVP, RESP, HR, RR, and SpO2.

Versatile Sensing under Real World Settings. PhysDrive features practical data collection from 48
subjects under various real-world driving settings, such as different illuminations, motions, and road
conditions. This opens up new research possibilities for establishing open evaluation benchmarks for
in-vehicle RPM and unexplored problems, e.g., generalization in contactless multi-modal sensing.

Extensive Benchmarks. To demonstrate the utility of PhysDrive, we have extensively implemented
and evaluated the performance of mainstream baseline models across all factors. We also provide
open-source resources1 to facilitate future research, including raw and preprocessed data, code for
benchmarking setup, and tutorials for use with the public RPM toolbox.

2 Related Works

2.1 Remote Physiological Measurement

Effective driving monitoring systems are crucial for improving driver safety and well-being, with a
growing demand for unobtrusive, contactless solutions [23, 24]. Among these, RGB cameras have
attracted considerable attention, largely due to their ubiquity in vehicles. They mainly leverage
the periodic color modulations in skin pixels induced by blood flow changes to perform remote
photoplethysmography (rPPG) for estimating vital signs such as heart rate and respiratory rate [25–28].
While promising, the efficacy of RGB-based rPPG is notably susceptible to fluctuations in ambient
lighting conditions [13, 29]. To address this illumination challenge, near-infrared (NIR) cameras
with active NIR illumination have been explored in the invisible light spectrum and share resilience
to variations in visible light [30–32]. However, due to the reduced sensitivity to blood oxygenation
changes, it has low signal-to-noise ratio (SNR), which leads to higher requirements for algorithm
development [33]. Concurrently, RF-based solutions, such as mmWave radar, have been investigated
from a different modality perspective. These systems typically transmit electromagnetic waves
and analyze the reflected signals to capture mechanical movements associated with physiological
processes, including chest vibrations from respiration and heartbeats. Thus, they inherently overcome
challenges related to dynamic lighting conditions and can better preserve users’ privacy compared to
video collections [34]. However, radar modules generally entail higher costs than camera systems
[10] and are susceptible to interference from vehicle vibrations during driving and diverse reflection
paths from different vehicle interior structures [16, 17]. The distinct advantages and limitations of
each sensing modality underscore the need for comprehensive, multi-modal datasets from realistic

1https://github.com/WJULYW/PhysDrive-Dataset
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Table 1: Comparison of existing public remote physiological measurement datasets.

Dataset Subjects Modalities Physiological Signals Environment Experiment Conditions

COHFACE [35] 40 RGB BVP, RR Indoor Illumination; Motion
MAHNOB-HCI [36] 27 RGB ECG, RR Indoor Illumination; Emotion
PURE [19] 10 RGB BVP, HR, SpO2 Indoor Motion
UBFC-rPPG [20] 43 RGB BVP, HR, SpO2 Indoor Motion
MMSE-HR [37] 140 RGB HR, RR, Blood pressure Indoor Skin color; Expression; Emotion
HCW [27] 48 RGB BVP, RESP, HR, RR Indoor Emotion
ECG-Fitness [38] 17 RGB ECG, HR Indoor Special state; Motion
MMPD [18] 33 RGB BVP, HR Indoor Motion; Skin color; Illumination
SUMS [9] 10 RGB BVP, HR, RESP, SpO2 Indoor Motion
Wu et al. [39] 14 RGB HR Driving Emotion; Illumination; Motion
SCAMP [40] 2800 RGB BVP, HR, RR, SpO2 Synthetics Illumination; Motion; Skin color
MMDE [41] 64 RGB BVP, HR Indoor Illumination; Motion
iBVP [42] 32 RGB, Thermal BVP Indoor Motion; Skin color
LADH [43] 21 RGB, NIR BVP, HR, RESP, SpO2 Indoor Motion
VIPL-HR [21] 107 RGB, NIR BVP, HR, SpO2 Indoor Illumination; Skin color
MR-NIRP [44] 18 RGB, NIR BVP Driving Illumination
EquiPleth [45] 91 RGB, mmWave BVP Indoor Body posture
4TU.ResearchD [46] 10 mmWave ECG Indoor Angle; Special state

PhysDrive 48 RGB, NIR,
mmWave

ECG, RESP, BVP,
HR, RR, SpO2 Driving Illumination; Motion;

Road condition; Car type

in-vehicle conditions. Our dataset fills this gap with synchronized modalities collected under diverse
real-world scenarios to facilitate future research.

2.2 Multi-modal RPM Dataset

Currently, there are a number of datasets available for vision-based RPM; however, as indicated in
Table 1, most of these datasets offer only a single modality (i.e., RGB video).The factors typically
included in existing datasets focus on indoor motions, lighting conditions, and skin color. Some
datasets also consider changes in human emotions [36, 27, 37] or various recording devices, such
as webcams and mobile phone cameras [21, 18]. The algorithms developed and tested using these
datasets are primarily suited for indoor monitoring scenarios instead of real driving scenarios. Only
two datasets, MR-NIRP [44] and Wu et al. [39], concentrate on driving scenarios. Among these,
MR-NIRP [44] is the only multimodal dataset specific to driving. Unfortunately, both datasets share
common shortcomings: they are small in scale, provide only a single physiological label (either BVP
or HR), and do not account for varying driving conditions or perceptual modalities.

Furthermore, there is a limited choice of raw mmWave data available. EquiPlet [45] and
4TU.ResearchD [46] are the only two public datasets that include mmWave data, with EquiPlet
also offering RGB video. However, these datasets are focused on indoor environments and do not
address in-vehicle monitoring. Since data collected indoors cannot effectively simulate the complex
interactions of road surface feedback and signal reflections that occur during driving, such datasets
are not suitable for developing and evaluating in-vehicle monitoring models with mmWave. Most
previous mmWave-based in-vehicle monitoring systems [47, 48] have relied on private data, resulting
in a lack of a public and unified evaluation benchmark.

For these reasons, we propose PhysDrive as the first public dataset that offers a comprehensive
range of modal and physiological signal labels while encompassing the challenging factors found in
real-world driving scenarios.

3 Dataset

3.1 Data Collection

As mentioned earlier, dynamic lighting conditions and driver movements during driving can signifi-
cantly impact the extraction of physiological signals from video data. Additionally, movements and
road conditions pose challenges to the mmWave sensing method. To further investigate these factors,
we designed a real-world driving experiment.
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Figure 1: A visual illustration of our data collection experiment. Participants are divided into 12
groups by three types of vehicles and four types of illumination conditions. Each group consists of 4
subjects. Each subject data recordings of each participant are collected under three road conditions.
In this figure, ‘E.M.&D.’ means ‘early morning and dusk’, and ‘C.&R.’ is ‘cloudy and rainy day’.

Experiment Design. Our data collection experiment was conducted in Guangzhou City, Guangdong
Province, China. As shown in the Figure 1, we incorporated lighting conditions and vehicle types
as between-subject factors in the experimental design. For the lighting conditions, we considered
changes in angle and brightness under natural light. Specifically, we compared stable lighting
conditions at Noon (between 11 AM and 1 PM on a clear, cloudless day) to uneven light exposure
and unstable angles experienced in the Early Morning (7 AM to 9 AM) or Dusk (5 PM to 7 PM) also
on a clear day. Additionally, we accounted for two situations of varying light intensity: Rainy/Cloudy
Days and Nighttime (after 8 PM). Regarding vehicle models, we considered the impact of different
vehicle types on the mmWave scheme. We selected three common vehicle models according to the
wheelbase classification method used by China: a A0-segment vehicle, a B-segment vehicle, and
a C-segment SUV. Each driver participated in only one type of vehicle under one specific lighting
condition, ensuring that all drivers were evenly distributed among the 12 groups formed by the 3
vehicle models and 4 lighting conditions.

Furthermore, we treated the driver’s actions and road conditions as within-subject variables. Each
driver was required to navigate through a total of two action conditions and three road conditions.
For the action variables, we defined two states: 1. Stationary State - where the driver was instructed
to avoid any distractions except for necessary head and hand movements for normal driving; and
2. Speaking State - where we engaged the driver in conversation, encouraging them to perform
additional safe actions, such as looking around and relaxing their shoulders. For the road condition
variables, we defined three progressively difficult scenarios: 1. Flat and Unobstructed Road - a newly
constructed three-lane road with minimal traffic and no traffic lights; 2. Flat but Congested Road - a
three-lane road that, despite being flat, experiences heavy traffic, causing frequent stops and starts,
leading to additional body movements; and 3. Bumpy and Congested Roads - similar to the second
condition but compounded by potholes, resulting in extra shaking. These factors together created six
driving segments, each lasting approximately five minutes.

