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Abstract

To better understand complexity in neural networks, we theoretically investigate
the idealised phenomenon of lossless network compressibility, whereby an identi-
cal function can be implemented with fewer hidden units. In the setting of single-
hidden-layer hyperbolic tangent networks, we define the rank of a parameter as the
minimum number of hidden units required to implement the same function. We
give efficient formal algorithms for optimal lossless compression and computing
the rank of a parameter. We also characterise the set of parameters with a given
maximum rank as a union of linear subspaces. The lossless compression opera-
tions we study have implications for the approximate compressibility of nearby
parameters and parameters in more complex architectures.

1 Introduction

Learned neural networks are often simpler than parameter counting would suggest. Architectures
used in practice can easily memorise randomly labelled data (Zhang et al., 2017, 2021). Yet, they
tend to learn simple functions that are approximately compressible, in that there are smaller networks
implementing similar functions (e.g., Buciluǎ et al., 2006; Hinton et al., 2014; Sanh et al., 2019).

To advance our understanding of neural network complexity, we propose studying the idealised
phenomenon of lossless compressibility of neural network parameters, whereby an identical function
can be implemented by some network with fewer units.

In this paper, we study losslessly compressible parameters in the setting of single-hidden-layer hy-
perbolic tangent networks. While this setting is not immediately relevant to modern deep learning,
our analysis applies partially to a much broader class of nonlinearities and to any individual feed-
forward layer of a larger architecture. We therefore offer the following theoretical contributions as
a first step towards understanding lossless compressibility in modern architectures.

1. In Section 4, we give efficient formal algorithms for optimal lossless compression of single-
hidden-layer hyperbolic tangent networks, and for computing the rank of a parameter—the
minimum number of hidden units required to implement the same function.

2. In Section 5, we invert our optimal lossless compression algorithm to offer a characteri-
sation of the subset of the parameter space containing parameters with a given maximum
rank as a union of linear subspaces.

The study of lossless compressibility could offer a new lens on the phenomenon of approximate
compressibility in deep learning. The neighbours of losslessly compressible parameters implement
similar functions, and are approximately compressible using the same compression operations. We
hypothesise that the phenomenon of approximate compressibility in deep learning practice is par-
tially explained by such operations. If so, studying lossless compressibility could reveal new ap-
proximate compression operations that can help us to understand the complexity of learned neural
networks. We discuss this research direction in Section 6.
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2 Related work

Approximate compression. There is a sizeable empirical literature on approximate compression
in neural networks, including via pruning, quantisation, and distillation (see Cheng et al., 2018, 2020
or Choudhary et al., 2020 for an overview). Approximate compressibility has also been proposed
as a learning objective (Hinton and van Camp, 1993; Aytekin et al., 2019) and used in deriving
generalisation bounds (Suzuki et al., 2020a,b). We adopt a convention of measuring network size
by counting units, noting that this is one of various alternative conventions in the literature, such as
counting weights or measuring the description length of weights.

Lossless compression. There has been less work on lossless compression, requiring the network’s
outputs to be exactly preserved. Serra et al. (2020) give a partial lossless compression algorithm for
multi-layer ReLU networks that preserves the implemented function over some input domain. Their
algorithm exploits some opportunities for removing units, but does not claim to (and does not in
general) optimally compress networks. By contrast, we give an algorithm for optimal lossless com-
pression over all inputs in the simpler setting of single-hidden-layer hyperbolic tangent networks.

Functional equivalence. For single-hidden-layer hyperbolic tangent networks, Sussmann (1992)
showed that, for almost all parameters, two parameters implement identical functions if and only if
they are related by simple operations of exchanging or negating the weights of hidden units. Similar
results have been shown for various architectures, including architectures with different nonlinear-
ities (Albertini et al., 1993; Kůrková and Kainen, 1994; Phuong and Lampert, 2020), multiple hid-
den layers (Chen et al., 1993; Fefferman and Markel, 1993; Fefferman, 1994; Phuong and Lampert,
2020), and more complex connection graphs (Vlačić and Bölcskei, 2021, 2022).

