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Abstract

Understanding causality has vital importance001
for various Natural Language Processing002
(NLP) applications. Beyond the labeled in-003
stances, conceptual explanations of the causal-004
ity can provide deep understanding of the005
causal fact to facilitate the causal reasoning006
process. However, such explanation informa-007
tion still remains absent in existing causal rea-008
soning resources. In this paper, we fill this gap009
by presenting a human-annotated explainable010
CAusal REasoning dataset (e-CARE), which011
contains over 20K causal reasoning questions,012
together with natural language formed expla-013
nations of the causal questions. Experimental014
results show that generating valid explanations015
for causal facts still remains especially chal-016
lenging for the state-of-the-art models, and017
the explanation information can be helpful for018
promoting the accuracy and stability of causal019
reasoning models.020

1 Introduction021

Causal reasoning is one of the most central cog-022

nitive abilities of human beings (Waldmann and023

Hagmayer, 2013; Jonassen et al., 2008), which en-024

ables one to understand the observed facts and pre-025

dict the future. However, although recent causal026

reasoning models have achieved impressive per-027

formances on certain hand-crafted datasets, there028

still remains a considerable gap compared to hu-029

man performances, as they cannot achieve stable030

performances across different datasets and are sus-031

ceptible to adversarial attacks (McCoy et al., 2019;032

Poliak et al., 2018; Gururangan et al., 2018).033

One key factor leading to such drastic contrast034

is that, present causal reasoning models only learn035

to induce empirical causal patterns that are predic-036

tive to the label, while human beings seek for deep037

and conceptual understanding of the causality to038

explain the observed causal facts. The conceptual039

explanations can not only serve as a touchstone040
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Figure 1: Conceptual explanations of observed causality can
be helpful for understanding the unseen causal facts.

to examine whether the underlying causal mech- 041

anism has been thoroughly understood, but it can 042

also in turn support the causal reasoning process. 043

As illustrated in Figure 1, observing the causal 044

fact C1: adding rock into hydrochloric acid causes 045

E1: rock dissolved, one may further ask why such 046

a causal relationship exists and reach the plausi- 047

ble conceptual explanation that Acid is corrosive, 048

which goes beyond the isolated facts and reaches 049

the conceptual nature to reveal the principle of the 050

causal mechanism. 051

However, despite the critical importance of con- 052

ceptual explanations in causal reasoning, there is 053

still a lack of such an explainable causal reason- 054

ing dataset. To fill this gap, we contribute an ex- 055

plainable CAusal REasoning dataset (e-CARE), 056

a new causal explanation generation task, and a 057

novel Causal Explanation Quality (CEQ) evalua- 058

tion metric. 059

The e-CARE dataset is constructed by crowd- 060

sourcing and contains over 20K multiple-choice 061

causal reasoning questions, which makes e-CARE 062

the largest human-annotated commonsense causal 063

reasoning dataset to the best of our knowledge. In 064

addition to the causal reasoning question itself, e- 065

CARE also provides a free-text-formed concep- 066

tual explanation for each causal question to ex- 067

plain why the causation exists. On this basis, we 068

propose a new causal explanation generation task 069

that requires models not only to choose the correct 070

causal fact but also to generate the explanation for 071

the choice. To directly measure the quality of gen- 072

erated explanations, we propose a novel causal ex- 073
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planation quality evaluation metric (namely, CEQ074

score). Compared to conventional text generation075

evaluation metrics such as BLEU (Papineni et al.,076

2002) and ROUGE (Lin, 2004) which mainly eval-077

uate the textual or semantic similarity between078

generated explanations with golden annotations,079

CEQ score focuses on evaluating how much pro-080

motion an explanation can bring to understanding081

the causal mechanism.082

Experimental results demonstrate that the083

causal questions of e-CARE are still challeng-084

ing for the state-of-the-art (SOTA) pretrained lan-085

guage models, indicating the effectiveness of the086

e-CARE dataset in evaluating the causal learning087

ability of models. In addition, the explanation sig-088

nal received in the training process can enhance089

the performance and the stability of the reason-090

ing model, while the SOTA baselines still have091

trouble explaining the causal facts at a conceptual092

level. These analyses highlight the importance of093

the conceptual explanations in causal reasoning,094

and suggest an avenue for future researches.095

2 Related Work096

2.1 Commonsense Causal Reasoning097

Datasets098

Existing commonsense causal reasoning corpora099

differ in their annotation guidelines and how they100

are constructed: (1) whether the corpus is auto-101

matically constructed or built by human annota-102

tion; (2) whether the annotation unit of the corpus103

is word-level, phrase-level, or sentence-level.104

To obtain abundant causal knowledge, a natural105

way is extracting causal knowledge using heuris-106

tic rules from large-scale open-domain web text107

corpora (Luo et al., 2016; Li et al., 2020; Sap108

et al., 2019). However, the reporting bias may109

challenge both the coverage and quality of the ex-110

tracted causal knowledge.111

Different from automatic construction, human112

annotation can endow datasets with higher pre-113

cision. A line of work focuses on providing114

word-level causality knowledge (Girju et al., 2007;115

Mostafazadeh et al., 2016; Do et al., 2011; Hen-116

drickx et al., 2019). However, a word is not a117

complete semantic unit, which may limit the in-118

tegrity of causal expressions and lead to ambi-119

guity. To address this issue, other datasets are120

constructed to provide phrase-level (Caselli and121

Vossen, 2017; Bethard and Martin, 2008; Mirza122

et al., 2014; Dunietz et al., 2017) and sentence-123

Dataset Anno. Unit Size Expl.
Automatically-Built Dataset
CausalNet (Luo et al., 2016) W 11M N
CausalBank (Li et al., 2020) P 314M N
Human-Annotated Dataset
SemEval-2007 T4 (Girju et al., 2007) W 220 N
CaTeRS (Mostafazadeh et al., 2016) W 488 N
EventCausalityData (Do et al., 2011) W 580 N
SemEval-2010 T8 (Hendrickx et al., 2019) W 1,003 N
ESC (Caselli and Vossen, 2017) P 117 N
T-CBank (Bethard and Martin, 2008) P 271 N
CausalTimeBank (Mirza et al., 2014) P 318 N
BECauSE 2.0 (Dunietz et al., 2017) P 1,803 N
TCR (Ning et al., 2019) S 172 N
COPA (Roemmele et al., 2011) S 1,000 N
e-CARE S 20K Y

