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Abstract

Recent work has explored how individual components of the CLIP-ViT model
contribute to the final representation by leveraging the shared image-text represen-
tation space of CLIP. These components, such as attention heads and MLPs, have
been shown to capture distinct image features like shape, color or texture. However,
understanding the role of these components in arbitrary vision transformers (ViTs)
is challenging. To this end, we introduce a general framework which can identify
the roles of various components in ViTs beyond CLIP. Specifically, we (a) auto-
mate the decomposition of the final representation into contributions from different
model components, and (b) linearly map these contributions to CLIP space to
interpret them via text. Additionally, we introduce a novel scoring function to rank
components by their importance with respect to specific features. Applying our
framework to various ViT variants (e.g. DeiT, DINO, DINOv2, Swin, MaxViT),
we gain insights into the roles of different components concerning particular image
features. These insights facilitate applications such as image retrieval using text
descriptions or reference images, visualizing token importance heatmaps, and
mitigating spurious correlations. We release our code to reproduce the experiments
at https://github.com/SriramB-98/vit-decompose

1 Introduction

Vision transformers and their variants [10, 22, 7, 33, 17, 32] have emerged as powerful image
encoders, becoming the preferred architecture for modern image foundation models. However, the
mechanisms by which these models transform images into representation vectors remain poorly
understood. Recently, Gandelsman et al. [11] made significant progress on this question for CLIP-ViT
models with two key insights: (i) They demonstrated that the residual connections and attention
mechanisms of CLIP-ViT enable the model output to be mathematically represented as a sum of
vectors over layers, attention heads, and tokens, along with contributions from MLPs and the CLS
token. Each vector corresponds to the contribution of a specific token attended to by a particular
attention head in a specific layer. (ii) These contribution vectors exist within the same shared image-
text representation space, allowing the CLIP text encoder to interpret each vector individually via
text.

Extending this approach to other transformer-based image encoders presents several challenges.
Popular models like DeiT [32], DINO-ViT [7, 22], and Swin [17] lack a corresponding text encoder to
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Figure 1: (Left) Workflow: The first step (REPDECOMPOSE) is to decompose a representation z into
contributions from its model components ci after being transformed by residual transformations like
LayerNorm, linear projections, resampling, patch merging and so on. The second step (COMPALIGN)
aligns each contribution to CLIP space using a set of linear maps f0, f1, . . . , fn on the corresponding
contributions c0, c1, . . . , cn. We can then interpret these aligned contributions using the CLIP text
encoder. (Right) Applications of our method: (a) Visualizing contributions of each token through
a specific component using a joint token-component decomposition (b) Retrieving images that are
close matches of the reference image (on top) with respect to a given image feature like pattern,
person, or location

interpret the component contributions. Additionally, extracting the contribution vectors corresponding
to these components is not straightforward, as they are often not explicitly computed during the
forward pass of the model. Other complications include diverse attention mechanisms such as grid
attention, block attention (in MaxViT), and windowed/shifted windowed attention (in Swin), as
well as various linear transformations like pooling, downsampling, and patch merging applied to
the residual streams between attention blocks. These differences necessitate a fresh mathematical
analysis for each model architecture, followed by careful application of necessary transformations to
the intermediate output of each component to determine its contribution to the final representation.
To address these challenges, we propose our framework (described in Figure 1) to identify roles of
components in general ViTs.

First, we automate the decomposition of the representation by leveraging the computational graph
created during the forward pass. This results in a drop-in function, REPDECOMPOSE, that can
decompose any representation into contributions vectors from model components simply by calling it
on the representation. Since this method operates on the computational graph, it is agnostic to the
specifics of the model implementation and thus applicable to a variety of model architectures.

Secondly, we introduce an algorithm, COMPALIGN, to map each component contribution vector to
the image representation space of a CLIP model. We train these linear maps with regularizations
so that these maps preserve the roles of the individual components while also aligning the model’s
image representation with CLIP’s image representation. This allows us to map each contribution
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vector from any component to CLIP space, where they can be interpreted through text using a CLIP
text encoder.

Thirdly, we observe that there is often no straightforward one-to-one mapping between model
components and common image features such as shape, pattern, color, and texture. Sometimes, a
single component may encode multiple features, while multiple components may be required to fully
encode a single feature. To address this, we propose a scoring function that assigns an importance
score to each component-feature pair. This allows us to rank components based on their importance
for a given feature, and rank features based on their importance for a given component.

Using this ranking, we proceed to analyze diverse vision transformers such as DeiT, DINO, Swin,
and MaxViT, in addition to CLIP, in terms of their components and the image features that they are
responsible for encoding. We consistently find that many components in these models encode the
same feature, particularly in ImageNet pre-trained models. Additionally, individual components
in larger models MaxVit and Swin do not respond to any image feature strongly, but can encode
them effectively in combination with other components. This diffuse and flexible nature of feature
representation underscores the need for interpreting them using a continuous scoring and ranking
method as opposed to labelling each component with a well-defined role. We are thus able to perform
tasks such as image retrieval, visualizing token contributions, and spurious correlation mitigation by
carefully selecting or ablating specific components based on their scores for a given property.

2 Related Work

Several studies attempt to elucidate model predictions by analyzing either a subset of input example
through heatmaps [27, 30, 31, 18] or a subset of training examples [15, 23, 24]. Nevertheless,
empirical evidence suggests that these approaches are often unreliable in real-world scenarios [14, 3].
These methods do not interpret model predictions in relation to the model’s internal mechanisms,
which is essential for gaining a deeper understanding of the reliability of model outputs.

Internal Mechanisms of Vision Models: Our work is closely related to the studies by Gandelsman
et al. [11] and Vilas et al. [34], both of which analyze vanilla ViTs in terms of their components and
interpret them using either CLIP text encoders or pretrained ImageNet heads. Like these studies, our
research can be situated within the emerging field of representation engineering [36] and mechanistic
interpretability [6, 5]. Other works [4, 12, 21] focus on interpreting individual neurons to understand
vision models’ internal mechanisms. However, these methods often fail to break down the model’s
output into its subcomponents, which is crucial for understanding model reliability. Shah et al. [29]
examine the direct effect of model weights on output, but do not study the fine-grained role of these
components in building the final image representation. Balasubramanian and Feizi [1] focus on
expressing CNN representations as a sum of contributions from input regions via masking.