Lossless compressibility is precisely the existence of functionally equivalent parameters with fewer
units. The function-preserving operations cited above generally preserve the number of units.1
Farrugia-Roberts (2023) studies additional function-preserving operations available for losslessly
compressible single-hidden-layer hyperbolic tangent parameters, giving an algorithm for identify-
ing pairs of functionally equivalent parameters that achieves optimal lossless compression as a side-
effect. We give a more efficient optimal lossless compression algorithm.

Lossless expansion. There is also work adopting a dual perspective of cataloguing various ways of
adding hidden units to a neural network while exactly preserving the implemented function. Fuku-
mizu and Amari (2000) and Fukumizu et al. (2019) show that some of the resulting losslessly com-
pressible parameters are critical points of the loss landscape. Şimşek et al. (2021) and Farrugia-
Roberts (2023) show that sets of equivalent losslessly compressible parameters have a rich structure
that reaches throughout the parameter space. We show a similar result for the set of all sufficiently
losslessly compressible (not necessarily equivalent) parameters in Section 5.

Information singularities. Losslessly compressible parameters are singularities in the Fisher in-
formation landscape (Fukumizu, 1996), and if they are critical points of the loss landscape they are
degenerate. This makes them highly relevant to singular statistical theories of deep learning (Watan-
abe, 2009; Wei et al., 2023). For example, these singularities influence learning dynamics in their
neighbourhood (Amari et al., 2006; Wei et al., 2008; Cousseau et al., 2008; Amari et al., 2018).

3 Preliminaries

Architecture. We consider a family of fully-connected, feed-forward neural network architectures
with one input unit, one biased output unit, and one hidden layer of h ∈ N biased hidden units with
the hyperbolic tangent nonlinearity tanh(z) = (ez−e−z)/(ez+e−z). The weights and biases of the
network are encoded in a parameter vector in the format w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh =
R3h+1, where for each hidden unit i = 1, . . . , h there is an outgoing weight ai ∈ R, an incoming
weight bi ∈ R, and a bias ci ∈ R; and d ∈ R is the output unit bias. Thus each parameter w ∈ Wh

indexes a mathematical function fw : R → R such that fw(x) = d +
∑h

i=1 ai tanh(bix + ci). All
of our results generalise to networks with multi-dimensional inputs and outputs (see Appendix A).

1It follows that losslessly compressible parameters occupy a measure zero subset of parameter space. We
note that learning exerts a non-random selection pressure, so these parameters may still be relevant in practice.
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Reducibility. Two parameters w ∈ Wh and w′ ∈ Wh′ are functionally equivalent if fw = fw′ as
functions on R (∀x ∈ R, fw(x) = fw′(x)). A parameter w ∈ Wh is (losslessly) compressible if and
only if w is functionally equivalent to some w′ ∈ Wh′ with fewer hidden units h′ < h (otherwise, w
is incompressible). Sussmann (1992) showed that a simple condition, reducibility, is necessary and
sufficient for lossless compressibility. A parameter (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh is reducible
if and only if it satisfies any of the following reducibility conditions:

(i) ai = 0 for some i, or

(ii) bi = 0 for some i, or

(iii) (bi, ci) = (bj , cj) for some i ̸= j, or

(iv) (bi, ci) = (−bj ,−cj) for some i ̸= j.

Each reducibility condition suggests a simple operation to remove a hidden unit while preserving
the function (Sussmann, 1992; Farrugia-Roberts, 2023).

(i) Units with zero outgoing weight contribute zero to the function, and can be eliminated, that
is, can be removed from the network.

(ii) Units with zero incoming weight contribute a constant to the function, and can also be
eliminated after incorporating the constant into the output bias.

(iii) Unit pairs with identical incoming weight and bias contribute proportionally to the function,
and can be merged into a single unit with the sum of their outgoing weights as the new
outgoing weight (for a net removal of one unit).

(iv) Unit pairs with identically negative incoming weight and bias also contribute in proportion,
since the hyperbolic tangent is odd. Such pairs can also be merged into a single unit with
the difference of their outgoing weights as the new outgoing weight.