Table 1: A list of previous commonsense causal reasoning
datasets. In the column “Annotation Unit”, “W”, “P” and “S”
are abbreviation of word, phrase and sentence, respectively.
“Expl.” is the abbreviation of “Explanation”.

level (Ning et al., 2019; Roemmele et al., 2011) 124

causal knowledge. Among these datasets, COPA 125

(Roemmele et al., 2011) has become a widely 126

adopted benchmark. Nevertheless, the size of 127

COPA is rather limited, which may result in over- 128

fitting and arouse concerns about the confidence 129

of the results. 130

In this paper, we introduce an explainable 131

CAusal REasoning dataset (e-CARE). As shown 132

in Table 1, to the best of our knowledge, e-CARE 133

is the largest human-annotated causal reasoning 134

dataset. With more than 20,000 instances, the e- 135

CARE dataset can serve as a more reliable bench- 136

mark. Furthermore, compared to previous work, 137

e-CARE can provide additional explanation infor- 138

mation, which plays a critical role in learning the 139

underlying mechanism of causal knowledge. 140

2.2 Explainable Textual Inference 141

Recently, an increasing amount of datasets have 142

been proposed to address the explainability of 143

textual inference tasks, such as textual entail- 144

ment inference (Camburu et al., 2018), question- 145

answering (QA) (DeYoung et al., 2019; Perez 146

et al., 2019) and multi-hop QA (Ye et al., 2020). 147

The form and content of the explanations vary 148

with the nature of specific tasks. 149

The QA task requires a model to answer the 150

question based on evidences within given texts. 151

Therefore, the explanation for this task should de- 152

scribe where and how an answer can be found 153

(Wiegreffe and Marasović, 2021). The explana- 154

tions can have various forms, including answer- 155

bearing sentences (Perez et al., 2019), structured 156

information connecting the question and answer 157
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Number Train Dev Test Total
Causal Questions 14,651 1,826 3,662 20,139
Uniq. Explanations 10,265 1,117 1,654 13,036

Table 2: Corpus level statistics of the e-CARE dataset. Uniq.
Explanations refer to the explanations that only correspond to
a single causal fact.

(Hancock et al., 2018; Ye et al., 2020), or even158

human-annotated free-formed sentences (Cam-159

buru et al., 2018; Rajani et al., 2019). In contrast,160

the multi-hop QA task requires the model to in-161

fer the correct answer through multiple reasoning162

steps. Hence, the explanation of this task needs163

to provide the specific reasoning paths (Wiegreffe164

and Marasović, 2021; Jhamtani and Clark, 2020).165

Our work is quite different from previous work.166

We notice that all of these previous work only of-167

fer explanations that explain a specific question.168

Whereas we aim at providing a conceptual under-169

standing of the causality, which has the potential to170

explain a set of related causal observations, rather171

than only explain a specific causal fact.172

3 e-CARE: an Explainable Causal173

Reasoning Dataset174

e-CARE contains a total of 20,139 instances, cor-175

responding to 13,036 unique explanations. This176

also makes e-CARE the largest human-annotated177

commonsense causal reasoning benchmark. The178

corpus-level statistics of the e-CARE dataset are179

shown in Table 2.180

As shown in Table 11, each instance of the e-181

CARE dataset is constituted by two components:182

(1) a multiple-choice causal reasoning question,183

composed of a premise and two hypotheses, and184

one of the hypotheses can form a valid causal185

fact with the premise; (2) a conceptual explanation186

about the essential condition that enables the exis-187

tence of the causal fact. For example, as Table 11188

shows, the explanation points out the nature of189

copper that Copper is a good thermal conductor,190

so that holding copper on fire will make fingers191

feel burnt immediately. The appendix provides192

more discussion about the explanations within e-193

CARE. On this basis, we introduce two tasks:194

Causal Reasoning Task We formulate the causal195

reasoning task as a multiple-choice task: given a196

premise event, one needs to choose a more plau-197

sible hypothesis from two candidates, so that the198

premise and the correct hypothesis can form into a199

valid causal fact.200

Explanation Generation Task It requires the201

Premise: Tom holds a copper block by hand and
heats it on fire.

Ask-for: Effect
Hypothesis 1: His fingers feel burnt immediately. (!)
Hypothesis 2: The copper block keeps the same. (×)
Explanation: Copper is a good thermal conductor.

Table 3: An instance from the e-CARE dataset.

model to generate a free-text-formed explanation 202

for a given causal fact (composed of a premise and 203

the corresponding correct hypothesis). 204

3.1 Data Annotation 205

To construct the e-CARE dataset, we start by col- 206

lecting statements that describe conceptual un- 207

derstandings of world knowledge. Then given a 208

statement, we ask different annotators to gener- 209

ate causal facts that can be explained the state- 210

ment, and build causal questions based on these 211

causal facts. This is because we hope to provide 212

conceptual explanations with more generality, that 213

can explain a set of correlated causal facts, instead 214

of only applicable to a certain isolated causal fact. 215

Moreover, the statements can serve as clues to help 216

the annotators to come up with causal facts. 217

Collecting Potential Explanations Two key is- 218

sues remain in collecting statements as potential 219

explanations: (1) what kind of statements can 220

be potential conceptual explanations of the causal 221

facts; (2) where to find the appropriate statements. 222

For the first question, Jonassen et al. (2008) 223

concluded that, in general, the explanation of 224

causality mainly describes three categories of in- 225

formation: (1) the nature or attributes of the ob- 226

jectives involved in the causal facts; (2) forces or 227

actions that cause changes and drive transient mo- 228

tions; (3) the goals, intentions, motives or pur- 229

poses of the causal agents. In addition, to be 230

the conceptual explanation of a causal fact, the 231

statement should be able to involve with a cate- 232

gory of objects or people, but not only focus on 233

a specific object or person (Sembugamoorthy and 234

Chandrasekaran, 1986). 235

Following these principles, we notice that 236

there are already several available knowledge 237

bases containing statements about such generic 238

world knowledge, including ConceptNet (Speer 239

and Havasi, 2013), WordNet (Fellbaum, 2010), 240

Atomic (Sap et al., 2019) and GenericsKB (Bhak- 241

thavatsalam et al., 2020). However, ConceptNet 242

and WordNet are structured knowledge graphs, 243

containing only triplet-structured statements with 244

a limited number of predicates. The scope of 245
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Atomic is limited in the activities of human be-246