Interpreting models using CLIP: Many recent works utilize CLIP [25] to interpret models via text.
Moayeri et al. [19] align model representations to CLIP space with a linear layer, but it is limited
to only the final representation and can not be applied to model components. Oikarinen and Weng
[20] annotate individual neurons in CNNs via CLIP, but their method cannot be extended easily
to high-dimensional component vectors. COMPALIGN is related to model stitching in which one
representation space is interpreted in terms of another by training a map between two spaces [2, 16].

3 Decomposing the Final Image Representation

Recently, Gandelsman et al. [11] decomposed zCLS, fin, the final [CLS] representation of the CLIP’s
image encoder as a sum over the contributions from its attention heads, layers and token positions, as
well as contributions from the MLPs. In particular, they observe that the last few attention layers have
a significant direct impact on the final representation. Thus, this representation can be decomposed
as: zCLS, fin = zCLS, init +

∑L
l=1 cl,MLP +

∑L
l=1

∑H
h=1

∑N
t=1 cl,h,t, where L, H , N correspond to

the number of layers, number of attention heads and number of tokens. Here, cl,h,t denotes the
contribution of token t though attention head h in layer l, while cl,MLP denotes the contribution from
the MLP in layer l. Due to this linear decomposition, different dimensions can be reduced by summing
over them to identify the contributions of tokens or attention heads to the final representation. While
this decomposition is relatively simple for vanilla ViTs, it cannot be directly used for general ViT
architectures due to use of self-attention variants such as window attention, grid attention, or block
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Algorithm 1 REPDECOMPOSE

Input: f , the final node (denoting the function that output the representation z) in the computational
graph G

Output: {cj}Nj=1, N direct contributions from various components (indexed by j) in the model after
graph traversal

function REPDECOMPOSE(f )
z = f(z1, z2, . . . ,zn)
if f is non-linear then

return [z] ▷ Cannot decompose further
else ▷ f is linear

Let z1 = f1(. . . ), z2 = f2(. . . ), . . . ,zn = fn(. . . )

∀i, {cji}
Ni
j=1 = REPDECOMPOSE(fi) ▷ zi =

∑Ni

j=1 c
j
i ( cji are component contributions )

Then, z = f(
∑N1

j=1 c
j
1,
∑N2

j=1 c
j
2, . . . ,

∑Nn

j=1 c
j
n)

Or, z =
∑n

i=1

∑Ni

j=1 f
′(cji ) ▷ f ′ exists since f distributes over inputs due to linearity

return [{f ′(cji )}
Ni
j=1]

n
i=1

attention, combined with operations such as pooling or patch merging on the residual stream. The
final representation may also not just be a single zCLS, fin but 1

N

∑N
i=1 zi,fin or even 1

L

∑L
i=1 zCLS,i,

or some combination of the above.

3.1 REPDECOMPOSE: Automated Representation Decomposition for ViTs

We thus seek a general algorithm which can automatically decompose the representation for general
ViTs. This can be done via a recursive traversal of the computation graph. Suppose the final
representation z can be decomposed into component contributions ci,t such that z =

∑
i,t ci,t. Here

each ci,t corresponds to the contribution of a particular token t through some model component i. For
convenience, let ci =

∑
t ci,t . Then, if given access to the computational graph of z, we can identify

potential linear components ci,t by recursively traversing the graph starting from the node which
outputs z in reverse order till we hit a non-linear node. The key insight here is that the output of any
node which performs a linear reduction (defined as a linear operation which results in a reduction in
the number of dimensions) is equivalent to a sum of individual tensors of the same dimension as the
output. These tensors can be collected and transformed appropriately during the graph traversal to
obtain a list of tensors ci,t, each members of the same vector space as the representation z. This kind
of linear decomposition is possible due to the overwhelmingly linear nature of transformers. The
high-level logic of REPDECOMPOSE is detailed in Algorithm 1, please refer to Algorithm 2 in the
appendix or the code for a more detailed description. We also illustrate the operation of the algorithm
on an attention-MLP block in the appendix.

In practice, the number of components quickly explodes as there are a very large number of potential
component divisions for a given model. To make analysis and computation tractable, we restrict it
to only the attention heads and MLPs with no finer divisions. We also constrain REPDECOMPOSE
to only return the direct contributions of these components to the output. This means that the
contribution ci is the direct contribution of component i to z, and does not include its contribution
to z via a downstream component j. Additionally, the token t in ci,t is present in the input of the
component i, and not the input image. In principle, REPDECOMPOSE could return higher order
terms such as cj,i which is the contribution of model component i via the downstream component j.
A full understanding of these higher order terms is essential to get a complete picture of the inner
mechanism of a model, however we defer this for future work.

4 Aligning the component representations to CLIP space

Having decomposed the representation into contributions from relevant model components, we
now aim to interpret these contributions through text using CLIP by mapping them to CLIP space.
Formally, given that we have a set of vectors {ci}Ni=1 such that

∑N
i ci = z, the final representation

of model, we require a set of linear maps fi such that the sum of
∑

i fi(ci) = zCLIP, the final
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Embedding
Source

ImageNet
pretrained

One map only COMPALIGN
(λ = 0)

COMPALIGN

TEXTSPAN’s
top 10

descriptions of a
random

component

wardrobe
medicine cabinet
window shade
desk
barbershop
refrigerator
library
shoji screen
bathtub
dining table

gyromitra
home theater
drumstick
Samoyed
muzzle
bookstore
dining table
medicine cabinet
park bench
tusker

bookcase
snorkel
red wolf
barbershop
microwave oven
bassinet
disc brake
dining table
sink
window screen

filing cabinet
snorkel
bakery
bathtub
dining table
red wolf
gyromitra
shoji screen
Norwich Terrier
bookstore

Match rate - 0.08 0.155 0.185
Cosine Distance - 0.23 0.18 0.17

Table 1: Comparison of different methods to map the representation space of ImageNet-1k pre-trained
DeiT-B/16 to CLIP image representation space. The green colored texts are exact matches with the
top-10 descriptions obtained from the imagenet pretrained embeddings, while the orange colored
texts are approximate matches. The match rate is the average fraction of exact matches across all
components, while cosine distance is the average cosine distance between the CLIP representations
and the transformed model representations on ImageNet

representation of the CLIP model. Once we have these CLIP aligned vectors, we can proceed to
interpret them via text using CLIP’s text encoders.