4 Algorithms for optimal lossless compression and rank

We consider the problem of lossless neural network compression: finding, given a compressible
parameter, a functionally equivalent but incompressible parameter. The following algorithm solves
this problem by eliminating units meeting reducibility conditions (i) or (ii) and merging unit pairs
meeting reducibility conditions (iii) or (iv) in ways preserving functional equivalence.

Algorithm 4.1 (Lossless neural network compression). Given h ∈ N, proceed:
1: procedure COMPRESS(w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh)
2: ▷ Stage 1: Eliminate units with incoming weight zero (incorporate into new output bias δ) ◁
3: I ← { i ∈ {1, . . . , h} : bi ̸= 0 }
4: δ ← d+

∑
i/∈I tanh(ci) · ai

5: ▷ Stage 2: Partition and merge remaining units by incoming weight and bias ◁
6: Π1, . . . ,ΠJ ← partition I by the value of sign(bi) · (bi, ci)
7: for j ← 1, . . . , J do
8: αj ←

∑
i∈Πj

sign(bi) · ai
9: βj , γj ← sign(bminΠj ) · (bminΠj , cminΠj )

10: end for
11: ▷ Stage 3: Eliminate merged units with outgoing weight zero ◁
12: k1, . . . , kr ← { j ∈ {1, . . . , J} : αj ̸= 0 }
13: ▷ Construct a new parameter with the remaining merged units ◁
14: return (αk1 , βk1 , γk1 , . . . , αkr , βkr , γkr , δ) ∈ Wr
15: end procedure
Theorem 4.1 (Algorithm 4.1 correctness). Given w ∈ Wh, compute w′ = COMPRESS(w) ∈ Wr.
Then

(i) fw′ = fw, and

(ii) w′ is incompressible.
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Proof. (i): Observe that units eliminated in Stage 1 contribute a constant, units merged in Stage 2
have proportional contributions, and merged units eliminated in Stage 3 do not contribute. Thus
following the steps of the algorithm we rearrange the summation defining fw to have the form of
fw′ . For each x ∈ Rn,

fw(x) = d+

h∑
i=1

ai tanh(bix+ ci)

= d+
∑
i/∈I

ai tanh(ci) +
∑
i∈I

ai tanh(bix+ ci) (cf. line 3)

= δ +
∑
i∈I

ai tanh(bix+ ci) (cf. line 4)

= δ +

J∑
j=1

∑
i∈Πj

ai tanh(bix+ ci) (cf. line 6)

= δ +

J∑
j=1

∑
i∈Πj

sign(bi) · ai tanh(sign(bi) · bix+ sign(bi) · ci) (tanh odd)

= δ +

J∑
j=1

∑
i∈Πj

sign(bi) · ai

 tanh(βjx+ γj) (cf. lines 6, 9)

= δ +

J∑
j=1

αj tanh(βjx+ γj) (cf. line 8)

= δ +

r∑
j=1

αkj tanh(βkjx+ γkj ) (cf. line 12)

= fw′(x). (cf. line 14)

(ii): By construction, w′ ∈ Wr fails to satisfy each of the reducibility conditions: (i) no αk is zero,
due to line 12; (ii) no βk is zero, due chiefly to line 3; (iii), (iv) all±(βk, γk) are distinct, due chiefly
to line 6. So w′ is not reducible and is thus incompressible by Sussmann (1992).

