
Variance-Reduced Gradient Estimation via
Noise-Reuse in Online Evolution Strategies

Oscar Li§1, James Harrison♢, Jascha Sohl-Dickstein♢, Virginia Smith§, Luke Metz♢2

§Machine Learning Department, School of Computer Science Carnegie Mellon University
♢Google DeepMind

Abstract

Unrolled computation graphs are prevalent throughout machine learning but present
challenges to automatic differentiation (AD) gradient estimation methods when
their loss functions exhibit extreme local sensitivtiy, discontinuity, or blackbox
characteristics. In such scenarios, online evolution strategies methods are a more
capable alternative, while being more parallelizable than vanilla evolution strategies
(ES) by interleaving partial unrolls and gradient updates. In this work, we propose
a general class of unbiased online evolution strategies methods. We analytically
and empirically characterize the variance of this class of gradient estimators and
identify the one with the least variance, which we term Noise-Reuse Evolution
Strategies (NRES). Experimentally3, we show NRES results in faster convergence
than existing AD and ES methods in terms of wall-clock time and number of
unroll steps across a variety of applications, including learning dynamical systems,
meta-training learned optimizers, and reinforcement learning.

1 Introduction

First-order optimization methods are a foundational tool in machine learning. With many such
methods (e.g., SGD, Adam) available in existing software, ML training often amounts to specifying
a computation graph of learnable parameters and computing some notion of gradients to pass into
an off-the-shelf optimizer. Here, unrolled computation graphs (UCGs), where the same learnable
parameters are repeatedly applied to transition a dynamical system’s inner state, have found their
use in various applications such as recurrent neural networks [1, 2], meta-training learned optimizers
[3, 4], hyperpameter tuning [5, 6], dataset distillation [7, 8], and reinforcement learning [9, 10].

While a large number of automatic differentiation (AD) methods exist to estimate gradients in
UCGs [11], they often perform poorly over loss landscapes with extreme local sensitivity and
cannot handle black-box computation dynamics or discontinuous losses [12, 3, 13]. To handle
these shortcomings, evolution strategies (ES) have become a popular alternative to produce gradient
estimates in UCGs [14]. ES methods convolve the (potentially pathological or discontinuous) loss
surface with a Gaussian distribution in the learnable parameter space, making it smoother and infinitely
differentiable. Unfortunately, vanilla ES methods cannot be applied online4 — the computation must
reach the end of the graph to produce a gradient update, thus incurring large update latency for long
UCGs. To address this, a recently proposed approach, Persistent Evolution Strategies [15] (PES),
samples a new Gaussian noise in every truncation unroll and accumulates the past sampled noises to
get rid of the estimation bias in its online application.

In this work, we investigate the coupling of the noise sampling frequency and the gradient estimation
frequency in PES. By decoupling these two values, we arrive at a more general class of unbiased,

1Correspondence to: <oscarli@cmu.edu>. 2Now at OpenAI.
3Code available at https://github.com/OscarcarLi/Noise-Reuse-Evolution-Strategies.
4Online here means a method can produce gradient estimates using only a truncation window of an unrolled

computation graph instead of the full graph, thus allowing the interleaving of partial unrolls and gradient updates.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/OscarcarLi/Noise-Reuse-Evolution-Strategies

1.0 0.5 0.0 0.5 1.0
0.622
0.623
0.624
0.625
0.626

L(
[

+
] ×

T)

Learned Optimizer T = 1000(a) (b) method online? unbiased? low variance?
FullES ✗ ✓ ✓
TES [3] ✓ ✗ ✓
PES [15] ✓ ✓ ✗
NRES (ours) ✓ ✓ ✓

Figure 1: (a) The pathological loss surface in the learned optimizer task (Sec. 5.2) along a random ϵ direction;
such surfaces are common in UCGs but can make automatic differentiation methods unusable, leading to the
recent development of evolution strategies methods. (b) Comparison of properties of different evolution strategies
methods. Unlike prior online ES methods, NRES produces both unbiased and low-variance gradient estimates.

online ES gradient estimators. Through a variance characterization of these estimators, we find that
the one which provably has the lowest variance in fact reuses the same noise for the entire time
horizon (instead of over a single truncation window as in PES). We name this method Noise-Reuse
Evolution Strategies (NRES). In addition to being simple to implement, NRES converges faster
than PES across a wide variety of applications due to its reduced variance. Overall, we make the
following contributions:

• We propose a class of unbiased online evolution strategies gradient estimators for unrolled compu-
tation graphs that generalize Persistent Evolution Strategies [15].

• We analytically and empirically characterize the variance of this class of estimators and identify
the lowest-variance estimator which we name Noise-Reuse Evolution Strategies (NRES).

• We identify the connection between NRES and the existing offline ES method FullES and show
that NRES is a better alternative to FullES both in terms of parallelizability and variance.

• We demonstrate that NRES can provide optimization convergence speedups (up to 5-60×) over
AD/ES baselines in terms of wall-clock time and number of unroll steps in applications of 1)
learning dynamical systems, 2) meta-training learned optimizers, and 3) reinforcement learning.

2 Online Evolution Strategies: Background and Related Work

Problem setup. Unrolled computation graphs (UCGs) [15] are common in applications such as
training recurrent neural networks, meta-training learned optimizers, and learning reinforcement
learning policies, where the same set of parameters are repeatedly used to update the inner state of
some system. We consider general UCGs where the inner state st ∈ Rp is updated with learnable
parameters θ ∈ Rd through transition functions: {ft : Rp ×Rd → Rp}Tt=1, st = ft(st−1; θ) for T
time steps starting from an initial state s0. At each time step t ∈ {1, . . . , T}, the state st incurs a loss
Ls
t (st). As the loss Ls

t depends on t applications of θ, we make this dependence more explicit with a
loss function Lt : Rdt → R and Lt([θ]×t) := Ls

t (st)
5. We aim to minimize the average loss over all T

time steps unrolled under the same θ, minθ L([θ]×T), where

L(θ1, . . . , θT) :=
1

T

T∑
t=1

Lt(θ1, . . . , θt). (1)

Loss properties. Despite the existence of many automatic differentiation (AD) techniques to
estimate gradients in UCGs [11], there are common scenarios where they are undesirable: 1) Loss
surfaces with extreme local sensitiviy: With large number of unrolls in UCGs, the induced loss
surface is prone to high degrees of sharpness and many suboptimal local minima (see Figure 1). This
issue is particularly prevalent when the underlying dynamical system is chaotic under the parameter
(θ) of interest [13], e.g. in model-based control [12] and meta-learning [3]. In such cases, naively
following the gradient may either a) fail to converge under the normal range of learning rates (because
of the conflicting gradient directions) or b) converge to highly suboptimal solutions using a tuned,
yet much smaller learning rate. 2) Black-box or discontinuous losses: As AD methods require
defining a Jacobian-vector product (forward-mode) or a vector-Jacobian product (reverse-mode)
for every elementary operation in the computation graph, they cannot be applied when the UCG’s
inner dynamics are inaccessible (e.g., model-free reinforcement learning) or the loss objectives (e.g.
accuracy) are piecewise constant (zero gradients).