ings. Compared to these knowledge bases, Gener-247

icsKB is an open-domain, large-scale knowledge248

base, containing rich generic world knowledge de-249

scribed in free-form text. Therefore, we collect the250

statements from GenericsKB to ensure the cover-251

age and diversity of the potential explanations.252

Specifically, we filter out the statements in253

GenericsKB with low reliability, and the state-254

ments that may disobey the above-mentioned three255

principles. More details are provided in the Ap-256

pendix. Thereafter, a total of 19,746 statements257

are left to form into a potential explanation set,258

which is further provided to the annotators to gen-259

erate the causal questions.260

Annotating Causal Reasoning Questions Given261

the potential explanation set, annotators were re-262

cruited on Amazon Mechanical Turk to generate263

corresponding causal questions. Specifically, a264

causal question is generated by two steps:265

First, an annotator was presented with a state-266

ment as potential explanation, and was instructed267

to write a causal fact (composed of a cause and an268

effect), so that the causal fact can be interpreted by269

the given statement. In this step, a key issue is con-270

trolling the quality of generated causal facts. Thus271

we demonstrated illustrative examples to guide the272

annotators to avoid the following mistakes:273

(1) The created cause and effect are not in a274

valid causal relationship;275

(2) The created causal fact cannot be explained276

by the provided statement;277

(3) There are factual errors or imaginary con-278

tents in the created causal facts.279

In the causal fact generating process, each state-280

ment is randomly distributed to 1-3 annotators, so281

that we can find some statements that could ex-282

plain multiple causal facts. Note that, in this pro-283

cess, we do not assume all statements are neces-284

sary to be a valid explanation. In other words, we285

do not require that the annotators must generate a286

causal fact for each given statement. Instead, we287

leave it to the judgment of annotators. In this way,288

the unreliable statements can be further excluded289

to promote the quality of our dataset.290

After the generation of causal facts, an ask-291

for indicator a ∈ [“cause”, “effect”] was ran-292

domly generated, where a = “cause” (“effect”)293

means that the cause (effect) event is the hypoth-294

esis, and the effect (cause) event is the premise of295

the causal question, respectively. Then given the296

Model Dev Test
Random 50.1 50.1
GPT2 (Radford et al., 2018) 55.78 55.32
RoBERTa (Liu et al., 2019) 54.79 55.20
BERT (Devlin et al., 2019) 53.19 54.58

Table 4: Model’s accuracy (%) of choosing the correct hy-
pothesis without the premise.

ask-for indicator, in order to control the grammar 297

and writing style consistency, the same annotator 298

was prompted to write a distract cause (effect) as 299

the implausible hypothesis according to the ask- 300

for indicator. In this process, the annotators were 301

instructed to create the implausible hypothesis as 302

close as possible to the true hypothesis, meanwhile 303

prevent creating uninformative distractors (such as 304

simply adding a “not” into the true hypothesis). 305

3.2 Refinement and Analysis of the e-CARE 306

Dataset 307

A significant challenge in dataset construction 308

is avoiding introducing superficial cues into the 309

dataset (Gururangan et al., 2018; Poliak et al., 310

2018), which refers to the unintentional features 311

that leak the label information. To address this 312

issue, following Bhagavatula et al. (2019) and 313

Sakaguchi et al. (2020), we employ an adversar- 314

ial filtering algorithm to replace the implausible 315

hypotheses that can easily be distinguished with 316

the correct hypotheses using the superficial clues. 317

More details about the adversarial filtering are pro- 318

vided in the Appendix. As Table 4 shows, after 319

the adversarial filtering, without the existence of 320

the premise, the SOTA pretrained language mod- 321

els can hardly distinguish two candidate hypothe- 322

ses, which indicates that to predict the correct la- 323

bel, a model must understand the causal relation- 324

ship between the premise and hypothesis, rather 325

than only depend on the superficial cues within the 326

two hypotheses. 327

After the refinement, we evaluate the quality of 328

the annotated causal questions and collected ex- 329

planations through crowdsourcing. We assess the 330

quality of causal questions by testing if there is 331

agreement among human raters on the answer of 332

causal questions. Specifically, we randomly sam- 333

pled 200 causal questions from e-CARE, and en- 334

listed 10 annotators to answer the causal ques- 335

tions. In this process, each causal question was 336

evaluated by three annotators. When answering 337

the causal questions, the raters were allowed to 338

choose an additional option “None of the above” 339

if neither hypothesis was deemed plausible. The 340
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human annotators achieve a 97% accuracy with341

