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ABSTRACT

Test-time prompt tuning (TPT) has emerged as a promising technique for adapting
large vision-language models (VLMs) to unseen tasks without relying on labeled
data. However, the lack of dispersion between textual features can hurt calibration
performance, which raises concerns about VLMs’ reliability, trustworthiness, and
safety. Current TPT approaches primarily focus on improving prompt calibration
by either maximizing average textual feature dispersion or enforcing orthogonal-
ity constraints to encourage angular separation. However, these methods may
not always have optimal angular separation between class-wise textual features,
which implies overlooking the critical role of angular diversity. To address this,
we propose A-TPT, a novel TPT framework that introduces angular diversity to
encourage uniformity in the distribution of normalized textual features induced
by corresponding learnable prompts. This uniformity is achieved by maximizing
the minimum pairwise angular distance between features on the unit hypersphere.
We show that our approach consistently surpasses state-of-the-art TPT methods
in reducing the aggregate average calibration error while maintaining compara-
ble accuracy through extensive experiments with various backbones on different
datasets. Notably, our approach exhibits superior zero-shot calibration performance
on natural distribution shifts and generalizes well to medical datasets. We provide
extensive analyses, including theoretical aspects, to establish the grounding of A-
TPT. These results highlight the potency of promoting angular diversity to achieve
well-dispersed textual features, significantly improving VLM calibration during
test-time adaptation. Our code will be made publicly available.

1 INTRODUCTION

Foundational large-scale vision-language models (VLMs), such as CLIP (Radford et al., 2021),
ALIGN (Jia et al., 2021), and FILIP (Yao et al., 2021), have demonstrated remarkable zero-shot
inference capabilities in a wide range of downstream tasks (Jia et al., 2021; Radford et al., 2021).
These models are pre-trained with contrastive learning on massive web-scale data — e.g., 400 million
image-text caption pairs — to align visual and textual modalities within a shared multimodal latent
space. This alignment allows VLMs to classify instances from novel visual categories in a zero-shot
setting realized by carefully constructed textual prompts — hand–crafted class-conditioned templates
(e.g., “a photo of a [class]”) — crucial for effective zero-shot transfer. However, manually designing
such prompts often requires domain-specific heuristics and may not be optimal across diverse tasks
(Shu et al., 2022)

To address these limitations, recent works have explored prompt tuning that learns prompts from
training data specific to downstream tasks (Zhou et al., 2022a;b). However, such approaches often
rely on annotated data, which can be expensive and scarce for zero-shot scenarios (Socher et al.,
2013). To address this challenge, test-time prompt tuning (TPT) (Shu et al., 2022) has garnered
significant attention focused on prompt tuning. TPT optimizes learnable prompt vectors through
gradient descent that adaptively refines them during inference with unlabelled test image samples
to adapt VLMs to novel tasks. Although TPT can boost the accuracy of VLMs, it often suffers
from poor calibration, where the model’s predicted confidence does not reliably reflect the true
accuracy (Guo et al., 2017; Murugesan et al., 2024; Yoon et al., 2024). Such miscalibration can result
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Figure 1: Comparison of calibration perfor-
mance (ECE) with C-TPT (Yoon et al., 2024),
and O-TPT (Sharifdeen et al., 2025) on fine-
grained classification datasets with CLIP ViT-
B/16 backbone. Ours (lower ECE) shows im-
proved prompt calibration.
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Figure 2: Comparison of numerical optimization (A-TPT
(Ours)) with angular optimization (O-TPT Sharifdeen
et al. (2025)) and ATFD optimization (C-TPT Yoon et al.
(2024)).

in overconfident predictions, raising concerns about the reliability and trustworthiness of VLMs,
particularly for real-world safety-critical applications that require reliable uncertainty estimates,
including medical diagnostics (Ji et al., 2021; Wang et al., 2022; Zhang et al., 2023; Chen et al., 2023;
Liu et al., 2023) and autonomous driving (Dorbala et al., 2022; Gadre et al., 2022; Khandelwal et al.,
2022; Bucker et al., 2023; Cui et al., 2024; You et al., 2024; Zhou et al., 2024). To date, calibration in
test-time prompt tuning of VLMs is less explored, with limited efforts to address it.