Evolution Strategies. Due to the issues with AD methods described above, a common alternative is
to use evolution strategies (ES) to estimate gradients. Here, the original loss function is convolved
with an isotropic Gaussian distribution in the space of θ, resulting in an infinitely differentiable loss

5[θ]×a, a ∈ Z≥0 denotes a copies of θ, for example: Lt([θ]×a ,
[
θ′]

×t−a
) := Lt(θ, . . . , θ︸ ︷︷ ︸

a times

, θ
′
, . . . , θ

′︸ ︷︷ ︸
(t − a) times

).

2

θ

Worker(1)

1
N

N

∑
i=1

g(i)
⏟

→ sτN+1 →↑

θ
↑

…→ sτN+W↑
↑

LτN+1 LτN+W

sτN

g(N)

g(1)

Horizon length T

Truncation window
length W

ϵ

Online Evolution Strategies Protocol

Worker(N)
+ θ ϵ+

(a)

Sample Sample
PESWorker

ϵ1 ϵ2 ϵ3Accumulated
noise ξ ϵ1

GPES WorkerK=2W

ϵ1 ϵ1 ϵ1

⏞Truncation window

Sample

NRESWorker

ϵ2+

ϵ1 ϵ2+ ϵ1 ϵ2+ ϵ3+

 divides K τ

How different unbiased OES methods share noise?

No need to
accumulate

Accumulated
noise

length W

=

ξ =
Sample

ϵ1
SampleReuse

ϵ1 ϵ2

Sample Reuse
ϵ ϵ

Reuse
ϵ

(b)

Figure 2: (a) Illustration of step-unlocked online ES workers working independently at different truncation
windows. Here a central server sends θ (whose gradient to be estimated) to each worker and receives the
estimates over partial unrolls from each. The averaged gradient can then be used in a first-order optimization
algorithm. (b) Comparison of the noise sharing mechanisms of PES, GPESK , and NRES (ours). Unlike PES
(and GPESK ̸=T) which samples a new noise in every (some) truncation window and needs to accumulate the
noise, NRES only samples noise once at the beginning of an episode and reuses the noise for the full episode.

function with lower sharpness and fewer local minima than before (σ > 0 is a hyperparameter):
θ 7→ Eϵ∼N (0,σ2Id×d)

L([θ + ϵ]×T). (2)

An unbiased gradient estimator of (2) is given by the likelihood ratio gradient estimator [16]: 1
σ2L([θ+

ϵ]×T)ϵ. This estimator only requires the loss evaluation (hence is zeroth-order) but not an explicit
computation of the gradient, thus being applicable in cases when the gradients are noninformative
(chaotic or piecewise constant loss) or not directly computable (black-box loss). To reduce the
variance, antithetic sampling is used and we call this estimator FullES (Algorithm 3 in the Appendix):

FullES(θ) :=
1

2σ2

[
1

T

T∑
i=1

(Li([θ + ϵ]×i)− Li([θ − ϵ]×i)

]
ϵ. (3)

The term Full highlights that this estimator can only produce a gradient estimate after a full sequential
unroll from t = 0 to T . We call such a full unroll an episode following the reinforcement learning
terminology. FullES can be parallelized [14] by averaging N parallel gradient estimates using i.i.d.
ϵ’s, but is not online and can result in substantial latency between gradient updates when T is large.
Truncated Evolution Strategies. To make FullES online, Metz et al. [3] take inspiration from
truncated backpropagation through time (TBPTT) and propose the algorithm TES (see Algorithm 6
in the Appendix). Unlike the stateless estimator FullES, TES is stateful: TES starts from a saved
state s (from the previous iteration) and draws a new ϵi for antithetic unrolling. To make itself online,
TES only unrolls for a truncation window of W steps for every gradient estimate, thus reducing the
latency from O(T) to O(W). Analytically,

TES(θ) :=
1

2σ2W

W∑
i=1

[
Lτ+i([θ]×τ , [θ + ϵ(τ/W)+1]×i)− Lτ+i([θ]×τ , [θ − ϵ(τ/W)+1]×i)

]
ϵ(τ/W)+1. (4)

Here, besides the Gaussian random variables ϵi
∣∣T/W

i=1

iid∼N (0, σ2Id×d), the time step τ which TES
starts from is also a random variable drawn from the uniform distribution τ ∼ Unif{0,W, . . . , T −
W}6. It is worth noting that Vicol et al. [15] who also analyze online ES estimators do not take
the view that the time step τ an online ES estimator starts from is a random variable; as such their
analyses do not fully reflect the “online” nature captured in our work. When multiple online ES
Workers (e.g., TES workers) run in parallel, different workers will work at different i.i.d. time steps
τi (which we call step-unlocked workers) (see Figure 2(a)). We provide the pseudocode for creating
step-unlocked workers and for general online ES learning in Algorithm 4 and 5 in the Appendix.

TES is a biased gradient estimator of (2). Note that in (4), only the θ’s in the current length-W
truncation window receive antithetic perturbations, thus ignoring the impact of the earlier θ’s up to
time step τ . Due to this bias, optimization using TES typically doesn’t converge to optimal solutions.
Persistent Evolution Strategies. To resolve the bias of TES, Vicol et al. [15] recognize that TES
samples a new noise in every truncation window and modifies the smoothing objective into:

θ 7→ E{ϵi} L([θ + ϵ1]×W , . . . , [θ + ϵT/W]×W). (5)

6The random variable τ will always be sampled from this uniform distribution. In addition, we will assume
the time horizon T can be evenly divided into truncation windows of length W , i.e. T ≡ 0 (mod W).