We define the rank2 of a neural network parameter w ∈ Wh, denoted rank(w), as the minimum num-
ber of hidden units required to implement fw: rank(w) = min {h′ ∈ N : ∃w′ ∈ Wh′ ; fw = fw′ }.
The rank is also the number of hidden units in COMPRESS(w), since Algorithm 4.1 produces an in-
compressible parameter. Computing the rank is therefore a trivial matter of counting the units after
performing lossless compression. The following is a streamlined algorithm, following Algorithm 4.1
but removing steps that don’t influence the final count.
Algorithm 4.2 (Rank of a neural network parameter). Given h ∈ N, proceed:

1: procedure RANK(w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh)
2: ▷ Stage 1: Identify units with incoming weight nonzero (not eliminated) ◁
3: I ← { i ∈ {1, . . . , h} : bi ̸= 0 }
4: ▷ Stage 2: Partition these units and compute outgoing weights for would-be merged units ◁
5: Π1, . . . ,ΠJ ← partition I by the value of sign(bi) · (bi, ci)
6: αj ←

∑
i∈Πj

sign(bi) · ai for j ← 1, . . . , J

7: ▷ Stage 3: Count merged units with outgoing weight nonzero ◁
8: return |{ j ∈ {1, . . . , J} : αj ̸= 0 }| ▷ |S| denotes set cardinality
9: end procedure

Theorem 4.2 (Algorithm 4.2 correctness). Given w ∈ Wh, rank(w) = RANK(w).
Proof. Let r be the number of hidden units in COMPRESS(w). Then r = rank(w) by Theorem 4.1.
Moreover, comparing Algorithms 4.1 and 4.2, observe RANK(w) = r.

2In the multi-dimensional case (see Appendix A), our notion of rank generalises the familiar notion from
linear algebra, where the rank of a linear transformation corresponds to the minimum number of hidden units
required to implement the transformation with an unbiased linear neural network (cf. Piziak and Odell, 1999).
Unlike in the linear case, our non-linear rank is not bounded by the input or output dimensionality.
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5 A characterisation of the class of bounded-rank parameters

The reducibility conditions characterise the set of parameters w ∈ Wh with rank(w) ≤ h − 1. In
this section we characterise the set of parameters with an arbitrary rank bound.

Let r, h ∈ N with r ≤ h. The bounded rank region of rank r is the subset of parameters of rank at
most r, Br = {w ∈ Wh : rank(w) ≤ r } ⊆ Wh. The key to characterising bounded rank regions
is that for each parameter in Br, at least h− r units would be removed during lossless compression.
Considering the various possible ways in which units can be removed in the course of Algorithm 4.1
leads to a characterisation of the bounded rank region as a union of linear subspaces.

To this end, let H = {1, . . . , h}, and define a compression trace on h units as a 4-tuple (Ī ,Π, K̄, σ)
where Ī ⊆ H is a subset of units (conceptually, those to be removed in Stage 1), Π = Π1, . . . ,ΠJ is
a partition of H \ Ī (the remaining units) into J groups (to be merged in Stage 2), K̄ ⊆ {1, . . . , J}
(merged units removed in Stage 3), and σ ∈ {−1,+1}h is a sign vector (unit orientations for
purposes of merging). The length of the compression trace (Ī ,Π, K̄, σ) on h units is J −

∣∣K̄∣∣
(representing the number of units remaining). A compression trace of length r thus captures the
notion of a “way in which h− r units can be removed in the course of Algorithm 4.1”.
Theorem 5.1. Let r ≤ h ∈ N. The bounded rank region Br ⊆ Wh is a union of linear subspaces

Br =
⋃

(Ī,Π,K̄,σ)∈Ξ(h,r)

⋂
i∈Ī

S
(1)
i ∩

J⋂
j=1

S
(2)
Πj ,σ
∩

⋂
k∈K̄

S
(3)
Πk,σ

 (1)

where Ξ(h, r) denotes the set of all compression traces on h units with length r;

S
(1)
i = { (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh : bi = 0 };

S
(2)
Π,σ = { (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh : ∀i, j ∈ Π, σibi = σjbj ∧ σici = σjcj }; and

S
(3)
Π,σ =

{
(a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh :

∑
i∈Π σiai = 0

}
.

Proof. (⊇): Suppose w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wh is in the union in (1), and there-
fore in the intersection for some compression trace (Ī ,Π, K̄, σ). The constraints imposed on w by
membership in this intersection imply that the network is compressible:

1. For i ∈ Ī , since w ∈ S
(1)
i , bi = 0, so unit i can be removed.

2. For j = 1, . . . , J , since w ∈ S
(2)
Πj ,σ

, the units in Πj can be merged together.