All drivers were required to manually drive all six segments sequentially, as shown in Figure 1. It is
important to note that the segments were not continuous, and we did not collect data for non-target
driving segments between them, ensuring that each driver was recorded for six driving segments,
about 30 minutes with 16.5 km driving distance in total.

Participant. A total of 48 participants, aged from 18 to 41 (Mean=24.9, STD=4.1), were recruited
through posters and word-of-mouth, with 24 females and 24 males, and were balanced within each
group. All the participants are drivers who have obtained driving licenses for more than one year. Each
driver will receive compensation of 80 Chinese Yuan after completing the experiment. All participants
were provided with information explaining the nature and purpose of the procedures involved in this
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study and signed the consent form before the start of the experiment. This research was approved by
the Human and Artefacts Research Ethics Committee [HKUST(GZ)-HSP-2025-0120] of the Hong
Kong University of Science and Technology (Guangzhou).

3.2 Data Processing

Apparatus. For data acquisition, we utilize the PhysioLAB platform2, which is installed on our
experimental laptop. This platform integrates a three-electrode ECG sensor, a respiratory belt
transducer, a Logitech C925e RGB camera, and an NIR camera (700-1100nm) for synchronous data
collection. The Ergoneers platform allows for the simultaneous recording and pausing of multiple
devices, providing millisecond-level timestamps based on the laptop’s local time. The acquisition
frequency for physiological signals was set at 1000 Hz, while the RGB and IR video acquisition
frequencies were set at 30 fps. RGB and IR video are recorded in ‘MP4’ format, and ECG, RESP
signals are in ‘CSV’ file. For BVP and SpO2 data, we use the Contech CMS50E fingertip blood
oxygen meter, which connects to the same laptop. The sampling frequencies are 60 Hz for BVP and
1 Hz for SpO2. The Contech CMS50E provides a second-level timestamp to synchronize the start
of recording with the laptop. The mmWave radar (IWR1843BOOST) is configured as an effective
bandwidth of 2.6 GHz with a virtual array of 12 antennas, with a range resolution of around 6 cm
and an angular resolution of 14◦. It transmits 20 frames per second. Each frame has 64 chirps with a
velocity resolution of 7.6 cm/s. The device placement and installation positions are in Figure 2(e).

Data Synchronization. To ensure robust temporal synchronization across the data acquisition
platforms, all systems are hosted on a single laptop, and their respective timestamps are manually
verified for consistency before starting each experimental session. An ordered procedure for initiating
and terminating recordings is implemented to further facilitate precise timestamp alignment. The
PhysioLAB platform, chosen for its superior timestamp accuracy, initiates recording first and ends
last, thereby encompassing the data streams from other sensors. The Contech CMS50E, which
provides timestamps accurate to the second, is started after PhysioLAB and stopped before it. Lastly,
the mmWave radar system begins after the Contech device and is the first to stop recording. The
time interval between the start and end of recording across the different platforms typically does
not exceed five seconds. Therefore, during the alignment of the collected data, we can ensure that
the drift does not exceed one second. It can be seen from Figure 2(d) that, considering the naturally
existing time shift between ECG and BVP, the signals we provide are well aligned.

Next, we take the three perceptual modalities as the benchmark and align them respectively with
the physiological data. We align the RGB and NIR videos with ECG, RESP, BVP, and SpO2, and
unify the aligned physiological signals to 30 Hz after up/down sampling. For mmWave data, we
downsample the ECG and RESP signals to 20 Hz.

Data Preprocessing. To verify the validity of the data and to prepare for the subsequent construction
of the benchmark, we conducted preprocessing on the dataset. This dataset is intended for academic
use only and is not allowed to be used for commercial purposes. Due to the privacy sensitivity of the
original data and the storage limitations of the data hosting platform, we published the processed
mmWave data of all participants, and the raw RGB and NIR data for one individual who agreed
to publish without any data release agreement, along with the corresponding aligned physiological
labels, on https://www.kaggle.com/datasets/xiaoyang274/physdrive. The way of accessing all of the
raw data can be found at https://github.com/WJULYW/PhysDrive-Dataset.

For ECG, RESP, and BVP signals, the preprocessing steps mainly include bandpass filtering, signal
credibility monitoring, and trend removal. Specifically, PhysDrive can be directly read and pro-
cessed using rPPG-Toolbox [49], enabling both intra-dataset and cross-dataset training. Inspired by
iBVP [42], we introduce a waveform similarity-based quality assessment method to enhance the
preprocessing pipeline, allowing for more rigorous validation of signal integrity and completeness
before model training. Further, HR and RR were derived using the NeuroKit23 package from the ECG
and RESP signals. The distribution of three indicators and one visualization example of processed
physiological signals is shown in Figure 2. It is worth noting that due to safety considerations in our
experiment, induction for low SpO2 was not carried out, so the distribution of SpO2 was relatively
concentrated. Therefore, our subsequent benchmarks will not be targeted at SpO2.

2https://www.infoinstruments.cn/product/physiolab/
3https://neuropsychology.github.io/NeuroKit/
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Figure 2: Visualization of processed physiological signals and deployment of data collection devices.

For RGB and NIR video, the resolution of the raw RGB and NIR frames is 1024×576 and 1920x1080,
respectively. In order to meet the input requirements of most baselines and reduce the reading time
during the model training process, we follow [21, 50], first locate the face, and then crop all frames
to a size of 128x128 and enlarge the face area. We take it as the input of the baseline for directly
inputting the video. Further, we generate the frames of the cropped images as STMap as the input of
some baselines according to Appendix A.

The raw mmWave data is first organized as a tensor X ∈ RNf×2×Nr×Na×Nd with range-angle-
doppler FFT operations. Here, Nf represents the number of time frames, the dimension of size ‘2’
accounts for the real and imaginary components of the complex radar signals, and Nr, Na, Nd denote
the number of bins partitioning the signal by range (distance to reflectors), angle (spatial direction of
reflections), and Doppler (velocity of reflectors), respectively. To isolate subtle dynamic physiological
signals, we first apply static reflection removal techniques to filter out interference from stationary
objects within the environment and then localize the human subject [51]. Subsequently, to enhance
computational efficiency and concentrate on the subject’s immediate vicinity, we crop the data around
the localized region. This results in a focused tensor with Nr = 8 range bins (a physical range of 48
cm to cover typical human torso), Na = 16 angle bins (45° angle coverage, to cover frontal human
presence), and Nd = 8 Doppler bins (a velocity range of 60.8 cm/s on cardiorespiratory motions
without gross body movements). Finally, we segment the data into sequences of Nf = 200 frames,
equivalent to 10 seconds of observation, ensuring temporal alignment with other sensor modalities.

4 Benchmarks

4.1 Benchmark Setup

Baselines. We choose five non-learning RGB-based traditional methods: CHROM [52], POS [53],
GREEN [14], ICA [25], and ARM-RR [54]. Besides, we select two unsupervised DL methods:
Contrast-Phys+ [30] and SiNC [26], which are trained on unlabelled PhysDrive RGB video and
tested on the test set. Other seven single-task DL methods (including DeepPhys [31], PhysNet
[32], PhysFormer [55], EfficientPhys [56], Rhythmformer [57], BVPNet [58], RhythmNet [21],
FactorizePhys [59]) and four multi-task learning (MTL) baselines (including MTTS-CAN [60],
BigSmall [61], BaseNet [27], PhysMLE [27]). Among them, Contrast-Phys+ [30], DeepPhys [31],
and PhysNet [32] also serve as the baselines for NIR sensing. For mmWave sensing, we evaluate
three baselines (including IQ-MVED [62], VitaNet [63], and mmFormer [51]). Further, we selected
Fusion-Vital [64] as the baseline of the RGB-mmWave multi-modal method. Note that, since we
didn’t find the proper MTL mmWave method, we make minor changes to the above method, including:
(1) aggregating multiple Doppler bins with a linear layer; (2) adding new estimation heads after the
backbone network. Besides, we remove the AU head from BigSmall for fair comparison. RhythmNet,
BaseNet, and PhysMLE take STMap as input.

6



Table 2: Intra-dataset. HR estimation performance
on RGB, NIR, and mmWave modalities.

Modality Method MAE↓ RMSE↓ P↑

RGB

CHROM [52] 12.23 15.97 0.11
POS [53] 12.42 16.15 0.10
SiNC [26] 13.49 16.57 0.03
PhysNet [32] 6.29 8.93 0.61
RhythmFormer [57] 7.21 9.84 0.45
RhythmNet∗ [21] 6.84 9.01 0.58

NIR
SiNC [26] 11.72 14.66 0.08
PhysNet [32] 10.69 13.21 0.12
Contrast-Phys+ [30] 13.65 16.08 0.05

mmWave VitaNet [63] 4.94 7.15 0.94
mmFormer [51] 3.65 5.09 0.97

Table 3: Intra-dataset. Multi-task estimation perfor-
mance of MTL methods.

