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Abstract

Continual learning has gained substantial attention
within the deep learning community, offering promising so-
lutions to the challenging problem of sequential learning.
Yet, a largely unexplored facet of this paradigm is its sus-
ceptibility to adversarial attacks, especially with the aim
of inducing forgetting. In this paper, we introduce “Brain-
Wash,” a novel data poisoning method tailored to impose
forgetting on a continual learner. By adding the Brain-
Wash noise to a variety of baselines, we demonstrate how
a trained continual learner can be induced to forget its
previously learned tasks catastrophically, even when us-
ing these continual learning baselines. An important fea-
ture of our approach is that the attacker requires no ac-
cess to previous tasks’ data and is armed merely with the
model’s current parameters and the data belonging to the
most recent task. Our extensive experiments highlight the
efficacy of BrainWash, showcasing degradation in perfor-
mance across various regularization and memory replay-
based continual learning methods. Our code is available
here: https://github.com/mint-vu/Brainwash

1. Introduction

In real-world scenarios, data distributions are inherently
non-stationary, constantly evolving and shifting in unpre-
dictable ways. Such variability poses a significant chal-
lenge to machine learning and computer vision, where
model generalizability assumes stationary training and test-
ing/deployment distributions. Continual Learning (CL)
[13, 37, 61] has emerged as a prolific research domain fo-
cusing on efficient learning from an ongoing stream of data
or tasks. CL primarily seeks to: 1) enhance backward
knowledge transfer, which aims to maintain or improve per-
formance on previously learned tasks, thereby mitigating
catastrophic forgetting, and 2) bolster forward knowledge
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Figure 1. BrainWash is a poisoning attack targeting continual
learning systems. It sabotages a task so that, upon learning it, the
system’s rate of forgetting previously learned tasks is increased.

transfer, where learning a current task can boost perfor-
mance on or reduce the learning time for future tasks. CL
has significantly progressed in computer vision tasks, in-
cluding incremental image recognition [33, 59]. With the
increase in the adoption of CL algorithms, examining their
vulnerabilities is imperative to inform the development of
more robust CL methodologies.

Most research in CL has focused on overcoming catas-
trophic forgetting. Existing methods can be categorized into
three groups: 1) memory replay, 2) regularization, and 3)
parameter isolation methods. Nonetheless, there has been
limited focus on the robustness of CL approaches against
various types of adversarial attacks. Recent studies have
begun to address this gap by proposing backdoor attacks
[32, 57] and certain poisoning attacks [27, 39] within the
CL context. These contributions are critical in profiling
the vulnerabilities of CL methods, paving the way for de-
veloping more resilient CL algorithms. Additionally, these
findings have implications for closely related and emerging
fields such as machine unlearning [3, 9].

Recent works show that an adversary can insert misin-
formation into a task to distort a continual learner’s perfor-
mance. For instance, Umer et al. [57] show that backdoors
can be placed into a task to hijack the performance of a CL
method, and the backdoor remains effective even when new
tasks are learned. Here, we pose a fundamental question: Is
it possible to ‘brainwash’ a continual learner by poisoning
its current task in such a way that performance on all pre-
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Figure 2. In our proposed threat model, the attacker gains access to
the CL model and the data for the forthcoming task but remains un-
aware of the data from preceding tasks and the specific CL method
employed by the victim (top panel). The attack methodology un-
folds in two steps. Firstly, the attacker executes a model inversion
attack on the CL model to reconstruct an approximation of the vic-
tim’s data from earlier tasks (middle panel). Secondly, the attacker
employs bi-level optimization to contaminate the data for the cur-
rent task. This is done in such a way that performance on the
reconstructed data from previous tasks is significantly degraded.

vious tasks is significantly degraded? More succinctly, can
a task be designed to induce maximum forgetting of prior
knowledge in a CL context? We affirmatively answer this
question and demonstrate its validity across a wide range
of regularization-based CL methods, assuming minimal and
realistic conditions. This concept is depicted in Figure 1.