However, from an interpretability standpoint, a few additional constraints on the linear maps are
desirable. Consider a component contribution ci and two directions u,v belonging to the same vector
space as ci which represent two distinct features, say shape and texture. Let us further assume that
the component’s dominant role is to identify shape, and thus the variance of the projection of ci along
u is higher than that of v. We want this relative importance of features to be maintained in fi(ci).
Additionally, we also want any two linear maps fi and fj to not change the relative norms of features
in components ci and cj . We can express these conditions formally as follows:

1. Intra-component norm rank ordering: For any two vectors u,v and a linear map fi such that
∥u∥ ≤ ∥v∥, we have ∥fi(u)∥ ≤ ∥fi(v)∥

2. Inter-component norm rank ordering: For any two vectors u,v and linear maps fi, fj such
that ∥u∥ ≤ ∥v∥, we have ∥fi(u)∥ ≤ ∥fj(v)∥

Theorem 1. Both of the above conditions together imply that all linear maps fi must be a scalar
multiple of an orthogonal transformation, that is for all i, fT

i fi = kI for some constant k. Here, I is
the identity transformation.

The proof is deferred to appendix E. We can now formulate a novel alignment method, COMPALIGN,
to map contributions of model components to CLIP space. COMPALIGN minimizes a loss function
over {fi}Ni=1 to obtain a good alignment between model representation space and CLIP space:

L({fi}Ni=1) = E{ci}N
i=1,zCLIP

[
1− cos

(∑
i

fi(ci), zCLIP

)]
+ λ

∑
i

∥fT
i fi − I∥F

The first term of the objective is the alignment loss, which is the average cosine distance between
the CLIP representation zCLIP and the transformed model representation

∑
i fi(ci). It quantifies the

directional discrepancy between the two vectors. The second term is the orthogonality regularizer
which imposes a penalty if the linear maps fi are not orthogonal, ensuring that the fi adhere closely
to the specified conditions. We can now train fi using the above loss function on ImageNet-1k. The
training is label-free and can be done even over unlabeled datasets. We obtain zCLIP from the CLIP
image encoder and {ci}Ni=1 from running REPDECOMPOSE on the final representation of the model.
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Figure 2: Ablation results for various different image encoders. The top-1 ImageNet accuracy is
plotted as the layers of the model are increasingly ablated away, starting from the last layer up till the
first layer. The circles on the plot represent the endpoints of blocks, the definition of which varies
across model architectures. For the vanilla ViT variants, a block is an attention MLP pair, while for
SWIN, it is a pair of windowed/shifted windowed attention and an MLP. For MaxVit, this might
either be a grid/block attention-MLP pair, or an MBConv block.

Ablation study: We now conduct an ablation study on COMPALIGN. The first naive alignment
method is the case where all fi are the same linear map f , without constraints on f , similar to [19].
The second method is a version of COMPALIGN with λ = 0, where all fi are different but not
trained with the orthogonality regularizer. To compare these methods, we first get a “ground truth”
description for each model component by using the TEXTSPAN [11] algorithm on the class embedding
vectors from the ImageNet pre-trained head. TEXTSPAN retrieves those class embedding vectors
along which variance of the component output is maximized, thus yielding descriptions of each
component in terms of the top 10 most dominant ImageNet classes. We then use COMPALIGN and
the two baselines to map the representations to CLIP space, and apply TEXTSPAN on CLIP embedded
ImageNet class vectors to label each model component. We can then compare the descriptions this
yields with the “ground truth” text description for each head. The results, shown in Tab. 1, indicate
that COMPALIGN’s TEXTSPAN descriptions have the most matches to the ImageNet pre-trained
descriptions, followed by COMPALIGN with λ = 0 and the naive single map method. This trend is
similar in the average cosine distance between the CLIP representations and the transformed model
representations.

5 Component ablation

To identify the most relevant model layers for downstream tasks, we progressively ablate them and
measure the drop in ImageNet classification accuracy. Ablation involves setting a layer’s contribution
to its mean value over the dataset. We use the following models from Huggingface’s timm [35]
repository: (i) DeiT (ViT-B-16) [32], (ii) DINO (ViT-B-16) [7], (iii) DINOv2 (ViT-B-14) [22], (iv)
Swin Base (patch size = 4, window size = 7) [17], (v) MaxViT Small [33], along with (vi) CLIP
(ViT-B-16) [9] from open_clip [13]. DeiT, Swin, and MaxViT are pretrained on ImageNet with a
supervised classification loss, DINO on ImageNet with a self-supervised loss, DINOv2 on LVD-142M
with a self-supervised loss, while CLIP is pretrained on a LAION-2B subset with contrastive loss.

In Fig. 2, we see that for models not trained on ImageNet (CLIP and DINOv2), removing the last
few layers quickly drops the accuracy to zero. In contrast, models trained on ImageNet experience a
more gradual decline in accuracy, reaching zero only after more than half the layers are ablated. This
trend is consistent across both self-supervised (DINO) and classification-supervised (DeiT, SWIN,
MaxViT) models. This suggests that ImageNet-trained models encode useful features redundantly
across layers for the classification task. Additionally, larger models with more layers, such as MaxVit,
show significantly more redundancy, with minimal accuracy impact from ablating the last four layers.
Conversely, the first few layers in all models contribute little to the output. Therefore, our analysis in
the subsequent sections is focused on the last few layers of each model.
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Figure 3: Top-3 images retrieved by DeiT components for “forest” and “beach” ordered according to
their relevance for the attribute “location”. Each column here corresponds to the images returned by
the sum of contributions of 3 components, so column i corresponds to components c3i, c3i+1, c3i+2.
A large fraction of components which can recognize the “location” feature are sorted correctly by the
scoring function

6 Feature-based component analysis

We now analyze the final representation in terms finer components like attention heads and MLPs,
focusing on the last few significant layers. We limit decomposition to 10 layers for DeiT, DINO, and
DINOv2, but 12 layers for SWIN and 20 layers for MaxVit due to their greater depth and redundancy
across components. We accumulate contributions from the remaining components in a single vector
cinit, expressing z as cinit +

∑N
i ci, where N + 1 is the total number of components including cinit.

Here, N = 65 for DeiT, DINO, and DINOv2; N = 134 for SWIN, and N = 156 for MaxVit.