Method HR RR

MAE↓ RMSE↓ P↑ MAE↓ RMSE↓ P↑
CHROM [52] 12.23 15.97 0.11 N/A N/A N/A
ARM-RR [54] N/A N/A N/A 4.63 5.88 0.08
MTTS-CAN [60] 8.75 11.02 0.26 3.01 4.14 0.12
BigSmall [61] 9.21 11.57 0.24 3.18 4.29 0.10
BaseNet∗ [27] 6.97 9.32 0.53 2.70 3.29 0.15
PhysMLE∗ [27] 7.02 9.90 0.55 2.21 3.59 0.16
IQ-MVED [62] 14.17 18.21 0.45 3.71 4.69 0.04

-(Wave Recovery) 29.18 37.31 0.10 2.20 3.15 0.32
VitaNet [63] 4.94 7.15 0.94 2.56 3.64 0.80

-(Wave Recovery) 35.21 43.1 0.07 2.88 3.71 0.12
mmFormer [51] 3.65 5.09 0.97 1.49 2.41 0.83

-(Wave Recovery) 33.87 41.96 0.03 2.1 3.12 0.37

Implementation. All models used in the evaluation are implemented in PyTorch. The implementation
of the baselines is primarily sourced from the rPPG-toolbox [49], otherwise from their open-source
repositories. Our experiments are conducted on two servers, one equipped with 8 Nvidia RTX 3090
cards and the other with 8 Nvidia RTX A6000 cards. For the parameter settings of each baseline,
we adhere to the descriptions provided in their respective source papers or the default configurations
found in the rPPG-toolbox.

Metrics. The goal of this dataset is to study RPM. Depending on our different sensing methods, we
have outlined the following specific tasks: For the RGB and NIR sensing methods, we aim to fit the
BVP and RESP signals, while evaluating HR and RR extracted from BVP and RESP, respectively.
The mmWave methods in our task focus on HR and RR values regression, as well as ECG and RESP
signals recovery, simultaneously. We have adopted evaluation metrics from previous studies [65, 66],
including mean absolute error (MAE), root mean square error (RMSE), and Pearson’s correlation
coefficient (P) to assess the estimated indicators.

4.2 Cross-subject Evaluation

Evaluation Protocol. To evaluate the dataset’s usability, we first conduct an intra-dataset cross-
subject evaluation within PhysDrive. We utilize data from 48 drivers for training, validation, and
testing in a distribution of 80%, 10%, and 10%, respectively. By controlling random seeds, we
perform five independent evaluations, and we report the average values of all indicators across these
five evaluations.

Results of HR Estimation. We present main findings in Table 2, and the complete version can be
found in Table 8 in Appendix B. As shown in Table 2, from the perspective of data validity, our
results align closely with those from previous similar datasets. The baseline methods using RGB,
NIR, and mmWave modalities achieve reasonable results on our dataset, particularly the DL method.
This indicates that our dataset effectively validates the input modalities, such as physiological signals
(i.e., ECG and BVP), and the correlations between inputs and outputs.

Regarding the baseline results across multiple modalities, it’s noteworthy that RGB techniques
significantly outperform the NIR methods. This finding is consistent with results reported in [44].
However, the vision-based solutions do not match the accuracy levels achieved in the indoor rPPG
dataset under simpler protocols, such as intra-dataset evaluations. For example, results from [30]
indicate that PhysNet achieves a MAE of 2.1 and a P of 0.99 in intra-dataset evaluations on PURE.
Furthermore, the mmWave methods substantially outperform all vision-based approaches, particularly
in terms of P value. For instance, VitaNet exceeded the best RGB method (PhysNet) by about 54.1%.

Results of Multi-task Estimation. In Table 3, we evaluate the performance of the MTL methods
of three modalities. The results demonstrate not only the validity of HR-related BVP and ECG
signals but also confirm the correlation between these inputs and RESP signals in the context of RR
monitoring. In terms of baseline performance, we observe that among vision-based methods, MTL
techniques built on STMap (i.e., BaseNet and PhysMLE) outperform those that directly use face
videos. Notably, for the RR estimation task, the average P value improved by approximately 25%.
While mmWave methods show strengths, their performance notably drops for HR/RR extraction via
recovered ECG/RESP waveforms compared to direct parameter regression. This underperformance
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Table 4: Intra-dataset Scenario Evaluation. HR and RR estimation performances under driver motion
conditions and road scenarios. PhysMLE: RGB, PhysNet: NIR, VitaNet, and mmFormer: mmWave.

Method
Stationary Talking Flat & Unobstructed Flat & Congested Bumpy & Congested

HR RR HR RR HR RR HR RR HR RR

MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑

PhysMLE [27] 6.55 0.58 2.12 0.18 6.98 0.54 2.30 0.15 6.95 0.56 2.16 0.17 7.01 0.55 2.22 0.15 7.16 0.53 2.32 0.14
PhysNet (NIR) [32] 10.35 0.15 N/A N/A 11.13 0.11 N/A N/A 10.59 0.14 N/A N/A 10.67 0.12 N/A N/A 10.73 0.11 N/A N/A
VitaNet [63] 4.92 0.93 2.47 0.80 4.99 0.92 2.80 0.77 4.87 0.94 2.44 0.81 5.17 0.92 2.56 0.80 5.97 0.90 2.86 0.78
mmFormer [51] 3.32 0.97 1.24 0.86 3.75 0.94 1.51 0.84 3.32 0.97 1.43 0.85 3.39 0.97 1.51 0.86 3.77 0.94 1.55 0.84

Table 5: Cross-dataset Scenario Evaluation. HR estimation performance of RGB-based methods under
varying lighting and motion conditions when trained on PURE and UBFC-rPPG. Here, ‘E.M.&D.’ indicates
early morning&dusk; and ‘R.&C.’ is rainy&cloudy.

Method Train Set E.M.&D. Noon Night R.&C. Stationary Talking All

MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑

SiNC [26] PURE 11.16 0.06 10.06 0.17 13.24 0.01 11.39 0.11 11.90 0.11 11.02 0.13 11.46 0.11
UBFC-rPPG 15.99 0.03 11.62 0.26 15.42 -0.01 13.99 0.08 14.07 0.14 14.39 0.08 14.26 0.12

RhythmFormer [57] PURE 12.51 0.04 10.40 0.19 13.65 -0.05 11.73 0.04 11.45 0.13 12.09 0.07 11.72 0.11
UBFC-rPPG 12.98 0.01 11.04 0.15 12.94 0.05 12.18 -0.01 12.16 0.11 12.57 0.05 12.53 0.08

RhythmNet∗ [21] PURE 7.91 0.04 8.87 0.23 11.96 -0.06 8.40 0.14 9.61 0.15 8.99 0.11 9.30 0.14
UBFC-rPPG 6.83 0.03 10.56 0.15 12.25 -0.03 9.95 0.01 10.18 0.11 9.56 0.17 9.86 0.14

FactorizePhys [59] PURE 14.44 0.05 10.81 0.22 13.71 0.03 12.74 0.11 13.25 0.12 12.86 0.07 13.36 0.13
UBFC-rPPG 15.92 -0.02 11.85 0.14 14.25 -0.01 13.60 0.08 13.91 0.08 13.79 0.06 15.12 0.05

is plausibly attributed to mmWave’s acute sensitivity to temporal misalignment during the critical
waveform regression step. Consequently, a key research direction is to develop training schemes that
confer temporal robustness to mmWave models, thereby alleviating stringent data synchronization
demands and potentially broadening practical applicability.

Results of Cross-scenario Evaluation. To address the two challenging factors that affect the RPM
methods (i.e., driver motions and road conditions), we perform cross-scenario evaluations, assessing
data from different segments of the test set individually. The results are displayed in Table 4.

Firstly, as shown in Table 4, aligned with Table 3, mmWave methods outperform RGB and NIR
methods, while the impact of motions is larger on mmWave methods. Specifically, regarding driver
actions, as expected, the performance of all methods in both HR and RR monitoring tasks declines
when drivers are in the talking state compared to the stationary state.

Similarly, seeing Table 4, as road conditions are more challenging due to jolting and congestion, the
accuracy of the mmWave solution decreases. Specifically, compared to flat and unobstructed roads,
the performance on more congested flat roads experiences a minor decline, usually not exceeding 5%.
However, when the road surface becomes bumpy, the degradation is more pronounced, with the MAE
increasing by about 13% compared to flat and unobstructed roads.