Recent advancements in foundational models have led to
the creation of massive models with billions of parameters.
These models require significant data resources, yet their
training is limited by computational power, restricting re-
peated passes over the data. Additionally, data isn’t sampled
in an independently and identically distributed (i.i.d.) man-
ner, necessitating continual learning to integrate new data
without forgetting existing knowledge [25]. This forgetting
vulnerability could be exploited by adversaries introducing
manipulated training data to erase key information.

This paper examines a realistic threat model targeting

regularization and memory-based CL methods. Under this
model, the attacker gains access to the victim’s current
model and aims to manipulate the victim’s next task. Cru-
cially, the attacker remains unaware of the specific CL al-
gorithm employed by the victim to learn tasks and lacks
access to data from prior tasks. We propose a novel method
denoted as “BrainWash” that allows for poisoning the cur-
rent task data to maximize forgetting on prior tasks.

In short, BrainWash consists of two main steps. First,
we perform a model inversion attack [24, 60] on the contin-
ual learner to approximate the data from the previous tasks.
Second, to poison the current task, we construct a bi-level
optimization problem such that: 1) the performance on in-
verted data of previous tasks is minimized, and 2) the per-
formance on the clean data of the current task is maximized.
Figure 2 demonstrates the threat model and the two steps.
Contributions. Our main contributions in this paper are:

1. Devising a novel poisoning attack algorithm for
regularization-based continual learning methods, de-
noted as BrainWash.

2. Demonstrating the effectiveness of BrainWash on bench-
mark CL datasets and across diverse regularization-
based CL algorithms.

3. Providing extensive ablation studies to deepen our un-
derstanding of BrainWash.

2. Related Work

Continual Learning is a subfield of ML focused on learn-
ing from nonstationary streams of data or tasks [13, 37]. Its
objectives include improving backward knowledge transfer
to maintain or enhance performance on previously learned
tasks helping to prevent catastrophic forgetting. It also aims
to strengthen forward knowledge transfer, where mastering
a current task can improve performance or decrease learn-
ing time for future tasks. Catastrophic forgetting prevention
is a central goal in this field. To tackle catastrophic forget-
ting, strategies in continual learning are typically grouped
into three main categories: 1) memory-based methods, 2)
regularization-based methods, and 3) architectural methods.
Memory-based methods involve techniques such as mem-
ory rehearsal or replay, generative replay, and gradient pro-
jection [2, 18, 19, 40, 49, 50, 52, 56, 58, 59, 66]. These
methods often rely on storing and revisiting previous learn-
ing experiences or artificially generating them to reinforce
learning. Regularization-based methods apply penalties on
changing parameters that are vital for tasks already learned
[1,5, 34, 35, 63, 69]. These approaches help in preserving
the knowledge acquired from previous tasks while allow-
ing new learning. Architectural methods focus on modi-
fying the learning model itself. Strategies include expand-
ing the model structure [51, 53], isolating parameters spe-
cific to certain tasks [43, 44], and using masking techniques
[7, 47, 67] to manage the learning process for different
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tasks. In this paper, we focus on regularization-based meth-
ods, mainly due to their effective balance between plasticity
and stability, allowing for the integration of new knowledge
while preserving essential information from past learning
experiences. We propose a data poisoning attack that maxi-
mizes forgetting for regularization-based continual learners.

Data Poisoning is a training phase attack on a ML model
in which the attacker deliberately alters the victim’s training
data maliciously [4, 8, 20, 26, 31, 55, 70]. After the victim
trains their model using this compromised data, the model
would serve the attacker’s detrimental objectives, such as
significantly reducing the model’s test accuracy on all or
specific classes (i.e., targeted vs. non-targeted attacks).