To do better prompt calibration, prior works, such as C-TPT (Yoon et al., 2024) and O-TPT (Sharifdeen
et al., 2025) have explored methods to encourage dispersion between pairwise textual features, which
can be categorized into the following two types: The first type, known as Average Textual Feature
Dispersion (ATFD), spreads textual features away from their centroid. However, this can still result in
textual features lying closely together (Fig. 2) and cause poor calibration performance (Fig. 1). The
second type enforces orthogonality constraints to encourage angular separation, which exploits an
auxiliary orthogonal regularization term in the loss function to encourage pairwise textual features as
orthogonal as possible. However, we observe that it tends to group textual features closer, particularly
when the number of classes N is greater than the embedding dimension |D| (e.g., (N > |D|), where
CLIP’s ViT-B/16 512-d (Radford et al., 2021; Liang et al., 2022) vs. 1000 classes in ImageNet-1k,
V2, K) does not guarantee uniformity of angular separation (Fig. 2, 4a). When the number of classes
is less than the embedding dimension ((N < |D|), e.g., classes: 10 in EuroSAT, 37 in OxfordPets,
and 47 in DTD), it fails to fully utilize the hyperspherical space of feature points effectively across
the hypersphere (Fig. 2, 4b). This eventually leads to poor calibration (Fig. 1). Although these
methods increase feature dispersion to some extent, they often overlook the importance of angular
diversity. Without sufficient angular separation, prompts may become highly correlated, which
limits the model’s ability to generate well-calibrated predictions. Prior work (Wang & Isola, 2020)
has shown that uniformity (uniformly distributed feature points on the unit hypersphere) preserves
maximal information, closely associated with strong zero-shot CLIP performance.

The uniformity problem is well-studied in Tammes problem (Tammes, 1930) (best-packing), that is to
find the optimal arrangement of a given number of feature points on the surface of a unit hypersphere
such that the minimum distance between any two points is maximized. Inspired by this insight, we
propose A-TPT, a numerical optimization approach that introduces a simple yet effective angular
diversity into the test-time prompt tuning framework. Our method maximizes the minimum pairwise
angular distance between normalized textual features on the unit hypersphere to promote uniform and
diverse prompt distribution, fully utilizing the hyperspherical space (Fig. 2). By penalizing closely
aligned prompt directions, the proposed A-TPT promotes the greatest possible angular distance
between them (Fig. 3b), thus achieving better prompt calibration performance (Fig. 1). Notably,
by maximizing the minimum angular distance between prompt vectors, A-TPT naturally solves the
number of classes exceeding the embedding dimension problem, e.g., 1000 classes in a 512-d space,
making all prompt vectors pairwise orthogonal impossible. In such cases, hypersphere can still
achieve a good class separation in A-TPT — maximizing angular distance works better (Fig. 4a). Our
major contributions are summarized as follows:

• We introduce a numerical optimization method, called A-TPT, for better calibration of
test-time prompt tuning for VLMs. This resolves the suboptimal performance of existing
leading calibration techniques for test-time prompt tuning.
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• We introduce novel angular diversity that effectively promotes the diversity among textual
features, thereby improving the calibration capabilities of VLMs when N > |D| and
N < |D|. This is accomplished by maximizing the minimum pairwise angular distance
between normalized textual features.

• We conduct extensive experiments to validate the generalizability of our approach on
different datasets, including medical datasets, across various baselines. The results show
that A-TPT surpasses state-of-the-art methods in calibration performance. We also provide
thorough analyses, including theoretical aspects. Moreover, our approach provides superior
calibration compared to the zero-shot CLIP model, which reveals improved calibration.