3

Algorithm 1 Persistent Evolution Strategies [15]
class PESWorker(OnlineESWorker):

def init (self, W):
self.τ = 0; self.s+ = s0; self.s− = s0
self.W = W ; self.ξ = 0 ∈ Rd

def gradient estimate(self, θ):
sample at every truncation window

ϵ ∼ N (0, σ2Id×d) # this is ϵ(τ/W)+1

self.ξ += ϵ # now self.ξ =
∑τ/W

i=1 ϵi + ϵτ/W+1

(s+, s−) = (self.s+, self.s−)
L+

sum = 0; L−
sum = 0

for i in range(1, self.W+1):
s+ = fself.τ+i(s

+, θ + ϵ)
s− = fself.τ+i(s

−, θ − ϵ)
L+

sum += Ls
self.τ+i(s

+)

L−
sum += Ls

self.τ+i(s
−)

g = (L+
sum − L−

sum)/(2σ2 · self.W) · self.ξ
self.s+ = s+; self.s− = s−

self.τ = self.τ +W
if self.τ ≥ T : # reset at the end

self.τ = 0; self.s+ = s0; self.s− = s0
self.ξ = 0

return g

Algorithm 2 Noise-Reuse Evolution Strategies (ours)
class NRESWorker(OnlineESWorker):

def init (self, W):
self.τ = 0; self.s+ = s0; self.s− = s0
self.W = W

def gradient estimate(self, θ):
if self.τ == 0: # only sample at beginning

ϵ ∼ N (0, σ2Id×d)
self.ϵ = ϵ # reuse for this episode

(s+, s−) = (self.s+, self.s−)
L+

sum = 0; L−
sum = 0

for i in range(1, self.W+1):
s+ = fself.τ+i(s

+, θ + self.ϵ)
s− = fself.τ+i(s

−, θ − self.ϵ)
L+

sum += Ls
self.τ+i(s

+)

L−
sum += Ls

self.τ+i(s
−)

g = (L+
sum − L−

sum)/(2σ2 · self.W) · self.ϵ
self.s+ = s+; self.s− = s−

self.τ = self.τ +W
if self.τ ≥ T : # reset at the end

self.τ = 0; self.s+ = s0; self.s− = s0

return g

They show that an unbiased gradient estimator of 5 is given by (see Algorithm 1):

PES(θ) :=
1

2σ2W

W∑
i=1

[
Lτ+i([θ + ϵ1]×W , . . . , [θ + ϵ(τ/W)+1]×i)

−Lτ+i([θ − ϵ1]×W , . . . , [θ − ϵ(τ/W)+1]×i)

](

τ/W∑
j=1

ϵj) + ϵτ/W+1

 , (6)

with randomness in both {ϵi} and τ . To eliminate the bias of TES, instead of multiplying only with
the current epsilon ϵτ/W+1, PES multiplies it with the cumulative sum of all the different iid noise
sampled so far (self.ξ in PESWorker). As we shall see in the next section, this accumulation of noise
terms provably results in higher variance, making PES less desirable in practice. We contrast the
noise sampling properties of our proposed methods with PES in Figure 1(b).

Hysteresis. When online gradient estimators are used in training, they often suffer from hysteresis,
or history dependence, as a result of the parameters θ changing between adjacent unrolls. That is, the
parameter value θ0 that a worker uses in the current truncation window is not the same parameter θ−1

that was used in the previous window. This effect is often neglected [15], under an assumption that θ
is updated slowly. To the best of our knowledge, [17] is the only work to analyze the convergence of
an online gradient estimator under hysteresis. In the following theoretical analysis, we assume all
online gradient estimates are computed without hysteresis in order to isolate the problem. However, in
Section 5, we show empirically that even under the impact of hysteresis, our proposed online estimator
NRES can outperform non-online methods (e.g., FullES) which don’t suffer from hysteresis.

3 A New Class of Unbiased Online Evolution Strategies Methods

As shown in Section 2, TES and PES both sample a new noise perturbation ϵ for every truncation
window to produce gradient estimates. Here we note that the frequency of noise-sharing (new noise
every truncation window of size W) is fixed to the frequency of gradient estimates (a gradient estimate
every truncation window of size W). However, the former is a choice of the smoothing objective (5),
while the latter is often a choice of how much gradient update latency the user can tolerate. In this
section we break this coupling by introducing a general class of gradient estimators that encompass
PES. We then analyze these estimators’ variance to identify the one with the least variance.

Generalized Persistent Evolution Strategies (GPES). For a given fixed truncation window size W ,
we consider all noise-sharing periods K that are multiples of W , K = cW for c ∈ Z+, c ≤ T/W .
K being a multiple of W ensures that within each truncation window, only a single ϵ is used. When

4

K = W , we recover the PES algorithm. However, when K is larger than W , the same noise will be
used across adjacent truncation windows (Figure 2(b)). With a new noise sampled every K unroll
steps, we define the K-smoothed loss objective as the function:

θ 7→ E{ϵi} L([θ + ϵ1]×K , . . . , [θ + ϵ⌈T/K⌉]×r(T,K)),
7 (7)

where r : (Z+)2 → Z+ is the modified remainder function such that r(x, y) is the unique integer
n ∈ [1, y] where x = qy + n for some integer q. This extra notation allows for the possibility that T
is not divisible by K and the last noise ϵ⌈T/K⌉ is used for only r(T,K) < K steps.

We now give the analytic form of an unbiased gradient estimator of the resulting smoothed loss.8

Lemma 1. An unbiased gradient estimator for the K-smoothed loss is given by

GPESK(θ) :=
1

2σ2W

W∑
j=1

[
Lτ+j([θ + ϵ1]×K , . . . , [θ + ϵ⌊τ/K⌋+1]×r(τ+j,K))

−Lτ+j([θ − ϵ1]×K , . . . , [θ − ϵ⌊τ/K⌋+1]×r(τ+j,K))

]
·
⌊τ/K⌋+1∑

i=1

ϵi

,

with randomness in τ and {ϵi}⌈T/K⌉
i=1 .