a high agreement (Cohen’s κ = 0.935) (Cohen,342

1960).343

To validate the quality of explanations, we344

enlisted volunteers to determine whether or not345

the explanations can explain corresponding causal346

facts. In total 200 causal facts with correspond-347

ing explanations were sampled and distributed to348

10 volunteers, and each explanation was evaluated349

by three volunteers. After the evaluation, on av-350

erage 89.5% of the explanations were deemed as351

valid (Cohen’s κ = 0.832), showcasing the quality352

of the explanations in e-CARE.353

4 Causal Explanation Quality (CEQ)354

Score355

A number of automatic scores have been proposed356

to evaluate the quality of generated explanations,357

such as BLEU (Papineni et al., 2002) and ROUGE358

(Lin, 2004). However, these metrics evaluate the359

quality of the generated explanations only through360

comparing the textual or semantic similarity be-361

tween the generated explanations and the golden362

annotation. Alternatively, an ideal causal explana-363

tion quality evaluation metric should directly mea-364

sure if the causal fact is appropriately explained by365

the explanation.366

Hence, we propose a novel causal explanation367

quality evaluation metric (namely, CEQ score) as368

a step towards directly measuring the quality of369

generated explanations. We devise the CEQ score370

based on the consideration that a better explana-371

tion should provide more information for under-372

standing the causality, so that the prediction model373

can more accurately estimate the reasonableness374

of the causal fact. Previous literature character-375

ized such reasonableness as the causal strength of376

the given causal fact (Roemmele et al., 2011; Luo377

et al., 2016), where the causal strength is a score378

in [0, 1]. Hence, in theory, for a valid causal fact,379

its causal strength should be equal to 1. Given a380

valid causal fact, an explanation should help to in-381

crease its estimated causal strength to the ground-382

truth value 1.383

Therefore, we can evaluate the quality of a384

generated explanation by measuring the increase385

of causal strength brought by the explanation.386

Specifically, let C, E, and X denote the cause, the387

effect and the generated explanation, respectively.388

Formally, the CEQ score is defined as:389

CEQ = ∆cs = cs(C,E|X)− cs(C,E), (1)390

where cs(C,E) is the original causal strength be- 391

tween C and E; cs(C,E|X) is the causal strength 392

after involvement of the additional explanation 393

information. The explanation enhanced causal 394

strength cs(C,E|X) is defined as: 395

cs(C,E|X) = max[cs(C +X,E), cs(C,E +X)], (2) 396

where “+” denotes the string concatenate opera- 397

tion. Therefore, the CEQ score is positively re- 398

lated to the increase of causal strength between C 399

and E after the involvement of the explanation X . 400

In this paper, we employ a widely-adopted 401

model-agnostic method proposed by Luo et al. 402

(2016) to calculate the causal strength. The 403

model-agnostic nature enable us to avoid reliance 404

on certain models and keep the fairness of evalua- 405

tion. Specifically, the phrase-level causal strength 406

is derived through synthesizing the word-level 407

causality. 408

cs(CA,EB ) =
1

NCA ×NEB

∑
wi∈CA,wj∈EB

cs(wi ,wj ), (3) 409

where (CA,EB ) is an arbitrary causal fact; NCA 410

and NEB are the number of words within CA and 411

EB , respectively; cs(wi, wj) is the causal strength 412

between word wi and wj , which is estimated from 413

a large corpus as: 414

cs(wi, wj) =
Count(wi, wj)

Count(wi)Count(wj)α
, (4) 415

where α is a penalty coefficient and Luo et al. 416

(2016) empirically set α = 0.66. 417

5 Experiments and Results 418

We examine the performance of state-of-the-art 419

pretrained language models on the causal reason- 420

ing task and the explanation generation task. Fur- 421

thermore, we investigate the specific role of ex- 422

planations in causal reasoning by: (1) a predict- 423

and-generate experiment, which requires models 424

to conduct the causal reasoning task and generate 425

corresponding explanations simultaneously; (2) a 426

stability analysis using adversarial attacks. 427

5.1 Causal Reasoning 428

Settings We cast the causal reasoning task as a 429

prediction problem: The input of the model is a 430

candidate causal fact composed of a premise and 431

one of the corresponding candidate hypotheses. 432

The output is a score measuring the reasonable- 433

ness of the candidate causal fact. We evaluate 434
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Model AVG-BLEU ROUGE-l PPL CEQ Human Evaluation (%)
GRU-Seq2Seq 18.39 25.52 293.19 0.024 0
GPT2 (Radford et al., 2019) 30.06 28.04 9.23 0.105 20.0
Human Generation 35.51 33.46 - 0.144 89.5

Table 6: Model performance on the explanation generation task.

Model Accuracy (%)
GPT2 (Radford et al., 2019) 65.10
RoBERTa (Liu et al., 2019) 67.20
BART (Lewis et al., 2020) 69.30
XLNET (Yang et al., 2019) 71.02
BERT (Devlin et al., 2019) 71.72
ALBERT (Lan et al., 2019) 73.86
Human Performance 97.00

Table 5: Performance of pretrained language models on the
test set of the causal reasoning task.

the causal reasoning ability of several SOTA pre-435

trained language models, including discriminative436

pretrained language models BERT (Devlin et al.,437

2019), RoBERTa (Liu et al., 2019), XLNet (Yang438

et al., 2019), and ALBERT (Lan et al., 2019); as439

well as autoregressive generative pretrained lan-440

guage models GPT2 (Radford et al., 2019) and441

BART (Lewis et al., 2020), which can also be442

adapted to the predictive causal reasoning task.443

In this section and the following parts, all exper-444

iments are conducted using the base-sized version445

of the pretrained language models. Additional de-446

tails about experimental settings are provided in447

the Appendix.448

Results As shown in Table 5, ALBERT achieves449

the highest accuracy of 73.86% on the causal450

reasoning task of e-CARE. However, ALBERT451

can achieve an accuracy of 86.0% on the widely452

adopted causal reasoning benchmark COPA by453

our implementation. This is mainly because, on454

one hand, previous causal reasoning datasets are455

too small to evaluate the genuine reasoning ability456

of the model. On the other hand, previous datasets457

may provide some superficial cues for the reason-458

ing models to achieve superb performances. In459

contrast, e-CARE is the largest causal reasoning460

dataset that can provide enough test instances to461

evaluate the actual ability of the model. More-462

over, in the annotating process of e-CARE, we in-463

troduced an adversarial filtering process to avoid464

the influence of superficial cues on the perfor-465

mances of reasoning models. Hence, we believe466

that e-CARE dataset can serve as a new bench-467

mark for effectively evaluating models’ causal rea-468

soning ability. We also notice that human beings469

can achieve an accuracy of 97.00% on the e-CARE470

dataset. The large gap between the human per-471

formance and the pretrained language models sug-472

Corr. Coef with Human Eval. P-value
AVG-BLEU 0.032 0.749
ROUGE-l 0.021 0.836
CEQ 0.247 0.013*

Table 7: Pearson Correlation coefficients between human
evaluation and automatic scores. “*” denotes P-value< 0.05.

gests that the causal reasoning questions provided 473

in our dataset still remain challenging, and calls 474

for more powerful causal reasoning models. 475

5.2 Explanation Generation 476

We investigate whether the model can generate 477

correct explanations for given valid causal facts 478

by training a GRU-based Seq2Seq model (Chung 479

et al., 2014), and finetuning a generative pretrained 480

language model GPT2 (Radford et al., 2019) on 481

the e-CARE dataset. Both models take the con- 482

catenation of the cause and effect as input. Please 483

refer to the Appendix for more details. 484

Evaluation Metrics We automatically evalu- 485

ate the quality of generated explanations us- 486

ing average-BLEU (n=4) (Papineni et al., 2002), 487

ROUGE-l (Lin, 2004), Perplexity (Horgan, 1995), 488

together with our proposed CEQ score. 489

Human Evaluation We also assess the quality 490

of model-generated explanations through human 491

evaluation. Specifically, we sampled 200 explana- 492

tions generated by each method. Then three work- 493

ers were shown with the generated explanations, 494

together with corresponding causal facts, and were 495

asked to label whether the generated explanation 496

can explain the corresponding causal fact. 497

Quantitative Results As shown in Table 6, 89.5% 498

of human-written explanations are found to be 499

valid, while the generative pretrained language 500

model GPT2 only achieves a correctness of 20.0%. 501

The last row of Table 6 reports the score of held- 502

out human-written explanations, which serves as 503

a ceiling for model performance. The significant 504

gap indicates that, although GPT2 can achieve im- 505

pressive performance on various natural language 506

generation tasks, it still remains especially chal- 507

lenging for GPT2 to deeply understand the causal 508

facts and then generate explanations like human 509

beings. This may be one of the main obstacles hin- 510

dering the further improvement of present causal 511

reasoning models. 512
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Causal Facts (Generated) Explanation Human Annotation CEQ
Cause: He was infected with gram-positive bacteria.
Effect: The doctor raised the lysozyme in his body.