We then ask if it is possible to attribute a feature-specific role to each component using an algorithm
such as TEXTSPAN [11]. These image features may be low-level (shape, color, pattern) or high-level
(such as location, person, animal). However, such roles are not necessarily localized to a single
component, but may be distributed among multiple components. Furthermore, each individual
component by itself may not respond significantly to a particular feature, but it may jointly contribute
to identifying a feature along with other components. Thus, rather than rigidly matching each
component with a role, we aim to devise a scoring function which can assign a score to each
component - feature pair, which signifies of how important the component is for identifying a given
image feature. A continuous scoring function allows us to select multiple components relevant to the
feature by sorting the components according to their score.

Model Feature
ordering

Component
ordering

DeiT 0.531 0.684
DINO 0.714 0.723
DINOv2 0.716 0.703
SWIN 0.628 0.801
MaxVit 0.681 0.849

Table 2: Spearman’s rank correlation
between the orderings induced by CLIP
score and component score averaged
over a selection of common features

We devise this scoring function (described in the appendix
in Alg. 3) by looking at the projection of each contribution
vector ci onto a vector space corresponding to a certain
feature. Suppose we have a feature, “pattern”, that we
want to attribute to the components. We first describe the
feature in terms of an example set of feature instantiations,
such as “spotted”, “striped”, “checkered”, and so on. We
then embed each of these texts to CLIP space, obtaining a
set of embeddings B. We also calculate the CLIP aligned
contributions fi(ci) for each component i over an image
dataset (ImageNet-1k validation split). Then, the score is
simply the correlation between projection of fi(ci) and the
projection of

∑
i fi(ci) onto the vector space spanned by

B. Intuitively, this measures how closely the component’s
contribution correlates with the overall representation. The
scores obtained for each component and feature can be used to rank the components according to its
importance for a given feature to obtain a component ordering, or to rank the features according to its
importance for a specific component to get a feature ordering .
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Figure 4: Top-3 images retrieved by the most significant components for various features relevant to
the reference image (displayed on top). The models used are (from left to right) DINO, DeiT, and
SWIN. More exhaustive results can be found in appendix H

6.1 Text based image retrieval

We can now use our framework to identify components which can retrieve images possessing a
certain feature most effectively. Using the scoring function described above, we can identify the top
k components {ci}ki=1 which are the most responsive to a given feature p. We can use the cosine
similarity of

∑k
i=1 fi(ci) to the CLIP embedding of an instantiation sp of the feature p to retrieve

the closest matches in ImageNet-1k validation split. In Fig. 3, we show the top 3 images retrieved
by different components of the DeiT model for the location instantiation “forest” and “beach” when
sorted according to the component ordering for the “location” feature. As the component score
decreases, the images retrieved by the components grow less relevant. Also note that a significant
fraction of components are capable of retrieving relevant images. This further confirms the need for a
continuous scoring function which can identify multiple components relevant to a feature.

To quantitatively verify our scoring function, we devise the following experiment. We first choose a
set of common image features such as color, pattern, shape, and location, with a representative set of
feature instantiations for each (details in appendix B). The scoring function induces a component
ordering for each feature p and feature ordering for each component i. We then compute the cosine
similarity simi,sp = cos(fi(ci),ysp,CLIP) where ysp,CLIP is the CLIP text embedding of sp. We can
compare this to the cosine similarity simCLIP,sp = cos(zCLIP,ysp,CLIP) where zCLIP is the CLIP image
representation. The correlation coefficient between simi,sp and simCLIP,sp over an image dataset can
be viewed as another score which is purely a function of how well the component i can retrieve
images matching sp as judged by CLIP. Averaging this correlation coefficient over all sp for a given p
yields a “ground truth” proxy for our scoring function. We can measure the Spearman rank correlation
(which ranges from -1 to 1) between the component (or feature) ordering induced by our scoring
function and the ground truth and average it over features (or components). In Tab. 2, we observe that
the rank correlation is significantly high for all models for both feature and component ordering. The
individual rank correlations for component orderings for common features can be found in Tab. 4.

6.2 Image based image retrieval

We can also retrieve images that are similar to a reference image with respect to a specific feature.
To do this, we first choose components which are highly significant for the given feature while
being comparatively less relevant for other features. Mathematically, for a feature p ∈ P , the
set of all relevant features, we want to choose component i with score si,p such that the quantity
minp′∈P\p si,p − si,p′ is maximised. Intuitively, we want components which have the highest
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Figure 5: Visualization of token contributions as heatmaps for two example images for the DeiT
model. The relevant feature and the head most closely associated with the feature is displayed on the
bottom of the heatmap, while the feature instantiation is displayed on the top. The layer numbering
starts from the last layer (which has index ’00’). The regions highlighted in red contribute positively
to the prediction, while blue regions contribute negatively. More results in appendix I

gap between si,p and si,p′ where p′ can be any other feature. We can then select a set of k such
components Ck by sorting over the score gap, and sum them to obtain a feature-specific image
representation zp =

∑
i∈Ck

ci . Now, we can retrieve any image x′ similar in feature p to a reference
image x by computing the cosine similarity between z′

p and zp, which are the feature-specific image
representations for x′ and x. We show a few examples for image based image retrieval in Fig. 4.
Here, we tune k to ensure that it is not so small that the retrieved images do not resemble the reference
image at all, and not so large that the retrieved images are overall very similar to the reference image.
We can see that the retrieved images are significantly similar to the reference image with respect to
the given feature, but not similar overall. For example, when the reference image is a handbag with
a leopard print, the “pattern” components retrieve images of leopards which have the same pattern,
while the “fabric” components return other bags which are made of similar glossy fabric. Similarly,
for the ball with a spiral pattern on it, we retrieve images which resemble the spiral pattern in the
second row, while they resemble the shape in the third row.

Note that this experiment only involves the alignment procedure for computing the scores and thereby
selecting the component set Ck. The process of retrieving the images is based on zp which exists
in the model representation space and not CLIP space. This shows that the model inherently has
components which (while not constrained to a single role) are specialized for certain properties, and
this specialization is not a result of the CLIP alignment procedure.

6.3 Visualizing token contributions

Model
name

Worst group
accuracy

Average group
accuracy

DeiT 0.733→ 0.815 0.874→ 0.913
CLIP 0.507→ 0.744 0.727→ 0.790
DINO 0.800→ 0.911 0.900→ 0.938
DINOv2 0.967→ 0.978 0.983→ 0.986
SWIN 0.834→ 0.871 0.927→ 0.944
MaxVit 0.777→ 0.814 0.875→ 0.887

Table 3: Worst group accuracy and average
group accuracy for Waterbirds dataset before
and after intervention for various models (for-
mat is before→ after)

As discussed in Section 3.1, contribution from a
component i can be further decomposed as a sum
over contributions from a tokens, so ci =

∑
t ci,t.