GPESK algorithm. Here, for the truncation window starting at step τ , the noise ϵ⌊τ/K⌋+1 is used
as the antithetic perturbation to unroll the system. If τ is not divisible by K, then this noise has
already been sampled at time step t = ⌊τ/K⌋ ·K in an earlier truncation window. Therefore, to
know what noise to apply at this truncation window, we need to remember the last used ϵ and update
it when τ becomes divisble by K. We provide the algorithm for the GPESK gradient estimator in
Algorithm 7 in the Appendix. Note that GPESK=W is the same as the PES algorithm.

Variance Characterization of GPESK . With this generalized class of gradient estimators GPESK ,
one might wonder how to choose the value of K. Since each estimator is an unbiased gradient
estiamtor with respect to its smoothed objective, we compare the variance of these estimators as a
function of K. To do this analytically, we make some simplifying assumptions:

Assumption 2. For a given θ ∈ Rd and t ∈ [T] := {1, . . . , T}, there exists a set of vectors
{gti ∈ Rd}ti=1, such that for any {vi ∈ Rd}ti=1, the following equality holds:

Lt(θ + v1, θ + v2, . . . , θ + vt)− Lt(θ − v1, θ − v2, . . . , θ − vt) = 2

t∑
i=1

(vi)
⊤(gti) (8)

Remark 3. This assumption is more general than the quadratic Lt assumption made in [15] (expla-
nation see Appendix D). Here one can roughly understand gti as time step t’s smoothed loss’s partial
derivative with respect to the i-th application of θ. For notational convenience, we let gt :=

∑t
i=1 g

t
i

(roughly the total derivative of smoothed step-t loss with respect to θ) and gtK,j :=
∑min{t, K·j}

i=K·(j−1)+1 g
t
i

for j ∈ {1, . . . , ⌈t/K⌉} (roughly the sum of partial derivatives of smoothed step-t loss with respect
to all θ’s in the j-th noise-sharing window of size K (the last window might be shorter)).

With this assumption in place, we first consider the case when W = 1 and K = cW = c for c ∈ [T].
In this case, the GPESK estimator can be simplified into the following form:

Lemma 4. Under Assumption 2, when W = 1, GPESK=c(θ) =
1
σ2

∑⌊τ/c⌋+1
j=1

(∑⌊τ/c⌋+1
i=1 ϵi

)
ϵ⊤j g

τ+1
c,j .

With this simplified form, we can now characterize the variance of the estimator GPESK=c(θ).
Since it’s a random vector, we analytically derive its total variance (trace of covariance matrix)
tr(Cov[GPESK=c(θ)]).

Theorem 5. When W = 1 and under Assumption 2, for integer c ∈ [T],

tr(Cov[GPESK=c(θ)]) =
(d+ 2)

T

T∑
t=1

(
∥gt∥22

)
−

∥∥∥∥∥ 1T
T∑

t=1

gt

∥∥∥∥∥
2

2

+
1

T

T∑
t=1

d

2

⌈t/c⌉∑
j=1,j′=1

∥∥gtc,j − gtc,j′
∥∥2
2

. (9)

7⌈x⌉ is smallest integer ≥ x; ⌊x⌋ is the largest integer ≤ x.
8Proofs for all the Lemmas and Theorems are in Appendix D.

5

1
(PES)

4 16 64 256 1000
(NRES)

noise-sharing period K [1, T]

103

104

105

106

tr(
Co

v[
GP

ES
K(

)])

Learned Optimizer T = 1000, W = 1
10000

20000

30000

40000

50000

60000

70000

80000

Figure 3: Total variance of GPESK vs.
noise-sharing period K for different θi’s from
the learned trajectory of PES. GPESK=T

(NRES) has the lowest total variance among
estimators of its class (including PES) for
each θi.

To understand how the value of K = c changes the total variance, we notice that only the nonnegative
third term in (9) depends on it. This term measures the pairwise squared distance between non-
overlapping partial sums gtc,j for all j. When c = T , for every t ∈ [T], there is only a single such
partial sum as ⌈t/c⌉ = 1. In this case, this third term reduces to its smallest value of 0. Thus:

Corollary 6. Under Assumption 2, when W = 1, the gradient estimator GPESK=T (θ) has the
smallest total variance among all {GPESK : K ∈ [T]} estimators.

Remark 7. To understand Corollary 6 intuitively, notice that at a given time step t (i.e., a length-1
truncation window), any GPESK=c gradient estimator (c ∈ [T]) aims to unbiasedly estimate the
total derivative of the smoothed loss at this step with respect to θ, which we have denoted by gt. By
applying a new Gaussian noise perturbation every c < T steps, the GPESK=c estimators indirectly
estimate gt by first unbiasedly estimating the gradients inside each size-c noise-sharing window:
{gtc,j}

⌈t/c⌉
j=1 and then summing up the result (notice gt =

∑⌈t/c⌉
j=1 gtc,j). To obtain this extra (yet unused)

information about the intermediate partial derivatives, these estimators require more randomness and
thus suffer from a larger total variance than the GPESK=T estimator which directly estimates gt.

Experimental Verification of Corollary 6. We empirically verify Corollary 6 on a meta-training
learned optimizer task (T = 1000; see additional details in Section 5.2). Here we save a trajectory
of θi learned by PES (i denotes training iteration) and compute the total variance of the estimated
gradients (without hysteresis) by GPES with different values of K in Figure 3(a) (W = 1). In
agreement with theory, K = T has the lowest variance.

4 Noise-Reuse Evolution Strategies

NRES has lower variance than PES. As variance reduction is desirable in stochastic optimization
[18], by Corollary 6, the gradient estimator GPESK=T is particularly attractive and can serve as a
variance-reduced replacement for PES. When K = T , we only need to sample a single ϵ once at the
beginning of an episode (when τ = 0) and reuse the same noise for the entirety of that episode before
it resets. This removes the need to keep track of the cumulative applied noise (ξ) (Figure 2(b)), making
the algorithm simpler and more memory efficient than PES. Due to its noise-reuse property, we
name this gradient estimator GPESK=T the Noise-Reuse Evolution Strategies (NRES) (pseudocode
in Algorithm 2). Concurrent with our work, Vicol [19] independently proposes a similar algorithm
with different analyses. We discuss in detail how our work differs from [19] in Appendix B. Despite
Theorem 5 assuming W = 1, one can relax this assumption to any W that divides the horizon length
T . By defining a “mega” UCG whose single transition step is equivalent to W steps in the original
UCG, we can apply Corollary 6 to this mega UCG and arrive at the following result.