3. For k ∈ K̄, since w ∈ S
(3)
Πk,σ

, merged unit k has outgoing weight 0 and can be removed.

It follows that there is a parameter with J −
∣∣K̄∣∣ units that is functionally equivalent to w. Therefore

rank(w) ≤ J −
∣∣K̄∣∣ = r and w ∈ Br.

(⊆): Conversely, suppose w ∈ Br. Construct a compression trace following COMPRESS(w). First,
set σi = sign(bi) where bi ̸= 0 (if bi = 0, set σi = ±1 arbitrarily, this has no effect). Then:

1. Set Ī = {1, . . . , h} \ I where I is computed on line 3. It follows that for i ∈ Ī , w ∈ S
(1)
i .

2. Set Π to the partition computed on line 6. It follows that for j = 1, . . . , J , w ∈ S
(2)
Πj ,σ

.

3. Set K̄ = { j ∈ {1, . . . , J} : αj = 0 } (cf. lines 8,12). Thus for k ∈ K̄, w ∈ S
(3)
Πk,σ

.

By construction w is in
⋂

i∈Ī S
(1)
i ∩

⋂J
j=1 S

(2)
Πj ,σ
∩
⋂

k∈K̄ S
(3)
Πk,σ

. However, the compression trace
(Ī ,Π, K̄, σ) has length rank(w) ≤ r. If rank(w) < r, remove constraints on r − rank(w) units by
some combination of the following operations: (1) remove one unit from Ī (add it as singleton group
to Π), (2) remove one unit from a non-singleton group in Π (add it back to Π as a singleton group),
and/or (3) remove one merged unit from K̄. None of these operations add non-trivial constraints on
w, so it’s still the case that w is in the intersection for the modified compression trace. However,
now the length of the compression trace is r, so it follows that w is in the union as required.
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6 Discussion

We have developed an algorithmic framework for lossless compressibility in single-hidden-layer
hyperbolic tangent networks. The rank measures a parameter’s lossless compressibility. Section 4
offers efficient algorithms for performing optimal lossless compression and computing the rank, and
Section 5 inverts these algorithms to characterise the set of parameters of bounded rank.

While losslessly compressible parameters are themselves atypical, being near a losslessly compress-
ible parameter is a sufficient condition for a parameter to be approximately compressible, since
similar parameters implement similar functions. Moreover, such parameters may be approximately
compressed using the very same unit elimination or merging operations as would be used to com-
press the nearby losslessly compressible parameter.

It’s possible that this specific kind of approximate compressibility—compressibility explained by
proximity to losslessly compressible parameters—accounts for at least part of the approximate com-
pressibility observed in deep learning practice. If so, studying losslessly compressible parameters as
in this work could lead to a better understanding of the phenomenon of approximate compressibility
in deep learning. We conclude by discussing important questions for future theoretical and empirical
work in this direction.

Does deep learning find parameters with low-rank neighbours in practice? While low prox-
imate rank implies approximate compressibility, the converse is false. In particular, approximate
compression approaches often require the implemented function to be similar only for certain in-
puts. Moreover, there are typically ways of implementing similar functions with dissimilar param-
eters (Petersen et al., 2021). It is an open question to what extent the approximate compressibility
observed in deep learning practice coincides with proximity to losslessly compressible parameters.

There is evidence that lossless compressibility is relevant in at least some cases. While investigating
the structure of learned neural networks, Casper et al. (2021) found many units with weak or corre-
lated outputs, and found that these units could be removed without a large effect on performance,
using elimination and merging operations bearing a striking resemblance to Sussmann’s reducibil-
ity operations (Section 3). Deeply studying this phenomenon and other similar empirical questions
suggested by the theory of lossless compressibility is an important direction for future work.

As a prerequisite for this work, we need methods for detecting proximity to losslessly compressible
parameters. Computing the rank of the lowest-rank parameter in a given neighbourhood is a combi-
natorial optimisation problem that is computationally intractible in the worst case. However, it seems
unlikely that the parameters encountered in practice will be pathological, and efficient approximate
detection methods will suffice in practice.