Lysozyme is a chemical produced by the
bacterium Bacillus thuringiensis to kill bacteria.

Lysozyme destroys cell wall of
bacteria. 0.193

Cause: Pneumonia pervaded in this area.
Effect: Many people died of Pneumonia.

Pneumonia is a leading infectious disease caused
by a bacterium called Pseudomonas aeruginosa.

Pneumonia is the most common
infectious disease leading to death. 0.069

Cause: Tom wanted to prevent cancer.
Effect: The doctor told him to eat more foods
containing Vitamin C.

Vitamin C is a naturally occurring
amino acid found in many foods.

Vitamin C slow the growth of small
cell lung cancer cells. 0.012

Table 8: Examples of explanations generated by GPT2. We highlighted the factual mistakes within the generated explanations
and the totally irrelevant explanation in yellow and pink, respectively.

Model Accu (%) AVG-BLEU ROUGE-l CEQ Human Eval. (%) ∆Accu. (%) after Adv. Attack
GPT2CR 65.10 - - - - -8.50
GPT2EG - 30.06 27.94 0.035 20.0 -
GPT2CR-EG 66.21 32.52 29.84 0.042 26.5 -7.27

Table 9: Model performance on the test set of Joint Causal Reasoning and Explanation Generation task.

Moreover, we measure the similarity between513

the automatic scores with the results of human514

evaluation using the Spearman correlation coeffi-515

cient. As Table 7 shows, ROUGH-l and average-516

BLEU barely have a correlation with the results of517

human evaluation. This is because average-BLEU518

and ROUGH-l only implicitly evaluate the quality519

of generated explanations by measuring the tex-520

tual similarity with the golden annotations. Com-521

pared to average-BLEU and ROUGH-l, the CEQ522

score has a significant positive relationship with523

the human evaluation results. This indicates the524

efficiency of the CEQ score in evaluating the qual-525

ity of generated explanations.526

Qualitative Analysis In Table 8, we provide ex-527

amples of explanations generated by GPT2. We528

observe that GPT2 can generate a reasonable ex-529

planation for some causal facts, while the gener-530

ated explanations may still contain factual mis-531

takes, or be totally irrelevant to the given causal532

fact (highlighted in yellow and pink, respectively).533

This indicate that the explanation generation still534

remains challenging for the GPT2 model.535

5.3 Joint Causal Reasoning and Explanation536

Generation537

To investigate the role of causal explanations in538

the causal reasoning process, we trained models539

to jointly conduct these two tasks.540

Settings Since this task requires a model to predict541

a label meanwhile generate an explanation, we542

conduct the experiments using the GPT2 model,543

which can be adapted to conduct the predictive544

causal reasoning task and explanation generation545

simultaneously. We denote this multi-task fine-546

tuned GPT2 model as GPT2CR-GE. Details for547

training GPT2CR-GE is provided in the Appendix.548

As the model cannot produce a correct explana-549

tion with a wrong prediction, when evaluating the550

quality of generated explanations, if a causal ques- 551

tion is not correctly answered, the quality scores 552

(e.g, BLEU, ROUGE, etc.) of the generated ex- 553

planation are all set as 0. 554

Results We measure the quality of generated ex- 555

planations using the same automatic scores and 556

human evaluation settings as the Explanation Gen- 557

eration experiment. The performance of causal 558

reasoning is also measured using accuracy. The 559

results are shown in Table 12, where GPT2CR de- 560

notes the GPT2 model finetuned for the causal 561

reasoning task, and GPT2EG refers to the GPT2 562

model finetuned for the explanation generation 563

task. We observe that compared with GPT2CR, the 564

improved performance of GPT2CR-EG on causal 565

reasoning indicates that the additional explanation 566

can be helpful for the causal reasoning task, as it 567

prompts model to have a deep understanding of the 568

causal mechanisms. Interestingly, by comparing 569

with GPT2EG and GPT2CR-EG, we find that learn- 570

ing to predict the label can also be helpful for the 571

explanation generation process. This indicates the 572

synergistic effect of the causal reasoning and the 573

explanation generation on promoting models’ un- 574

derstanding of causal mechanism. 575

5.4 Stability Analysis 576

Previous studies indicate that models may utilize 577

some superficial cues within the dataset to predict 578

the label. This leads to the vulnerability of mod- 579

els when facing adversarial attacks (Poliak et al., 580

2018; McCoy et al., 2019). Learning to gener- 581

ate the additional conceptual explanation may pro- 582

mote the understanding of causality to increase the 583

stability of the reasoning model. Hence, we con- 584

duct a stability analysis to examine the specific ef- 585

fect of additional explanations. 586

Following Bekoulis et al. (2018) and Yasunaga 587

et al. (2018), we attack the causal reasoning sys- 588
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Dataset Metric BERT BERTE

EventStoryLine F1 (%) 44.1 45.6
BECauSE 2.0 Accu. (%) 76.8 81.9
COPA Accu. (%) 70.4 75.6
CommonsenseQA Accu. (%) 52.6 54.0

Table 10: Performance of e-CARE-enhanced BERT.