Corollary 8. Under Assumption 2, when W divides T , the NRES gradient estimator has the smallest
total variance among all GPESK=cW estimators c ∈ [T/W].

NRES is a replacement for FullES. By sharing the same noise over the entire horizon, the
smoothing objective of NRES is the same as FullES’s. Thus, we can think of NRES as the online
counterpart to the offline algorithm FullES. Hence NRES can act as a drop-in replacement to FullES
in UCGs. A single FullES worker runs 2T unroll steps for each gradient estimate, while a single
NRES runs only 2W steps. Motivated by this, we compare the average of T/W i.i.d. NRES gradient
estimates with 1 FullES gradient estimate as they require the same amount of compute.

NRES is more parallelizable than FullES. Because the T/W NRES gradient estimators are
independent of each other, we can run them in parallel. Under perfect parallelization, the entire
NRES gradient estimation would require O(W) time to complete. In contrast, the single FullES
gradient estimate has to traverse the UCG from start to finish, thus requiring O(T) time. Hence,
NRES is T/W times more parallelizable than FullES under the same compute budget (Figure 4(a)).

6

• Returns

• time (parallelization)
• Total variance lower than

(Theorem 9)

W
T

T/W
∑
i=1

̂g(i)

O(W)
̂g

window length W⏟

Gradient estimation of FullES vs NRES
under the same per-update budget of unrolls2T

non-parallelizable

Worker (T
W)

FullES

NRES

̂g(T
W)

θ ± ϵ(2)

Episode length T
• time to return O(T) ̂g

unrolls in the
current update

using the same
perturbation

one episode

̂g(1)

̂g(2)Worker (2)

Worker (1)

Worker

θ ± ϵ

θ ± ϵ

θ ± ϵ(1)

θ ± ϵ

pa
ra

lle
liz

ab
le

same starting time

(T
W)

̂g

(a)
(b) T = 1000, W = 1 (±95% ci)

total variance tr(Cov[·])
iter. j

W
T

T/W∑
i=1

NRESi(θj) FullES(θj)of θj
(×104)

1 1.47 ± 0.38 864.34 ± 385.01
2 15.74 ± 4.90 513.50 ± 74.71
3 4.28 ± 0.78 201.38 ± 30.18
4 3.20 ± 0.50 684.85 ± 86.90
5 4.47 ± 0.88 181.06 ± 24.97
6 4.42 ± 0.68 288.61 ± 46.77
7 5.33 ± 1.08 448.30 ± 62.44
8 6.62 ± 0.89 154.86 ± 28.21

Figure 4: (a) Comparison of FullES and NRES gradient estimation under the same unroll budget. Unlike
FullES which can only use a single noise perturbation ϵ to unroll sequentially for an entire episode of length
T , NRES can use T/W parallel step-unlocked workers each unrolling inside its random truncation windows
of length W with independent perturbations ϵ(i). This results in a T/W× speed-up and variance reduction
(Theorem 9) over FullES. (b) The total variance of NRES and FullES estimators under the same compute
budget at the same set of θi checkpoints in Figure 3(a). NRES achieves significantly lower total covariance.

NRES can often have lower variance than FullES. We next compare the variance of the average
of T/W i.i.d. NRES gradient estimates with the variance of 1 FullES gradient estimate:

Theorem 9. Under Assumption 2, for any W that divides T , if

T/W∑
k=1

∥∥∥∥∥∥
W ·k∑

t=W ·(k−1)+1

gt

∥∥∥∥∥∥
2

2

≤ d+ 1

d+ 2

∥∥∥∥∥∥
T/W∑
j=1

W ·k∑
t=W ·(k−1)+1

gt

∥∥∥∥∥∥
2

2

, (10)

then for iid {NRESi(θ)}T/W
i=1 estimators, tr(Cov(1

T/W

∑T/W
i=1 NRESi(θ)) ≤ tr(Cov(FullES(θ)).

Remark 10. To understand the inequality assumption in (10), we notice that it relates the sum of the
squared 2-norm of vectors {

∑W ·k
t=W ·(k−1)+1 g

t}T/W
k=1 with the squared 2-norm of their sum. When these

vectors are pointing in similar directions, this inequality would hold (to see this intuitively, consider
the more extreme case when all these vectors are exactly in the same direction). Because each term∑W ·k

t=W ·(k−1)+1 g
t can be understood as the total derivative of the sum of smoothed losses in the k-th

truncation window with respect to θ, we see that inequality (10) is satisfied when, roughly speaking,
different truncation windows’ gradient contributions are pointing in similar directions. This is often
the case for real-world applications because if we can decrease the losses within a truncation window
by changing the parameter θ, we likely will also decrease other truncation windows’ losses. At a
high-level, Theorem 9 shows that for many practical unrolled computation graphs, NRES is not only
better than FullES due to its better parallelizability but also better due to its lower variance given
the same computation budget.

Empirical Verification of Theorem 9. We empirically verify Theorem 9 in Figure 4(b) using the
same set up of the meta-training learned optimizer task used in Figure 3(a). Here we compare the
total variance of averaging T/W = 1000 i.i.d. NRES estimators versus using 1 FullES gradient
estimator (same total amount of compute). We see that NRES has a significantly lower total variance
than FullES while also allowing T/W = 1000 times wall-clock speed up due to its parallelizability.

5 Experiments

NRES is particularly suitable for optimization in UCGs in two scenarios: 1) when the loss surface
exhibits extreme local sensitivity; 2) when automatic differentiation of the loss is not possible/gives
noninformative (e.g., zero) gradients. In this section, we focus on three applications exhibiting these
properties: a) learning Lorenz system’s parameters (sensitive), b) meta-training learned optimizers
(sensitive), and c) reinforcement learning (nondifferentiable), and show that NRES outperforms
existing AD and ES methods for these applications. When comparing online gradient estimation
methods, we keep the number of workers N used by all methods the same for a fair comparison.
For the offline method FullES, we choose its number of workers to be W/T× the number of NRES
workers on all tasks (in order to keep the same number of unroll steps per-update) except for the
learned optimizer task in Section 5.2 where we show that NRES can solve the task faster while using
much fewer per-update steps than FullES.