4.3 Cross-dataset Evaluation

Evaluation Protocol. To assess the capability of our dataset as both a training and a test set for
evaluating the generalization ability of the DL model, we conduct extensive evaluations based on a
cross-dataset protocol. We select the PURE [19], UBFC-rPPG [20], iBVP [42], MMPD [18], and
SCAMP [40] datasets, which are commonly used in previous studies [65, 50], alongside PhysDrive
for our evaluation. It is important to note that neither PURE nor UBFC-rPPG provides RESP, and
neither PURE nor PhysDrive is specifically designed for measuring blood oxygen levels [67]. Thus,
our evaluations focus solely on HR estimation tasks. The main results are shown in Table 5, while
the remaining results can be referenced in Table 11, 12 in Appendix B.3, B.4.

Results of Cross-scenario Evaluation. We evaluate methods trained on other datasets across various
challenging scenarios in PhysDrive. As shown in Table 5, we can conclude that, first, all methods
achieve the best performance around noon and the lowest performance at night. Second, conditions
on cloudy and rainy days, which have varying brightness but maintain stability, outperform those in
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Table 6: Cross-dataset Evaluation. HR estimation
performance of baselines that were trained on SCAMP
and tested on different vehicle types in PhysDrive.

Method Metric A0 B C All

DeepPhys [31] MAE↓ 18.15 19.96 22.27 21.29
P↑ -0.02 0.02 0.00 0.00

PhysNet [32] MAE↓ 13.69 17.10 15.13 16.32
P↑ 0.03 -0.02 0.06 0.04

PhysFormer [55] MAE↓ 14.92 16.44 15.38 15.77
P↑ 0.08 -0.03 0.05 0.02

EfficientPhys [56] MAE↓ 19.52 19.13 20.48 19.72
P↑ 0.02 -0.03 -0.01 0.00

FactorizePhys [59] MAE↓ 16.41 16.72 17.15 16.70
P↑ 0.07 0.07 0.06 0.07

Table 7: Cross-dataset Evaluation. HR estimation
performance of RGB-based methods trained on the
subset of PhysDrive (noon and stationary scenarios).

Method Test set MAE↓ RMSE↓ P↑

PhysNet [32]
MMPD [18] 12.52 16.38 0.14
PURE [19] 11.99 15.20 0.44
UBFC [20] 8.17 11.68 0.59

SiNC [26]
MMPD [18] 13.11 16.63 0.09
PURE [19] 12.39 17.12 0.42
UBFC [20] 10.07 12.28 0.52

RhythmFormer [57]
MMPD [18] 12.33 15.43 0.15
PURE [19] 10.35 15.07 0.46
UBFC [20] 6.16 9.40 0.73

FactorizePhys [59]
MMPD [18] 12.15 15.81 0.17
PURE [19] 9.54 14.26 0.51
UBFC [20] 5.53 8.44 0.82

the early morning and at dusk, when lighting fluctuates with the driving direction. As expected, MAE
may vary when drivers engage in additional conversational behaviors.

Besides, after training on a synthetic dataset (SCAMP), we tested the impact of camera placements
on three vehicle types to ensure the measurement stability and generalization. Cameras on A0 and B
segment vehicles were unobstructed. However, the optimal camera placement on the segment-C SUV
did obscure a small area of the driver’s chin by the steering wheel. The results in Table 6 indicate that
the evaluation effect on the segment-C SUV did not significantly degrade compared to the other two
types. We believe this does not significantly affect rPPG measurement, as previous studies indicate
the chin area has lower signal quality and is typically not included as a region of interest [68, 69].

Furthermore, from Table 6 and Table 10 in Appendix B.3, we notice methods trained on PhysDrive or
the synthetic dataset have poor generalization and performance in test datasets. We argue that the poor
results from PhysDrive to laboratory data are likely due to the low SNR in PhysDrive. To illustrate,
we extracted simpler subsets (noon and stationary driver) from PhysDrive for training and tested them
on PURE, UBFC, and MMPD (as shown in Table 7). The results show a significant improvement in
baseline performance compared to Table 10 in our paper. For example, for RhythmFormer, compared
to training on the full PhysDrive, its P increases from 0.08 to 0.73.

5 Discussion and Limitations

In this paper, we present a novel multimodal in-vehicle driver RPM dataset called PhysDrive.
Extensive evaluations have confirmed the validity of the data, revealing some interesting findings.

Modality Comparison. Our evaluation of RGB, NIR, and mmWave modalities reveals distinct
strengths that depend on the modality and scenario. In almost all driving conditions, mmWave radar
methods demonstrate superior accuracy in directly estimating indicators (i.e., HR, RR) and recovering
RESP. However, they consistently struggle to reconstruct ECG waveforms. This discrepancy likely
arises because ECG captures detailed cardiac features [70], that are inherently more difficult to recover
and require stricter time synchronization than BVP signals. Vision-based methods excel at recovering
BVP waveforms, particularly for RGB methods with the highest SNR in well-lit conditions. Although
NIR methods are theoretically more stable than RGB in low-light conditions, their performances do
not exceed that of RGB due to a lower SNR as aligned with [44].

Our analyses show that the smoothness of the road surface has the greatest effect on mmWave’s
performance, followed by driver movements and traffic congestion. In contrast, vision-based methods
are particularly sensitive to brightness and quick changes in lighting. This suggests the possibility of
dynamic modality selection or adaptive fusion to leverage each sensor’s strengths effectively [71, 45].

Insights for RPM Models. Compared with traditional signal-processing baselines, fully supervised
deep-learning models, and unsupervised (or self-supervised) approaches under the same evaluation
protocols, distinct training paradigms emerge. Supervised DL models, while effective in-domain,
often exhibit poor generalization across different vehicle, lighting, or road scenarios, likely due to
label noise and environmental overfitting. Conversely, unsupervised pretraining on large volumes
of unlabeled driving data leads to representations that generalize more robustly across datasets.
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Therefore, we recommend a two-stage training strategy: initially, learn robust feature extractors using
unsupervised/self-supervised methods on diverse, unlabeled real-world driving videos, followed by
supervised fine-tuning on annotated data tailored to the specific application context.

Architecturally, we have observed that STMap methods for RGB video outperform direct video-input
networks in multi-task estimation and generalization. By converting subtle changes in facial color into
structured maps, STMap reduces the effects of noise from head motion and variations in illumination.
However, this preprocessing pipeline introduces additional latency, which may hinder real-time
applications. Future research should explore learnable or more efficient preprocessing techniques
that maintain the robustness of STMap while minimizing computational overhead.

Furthermore, our cross-dataset results reveal a critical domain gap between complex in-vehicle
conditions and controlled laboratory settings. The performance degradation when training on the full
PhysDrive dataset suggests that high levels of real-world noise may cause negative transfer, hindering
a model’s ability to learn the core physiological features required for generalization to cleaner data.
This finding advocates for future research into curriculum learning strategies, where models are first
trained on simpler subsets of data (e.g., stationary driving at noon) before being exposed to more
challenging conditions, thereby balancing robustness with foundational feature learning.

Future Works Enabled by PhysDrive. The PhysDrive dataset supports future research in RPM and
intelligent in-vehicle systems. Its rich multimodal data encourages the development of sensor fusion
techniques and advanced representation learning for robust physiological measurement across diverse
driving conditions. For mmWave sensing, PhysDrive’s provision of raw data will be invaluable for
creating training schemes that enhance temporal robustness, potentially reducing the strictness of
synchronization requirements in practical data collection. Thirdly, while we evaluated performance
across three distinct vehicle types, our analysis did not fully deconstruct the influence of specific
interior characteristics, such as cabin volume, window geometry, and the reflective properties of
interior materials. Future work should aim to isolate these variables to better understand how
in-vehicle physical environments contribute to the domain shift between different cars.

Limitations. Despite its comprehensiveness, the PhysDrive dataset still has several limitations.
First, our participant cohort predominantly consists of individuals of East Asian descent, which
limits the evaluation of camera-based methods across a diverse range of skin tones [18]. Future data
collection should prioritize the inclusion of individuals with different skin tones to assess and mitigate
rPPG biases. Secondly, we currently focus on drivers as the first step. We envision the principles
within PhysDrive can inspire initial explorations into passenger monitoring, adapting models to new
challenges such as varied seating positions and occlusions [17, 43]. Third, although we have SpO2
recordings, the lack of a dedicated acquisition protocol results in limited variability, diminishing
its utility. Targeted experiments, such as those under simulated hypoxia or high-altitude conditions
[67, 9], are necessary to develop reliable in-vehicle SpO2 estimation methods. Finally, the current
one-second synchronization tolerance between modalities may obscure transient cardiac events;
future datasets should implement hardware-level timestamping or higher-precision synchronization
to support analyses of rapid physiological changes.