tem by adding a perturbation term on the word em-589

beddings of inputs. The perturbation term is de-590

rived using the gradient-based FGM method (Miy-591

ato et al., 2016). Table 12 shows the change of592

causal reasoning accuracy (∆Accu.) brought by593

the adversarial attack. For example, ∆ = −7.27594

means a 7.27% decrease of prediction accuracy595

after the adversarial attack. We find that, com-596

pared to the vanilla GPT2CR model, the explana-597

tion enhanced GPT2 model GPT2CR-EG demon-598

strates stronger stability. This suggests that, by599

training reasoning models to generate correct ex-600

planations of the causal facts, the understanding of601

the causality can be promoted, and then the stabil-602

ity of model performance can be increased.603

5.5 Enhancing Pretrained Language Model604

with e-CARE605

Causal knowledge is critical for various NLP ap-606

plications. In this section, we investigate if the607

causality knowledge provided by e-CARE can be608

used as a resource to boost model performance on609

other causal-related tasks. To this end, we apply610

transfer learning by first finetuning a BERT model611

on e-CARE, then adapting the e-CARE-enhanced612

model (denoted as BERTE) on a causal extraction613

task EventStoryLine (Caselli and Vossen, 2017),614

two causal reasoning tasks BECauSE 2.0 (Dunietz615

et al., 2017) and COPA (Roemmele et al., 2011),616

as well as a commonsense reasoning dataset Com-617

monsenseQA (Talmor et al., 2019). The results are618

shown in Table 10. We observe that the additional619

training process on e-CARE can consistently in-620

crease the model performance on all four tasks.621

This indicates the potential of e-CARE in provid-622

ing necessary causality information for promoting623

causal-related tasks in multiple domains.624

6 Discussion625

In this paper, we introduce additional explanation626

information for the causal reasoning process, and627

propose a corresponding explanation generation628

task. Previous literature concluded the explanation629

generation process as an abductive reasoning pro-630

cess (Hanson, 1958; Peirce, 1974) and highlighted631

the importance of the abdutive explanation gener-632

Figure 2: Conceptual explanations of observed causality can
be helpful for understanding the unseen causal facts.

ation, as it may interact with the causal reason- 633

ing process to promote the understanding of causal 634

mechanism, and increase the efficiency and relia- 635

bility of causal reasoning. 636

For example, as Figure 2 shows, one may 637

have an observation that C1: adding rock into 638

hydrochloric acid caused E1: rock dissolved. 639

Through abductive reasoning, one may come up 640

with a conceptual explanation for the observation 641

that acid is corrosive. After that, one can confirm 642

or rectify the explanation by experiments, or re- 643

sorting to external references. In this way, new 644

ideas about causality can be involved for under- 645

standing the observed causal fact. Then if the ex- 646

planation is confirmed, it can be further utilized 647

to support the causal reasoning process by helping 648

to explain and validate other related causal facts, 649

such as C2: adding rust into sulphuric acid may 650

lead to E2: rust dissolved. This analysis high- 651

lights the pivotal role of conceptual explanation in 652

learning and inferring causality. In this paper, we 653

introduce the e-CARE dataset to provide causal 654

explanations and support future research towards 655

stronger human-like causal reasoning systems. 656

7 Conclusion 657

In this paper, we present an explainable CAusal 658

REeasoning dataset e-CARE, which contains over 659

20K causal questions, together with over 13K 660

unique conceptual explanations about the deep un- 661

derstanding of the causal facts, which also makes 662

e-CARE the largest causal reasoning benchmark. 663

Experimental results show that both the causal rea- 664

soning task and especially the explanation gener- 665

ation task remain challenging for the SOTA pre- 666

trained language models. Moreover, the additional 667

explanation signal can promote both the prediction 668

accuracy and stability of models, highlighting the 669

vital importance of the conceptual explanations in 670

causal reasoning. 671
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8 More Discussions about the e-CARE914

Dataset915

8.1 The Generality of the Conceptual916

Explanation917

In this paper, we construct the dataset by first ob-918

taining the conceptual explanations, then obtain-919

ing the causal questions. This is because, we920

also hope to find the conceptual explanations with921

more generality, that that can explain more than922

one causal fact, but can explain a set of correlated923

causal facts. Table 11 demonstrate an example924

of such conceptual explanation. The explanation925

points out the nature of Copper that Copper is a926

good thermal conductor, so that holding copper927

on fire will make fingers feel burnt immediately.928

Additionally, the same explanation can also pro-929

vide insights about another causal fact seemingly930

totally different from the case in Table 11 (a), that931

putting copper tubes into computer can promote932

thermal dispersion. This is because, the concep-933

tual explanation points out the nature of copper,934

which drives a set of causal facts into existence.935

This example demonstrate the usefulness of the936

conceptual explanations in providing the deep un-937

derstanding of causality to support the causal rea-938

soning. However, note that in this paper, we do939

not assume all the statements we collected can ex-940

plain multiple causal facts. Instead, we resort to941

the empirical knowledge of human annotators to 942

find such explanations. Specifically, we distribute 943

statements to several annotators, and require each 944

annotator to generate a causal fact that can be ex- 945

plained by the statement. For a certain statement, 946

if it is distributed to multiple annotators and more 947

than one annotator can generate a corresponding 948

causal fact, then we assume that this statement can 949

be a conceptual statement. 950

8.2 The Exhaustiveness of the Explanations 951

Another point we wish to elucidate is about the 952

exhaustiveness of the explanations. In this paper, 953

we only aim at providing plausible explanations 954

that can explain the causal fact, but do not assume 955

the provided explanations to be exhaustive or self- 956

sufficient. 957

8.3 The Relationship between the Unique 958

Explanations and Causal Questions 959

Due to the practical limits, to ensure the coverage 960

of dataset, only a part of statements are distributed 961

to multiple annotators, as described in Section 3.1. 962

9 Data Collection Details 963

9.1 Collection of Explanations 964

We collect the potential explanations from a com- 965

monsense knowledge base GenericsKB (Bhaktha- 966

vatsalam et al., 2020), which contains naturally 967

occurring generic statements, such as “Trees re- 968

move carbon dioxide from the atmosphere”, col- 969

lected from multiple corpora. We first filtered 970

the statements according to their quality score s, 971

which is a human-annotation based metric, pro- 972

vided in the GenericsKB and evaluating the cor- 973

rectness of each statement. To ensure the factual 974

correctness of the potential explanations, we only 975

kept the statements whose quality score are among 976

the highest 1%. In addition, we also excluded the 977

statements including: (1) Overly complex state- 978

ments. The statements with connective, and state- 979

ments with more than 20 words are excluded. This 980

is because, by observation, we found that the an- 981

notators always struggle with understand and gen- 982

erate plausible causal facts for the over complex 983

explanations. The number 20 is an empirical set- 984

ting. (2) Statements describing named entities. (3) 985

Statements describing the hypernymy or hyper- 986

onymy relationship between the subject and ob- 987

ject. For example, the statement Monkey is a kind 988

of mammal. describes the hypernymy relation- 989
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(a) Premise: Tom held a copper block by hand and heated it on fire. (b) Premise:This computer’s heat dispersion performance is bad.
Ask-for: Effect Ask-for: Effect
Hypothesis 1: His fingers felt burnt for a short time. (!) Hypothesis 1: Designers add copper tubes into the computer. (!)
Hypothesis 2: The copper block kept the same. (×) Hypothesis 2: Designers put the computer into the ice water. (×)
Explanation: Copper is a good thermal conductor. Explanation: Copper is a good thermal conductor.