What additional opportunities for lossless compression arise in more complex architectures?
The most salient limitation of this work is the setting of single-hidden-layer hyperbolic tangent
networks. This setting determines some of the details of our algorithms, theorem statements, and
proofs. On the other hand, studying this concrete case has allowed us to analysed three fundamental
forms of redundancy that can arise in any neural network, and to outline ways to exploit them for
lossless compression. In particular, redundancies arising from zero, constant, or proportional units
(cf. reducibility conditions (i)–(iii)) are derived from the computational structure of neuron layers
and are present regardless of the choice of nonlinearity.

In this way, our results constitute a meaningful first step towards a theory of lossless compressibility
in more modern architectures built from individual feed-forward layers with any nonlinearity. In
more complex architectures, these compression opportunities will remain, but there may also be ad-
ditional forms of redundancy that arise, for example due to different affine symmetries of the chosen
nonlinearity or due to interactions between layers in a multi-layer network. Such additional forms
of redundancy have not been catalogued. The lossless compression framework offers a principled
objective to aid in identifying them and responding to them.

We call for future work to ask the question, what does optimal lossless compression look like in more
complex architectures? Such work can use our algorithms and analysis for the single-hidden-layer
case as a starting point, extending these to exploit novel redundancies in addition to the fundamental
redundancies we have identified. In turn, such work can suggest new empirical questions arising
from this new perspective on approximate compressibility in learned neural networks.
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Verner Vlačić and Helmut Bölcskei. Affine symmetries and neural network identifiability. Advances
in Mathematics, 376:107485, 2021. Access via Crossref. Cited on page 2.
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A Hyperbolic tangent networks with multi-dimensional inputs and outputs

In the main paper we consider single-hidden-layer hyperbolic tangent networks with a single input
unit and a single output unit. Our algorithms and results generalise to an architecture with multiple
input units and multiple output units, with some minor changes.

Consider a family of fully-connected, feed-forward neural network architectures with n ∈ N+ input
units, m ∈ N+ biased linear output units, and a single hidden layer of h ∈ N biased hidden units
with the hyperbolic tangent nonlinearity. The weights and biases of the network are encoded in a
parameter vector in the format w = (a1, b1, c1, . . . , ah, bh, ch, d) ∈ Wn,m

h = R(n+m+1)h+m, where
for each hidden unit i = 1, . . . , h there is an outgoing weight vector ai ∈ Rm, an incoming weight
vector bi ∈ Rn, and a bias ci ∈ R; and d ∈ Rm is a vector of output unit biases. Thus each parameter
w ∈ Wn,m

h indexes a function fw : Rn → Rm such that fw(x) = d+
∑h

i=1 ai tanh(bi · x+ ci).

The above notation is deliberately chosen to parallel the case n = m = 1 considered in the main
paper. This makes the generalisation of our results to the case n,m ≥ 1 straightforward. First, re-
place all mentions of the scalar incoming and outgoing weights with incoming and outgoing weight
vectors. It remains to note the following additional changes.

1. The algorithms and proofs commonly refer to the sign of an incoming weight. For b ∈ Rn

define sign(b) ∈ {−1, 0,+1} as the sign of the first nonzero component of b, or zero if
b = 0. Use this generalised sign function throughout when n > 1.

2. Partitioning the (signed) incoming weight and bias pairs of the hidden units is a key part
of Algorithms 4.1 and 4.2. An efficient way to compute a partition of a list of values is
by first sorting the list. This requires a linear order on the values. When n = 1 we can
use the lexicographic ordering of pairs of scalars. When n > 1 we have pairs of the form
(b, c) ∈ Rn × R, and we can lexicographically sort by the tuple (b1, . . . , bn, c).

3. The reducibility conditions were proven by Sussmann (1992) in the case n ≥ 1 and m = 1.
The conditions also hold for m ≥ 1 (see Fukumizu, 1996; or Farrugia-Roberts, 2023, §A).
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