6 Conclusion

In this paper, we introduce PhysDrive, a multimodal dataset designed for the RPM of in-vehicle drivers.
PhysDrive is the first to focus on and meticulously design driving scenarios, simultaneously providing
RGB, NIR, and mmWave sensing data as well as a large-scale dataset of various physiological signals
(including ECG, RESP, BVP, HR, RR, and SpO2). It aims to meet the demand for a relatively complete
public dataset in the previous research communities of different monitoring technologies. The designs
of various scenarios provided in PhysDrive can offer a relatively comprehensive public benchmark
for subsequent work. It also provides an opportunity to integrate multiple sensing technologies and
communities, accelerating the development of the next-generation intelligent cockpit.

Acknowledgments and Disclosure of Funding

This work was supported by the Natural Science Foundation of Guangdong Province of China
(2024A1515010392) and the Guangdong Provincial Key Lab of Integrated Communication, Sensing
and Computation for Ubiquitous Internet of Things (No.2023B1212010007).

10



References
[1] Wang, J., S. Ayas, J. Zhang, et al. Towards generalizable drowsiness monitoring with physio-

logical sensors: A preliminary study. arXiv preprint arXiv:2506.06360, 2025.

[2] Wang, J., A. Wang, H. Hu, et al. Multi-source domain generalization for ecg-based cognitive
load estimation: Adversarial invariant and plausible uncertainty learning. In ICASSP 2024-2024
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1631–1635. IEEE, 2024.

[3] Wang, J., X. Yang, Z. Wang, et al. Efficient mixture-of-expert for video-based driver state
and physiological multi-task estimation in conditional autonomous driving. arXiv preprint
arXiv:2410.21086, 2024.

[4] Gharamohammadi, A., A. Khajepour, G. Shaker. In-vehicle monitoring by radar: A review.
IEEE Sensors Journal, 23(21):25650–25672, 2023.

[5] Detjen, H., S. Faltaous, B. Pfleging, et al. How to increase automated vehicles’ acceptance
through in-vehicle interaction design: A review. International Journal of Human–Computer
Interaction, 37(4):308–330, 2021.

[6] Tang, J., M. Kang, Y. Zhang, et al. Contact sensors to remote cameras: Quantifying cardiorespi-
ratory coupling in high-altitude exercise recovery. In UbiComp Companion. 2025.

[7] Yang, L., H. Yang, H. Wei, et al. Video-based driver drowsiness detection with optimised
utilization of key facial features. IEEE Transactions on Intelligent Transportation Systems,
25(7):6938–6950, 2024.

[8] Wang, K., Y. Wei, J. Tang, et al. Camera-based hrv prediction for remote learning environments.
In 2024 IEEE Smart World Congress (SWC), pages 1165–1173. 2024.

[9] Liu, K., J. Tang, Z. Jiang, et al. Summit vitals: Multi-camera and multi-signal biosensing at
high altitudes. In 2024 IEEE Smart World Congress (SWC), pages 284–291. 2024.

[10] Liang, K., J. Chen, T. He, et al. Review of the open data sets for contactless sensing. IEEE
Internet of Things Journal, 11(11):19000–19022, 2024.

[11] Aarts, L. A., V. Jeanne, J. P. Cleary, et al. Non-contact heart rate monitoring utilizing cam-
era photoplethysmography in the neonatal intensive care unit—a pilot study. Early human
development, 89(12):943–948, 2013.

[12] Yan, B. P., W. H. Lai, C. K. Chan, et al. High-throughput, contact-free detection of atrial
fibrillation from video with deep learning. JAMA cardiology, 5(1):105–107, 2020.

[13] Chiu, L.-W., Y.-R. Chou, Y.-C. Wu, et al. Deep-learning-based remote photoplethysmography
measurement in driving scenarios with color and near-infrared images. IEEE Transactions on
Instrumentation and Measurement, 72:1–12, 2023.

[14] Verkruysse, W., L. O. Svaasand, J. S. Nelson. Remote plethysmographic imaging using ambient
light. Optics express, 16(26):21434–21445, 2008.

[15] Vizbara, V. Comparison of green, blue and infrared light in wrist and forehead photoplethys-
mography. BIOMEDICAL ENGINEERING 2016, 17(1), 2013.

[16] Morabet, F., A. Lazaro, M. Lazaro, et al. Driver activity monitoring based on modulated
frequency selective surface and millimeter-wave radar. IEEE Sensors Journal, 2025.

[17] Van Marter, J. P., A. G. Dabak, A. V. Mani, et al. A deep learning approach for in-vehicle
multi-occupant detection and classification using mmwave radar. IEEE Sensors Journal, 2024.

[18] Tang, J., K. Chen, Y. Wang, et al. Mmpd: Multi-domain mobile video physiology dataset. In
2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), pages 1–5. IEEE, 2023.

11



[19] Stricker, R., S. Müller, H.-M. Gross. Non-contact video-based pulse rate measurement on
a mobile service robot. In The 23rd IEEE International Symposium on Robot and Human
Interactive Communication, pages 1056–1062. IEEE, 2014.

[20] Bobbia, S., R. Macwan, Y. Benezeth, et al. Unsupervised skin tissue segmentation for remote
photoplethysmography. Pattern Recognition Letters, 124:82–90, 2019.

[21] Niu, X., S. Shan, H. Han, et al. Rhythmnet: End-to-end heart rate estimation from face via
spatial-temporal representation. IEEE Transactions on Image Processing, 29:2409–2423, 2019.

[22] Li, G.-H., H.-C. Chiang, Y.-C. Li, et al. A driver activity dataset with multiple rgb-d cameras
and mmwave radars. In Proceedings of the 15th ACM Multimedia Systems Conference, pages
360–366. 2024.

[23] Wang, J., J. M. Warnecke, M. Haghi, et al. Unobtrusive health monitoring in private spaces:
The smart vehicle. Sensors, 20(9):2442, 2020.

[24] Melders, L., R. Smigins, A. Birkavs. Recent advances in vehicle driver health monitoring
systems. Sensors (Basel, Switzerland), 25(6):1812, 2025.

[25] Poh, M.-Z., D. J. McDuff, R. W. Picard. Advancements in noncontact, multiparameter physiolog-
ical measurements using a webcam. IEEE transactions on biomedical engineering, 58(1):7–11,
2010.

[26] Speth, J., N. Vance, P. Flynn, et al. Non-contrastive unsupervised learning of physiological
signals from video. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 14464–14474. 2023.

[27] Wang, J., H. Lu, A. Wang, et al. Physmle: Generalizable and priors-inclusive multi-task remote
physiological measurement. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2025.

[28] Wang, K., J. Tang, Y. Fan, et al. Memory-efficient low-latency remote photoplethysmography
through temporal-spatial state space duality. arXiv preprint arXiv:2504.01774, 2025.

[29] Liu, M., J. Tang, H. Li, et al. Spiking-physformer: Camera-based remote photoplethysmography
with parallel spike-driven transformer. Neural Networks, 185:107–128, 2024.

[30] Sun, Z., X. Li. Contrast-phys+: Unsupervised and weakly-supervised video-based remote
physiological measurement via spatiotemporal contrast. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

[31] Chen, W., D. McDuff. Deepphys: Video-based physiological measurement using convolutional
attention networks. In Proceedings of the european conference on computer vision (ECCV),
pages 349–365. 2018.

[32] Yu, Z., X. Li, G. Zhao. Remote photoplethysmograph signal measurement from facial videos
using spatio-temporal networks. In 30th British Machine Visison Conference: BMVC 2019.
9th-12th September 2019, Cardiff, UK. The British Machine Vision Conference (BMVC), 2019.

[33] Magdalena Nowara, E., T. K. Marks, H. Mansour, et al. Sparseppg: Towards driver monitor-
ing using camera-based vital signs estimation in near-infrared. In Proceedings of the IEEE
conference on computer vision and pattern recognition workshops, pages 1272–1281. 2018.

[34] Yang, X., J. Wang. Fedhug: Federated heterogeneous unsupervised generalization for remote
physiological measurements. arXiv preprint arXiv:2510.12132, 2025.

[35] Heusch, G., A. Anjos, S. Marcel. A reproducible study on remote heart rate measurement.
arXiv preprint arXiv:1709.00962, 2017.

[36] Soleymani, M., J. Lichtenauer, T. Pun, et al. A multimodal database for affect recognition and
implicit tagging. IEEE transactions on affective computing, 3(1):42–55, 2011.

12



[37] Zhang, Z., J. M. Girard, Y. Wu, et al. Multimodal spontaneous emotion corpus for human
behavior analysis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3438–3446. 2016.

[38] Špetlík, R., V. Franc, J. Matas. Visual heart rate estimation with convolutional neural network.
In Proceedings of the british machine vision conference, Newcastle, UK, pages 3–6. 2018.