7

(a)

0 50 100 150 200 250 300
wall-clock time (seconds)

102

4 × 101

6 × 101

2 × 102

3 × 102

lo
ss

5 random seeds average (95% confidence interval)
FullES N = 10
TES W = 100, N = 200
PES W = 100, N = 200
NRES W = 100, N = 200 (ours)

PES W = 100, N = 20000
 converged value
NRES W = 100, N = 20000
 converged value

Lorenz system T = 2000(b)

Figure 5: (a) The pathological training loss surface of the Lorenz system problem (left) and the optimization
trajectory of different GPESK gradient estimators (right). NRES’s trajectory is the smoothest because of its
lowest variance. (b) Different ES methods’ loss convergence on the same problem. NRES converges the fastest.

5.1 Learning dynamical system parameters
In this application, we consider learning the parameters of a Lorenz system, a canonical chaotic
dynamical system. Here the state st = (xt, yt, zt) ∈ R3 is unrolled with two learnable parameters
a, r9 with the discretized transitions (dt = 0.005) starting at s0 = (x0, y0, z0) = (1.2, 1.3, 1.6):

xt+1 = xt + a(yt − xt)dt; yt+1 = yt + [xt · (r − zt)− yt]dt; zt+1 = zt + [xt · yt − 8/3 · zt]dt.

Due to the positive constraint on r > 0 and a > 0, we parameterize them as θ = (ln(r), ln(a)) ∈ R2

and exponentiate the values in each application. We assume we observe the ground truth z-coordinate
zgt
t for t ∈ [T], T = 2000 steps unrolled by the default parameters (rgt, agt) = (28, 10). For each step t,

we measure the squared loss Ls
t (st) := (zt − zgt

t)
2. Our goal is to recover the ground truth parameters

θgt = (ln(28), ln(10)) by optimizing the average loss over all time steps using vanilla SGD. We first
visualize the training loss surface in the left panel of Figure 5(a) (also see Figure 8 in the Appendix)
and notice that it has extreme sensitivity to small changes in the parameter θ.

To illustrate the superior variance of NRES over other GPESK estimators, we plot in the right panels
of Figure 5(a) the optimization trajectory of θ using gradient estimator GPESK with different values
of K under the same SGD learning rate. We see that NRES’s trajectory exhibits the least amount of
oscillation due to its lowest variance. In contrast, we notice that PES’s trajectory is highly unstable,
thus requiring a smaller learning rate than NRES to achieve a possibly slower convergence. Hence,
we take extra care in tuning each method’s constant learning rate and additionally allow PES to have
a decay schedule. We plot the convergence of different ES gradient estimators in wall-clock time
using the same hardware in Figure 5(b). (We additionally compare against automatic differentiation
methods in Figure 9 in the Appendix; they all perform worse than the ES methods shown here.)

In terms of the result, we see that NRES outperforms 1) TES, as NRES is unbiased and can
better capture long-term dependencies; 2) PES, as NRES has provably lower variance, which aids
convergence in stochastic optimization; 3) FullES, as NRES can produce more gradient updates
in the same amount of wall clock time than FullES (with parallelization, each NRES update takes
O(W) time instead of FullES’s O(T) time). Additionally, we plot the asymptotically converged loss
value when we train with a significantly larger number of particles (N = 20000) for PES and NRES.
We see that by only using N = 200 particles, NRES can already converge around its asymptotic
limit, while PES is still far from reaching its limit within our experiment time.

5.2 Meta-training learned optimizers

In this application [3], the meta-parameters θ of a learned optimizer control the gradient-based
updates of an inner model’s parameters. The inner state st is the optimizer state which consists
of both the inner model’s parameters and its current gradient momentum statistics. The transition
function ft computes an additive update vector to the inner parameters using θ and a random training
batch and outputs the next optimizer state st+1. Each time step t’s meta-loss Ls

t evaluates the updated
inner parameters’ generalization performance using a sampled validation batch.

We consider meta-training the learned optimizer model given in [3] (d = 1762) to optimize a 3-
layer MLP on the Fashion MNIST dataset for T = 1000 steps. (We show results on the same task

9We don’t learn the third parameter, fixed at 8/3, so that we can easily visualize a 2-d loss surface.

8

0 1000 2000 3000 4000 5000 6000 7000 8000
wall-clock time (seconds)

100

6 × 10 1

2 × 100

no
n-

sm
oo

th
ed

 tr
ai

ni
ng

 lo
ss

3456.6691.7 6313.7

5 random seeds average (95% confidence interval)

FullES N = 10
TES W = 1, N = 100
PES W = 1, N = 100
NRES W = 1, N = 100 (ours)

FullES N = 10
TES W = 1, N = 100
PES W = 1, N = 100
NRES W = 1, N = 100 (ours)

Learned Optimizer T = 1000(a)

1000 2000 3000 4000 5000 6000 7000 8000
wall-clock time (seconds)

100

5 × 10 1

6 × 10 1

7 × 10 1

8 × 10 1

9 × 10 1

no
n-

sm
oo

th
ed

 tr
ai

ni
ng

 lo
ss

5 random seeds average (95% confidence interval)

PES (GPES K = 1)
GPES K = 4
GPES K = 16
GPES K = 64
GPES K = 256
NRES (GPES K = 1000)

PES (GPES K = 1)
GPES K = 4
GPES K = 16
GPES K = 64
GPES K = 256
NRES (GPES K = 1000)

Learned Optimizer T = 1000, W = 1, N = 100(b)

Figure 6: (a) Different ES gradient estimators’ training loss convergence on the learned optimizer task in
wall-clock time. NRES reaches the lowest loss fastest. (b) The loss convergence of GPESK gradient estimators
with difference K values on the same task. NRES converges the fastest due to its reduced variance.

with higher-dimension and longer horizon in Appendix E.1.2.) This task is used in the training task
distribution of the state of the art learned optimizer VeLO [20]10. The loss surface for this problem has
high sharpness and many suboptimal minima as previously shown in Figure 1(a). We meta-train with
Adam using different gradient estimation methods with the same hardware and tune each gradient
estimation method’s meta learning rate individually. Because AD methods all perform worse than the
ES methods, we defer their results to Figure 10 in the Appendix and only plot the convergence of the
ES methods in wall-clock time in Figure 6(a).