Table 11: Two instances from the e-CARE dataset.

ship between the subject monkey and object mam-990

mal. This kind of statement does not belong to the991

three kinds of information that a valid explanation992

contains, as mentioned in Section 3.1.993

After the filtering process, totally 19K state-994

ments are remained to be the potential explana-995

tions. Note that we do not assume that the state-996

ments after the filtering process are necessarily to997

be valid potential explanation and force the anno-998

tators to generate corresponding causal fact(s). In-999

stead, we left the judgment to the annotators. If1000

a statement has already been distributed to three1001

annotators and no annotator can generate a corre-1002

sponding causal question for this statement, then1003

it is discarded.1004

9.2 Collection of Causal Questions1005

We guided the annotators using illustrative exam-1006

ples to avoid the following mistakes:1007

(1) The generated cause and effect cannot be ex-1008

plained by the statement.1009

• Wrong Case1010

Explanation: Copper is a good The copper1011

block was oxidized and the surface became1012

dark..1013

Cause: Tom held a copper block and heated1014

it on fire.1015

Effect: The copper block was oxidized and1016

the surface became dark.1017

1018

• Correct Case1019

Explanation: Copper is a good thermal1020

conductor.1021

Cause: Tom held a copper block by hand and1022

heated it on fire.1023

Effect: His fingers felt burnt for a short time.1024

1025

(2) The generated “cause” and “effect” do not1026

form a valid causal relationship.1027

• Wrong Case1028

Explanation: Oncologists specialize in the1029

treatment of cancer.1030

Cause: Jerry suffered from cancer. 1031

Effect: Jerry consulted many artists. 1032

1033

• Correct Case 1034

Explanation: Oncologists specialize in the 1035

treatment of cancer. 1036

Cause: Jerry suffered from cancer. 1037

Effect: Jerry consulted many oncologists. 1038

1039

(3) The distractor can also form a causal relation- 1040

ship with the premise. 1041

• Wrong Case 1042

Explanation: Oncologists specialize in the 1043

treatment of cancer. 1044

Cause: Jerry suffered from cancer. 1045

Effect: Jerry consulted many oncologists. 1046

Disctractor Cause: Jerry consulted many 1047

traditional herbalists. 1048

1049

(4) The generated distractor is uninformative. 1050

• Wrong Case 1051

Explanation: Copper is a good thermal con- 1052

ductor. 1053

Cause: Tom held a copper block by hand and 1054

heated it on fire. 1055

Effect: His fingers felt burnt for a short time. 1056

Disctractor Effect: His fingers did not feel 1057

burnt for a short time. 1058

10 Adversarial Filtering 1059

During the annotation process, some superficial 1060

clues may be incurred into the dataset, which 1061

makes the correct and implausible hypothesis can 1062

be distinguished merely using these annotation ar- 1063

tifacts. To decrease the influence of potential an- 1064

notation artifacts, we introduce an Adversarial Fil- 1065

tering algorithm (Bhagavatula et al., 2019) to re- 1066

fine our dataset. 1067

In specific, for an arbitrary causal question 1068

〈p, a, h+, h−〉, where p is the premise, a ∈ 1069

[“cause′′, “effect′′] is an ask-for annotator, h+ 1070
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and h− is the correct and wrong hypothesis, re-1071

spectively, if 〈p, h+〉 and 〈p, h−〉 can be easily dis-1072

tinguished by a predictive model, then we replace1073

h− with another implausible hypothesis h−
′

sam-1074

pled from an implausible hypothesis setH, so that1075

〈p, h−′〉 is harder to be distinguished from 〈p, h+〉.1076

Where the implausible hypothesis setH is the col-1077

lection of all wrong hypotheses within the dataset.1078

Algorithm 1 provides a formal description of1079

our adversarial filtering algorithm. Specifically,1080

in each iteration i, we randomly split the dataset1081

into a training set Ti and a validation set Vi.1082

Then a model Mi is trained on Ti to update Vi1083

to make it more challenging for Mi. To this1084

end, given an instance 〈pj , aj , h+j , h
−
j0〉 ∈ Vi, we1085

randomly sample K more implausible hypothe-1086

ses h−j 1′, · · · , h−j K ′. Let δMi
k denotes the differ-1087

ence of model evaluation between 〈pj , aj , h+j , h
−
j 〉1088

and 〈pj , aj , h−k 〉, where δMi
k < 0 means model1089

Mi favors h+j to be the plausible hypothesis than1090

the implausible hypothesis h−jk. With probabil-1091

ity ti, we replace h−j with the implausible that is1092

hardest to distinguish with h+j , i.e., h−j = h−jl,1093

l = arg minl δ
Mi
k . In this way, in each iteration,1094

the proportion of easy implausible hypotheses de-1095

creases, and then the adversary model is forced to1096

capture more causality knowledge.1097

Algorithm 1 Adversarial Filtering
Input: number of iteration n, dataset D0, implausible hy-

pothesis set H−, initial and final temperature parameter
ts and te.

Output: dataset Dn
1: for iteration i = 1→ (n− 1) do
2: ti = t+ e+ ts−te

1+e0.3(i−3n/4)

3: Random split Mi into training set Ti and validation
set Vi

4: Train Model Mi on Ti
5: for instance j ∈ Si do
6: for h−jk ∈ H

−
j do

7: Calculate δMi
k (〈pj , aj , h+

j 〉, 〈pj , aj , h
−
jk〉)

8: l = arg minl δ
Mi
k

9: Sample r from a Uniform distribution
U(0, 1)