[39] Wu, B.-F., Y.-C. Wu, Y.-W. Chou. A compensation network with error mapping for robust
remote photoplethysmography in noise-heavy conditions. IEEE Transactions on Instrumentation
and Measurement, 71:1–11, 2022.

[40] McDuff, D., M. Wander, X. Liu, et al. Scamps: Synthetics for camera measurement of
physiological signals. Advances in Neural Information Processing Systems, 35:3744–3757,
2022.

[41] Xiang, G., S. Yao, H. Deng, et al. A multi-modal driver emotion dataset and study: Including
facial expressions and synchronized physiological signals. Engineering Applications of Artificial
Intelligence, 130:107772, 2024.

[42] Joshi, J., Y. Cho. ibvp dataset: Rgb-thermal rppg dataset with high resolution signal quality
labels. Electronics, 13(7), 2024.

[43] Ma, X., J. Tang, Z. Jiang, et al. Non-contact health monitoring during daily personal care
routines. In IEEE BSN. 2025.

[44] Nowara, E. M., T. K. Marks, H. Mansour, et al. Near-infrared imaging photoplethysmography
during driving. IEEE transactions on intelligent transportation systems, 23(4):3589–3600,
2020.

[45] Vilesov, A., P. Chari, A. Armouti, et al. Blending camera and 77 ghz radar sensing for equitable,
robust plethysmography. ACM Trans. Graph., 41(4):36–1, 2022.

[46] Sadeghi, E., K. Skurule, A. Chiumento, et al. Comprehensive mm-wave fmcw radar dataset
for vital sign monitoring: Embracing extreme physiological scenarios. arXiv preprint
arXiv:2405.12659, 2024.

[47] Juncen, Z., J. Cao, Y. Yang, et al. mmdrive: Fine-grained fatigue driving detection using
mmwave radar. ACM Transactions on Internet of Things, 4(4):1–30, 2023.

[48] Wang, F., X. Zeng, C. Wu, et al. Driver vital signs monitoring using millimeter wave radio.
IEEE Internet of Things Journal, 9(13):11283–11298, 2021.

[49] Liu, X., G. Narayanswamy, A. Paruchuri, et al. rppg-toolbox: Deep remote ppg toolbox.
Advances in Neural Information Processing Systems, 36:68485–68510, 2023.

[50] Yu, Z., Y. Shen, J. Shi, et al. Physformer++: Facial video-based physiological measurement
with slowfast temporal difference transformer. International Journal of Computer Vision,
131(6):1307–1330, 2023.

[51] Hu, Q., Q. Zhang, H. Lu, et al. Contactless arterial blood pressure waveform monitoring with
mmwave radar. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 8(4):1–29, 2024.

[52] De Haan, G., V. Jeanne. Robust pulse rate from chrominance-based rppg. IEEE transactions on
biomedical engineering, 60(10):2878–2886, 2013.

[53] Wang, W., A. C. Den Brinker, S. Stuijk, et al. Algorithmic principles of remote ppg. IEEE
Transactions on Biomedical Engineering, 64(7):1479–1491, 2016.

[54] Tarassenko, L., M. Villarroel, A. Guazzi, et al. Non-contact video-based vital sign monitoring
using ambient light and auto-regressive models. Physiological measurement, 35(5):807, 2014.

[55] Yu, Z., Y. Shen, J. Shi, et al. Physformer: Facial video-based physiological measurement with
temporal difference transformer. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4186–4196. 2022.

13



[56] Liu, X., B. Hill, Z. Jiang, et al. Efficientphys: Enabling simple, fast and accurate camera-based
cardiac measurement. In Proceedings of the IEEE/CVF winter conference on applications of
computer vision, pages 5008–5017. 2023.

[57] Zou, B., Z. Guo, J. Chen, et al. Rhythmformer: Extracting rppg signals based on hierarchical
temporal periodic transformer. arXiv e-prints, pages arXiv–2402, 2024.

[58] Das, A., H. Lu, H. Han, et al. Bvpnet: Video-to-bvp signal prediction for remote heart rate
estimation. In 2021 16th IEEE International Conference on Automatic Face and Gesture
Recognition (FG 2021), pages 01–08. IEEE, 2021.

[59] Joshi, J., S. Agaian, Y. Cho. Factorizephys: Matrix factorization for multidimensional attention
in remote physiological sensing. Advances in Neural Information Processing Systems, 37:96607–
96639, 2024.

[60] Liu, X., J. Fromm, S. Patel, et al. Multi-task temporal shift attention networks for on-device
contactless vitals measurement. Advances in Neural Information Processing Systems, 33:19400–
19411, 2020.

[61] Narayanswamy, G., Y. Liu, Y. Yang, et al. Bigsmall: Efficient multi-task learning for disparate
spatial and temporal physiological measurements. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 7914–7924. 2024.

[62] Zheng, T., Z. Chen, S. Zhang, et al. More-fi: Motion-robust and fine-grained respiration
monitoring via deep-learning uwb radar. In Proceedings of the 19th ACM conference on
embedded networked sensor systems, pages 111–124. 2021.

[63] Khan, U. M., L. Rigazio, M. Shahzad. Contactless monitoring of ppg using radar. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(3):1–30, 2022.

[64] Choi, J.-H., K.-B. Kang, K.-T. Kim. Fusion-vital: Video-rf fusion transformer for advanced
remote physiological measurement. In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, pages 1344–1352. 2024.

[65] Wang, J., H. Lu, H. Han, et al. Generalizable remote physiological measurement via semantic-
sheltered alignment and plausible style randomization. IEEE Transactions on Instrumentation
and Measurement, 2024.

[66] Wang, J., X. Wei, H. Lu, et al. Condiff-rppg: Robust remote physiological measurement to
heterogeneous occlusions. IEEE Journal of Biomedical and Health Informatics, 2024.

[67] Tang, J., X. Liu, D. McDuff, et al. Camera measurement of blood oxygen saturation. arXiv
preprint arXiv:2503.01699, 2025.

[68] Wong, K. L., J. W. Chin, T. T. Chan, et al. Optimising rppg signal extraction by exploiting
facial surface orientation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2165–2171. 2022.

[69] Kim, D.-Y., K. Lee, C.-B. Sohn. Assessment of roi selection for facial video-based rppg.
Sensors, 21(23):7923, 2021.

[70] Lu, G., F. Yang, J. A. Taylor, et al. A comparison of photoplethysmography and ecg recording to
analyse heart rate variability in healthy subjects. Journal of medical engineering & technology,
33(8):634–641, 2009.

[71] Kurihara, K., D. Sugimura, T. Hamamoto. Non-contact heart rate estimation via adaptive rgb/nir
signal fusion. IEEE Transactions on Image Processing, 30:6528–6543, 2021.

[72] Wang, J., H. Lu, A. Wang, et al. Hierarchical style-aware domain generalization for remote
physiological measurement. IEEE Journal of Biomedical and Health Informatics, 28(3):1635–
1643, 2023.

[73] Kartynnik, Y., A. Ablavatski, I. Grishchenko, et al. Real-time facial surface geometry from
monocular video on mobile gpus. arXiv preprint arXiv:1907.06724, 2019.

14



[74] Wang, J., X. Yang, H. Lu, et al. Align the gap: Prior-based unified multi-task remote physio-
logical measurement framework for domain generalization and personalization. arXiv preprint
arXiv:2506.16160, 2025.

[75] Yang, X., J. Wang, Y. Fan, et al. Not only consistency: Enhance test-time adaptation
with spatio-temporal inconsistency for remote physiological measurement. arXiv preprint
arXiv:2507.07908, 2025.

15



A Producing Spatial-Temporal Map from RGB Video

To reduce the computational resources required during the training process and encourage the model
to focus more on facial skin brightness changes rather than environmental variations, we adopted the
ROI extraction method from [72] and transformed the video into a Spatial-Temporal Map (STMap)
to provide a more lightweight input format.

…

𝑻	×	𝒏𝟐	×	𝟑Time

Video

STMapRGB channel

Figure 3: Illustration of producing STMap from RGB video.

As shown in Figure 3, first, we utilized MediaPipe Face Mesh [73] to perform landmark detection
on each frame, obtaining 468 facial key points. Next, we define the width of the facial region as the
horizontal distance between the boundary points of the outer cheeks, and the height as 1.2 times the
vertical distance between the chin and the eyebrow center, thus cropping the entire facial region. Then,
we apply an HSV color range threshold to segment the skin area, effectively removing non-facial
regions such as the eyes and background. Specifically, we convert the region of interest (ROI) to
the HSV color space, and define the skin color range by setting the hue (H) between 0 and 20, the
saturation (S) between 20 and 255, and the value (V) between 70 and 255. Finally, we generate the
STMap [74, 75] from the skin regions extracted in each frame of the video. Specifically, for a video
with T frames, we divide the skin region in each frame into small blocks of size (n2 = 16), and
compute the average pixel values of the RGB color channels for each block. These average pixel
values are then concatenated in the order of the video frames, resulting in an STMap with the shape
(T, 16, 3).