Here we see that NRES reaches the lowest loss value in the same amount of time. In fact, PES and
FullES would require 5 and 9× (respectively) longer than NRES to reach a loss NRES reaches early
on during its training, while TES couldn’t even reach that loss within our experiment time. It is
worth noting that, for this task, NRES only require 2 ·N ·W = 200 unrolls to produce an unbiased,
low-variance gradient estimate, which is even smaller than the length of a single episode (T = 1000).
In addition, we situate NRES’s performance within our proposed class of GPESK estimators in
Figure 6(b). In accordance with Corollary 8, NRES converges fastest due to its reduced variance.

5.3 Reinforcement Learning

It has been shown that ES is a scalable alternative to policy gradient and value function methods for
solving reinforcement learning tasks [14]. In this application, we learn a linear policy 11 (following
[21]) using different ES methods on the Mujoco [22] Swimmer (d = 16) and Half Cheetah task
(d = 102). We minimize the average of negative per-step rewards over the horizon length of
T = 1000, which is equivalent to maximizing the undiscounted sum rewards. Unlike [14, 21, 15], we
don’t use additional heuristic tricks such as 1) rank conversion of rewards, 2) scaling by loss standard
deviation, or 3) state normalization. Instead, we aim to compare the pure performance of different ES
methods assuming perfect parallel implementations. To do this, we measure a method’s performance
as a function of the number of sequential environment steps it used. Sequential environment steps are
steps that have to happen one after another (e.g., the environment steps within the same truncation
window). However, steps that are parallelizable don’t count additionally in the sequential steps.
Hence, the wall-clock time under perfect parallel implementation is linear with respect to the number
of sequential environment steps used. As all the methods we compare are iterative update methods,
we additionally require that each method use the same number of environment steps per update when
measuring each method’s required number of sequential steps to solve a task. We tune the SGD
learning rate individually for each method and plot their total rewards progression on both Mujoco
tasks in Figure 7.

Here we see that TES fails to solve both tasks due to the short horizon bias [23], making it unable to
capture the long term dependencies necessary to solve the tasks. On the other hand, PES, despite
being unbiased, suffers from high variance, making it take longer (or unable in the case of Half
Cheetah) to solve the task than NRES. As for FullES, despite using the same amount of compute
per gradient update as NRES, it’s much less parallelizable as discussed in Section 4 – it takes much
longer time (10× and 60×) than NRES assuming perfect parallelization. In addition to the number

10We show the performance of ES methods on another task from this distribution in Appendix E.1.2.
11We additionally compare the ES methods on learning a non-linear (d = 726) policy on the Half-Cheetah

task in Appendix E.1.3.

9

103 104

of sequential environment steps

0

100

200

300

400

un
di

sc
ou

nt
ed

 su
m

 re
wa

rd
s

2400 2500010300

5 random seeds average (95% confidence interval)
FullES N = 3
TES W = 100, N = 30

PES W = 100, N = 30
NRES W = 100, N = 30 (ours)

task solving threshold

Swimmer, T = 1000(a)

103 104 105 106

of sequential environment steps
1000

0

1000

2000

3000

4000

un
di

sc
ou

nt
ed

 su
m

 re
wa

rd
s

62800010200

5 random seeds average (95% confidence interval)
FullES N = 6
TES W = 20, N = 300

PES W = 20, N = 300
NRES W = 20, N = 300 (ours)

task solving threshold

Half Cheetah, T = 1000(b)

Figure 7: ES methods’ performance vs. the number of sequential environment steps used in solving the Mujoco
(a) Swimmer task and (b) Half Cheetah task. NRES solves the tasks fastest under perfect parallelization.

of sequential steps, we additionally show the total number of environment steps used by each method
in Table 3 in the Appendix – NRES also uses the least total number of steps to solve both tasks,
making it the most sample efficient.

6 Additional Related Work

Beyond the most related work in Section 2, in this section, we further position NRES relative to
existing zeroth-order gradient estimation methods. We also provide additional related work on
automatic differentiation (AD) methods for unrolled computation graphs in Appendix B.

Zeroth-Order Gradient Estimators. In this work, we focus on zeroth-order methods that can
estimate continuous parameters’ gradients to be plugged into any first-order optimizers, unlike other
zeroth-order optimization methods such as Bayesian Optimization [24], random search [25], or Trust
Region methods [26, 27]. We also don’t compare against policy gradient methods [9], because they
assume internal stochasticity of the unrolling dynamics, which may not hold for deterministic policy
learning [e.g., 22]. Within the space of evolution strategies methods, many works have focused
on improving the vanilla ES method’s variance by changing the perturbation distribution [28–31],
considering the covariance structure [32], and using control variates [33]. However, these works
do not consider the unrolled structure of UCGs and are offline methods. In contrast, we reduce the
variance by incorporating this unrolled aspect through online estimation and noise-reuse. As the
aforementioned variance reduction methods work orthogonally to NRES, it is conceivable that these
techniques can be used in conjunction with NRES to further reduce the variance.

7 Discussion, Limitations, and Future Work

In this work, we improve online evolution strategies for unbiased gradient estimation in unrolled com-
putation graphs by analyzing the best noise-sharing strategies. By generalizing an existing unbiased
method, Persistent Evolution Strategies, to a broader class, we analytically and empirically identify
the best estimator with the smallest variance and name this method Noise-Reuse Evolution Strategies
(NRES). We demonstrate the convergence benefits of NRES over other automatic differentiation
and evolution strategies methods on a variety of applications.

Limitations. As NRES is both an online method and an ES method, it naturally inherits some
limitations shared by all methods of these two classes, such as hysteresis and variance’s linear
dependence on the dimension d. We provide a detailed discussion of these limitations in Appendix F.

Future Work. There are some natural open questions: 1) choosing a better sampling distribution for
NRES. Currently the isotropic Gaussian’s variance σ2 is tuned as a hyperparameter. Whether there
are better ways to leverage the sequential structure in unrolled computation graphs to automate the
selection of this distribution is an open question. 2) Incorporating hysteresis. Our analysis assumes
no hysteresis in the gradient estimates and we haven’t observed much impact of it in our experiments.
However, understanding when and how to correct for hysteresis is an interesting direction.