Data poisoning is formally defined as a bi-level opti-
mization problem [6, 8]. In the outer level optimization,
the attacker optimizes the poisoning, which can be additive
noise [26], patch-based noise [12], or a conditional gener-
ative model for noise [21], to enforce their malicious in-
tention on the ‘resulting network’ parameters. This ‘result-
ing network’ itself is the solution to the inner optimization
problem that minimizes the training objective as would be
done by the victim. When the ML model is a deep neural
network, this bi-level optimization problem is generally in-
tractable, as it requires backpropagation through the entire
SGD training procedure [46]. Hence, the existing literature
often approximates this bi-level optimization using various
strategies, including first-order approximation methods [29]
and more sophisticated methods based on alternating opti-
mization [21]. Similar to [22, 29], our poisoning attack also
uses a first-order approximation method for solving the in-
duced bi-level optimization. In contrast with [29], however,
our bi-level optimization objective is maximizing forgetting
in a continual learner.

Model Inversion [24, 48, 60] encompasses attack strate-
gies designed to either reconstruct training data or deduce
sensitive attributes from a trained model. These strategies
are broadly divided into ‘optimization-based’ and ‘training-
based’ methods. Our study primarily explores optimization-
based methods, which are widely adopted in the literature
[48, 68]. These methods primarily adjust inputs in the data
space to maximally stimulate specific output neurons, such
as target classes. However, a key challenge arises from
the many-to-one mapping characteristic of deep neural net-
works, where a variety of inputs can lead to the same out-
put. To address this, the literature introduces various forms
of priors or regularization terms, making this optimization
process more tractable. Such regularization terms range
from simpler approaches like Total Variation and image
norm [42, 45] to more advanced techniques involving fea-
ture statistics [68] and the use of generative models [64]. In
this paper, we adopt a model inversion approach similar to
Yin et al. [68] to approximate the data that the continual
learner has been trained on from previous tasks.

3. Threat model

We consider a victim using a regularization or memory-
based CL method to learn a series of tasks. For example,
imagine a home robot that continuously learns from its en-
vironment to adapt to a new home [10]. The attacker’s ob-
jective is to poison the training data of the latest task (like
learning about a new room), causing the CL model to for-
get previously learned tasks upon acquiring new informa-
tion. Furthermore, the attacker poisons the data in our setup
by engineering norm-constrained additive noise. We ex-
amine two scenarios for an attack: 1) the ’reckless threat
model’ where the victim deploys the model without mon-
itoring its performance, allowing the attacker to maximize
forgetting of prior tasks without regard for current task per-
formance; and 2) the ’cautious threat model’ where the vic-
tim monitors the model’s performance on a potentially poi-
soned task, necessitating the attacker to balance inducing
forgetting while maintaining acceptable current task accu-
racy, making it a more challenging scenario. In both set-
tings, we assume that the attacker does not have access to
the continual learner’s training data from previous tasks.

4. Method

In this work, we aim to design a poisoning attack for reg-
ularization and memory-based multi-head CL approaches
that brainwashes the model, causing it to forget its previ-
ous tasks. We assume the attacker has full access to the
model and data from the latest task the continual learner
will encounter. However, the attacker does not have access
to continual learner’s data from the previous tasks.

We propose to utilize model inversion attacks [24, 68]
to obtain an approximation for the continual learner’s data
from prior tasks. Using the victim’s model, the inverted data
from previous tasks, and the data for the current task, the at-
tacker formalizes the poisoning problem through a bi-level
optimization and then solves it via a first-order approxima-
tion method. In what follows, we briefly review our no-
tations and then describe 1) the model inversion attack, 2)
poisoning as a bi-level optimization problem, and 3) our
proposed first-order approximation solver.

4.1. Notations

We denote the training data for task ¢t € {1,---,T} as
Dy = {(z,y))}N, € X x Vi, where z} € X denotes
the ¢’th sample from the ¢’th task (e.g., an input image) and
yi € Yy = {1,--+,K,} denotes its corresponding label
with K; and NV, denoting the number of classes and ex-
amples for task ¢ respectively. Let f(-;6) denote the CL’s
backbone that extracts deep representations from the input
data, where 6 indicates the backbone’s parameters, and let
ht(-; 1) denote the classification head for task ¢, with i,
representing its parameters.

24059