For any particular CLIP text embedding vector u
corresponding to a realization of some feature p, we
have u⊤fi(ci) =

∑
t u

⊤fi(ci,t). We can visualize
this token-wise score u⊤fi(ci,t) as a heat map to
know which tokens are the most influential with
respect to u. We show the heat map obtained via
this procedure in Fig. 5 for two example images for
the DeiT model. The components used for each heat
map correspond to the feature being highlighted and
are selected using the scoring function we described
previously. We can observe that the heatmaps are
localized within image portions which correspond
to the text description. We also compare our method
against zero-shot segmentation methods for ImageNet classes such as GradCAM [28] and Chefer
et al. [8] and find that our method outperforms the baselines (see Appendix J).

6.4 Zero-shot spurious correlation mitigation

We can also use the scoring function to mitigate spurious correlations in the Waterbirds dataset [26]
in a zero-shot manner. Waterbirds dataset is a synthesized dataset where images of birds commonly
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found in water (“waterbirds”) and land (“landbirds”) are cut out and pasted on top of images of land
and water background. For this experiment, we regenerate the Waterbirds dataset following Sagawa
et al. [26] but take care to discard background images with birds and thus eliminate label noise. We
select the top 10 components for each model which are associated with the “location” feature but not
with the “bird” class following the method we used in Sec. 6.2. We then ablate these components
by setting their value to their mean over the Waterbirds dataset. In Tab. 3, we observe a significant
increase in the worst group accuracy for all models, accompanied with an increase in the average
group accuracy as well. The changes in all four groups can be found in appendix K in Tab. 6.

7 Conclusion

In this work, we propose a ViT component interpretation framework consisting of an automatic
decomposition algorithm (REPDECOMPOSE) to break down the model’s final representation into
component contributions and a method (COMPALIGN) to map these contributions to CLIP space for
text-based interpretation. We also introduce a continuous scoring function to rank components by their
importance in encoding specific features and to rank features within a component. We demonstrate the
framework’s effectiveness in applications such as text-based and image-based retrieval, visualizing
token-wise contribution heatmaps, and mitigating spurious correlations in a zero-shot manner.

Acknowledgments

This project was supported in part by a grant from an NSF CAREER AWARD 1942230, ONR YIP
award N00014-22-1-2271, ARO’s Early Career Program Award 310902-00001, HR00112090132
(DARPA/ RED), HR001119S0026 (DARPA/ GARD), Army Grant No. W911NF2120076, the NSF
award CCF2212458, NSF Award No. 2229885 (NSF Institute for Trustworthy AI in Law and Society,
TRAILS), an Amazon Research Award and an award from Capital One.

Author contributions

Sriram Balasubramanian conceived the main ideas, implemented the algorithms, conducted the
experiments, and contributed to writing the paper. Samyadeep Basu contributed to the writing and
provided essential advice on the presentation and direction of the paper. Soheil Feizi offered critical
guidance on the presentation, writing, and overall direction of the paper.

References
[1] S. Balasubramanian and S. Feizi. Towards improved input masking for convolutional neural

networks. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pages
1855–1865, 2023. doi: 10.1109/ICCV51070.2023.00178.

[2] Y. Bansal, P. Nakkiran, and B. Barak. Revisiting model stitching to compare neural representa-
tions, 2021.

[3] S. Basu, P. Pope, and S. Feizi. Influence functions in deep learning are fragile. CoRR,
abs/2006.14651, 2020. URL https://arxiv.org/abs/2006.14651.

[4] D. Bau, J. Zhu, H. Strobelt, À. Lapedriza, B. Zhou, and A. Torralba. Understanding the role
of individual units in a deep neural network. CoRR, abs/2009.05041, 2020. URL https:
//arxiv.org/abs/2009.05041.

[5] T. Bricken, A. Templeton, J. Batson, B. Chen, A. Jermyn, T. Conerly, N. Turner, C. Anil, C. Deni-
son, A. Askell, R. Lasenby, Y. Wu, S. Kravec, N. Schiefer, T. Maxwell, N. Joseph, Z. Hatfield-
Dodds, A. Tamkin, K. Nguyen, B. McLean, J. E. Burke, T. Hume, S. Carter, T. Henighan, and
C. Olah. Towards monosemanticity: Decomposing language models with dictionary learn-
ing. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

10

https://arxiv.org/abs/2006.14651
https://arxiv.org/abs/2009.05041
https://arxiv.org/abs/2009.05041


[6] N. Cammarata, S. Carter, G. Goh, C. Olah, M. Petrov, L. Schubert, C. Voss, B. Egan,
and S. K. Lim. Thread: Circuits. Distill, 2020. doi: 10.23915/distill.00024.
https://distill.pub/2020/circuits.

[7] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers. In Proceedings of the International Conference
on Computer Vision (ICCV), 2021.

[8] H. Chefer, S. Gur, and L. Wolf. Transformer interpretability beyond attention visualization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 782–791, June 2021.

[9] M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. Ilharco, C. Gordon, C. Schuhmann,
L. Schmidt, and J. Jitsev. Reproducible scaling laws for contrastive language-image learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
2818–2829, 2023.

[10] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale, 2021.

[11] Y. Gandelsman, A. A. Efros, and J. Steinhardt. Interpreting CLIP’s image representation via text-
based decomposition. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=5Ca9sSzuDp.

[12] G. Goh, N. C. †, C. V. †, S. Carter, M. Petrov, L. Schubert, A. Radford, and C. Olah. Mul-
timodal neurons in artificial neural networks. Distill, 2021. doi: 10.23915/distill.00030.
https://distill.pub/2021/multimodal-neurons.

[13] G. Ilharco, M. Wortsman, R. Wightman, C. Gordon, N. Carlini, R. Taori, A. Dave, V. Shankar,
H. Namkoong, J. Miller, H. Hajishirzi, A. Farhadi, and L. Schmidt. Openclip, July 2021. URL
https://doi.org/10.5281/zenodo.5143773. If you use this software, please cite it as
below.

[14] P.-J. Kindermans, S. Hooker, J. Adebayo, M. Alber, K. T. Schütt, S. Dähne, D. Erhan, and
B. Kim. The (un)reliability of saliency methods, 2017.

[15] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions, 2020.