Table 8: Intra-dataset. HR estimation performance of RPM methods on RGB, NIR, and mmWave
modalities.

Modality Method MAE↓ RMSE↓ P↑

RGB

CHROM [52] 12.23 15.97 0.11
POS [53] 12.42 16.15 0.10
GREEN [14] 14.09 17.87 0.02
ICA [25] 13.31 16.93 0.06
SiNC [26] 13.49 16.57 0.03
Contrast-Phys+ [30] 15.93 18.40 0.01

Video

DeepPhys [31] 11.97 13.17 0.20
PhysNet [32] 6.29 8.93 0.61
PhysFormer[55] 7.85 10.17 0.41
EfficientPhys[56] 11.27 13.51 0.20
RhythmFormer [57] 7.21 9.84 0.45
BVPnet∗ [58] 7.95 10.70 0.28
RhythmNet∗ [21] 6.84 9.01 0.58

NIR
DeepPhys [31] 15.61 17.89 0.03
PhysNet [32] 10.69 13.21 0.12
Contrast-Phys+ [30] 13.65 16.08 0.05

mmWave
IQ-MVED [63] 14.17 18.21 0.45
VitaNet [63] 4.94 7.15 0.94
mmFormer [51] 3.65 5.09 0.97
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B Other Results of Evaluation

B.1 Intra-dataset Evaluation

We trained baseline methods using RGB, NIR, and millimeter-wave modalities on our dataset and
validated the results. As shown in Table 8, our results closely match those from similar datasets,
particularly for the DL method, yielding reasonable performance. This effectively validates the
physiological signals in our dataset (e.g., ECG and BVP) as input modalities and the correlation
between input and output.

B.2 Cross-dataset Evaluation: Trained on Other Datasets

We conducted cross-dataset training, with results shown in Table 9. We observed that when trained on
simpler datasets such as PURE and UBFC-rPPG, traditional methods (e.g., CHROM, POS) performed
comparably to the DL methods on our dataset. Notably, the DL method using STMap outperformed
the direct video input approach.

Table 9: Cross-dataset. HR estimation performance of baselines with different training sets.
Method Train Set MAE↓ RMSE↓ P↑
CHROM [52] N/A 12.23 15.97 0.11
POS [53] N/A 12.42 16.15 0.10
ICA [25] N/A 13.31 16.93 0.06

SiNC [26]
PURE 11.46 15.01 0.11
UBFC-rPPG 14.26 18.00 0.12
PhysDrive 6.29 8.93 0.61

PhysNet [32]
PURE 13.52 16.81 0.05
UBFC-rPPG 14.68 17.98 0.02
PhysDrive 7.85 10.17 0.41

RhythmFormer [57]
PURE 11.72 15.13 0.11
UBFC-rPPG 12.53 15.87 0.08
PhysDrive 7.95 10.70 0.28

BVPnet∗ [58]
PURE 10.59 14.11 0.11
UBFC-rPPG 10.46 13.72 0.12
PhysDrive 6.84 9.01 0.58

RhythmNet∗ [21]
PURE 9.30 12.21 0.14
UBFC-rPPG 9.86 13.20 0.14
PhysDrive 7.21 9.84 0.45

DeepPhys [31]
PURE 18.57 21.67 0.01
UBFC-rPPG 18.74 21.87 0.02
PhysDrive 11.97 13.17 0.20

Physformer [55]
PURE 12.93 16.16 0.06
UBFC-rPPG 14.34 17.49 0.03
PhysDrive 7.85 10.17 0.41

EfficientPhys [56]
PURE 17.59 20.71 0.03
UBFC-rPPG 17.42 20.56 0.00
PhysDrive 11.27 13.51 0.20

B.3 Cross-dataset Evaluation: Tested on Other Datasets

We also trained the DL method on PhysDrive and tested it on the PURE and UBFC-rPPG datasets.
The results are displayed in Table 10. We observed that the performance of the same baseline on
PURE and UBFC-rPPG was better. This indicates that our dataset can be effectively used for training
DL models and further applied in other scenarios. It also highlights that the training difficulty of
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PhysDrive is greater than that of PURE and UBFC-rPPG, which is one of the primary reasons for
introducing this dataset.

Table 10: Cross-dataset. HR estimation performance of baselines when trained in PhysDrive and
tested on PURE and UBFC-rPPG.

Test Set PURE UBFC-rPPG

Method MAE↓ RMSE↓ P↑ MAE↓ RMSE↓ P↑
CHROM [52] 9.79 12.76 0.37 7.23 8.92 0.51
POS [53] 9.82 13.44 0.34 7.35 8.04 0.49
SiNC [26] 18.33 21.89 0.14 18.34 21.89 0.13
PhysNet [32] 15.99 19.40 0.08 12.84 15.84 0.13
RhythmFormer [57] 14.19 18.07 0.12 13.64 16.81 0.11
BVPnet∗ [58] 14.10 17.45 0.13 12.59 15.37 0.13
RhythmNet∗ [21] 13.76 17.41 0.16 10.01 14.35 0.20

B.4 Cross-dataset Evaluation on Different Scenarios

We compared the performance variations of traditional and DL methods under different lighting
and motion scenarios, as shown in Table 12, Table 11, and Table 13. All methods reached their
best performance around noon and had the lowest performance at night. Additionally, although the
brightness on cloudy and rainy days fluctuated, it remained stable, and the performance was better
than during the morning and evening when lighting fluctuated with the driving direction. As expected,
the performance of all methods decreased when the driver engaged in additional conversation.

B.5 Case Study of Difference Between ECG and BVP Labeling

Although we tried our best to conduct data cleaning on all signals (BVP, ECG, RESP) prior to the
experiment, and filtering and detrending operations to remove unreliable data caused by device
issues during acquisition, or to minimize the impact of environmental noise and physical motions,
the ECG signal should still provide higher-quality data than the BVP signal, particularly due to the
effects of dynamic illumination and hand movements during BVP collection in this experiment. The
performance of rPPG methods trained with BVP signals might be impaired. Therefore, we performed
a consistency check on the HR extracted from the BVP and ECG signals.

As shown in Table 14, our results indicate differences in HR between the ECG and BVP signals,
especially under varying lighting conditions. We suppose these discrepancies arise, on the one
hand, because the optical measurement principle of BVP/PPG is sensitive to ambient light; on the
other, more hand and body motions in driving affect device stability and signal quality. Despite
our best efforts to eliminate these effects during the pre-experiment equipment installation and
post-experiment data cleaning, they are unavoidable in our experimental setting. We also attempted to
fit the HR from ECG using PhysNet and FactorizePhys with RGB video (Table 15). However, during
intra-dataset evaluation, the performance of this model was inferior to previous results based on BVP.

Furthermore, we test on PhysDrive using FactorizePhys and PhysNet, which were trained on iBVP
and PURE datasets. We compare HR extracted from the BVP output by the model with HR extracted
from the ground-truth ECG. The results in Table 16 indicate that both models, regardless of their
pre-training dataset, exhibit significantly larger errors. We also evaluate the performance at noon,
when the lighting is more stable and most models performed better, and find the result is close to
those obtained from the full dataset. Combining with previous findings, we argue that HR extracted
from ECG signals may not be suitable for training or evaluating current video-based rPPG methods.
However, we also believe that these conclusions still require further verification through additional
experiments with more datasets. The underlying reasons for these findings warrant further exploration
in the future.

B.6 Computational Efficiency of Baselines

We tested the computational efficiency of baselines in this work under our computational platform.
The results are shown in Table 17. Computational efficiency is an important consideration in practical

18



Table 11: Cross-dataset Scenario Evaluation with Traditional Methods. HR estimation performance of
RGB-based baselines under varying lighting and motion conditions.

Method E.M.&D. Noon Night R.&C. Stationary Talking All

MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑

CHROM [52] 11.79 0.10 10.27 0.26 14.37 -0.01 12.25 0.07 12.45 0.13 12.35 0.07 12.36 0.12
POS [53] 12.05 0.07 10.44 0.24 14.36 -0.02 12.22 0.09 12.69 0.10 12.20 0.06 12.79 0.07
GREEN [14] 13.56 0.01 13.53 0.03 15.16 -0.02 13.73 0.02 14.13 0.05 13.94 0.01 14.28 0.02
ICA [25] 13.38 0.01 12.57 0.06 14.62 -0.03 13.00 0.03 13.86 0.03 13.41 0.04 13.73 0.03

Table 12: Cross-dataset Scenario Evaluation When Trained on Other Datasets. HR estimation performance
of RGB vision–based baselines under varying lighting and motion conditions when trained on PURE and UBFC.