Acknowledgments

We thank Kevin Kuo, Jingnan Ye, Tian Li, and the anonymous reviewers for their helpful feedback.

10

References

[1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735–1780, 1997.

[2] Kyunghyun Cho, Bart Merrienboer, Caglar Gulcehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. In EMNLP, 2014.

[3] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In International
Conference on Machine Learning, 2019.

[4] James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned optimization:
Stability, robustness, and inductive biases. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[5] Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter op-
timization through reversible learning. In International Conference on Machine Learning,
2015.

[6] Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and
reverse gradient-based hyperparameter optimization. In International Conference on Machine
Learning, 2017.

[7] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv preprint arXiv:1811.10959, 2018.

[8] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 4750–4759, 2022.

[9] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 1999.

[10] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, 2015.

[11] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine Learning
Research, 18:1–43, 2018.

[12] Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. PIPPS: Flexible model-
based policy search robust to the curse of chaos. In International Conference on Machine
Learning, 2018.

[13] Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. Gradients are not all
you need. arXiv preprint arXiv:2111.05803, 2021.

[14] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[15] Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased gradient estimation in unrolled
computation graphs with persistent evolution strategies. In International Conference on Machine
Learning, 2021.

[16] Peter W Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications
of the ACM, 33(10):75–84, 1990.

[17] Pierre-Yves Massé and Yann Ollivier. Convergence of online adaptive and recurrent optimization
algorithms. arXiv preprint arXiv:2005.05645, 2020.

[18] Chong Wang, Xi Chen, Alexander J Smola, and Eric P Xing. Variance reduction for stochastic
gradient optimization. Advances in neural information processing systems, 26, 2013.

11

[19] Paul Vicol. Low-variance gradient estimation in unrolled computation graphs with es-single. In
International Conference on Machine Learning, 2023.

[20] Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury,
Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, et al. Velo: Training versatile
learned optimizers by scaling up. arXiv preprint arXiv:2211.09760, 2022.

[21] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies
is competitive for reinforcement learning. In Advances in Neural Information Processing
Systems, 2018.

[22] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In International Conference on Intelligent Robots and Systems, 2012.

[23] Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon bias in
stochastic meta-optimization. In International Conference on Learning Representations, 2018.

[24] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[25] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(2), 2012.

[26] Alvaro Maggiar, Andreas Wachter, Irina S Dolinskaya, and Jeremy Staum. A derivative-free
trust-region algorithm for the optimization of functions smoothed via gaussian convolution
using adaptive multiple importance sampling. SIAM Journal on Optimization, 28(2):1478–1507,
2018.

[27] Guoqing Liu, Li Zhao, Feidiao Yang, Jiang Bian, Tao Qin, Nenghai Yu, and Tie-Yan Liu. Trust
region evolution strategies. In AAAI Conference on Artificial Intelligence, 2019.

[28] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, and Adrian Weller.
Structured evolution with compact architectures for scalable policy optimization. In Interna-
tional Conference on Machine Learning, 2018.

[29] Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, and Jascha Sohl-Dickstein.
Guided evolutionary strategies: augmenting random search with surrogate gradients. In Interna-
tional Conference on Machine Learning, 2019.

[30] Alexandru Agapie. Spherical distributions used in evolutionary algorithms. Mathematics, 9
(23), 2021. ISSN 2227-7390.

[31] Katelyn Gao and Ozan Sener. Generalizing Gaussian smoothing for random search. In
International Conference on Machine Learning, 2022.

[32] Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772,
2016.

[33] Yunhao Tang, Krzysztof Choromanski, and Alp Kucukelbir. Variance reduction for evolution
strategies via structured control variates. In International Conference on Artificial Intelligence
and Statistics, 2020.

[34] Martı́n Abadi. Tensorflow: learning functions at scale. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, pages 1–1, 2016.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in Neural Information Processing
Systems, 2019.

[36] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

[37] Corentin Tallec and Yann Ollivier. Unbiasing truncated backpropagation through time. arXiv
preprint arXiv:1705.08209, 2017.

12

[38] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible resid-
ual network: Backpropagation without storing activations. Advances in Neural Information
Processing Systems, 2017.

[39] Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural Computation, 1(2):270–280, 1989.

[40] David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
directional gradient descent. In International Conference on Learning Representations, 2021.

[41] Corentin Tallec and Yann Ollivier. Unbiased online recurrent optimization. arXiv preprint
arXiv:1702.05043, 2017.

[42] Asier Mujika, Florian Meier, and Angelika Steger. Approximating real-time recurrent learning
with random kronecker factors. Advances in Neural Information Processing Systems, 31, 2018.

[43] Frederik Benzing, Marcelo Matheus Gauy, Asier Mujika, Anders Martinsson, and Angelika
Steger. Optimal kronecker-sum approximation of real time recurrent learning. In International
Conference on Machine Learning, 2019.

[44] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[45] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[46] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[47] Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-
Dickstein. Practical tradeoffs between memory, compute, and performance in learned optimizers.
In Conference on Lifelong Learning Agents, 2022.

[48] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[49] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

13

http://github.com/google/jax

	Introduction
	Online Evolution Strategies: Background and Related Work
	A New Class of Unbiased Online Evolution Strategies Methods
	Noise-Reuse Evolution Strategies
	Experiments
	Learning dynamical system parameters
	Meta-training learned optimizers
	Reinforcement Learning

	Additional Related Work
	Discussion, Limitations, and Future Work
	Notation
	Additional Related Work
	Algorithms
	FullES Pseudocode
	Online Evolution Strategies Pseudocode
	Truncated Evolution Strategies Pseudocode
	Generalized Persistent Evolution Strategies Pseudocode

	Theory and Proofs
	Proof of Lemma 1
	Interpretation of Assumption 2
	Proof of Lemma 4
	Proof of Theorem 5
	Proof of Corollary 6
	Proof of Corollary 8
	Proof of Theorem 9

	Experiments
	Additional Experiment Results
	Experiment details and hyperparameters
	Computation resources
	Experiment implmentation

	Broader Impacts and Limitations of NRES