[16] K. Lenc and A. Vedaldi. Understanding image representations by measuring their equivariance
and equivalence, 2015. URL https://arxiv.org/abs/1411.5908.

[17] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

[18] S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions. CoRR,
abs/1705.07874, 2017. URL http://arxiv.org/abs/1705.07874.

[19] M. Moayeri, K. Rezaei, M. Sanjabi, and S. Feizi. Text-to-concept (and back) via cross-model
alignment, 2023.

[20] T. Oikarinen and T.-W. Weng. CLIP-dissect: Automatic description of neuron representations in
deep vision networks. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=iPWiwWHc1V.

[21] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and A. Mordvint-
sev. The building blocks of interpretability. Distill, 2018. doi: 10.23915/distill.00010.
https://distill.pub/2018/building-blocks.

[22] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,
D. Haziza, F. Massa, A. El-Nouby, R. Howes, P.-Y. Huang, H. Xu, V. Sharma, S.-W. Li,
W. Galuba, M. Rabbat, M. Assran, N. Ballas, G. Synnaeve, I. Misra, H. Jegou, J. Mairal,
P. Labatut, A. Joulin, and P. Bojanowski. Dinov2: Learning robust visual features without
supervision, 2023.

11

https://openreview.net/forum?id=5Ca9sSzuDp
https://doi.org/10.5281/zenodo.5143773
https://arxiv.org/abs/1411.5908
http://arxiv.org/abs/1705.07874
https://openreview.net/forum?id=iPWiwWHc1V


[23] S. M. Park, K. Georgiev, A. Ilyas, G. Leclerc, and A. Madry. Trak: Attributing model behavior
at scale, 2023.

[24] G. Pruthi, F. Liu, M. Sundararajan, and S. Kale. Estimating training data influence by track-
ing gradient descent. CoRR, abs/2002.08484, 2020. URL https://arxiv.org/abs/2002.
08484.

[25] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision, 2021. URL https://arxiv.org/abs/2103.00020.

[26] S. Sagawa, P. W. Koh, T. B. Hashimoto, and P. Liang. Distributionally robust neural networks
for group shifts: On the importance of regularization for worst-case generalization, 2020.

[27] R. R. Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and D. Batra. Grad-cam: Why
did you say that? visual explanations from deep networks via gradient-based localization. CoRR,
abs/1610.02391, 2016. URL http://arxiv.org/abs/1610.02391.

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. International Journal of Com-
puter Vision, 128(2):336–359, Oct. 2019. ISSN 1573-1405. doi: 10.1007/s11263-019-01228-7.
URL http://dx.doi.org/10.1007/s11263-019-01228-7.

[29] H. Shah, A. Ilyas, and A. Madry. Decomposing and editing predictions by modeling model
computation. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=rTBR0eqE4G.

[30] D. Smilkov, N. Thorat, B. Kim, F. B. Viégas, and M. Wattenberg. Smoothgrad: removing noise
by adding noise. CoRR, abs/1706.03825, 2017. URL http://arxiv.org/abs/1706.03825.

[31] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. CoRR,
abs/1703.01365, 2017. URL http://arxiv.org/abs/1703.01365.

[32] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient
image transformers & distillation through attention, 2021.

[33] Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li. Maxvit: Multi-axis vision
transformer. ECCV, 2022.

[34] M. G. Vilas, T. Schaumlöffel, and G. Roig. Analyzing vision transformers for image
classification in class embedding space. In Advances in Neural Information Processing Systems,
volume 36, pages 40030–40041, 2023. URL https://proceedings.neurips.cc/paper_
files/paper/2023/file/7dd309df03d37643b96f5048b44da798-Paper-Conference.
pdf.

[35] R. Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

[36] A. Zou, L. Phan, S. Chen, J. Campbell, P. Guo, R. Ren, A. Pan, X. Yin, M. Mazeika, A.-K.
Dombrowski, S. Goel, N. Li, M. J. Byun, Z. Wang, A. Mallen, S. Basart, S. Koyejo, D. Song,
M. Fredrikson, J. Z. Kolter, and D. Hendrycks. Representation engineering: A top-down
approach to ai transparency, 2023. URL https://arxiv.org/abs/2310.01405.

12

https://arxiv.org/abs/2002.08484
https://arxiv.org/abs/2002.08484
https://arxiv.org/abs/2103.00020
http://arxiv.org/abs/1610.02391
http://dx.doi.org/10.1007/s11263-019-01228-7
https://openreview.net/forum?id=rTBR0eqE4G
http://arxiv.org/abs/1706.03825
http://arxiv.org/abs/1703.01365
https://proceedings.neurips.cc/paper_files/paper/2023/file/7dd309df03d37643b96f5048b44da798-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7dd309df03d37643b96f5048b44da798-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/7dd309df03d37643b96f5048b44da798-Paper-Conference.pdf
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://arxiv.org/abs/2310.01405


A Limitations

Our analysis is limited in several ways which we hope to address in future work. Firstly, similar
to Gandelsman et al. [11], we only consider the direct contributions from the last few layers, and
do not look at the indirect contributions though other components. Secondly, we limit ourselves to
decomposition only over attention heads and tokens, while convolutional blocks are not decomposed
even if they might admit one. Furthermore, it is still unclear if we can identify certain directions or
vector subspaces in the model component contributions which are strongly associated with a certain
property. We believe that a detailed analysis of higher order contributions with a more fine-grained
decomposition may be key for addressing these challenges.

B Implementation details

Feature instantiations: We use the following features and corresponding feature instantiations.
They are chosen arbitrarily:

1. color: “blue color”, “green color”, “red color”, “yellow color”, “black color”, “white color”
2. texture: “rough texture”, “smooth texture”, “furry texture”, “sleek texture”, “slimy texture”,

“spiky texture”, “glossy texture”
3. animal: “camel”, “elephant”, “giraffe”, “cat”, “dog”, “zebra”, “cheetah”
4. person: “face”, “head”, “man”, “woman”, “human”, “arms”, “legs”
5. location: “sea”, “beach”, “forest”, “desert”, “city”, “sky”, “marsh”
6. pattern: “spotted pattern”, “striped pattern”, “polka dot pattern”, “plain pattern”, “checkered

pattern”
7. shape: “triangular shape”, “rectangular shape”, “circular shape”, “octagon”
8. fabric: “linen”, “velvet”, “cotton”, “silk”, “chiffon”

Hyperparameters: The aligners are trained with learning rate = 3× 10−4 , λ = 1/768 using the
Adam optimizer (with default values for everything else) for upto an epoch on ImageNet validation
split. Hyperparameters were loosely tuned for the DeiT model using the cosine similarity as a metric,
and then fixed for the rest of the models. We may achieve better performance with more rigorous
tuning. The number of components k used for the image-based image retrieval experiment was tuned
on an image-by-image basis. It is approximately around 9 for larger models like Swin or MaxVit, and
around 3 for the rest.