10: If r < ti or δMi
l < 0 then h−j = h−jl

11: Add instance j into Si
12: end for
13: end for
14: end for
15: Dn = Sn

We implemented the adversary model using1098

pretrained language model RoBERTa-base (Liu1099

et al., 2019). The AF algorithm is run for 25 it-1100

erations and the temperature ti follows a sigmoid1101

function, parameterized by the iteration number, 1102

between ts = 1.0 and te = 0.2. For each instance, 1103

we sampledK = 20 more implausible hypotheses 1104

from the implausible hypothesis setH. 1105

11 Details of Experiments 1106

11.1 Details of the Causal Reasoning 1107

Experiment 1108

Settings In this paper, the causal reasoning task 1109

is defined as a multiple-choice problem, which re- 1110

quires the model to choose a more plausible hy- 1111

pothesis from two candidates, so that the premise 1112

and hypothesis can form a valid causal fact. There- 1113

fore, the causal reasoning task could be formalized 1114

as a prediction problem: given a candidate cause 1115

fact 〈, cause, effect〉 composed of the premise 1116

event and one of the hypothesis events, the pre- 1117

diction model is required to predict a score mea- 1118

suring the causality of the event pair. Note that 1119

the ask-for indicator decides whether the premise 1120

or candidate hypothesis to be the cause or effect, 1121

respectively. 1122

To this end, we concatenate the premise with 1123

each one of the candidate hypothesis to form two 1124

candidate causal facts. Then each of the candi- 1125

date causal fact is fed into the models, to obtain a 1126

probability measuring the plausibility of the can- 1127

didate causal fact. To satisfy the input format of 1128

the pretrained language models, the input candi- 1129

date causal fact is preprocessed by adding special 1130

tokens. Additionally, we adapt GPT2 and BART 1131

to predictive causal reasoning task by adding an 1132

EOS token to the end of input text, and making 1133

predictions based on the representation of the EOS 1134

token. The specific input format of the models is 1135

listed in Table 1, where C, E denotes the cause 1136

and effect of the candidate causal fact, respec- 1137

tively. 1138

To this end, we concatenate the premise with 1139

each one of the candidate hypothesis to form two 1140

candidate causal facts. Then each of the candi- 1141

date causal fact is fed into the models, to obtain a 1142

probability measuring the plausibility of the can- 1143

didate causal fact. To satisfy the input format of 1144

the pretrained language models, the input candi- 1145

date causal fact is preprocessed by adding special 1146

tokens. Additionally, we adapt GPT2 and BART 1147

to predictive causal reasoning task by adding an 1148

EOS token to the end of input text, and making 1149

predictions based on the representation of the EOS 1150

token. The specific input format of the models is 1151

13



listed in Table 1, where C, E denotes the cause1152

and effect of the candidate causal fact, respec-1153

tively.1154

Training Details In the causal reasoning task, we1155

optimize all the models with a batch size of 64,1156

learning rate of 1e-5, and the model is finetuned1157

for 3 epochs.1158

11.2 Details of the Explanation Generation1159

Experiment1160

Settings In the explanation generation experiment,1161

models are trained to generate an explanation for1162

a given valid causal fact 〈C,E〉. Hence, the input1163

of GPT2 is formated as:1164

< |startoftext| > C [SEP ] E < |endoftext| >, (5)1165

where < |startoftext| > and < |endoftext| >1166

are two special tokens. The input of the GRU-1167

Seq2Seq model is formated as:1168

< SOS > C , E < EOS > . (6)1169

Training Details In the explanation generation1170

task, the GPT2 model is trained with a batch size1171

of 32, learning rate of 1e-5, and the model is1172

finetuned for 10 epochs. For the GRU-Seq2seq1173

model, both the encoder and the decoder con-1174

tains 2 GRU layers with a dimension of 300×300.1175

The word embedding is initialized using 300-1176

dimension GloVe. During optimazation, the GRU-1177

Seq2seq model is trained for 10 epochs as well.1178

11.3 Details of Explanation AND Generation1179

Experiment1180

Settings Given a causal question, we first con-1181

catenate the premise with each one of the candi-1182

date hypothesis to form two candidate causal facts.1183

Then each of the candidate causal fact is fed into1184

the GPT2 model, to get a distributed representa-1185

tion of the candidate causal fact. Then probability1186

measuring the plausibility of the candidate causal1187

fact is predicted using an MLP based on the dis-1188

tributed representation. After predicting plausibil-1189

ity score of two candidate causal facts, the model1190

is trained to generate an explanation based on only1191

the representation of the candidate causal fact that1192

model thinks is more likely to be valid.1193

Training Details During the training process, to1194

balance the generation loss and prediction loss, we1195

introduce an balance coefficient λ. Hence, the loss1196

function is formulated as L = (1− λ)LPrediction +1197

λLGeneration. We empirically set λ = 0.1. The1198

Dataset Input Format
EventStoryLine [CLS] Statement
BECauSE 2.0 [CLS] C [SEP] E [SEP]

COPA [CLS] C [SEP] E [SEP]
CommonsenseQA 2.0 [CLS] Q [SEP] A [SEP]

Table 13: Input format of models in the causal reasoning task.

batch size and learning rate are also set as 32 and 1199

1e-5, respectively. While different to the explana- 1200

tion generation process, in the Generate And Pre- 1201

diction experiment, the GPT2 model is trained for 1202

5 epochs, as it receives two kinds of supervision 1203

signals. 1204

11.4 Details of Transfer Analysis 1205

Settings 1206

All four tasks in the transfer analysis can be for- 1207

malized as multiple-choice problem. Specifically, 1208

the causal event extraction task EventStoryLine 1209

requires model to predict whether two phrase-level 1210

events within a sentence can form a causal re- 1211

lationship. While in two causal reasoning tasks 1212

BECauSE 2.0 (Dunietz et al., 2017) and COPA 1213

(Roemmele et al., 2011), models are required to 1214

choose a plausible hypothesis, so that the premise 1215

and the hypothesis can form a valid causal fact. 1216

The CommonsenseQA (Talmor et al., 2019) task 1217

requires model to choose a correct answer for a 1218

given question. We list the specific format of the 1219

input on these four tasks in Table 3, where C and 1220

E denotes the cause and effect, respectively,Q and 1221

A denotes the question and answer, respectively. 1222

Training Details To equip model with the causal- 1223

ity knowledge within e-CARE, we train a BERT 1224

model for 3 epochs, with a batch size of 32 and a 1225

learning rate of 1e-5. Then in the following fine- 1226

tuning stage, on all four datasets, both BERT and 1227

e-CARE enhanced model BERTE are fine-tuned 1228

using a grid search with the following set of hyper- 1229

parameters: 1230

• batch size: {16, 32} 1231

• number of epochs: {3,5,10} 1232

• learning rate: {1e-6, 1e-5} 1233
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Model Input Format
GPT2 < |startoftext| > C [SEP] E < |endoftext| >

RoBERTa <s> C <s> E <s>
BART <s> C <s> E <s>

XLNET <cls> C <sep> E <sep>
BERT [CLS] C [SEP] E [SEP]

ALBERT [CLS] C [SEP] E [SEP]

Table 12: Input format of models in the causal reasoning task.
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