Method Condition E.M.&D. Noon Night R.&C. Stationary Talking All

Train Set MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑ MAE↓ P↑

SiNC [26] PURE 11.16 0.06 10.06 0.17 13.24 0.01 11.39 0.11 11.90 0.11 11.02 0.13 11.46 0.11
UBFC 15.99 0.03 11.62 0.26 15.42 -0.01 13.99 0.08 14.07 0.14 14.39 0.08 14.26 0.12

DeepPhys [31] PURE 22.73 -0.03 17.18 0.00 16.96 -0.02 18.19 0.03 18.71 0.00 18.58 0.00 18.57 0.01
UBFC 22.05 0.02 17.16 0.02 16.83 -0.01 18.32 0.04 18.47 0.03 18.60 0.03 18.74 0.02

PhysNet [32] PURE 15.06 0.05 11.99 0.09 13.76 -0.01 13.30 0.03 13.76 0.05 13.34 0.03 13.52 0.05
UBFC 16.92 0.03 12.79 0.07 13.59 0.04 14.42 0.02 14.50 0.06 14.33 -0.01 14.68 0.02

Physformer [55] PURE 14.55 0.03 10.98 0.16 12.82 0.02 12.18 0.07 12.90 0.12 12.53 0.07 12.93 0.06
UBFC 16.39 0.05 12.76 0.06 13.22 0.03 13.57 0.03 14.51 0.05 14.09 0.01 14.34 0.03

EfficientPhys [56] PURE 21.46 -0.03 15.39 0.03 15.86 0.00 17.06 0.00 17.73 0.03 17.44 -0.02 17.59 0.03
UBFC 21.25 0.02 15.61 0.03 15.79 -0.01 17.26 -0.02 17.82 0.02 17.44 0.00 17.42 0.00

RhythmFormer [57] PURE 12.51 0.04 10.40 0.19 13.65 -0.05 11.73 0.04 11.45 0.13 12.09 0.07 11.72 0.11
UBFC 12.98 0.01 11.04 0.15 12.94 0.05 12.18 -0.01 12.16 0.11 12.57 0.05 12.53 0.08

BVPnet∗ [58] PURE 6.72 0.08 10.47 0.14 13.94 -0.04 10.32 0.05 10.89 -0.02 10.29 -0.02 10.59 0.11
UBFC 13.80 0.01 9.99 0.16 11.14 -0.06 10.74 0.08 11.85 -0.01 11.08 -0.03 10.46 0.12

RhythmNet∗ [21] PURE 7.91 0.04 8.87 0.23 11.96 -0.06 8.40 0.14 9.61 0.15 8.99 0.11 9.30 0.14
UBFC 6.83 0.03 10.56 0.15 12.25 -0.03 9.95 0.01 10.18 0.11 9.56 0.17 9.86 0.14

Table 13: Cross-dataset Scenario Evaluation. HR estimation performance of RGB-based methods
that were trained on SCAMP and tested on PhysDrive.

Method Metric E.M. & D. Noon Night R. & C. Stationary Talking A0 B C All

DeepPhys [31]

MAE↓ 21.80 16.99 16.47 16.54 17.98 18.33 18.15 19.96 22.27 21.29
RMSE↓ 24.44 19.77 19.45 17.82 21.11 21.31 21.18 19.96 22.27 21.29
STD↓ 11.87 13.27 14.94 12.71 14.24 13.49 12.94 12.73 12.80 13.73
P↑ -0.01 0.00 0.02 0.01 0.03 -0.05 -0.02 0.02 0.00 0.00

PhysNet [32]

MAE↓ 14.61 11.86 13.14 13.34 13.26 13.08 13.69 17.10 15.13 16.32
RMSE↓ 17.78 14.68 16.32 16.48 16.46 16.10 16.67 17.10 15.13 16.32
STD↓ 13.18 13.66 15.75 14.44 14.99 14.10 13.64 13.98 13.57 14.58
P↑ 0.02 0.13 0.01 -0.04 0.08 0.03 0.03 -0.02 0.06 0.04

PhysFormer [55]

MAE↓ 14.15 11.74 12.76 12.37 13.02 12.80 14.92 16.44 15.38 15.77
RMSE↓ 17.07 14.67 15.83 15.26 16.09 15.75 14.92 16.44 15.38 15.77
STD↓ 12.69 13.81 15.60 13.81 15.01 14.24 12.80 12.79 13.47 14.43
P↑ 0.01 0.06 0.03 0.02 0.03 -0.01 0.08 -0.03 0.05 0.02

EfficientPhys [56]

MAE↓ 19.98 15.90 15.02 15.93 16.84 16.41 19.52 19.13 20.48 19.72
RMSE↓ 22.65 18.67 17.97 19.04 19.84 19.36 19.52 19.13 20.48 19.72
STD↓ 11.68 13.48 15.04 12.64 14.64 13.10 12.67 13.14 12.98 13.77
P↑ 0.02 -0.01 0.02 0.02 -0.01 0.02 0.02 -0.03 -0.01 0.00

FactorizePhys [59]

MAE↓ 15.42 11.89 13.51 13.28 13.54 13.26 16.41 16.72 17.15 16.70
RMSE↓ 18.47 15.02 16.75 16.43 16.73 16.35 16.41 16.72 17.15 16.70
STD↓ 12.75 13.31 15.72 13.62 14.42 13.95 13.39 13.48 13.48 13.22
P↑ 0.04 0.13 0.01 0.06 0.11 0.05 0.07 0.07 0.06 0.07

applications of driving scenarios. This table can serve as a reference for the selection of subsequent
deployment models.
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Table 14: Consistency check on HR extracted
from ground-truth BVP and ECG signals under
varying lighting conditions.

Metric E.M. & D. Noon Night R.&C.

MAE↓ 3.38 2.78 3.20 2.35
RMSE↓ 4.22 4.16 4.19 3.10
STD↓ 3.34 3.13 3.25 2.62
P↑ 0.88 0.84 0.80 0.85

Table 15: Intra-dataset performance of models
attempting to fit HR from the ECG ground truth
using RGB video.

Method MAE↓ RMSE↓ SD↓ P↑
PhysNet [32] 15.87 19.32 16.09 0.08
FactorizePhys [59] 11.76 14.27 14.18 0.14

Table 16: Comparison of PhysNet and FactorizePhys on the PhysDrive dataset. Models were trained
on BVP in iBVP and PURE, and performance was evaluated by comparing the model’s output HR
against the ground-truth ECG-derived HR.

Method iBVP PURE
MAE↓ RMSE↓ SD↓ P↑ MAE↓ RMSE↓ SD↓ P↑

PhysNet [56] 19.32 23.09 16.24 0 19.32 23.25 16.28 -0.02
FactorizePhys [59] 20.60 24.15 14.36 0.02 20.92 24.44 14.67 0.01

Table 17: Computational Efficiency of Baselines.
Method Parameters (M)↓ FLOPs (G)↓ Inference Time (ms)↓ Memory Usage (M)↓
DeepPhys [31] 2.13 33.85 15 999.06
PhysNet [32] 0.73 65.30 5 132.26
PhysFormer [55] 7.04 47.13 40 643.33
EfficientPhys [56] 2.06 22.45 14 735.76
RhythmFormer [57] 3.10 35.85 34 602.81
FactorizePhys [59] 0.07 2.83 11 88.20
BVPNet [58] 3.79 4.98 7 38.25
RhythmNet [21] 21.81 2.22 8 79.97
PhysMLE [27] 24.82 34.57 32 232.40
BigSmall [61] 2.14 0.15 3 24.09
MTTS-CAN [60] 5.75 38.71 16 1014.42
mmFormer [51] 32.76 1.76 28 172.37
VitaNet [63] 0.70 0.26 8 14.42
IQ-MVED [62] 30.37 6.87 56 259.89
Fusion-Vital [64] 196.89 55.17 42 3821.53
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Question: Does the paper discuss the limitations of the work performed by the authors?
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide necessary details of implementation and experiment results in
Section 4
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Answer: [Yes]
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results?

Answer: [Yes]
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7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We reported the average values of five independent evaluations. However, since
the focus of this paper is not to propose new ones, not conducting statistical significance
tests will not affect the findings and contributions of this paper.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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21



9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research was approved by the Human and Artefacts Research Ethics
Committee of the university.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 5.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This article does not involve AI-generated content.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Justification: See Section 3.1.
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