Computational resources: The bulk of computation is utilized to compute component contributions
and train the aligner. Most of the experiments in the paper were conducted on a single RTX A5000
GPU, with 32GB CPU memory and 4 compute nodes.
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C More detailed pseudocode for REPDECOMPOSE

Algorithm 2 REPDECOMPOSE

Input: z, the final representation output by the model and the final node in the computational graph.
z.f is the function that outputs node z

Output: A tree t consisting of component contributions c, such that components
∑

c∈t c = z. The
structure of t is a nested list where each list represents a level in the tree

function REPDECOMPOSE(z)
if is_nonlinear(z.f ) then

return [z]
else if is_unary(z.f ) then ▷ Function is unary linear

z0 ← z.parents()
t0 ← REPDECOMPOSE(z0)
if is_reduction(z.f ) then

t0,u ← unbind(t0) ▷ Unbinds each c ∈ t along the reduction dimension
fd ← decomp(z.f ) ▷ Returns fd such that

∑
c∈t0,u

fd(c) = z.f(z0)

return map(fd, t0,u) ▷ Maps each c ∈ t0,u to fd(c)
else

return map( z.f , t0) ▷ Maps each element c ∈ t to z.f(c)
else ▷ z.f is binary

z0, z1 ← z.parents() ▷ Get the parents of z in the graph (inputs to z.function)
t0, t1 ← REPDECOMPOSE(z0), REPDECOMPOSE(z1)
fd,0, fd,1 ← decomp_binary(z.f ) ▷ Returns fd,0, fd,1 such that:
return [map(fd,0, t0), map(fd,1, t1)] ▷

∑
c∈t0

fd,0(c) +
∑

c∈t1
fd,1(c) = z.f(z0, z1)
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D Stepwise breakdown of the operation of RepDecompose on a vanilla
attention-MLP block
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Figure 6: Illustration of a simple attention-mlp block. Intermediate tensors marked as zi, non-linear
nodes in orange, nodes where a tensor is reduced along a dimension of interest (tokens, attention
head, etc) are marked by green borders

To illustrate the workings of our algorithm, we describe the steps that the RepDecompose algorithm
takes on a simple attention-mlp block of a vanilla ViT transformer. Please refer to Figure 6 for the
variable names in the following explanation.

First, we mark (with green borders in the figure) the computational nodes in which the contributions
of the components get reduced. For the tokenwise contributions, this is the ’matmul’ operation, while
for the attention head contributions, it is the ’concat’ operation. We also detach the graph at the input
of each component to stop the algorithm from gathering only the direct contributions and not any
higher-order contribution terms arising from the interaction between multiple components. Let the
RepDecompose function be denoted by d(.) which takes in a representation and returns an array of
contributions. Here, n, wherever it appears, is the number of contributions in the decomposition of
the input. The map(f, d(z)) operation applies f to every contribution vector in d(z). At each step, it
is ensured that the sum of all contribution vectors/tensors in the RHS is equal to the vector/tensor that
is being decomposed in the LHS via the distributive property for linear transformations. Then:

1. d(z) = map(λx. 1σ (x −
µ
n ), d(z1)) (LayerNorm linearized as in Gandelsman et al [1], n

here is the number of contributions in d(z1))
2. d(z1) = (d(z2), d(z3))

3. d(z2) = map(λx.xW1 +
b1
n , d(z4)) (n here is the number of contributions in d(z4) )

4. d(z4) = [z4] (stops when it hits a non-linear node)
5. d(z3) = (d(z5), d(z6))

6. d(z6) = map(λx.xWo +
bo
n , d(z7)) (n here is the number of contributions in d(z7) )

7. d(z7) = [[zeropad(v) for v ∈ u] for u ∈ d(z8)] (Concatenation of a tensor along a dimen-
sion can be expressed as a sum of zero-padded tensors)

8. d(z8) = [[uv for (u, v) ∈ zip(U.cols, V.rows)] for U ∈ d(z9) for V ∈ d(z10)] (via the
distributive property for matrix multiplication)

9. d(z9) = [z9] (stops when it hits a non-linear node)

10. d(z10) = map(λx.xWv +
bv
n , d(z11)) (n here is the number of contributions in d(z11) )

11. d(z11) = map(λx. 1σ (x−
µ
n ), d(z12)) (n here is the number of contributions in d(z12) )

12. d(z12) = [z12] = [z5] (Stopped since the comp graph is detached, if not the algorithm would
return higher-order terms.)
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E Proof of Theorem 1

Proof. From the first condition on intra-component rank ordering, for any two vectors u,v and a
linear map fi, if ∥u∥ ≤ ∥v∥ then ∥fi(u)∥ ≤ ∥fi(v)∥. We first show that fi is a scalar multiple of an
isometry.

If ∥u∥ = ∥v∥ ̸= 0, then both ∥u∥ ≤ ∥v∥ and ∥v∥ ≤ ∥u∥. This implies that ∥fi(u)∥ ≤ ∥fi(v)∥
and ∥fi(v)∥ ≤ ∥fi(u)∥. Therefore, ∥fi(u)∥ = ∥fiv∥, when ∥u∥ = ∥v∥. Given the input space of
the transformation as U , we choose a unit vector uunit ∈ U . Let’s assume ∥fi(uunit)∥ = c. With the
above result, we can use the following equality ∥ u

∥u∥∥ = ∥uunit∥ to obtain the following:∥∥∥∥fi(u)∥u∥

∥∥∥∥ =

∥∥∥∥fi( u

∥u∥

)∥∥∥∥ = ∥fi(uunit)∥ = c, (1)

Therefore:
∥fi(u)∥ = c∥u∥ (2)

Thus, the linear transformation fi is a scalar multiple of an isometry. Now consider two linear
maps fi and fj such that ∥fi(u)∥ = ci∥u∥ and ∥fju∥ = cj∥u∥. From the second condition on
inter-component rank ordering, for any two vectors u,v and linear maps fi, fj , if ∥u∥ ≤ ∥v∥
then ∥fi(u)∥ ≤ ∥fj(v)∥. This implies that if u = v, ∥fi(u)∥ = ∥fj(u)∥. However, this can only
happen when ∥fi(u)∥ = c∥u∥ for some constant c for all fi ∀i.

With this, let’s denote fi
c as an isometry. One of the general property of isometries are that they

preserve the inner product between two vectors u and v. First we prove that isometries preserve the
inner product, which we will then use to prove the orthogonality of fi

c . Given two vectors u and v,
their inner product can be expressed as the following:

uTv =
1

4
(∥u+ v∥2 + ∥u− v∥2) (3)

An isometry by definition preserves the norm of the vectors i.e. ∥fi(u)∥ = ∥u∥ and ∥fi(v)∥ = ∥v∥.
Due to this property, we can express the following relations:

∥fi(u+ v)∥ = ∥u+ v∥, (4)

and
∥fi(u− v)∥ = ∥u− v∥, (5)

We can express fi(u)T fi(v) as the reduction from Eq.(3):

fi(u)
T fi(v) =

1

4
(∥fi(u) + fi(v)∥2 + ∥fi(u)− fi(v)∥2), (6)

fi(u)
T fi(v) =

1

4
(∥fi(u+ u)∥2 + ∥fi(u− v)∥2), (7)

Next we substitute the relations from Eq.(4) and Eq.(5) to Eq.(7) to obtain the following inner product
preservation property:

fi(u)
T fi(v) =

1

4
(∥u+ v∥2 + ∥u− v∥2) = uTv (8)

Next we use the inner product preservation property to prove the orthogonality of fi
c as follows:

fi(u)
⊤fi(v) = c2u⊤v, (9)

u⊤
(

1

c2
f⊤
i fi − I

)
v = 0, (10)

From 10, we can infer the orthogonality of fi
c which leads to the following result:

f⊤
i fi = c2I = kI, (11)
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F Scoring function

Algorithm 3 Scoring function for attributing properties to components

Input: Z, the image representation output by the model over n images with dimension d (shape:
n× d); C, the contribution of a particular component of interest (shape: n× d); B, the set of
k feature vectors that represent a given feature (shape: k × d)

Output: A score that signifies the importance of the component for the given feature
function COMPATTRIBUTE(C, Z, B)

B ← orthogonalize(B)
sZ ← ZB⊤

sC ← CB⊤

r ← correlation_coefficient(sZ , sC , dim=0)
return mean(r)
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G Text-based Image retrieval

Model name Color Texture Animal Person Location Pattern Shape

DeiT 0.679 0.563 0.774 0.596 0.818 0.597 0.764
DINO 0.663 0.657 0.781 0.742 0.833 0.680 0.706
DINOv2 0.751 0.614 0.875 0.714 0.857 0.597 0.510
SWIN 0.795 0.720 0.904 0.780 0.912 0.760 0.739
MaxVit 0.872 0.832 0.911 0.828 0.901 0.803 0.797

Table 4: Spearman rank correlation for various common properties
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H Image-based Image retrieval
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Figure 7: Top-3 images retrieved by the most significant components for various relevant properties
for DINO
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Figure 8: Top-3 images retrieved by the most significant components for various relevant properties
for SWIN
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Figure 9: Top-3 images retrieved by the most significant components for various relevant properties
for DeiT
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Figure 10: Top-3 images retrieved by the most significant components for various relevant properties
for MaxViT
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Figure 11: Top-3 images retrieved by the most significant components for various relevant properties
for DINOv2
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Figure 12: Top-3 images retrieved by the most significant components for various relevant properties
for CLIP
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I Property visualization via token decomposition
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Figure 13: Visualization of token contributions for CLIP
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Figure 14: Visualization of token contributions for DINO
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Figure 15: Visualization of token contributions for SWIN
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Figure 16: Visualization of token contributions for MaxVit
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J Zero-shot segmentation

DeiT DINO MaxVit SWIN
Algorithm pixAcc mIoU mAP pixAcc mIoU mAP pixAcc mIoU mAP pixAcc mIoU mAP
Decompose 0.7719 0.5291 0.8305 0.7577 0.4863 0.8111 0.7163 0.4237 0.7237 0.7136 0.4338 0.7620
Chefer et al. [8] 0.7307 0.4785 0.7870 0.7309 0.4541 0.8080 - - - - - -
GradCam 0.6533 0.4625 0.7129 0.7045 0.4309 0.7481 0.4732 0.1705 0.4243 0.5973 0.2360 0.5365

Table 5: Zero-shot segmentation results for different algorithms and models. Chefer at al ’s code does
not support MaxViT and SWIN models.
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K Zero-shot spurious correlation mitigation

Model name Waterbird in water Waterbird in land Landbird in water Landbird in land

DeiT 0.985→ 0.971 0.733→ 0.815 0.787→ 0.886 0.991→ 0.980
CLIP 0.920→ 0.814 0.507→ 0.746 0.534→ 0.744 0.948→ 0.857
DINO 0.985→ 0.944 0.800→ 0.911 0.832→ 0.943 0.982→ 0.956
DINOv2 0.994→ 0.989 0.967→ 0.981 0.971→ 0.978 1.000→ 0.997
SWIN 0.989→ 0.989 0.834→ 0.871 0.893→ 0.923 0.994→ 0.994
MaxVit 0.959→ 0.942 0.796→ 0.814 0.777→ 0.832 0.970→ 0.961

Table 6: All group accuracies on the Waterbirds dataset before and after component ablation
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our paper introduces a framework to interpret the internal components of vision
transformers via text. This is aptly discussed and presented in the abstract, introduction and
the main paper. Our framework is supported by empirical and theoretical findings in the
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have added a separate Limitations section in the appendix of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We have provided a proof for one Theorem in our paper, in the Appendix
section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have added all the experimental details and the corresponding hyper-
parameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We include the code used in the supplementary
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The data, hyperparameters, optimizer and other relevant experimental detail
have been presented in the main paper, appendix, and code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The empirical results are reported using a suitable precision so that variable
factors do not have a significant effect on the numbers.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These details are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper provides a framework to understand the internal mechanisms of
vision transformers. It does not have any ethical issues.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work focuses on understanding the internals of neural networks, and thus
does not have any direct impact on society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not pre-train models or release a dataset in this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the models and datasets have credited and cited properly.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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