2 RELATED WORKS

Prompt tuning for large VLMs. In large vision-language models (VLMs), predictions are guided
by hand-crafted textual prompts that require domain-specific heuristics. While effective, manually
designed prompts may be suboptimal across various newer domains. To address this, prompt tuning
techniques treat prompts as trainable vectors and optimize them via gradient descent. Notably, CoOp
(Zhou et al., 2022b) introduced a supervised prompt tuning framework for CLIP (Radford et al.,
2021), which improves the classification accuracy by leveraging labeled training samples. However,
follow-up work CoCoOp (Zhou et al., 2022a) showed that CoOp (Zhou et al., 2022b) struggles
to generalize to out-of-distribution (OOD) data and proposed input image-conditioned prompts to
enhance the model’s ability to adapt to new, novel domains. Despite these advances, such methods
rely on annotated training data, which limits their utility when working with pre-trained models
in zero-shot settings. To address this gap, Test-time Prompt Tuning (TPT) (Shu et al., 2022) has
been introduced to enable on-the-fly adaptive prompt adaptation using just one unlabelled test image
sample during inference. TPT optimizes prompts by minimizing prediction entropy and boosts model
accuracy in zero-shot scenarios. However, recent works (Yoon et al., 2024; Sharifdeen et al., 2025)
have revealed that it leads to poorly calibrated, overconfident predictions.

Calibration of deep neural networks. Calibration techniques for deep neural networks can be
categorized into two categories: post-hoc and train-time methods. Post-hoc calibration strategies,
such as temperature scaling (Guo et al., 2017), platt scaling (Platt et al., 1999), and conformal
prediction (Vovk et al., 2005; Lei et al., 2018) calibrate a model’s prediction confidence after training
using a held-out validation set. However, these methods rely on access to labeled datasets collected
from a distribution similar to the target data (Liu et al., 2022), often impractical in zero-shot and
out-of-distribution (OOD) contexts. In contrast, train-time calibration methods integrate a hybrid
calibration objective into the training of deep neural networks, with an auxiliary calibration loss as a
regularizer in conjunction with the primary training loss. These include techniques (Kumar et al.,
2018; Munir et al., 2022; 2023; Yoon et al., 2023) (i.e., for object classification and detection) that
incorporate differentiable auxiliary regularization loss functions during training to reduce calibration
error for reliable predictions. However, these train-time calibration methods are supervised and
require labeled training data, limiting their applicability in the test-time prompt tuning of VLMs
without supervision.

Calibration of large VLMs. Despite the efficacy of VLMs in generalizing to new tasks, they often
suffer from poor calibration. Recent works have shown that test-time prompt tuning (TPT) (Shu
et al., 2022) can boost task-specific accuracy in zero-shot settings; however, it could increase the
model’s overconfidence by expanding the logit range during inference. To address this, (Murugesan
et al., 2024) have proposed logit normalization strategies. For example, zero-shot logit normalization
adjusts the model’s prediction confidence by refining the logits with (original) zero-shot baselines,
while sample-adaptive logit scaling dynamically calibrates the normalized logits per instance to
reduce overconfidence during inference. In parallel, C-TPT (Yoon et al., 2024) explored the relation-
ship between textual feature dispersion and model calibration and proposed Average Text Feature
Dispersion (ATFD) loss to maximize inter-class dispersion. Although ATFD effectively reduces
calibration error without compromising accuracy, it may struggle in challenging cases, where it is
limited in establishing enough dispersion and fails to sufficiently utilize the embedding space. To
address these shortcomings, orthogonality-based regularization has been proposed (Sharifdeen et al.,
2025), which enforces orthogonality constraints to encourage angular separation between textual
features to promote greater dispersion. While this improves feature dispersion to some extent, it
tends to group prompts closer when the number of classes is greater than the embedding dimension
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and does not guarantee uniform angular separation across all prompt vectors, resulting in poor
calibration. Encouraged by these insights, we introduce a novel angular diversity technique that
explicitly maximizes the minimum pairwise angular distance between normalized prompt vectors.

3 PROPOSED METHOD

Zero-shot classification with large VLMs (CLIP). CLIP (Radford et al., 2021) consists of two
encoders: an image encoder (fi) and a text encoder (ft), which map visual and textual inputs
into the corresponding feature space vectors. The model is pre-trained with contrastive learning
that maximizes the cosine similarity between corresponding image-text feature vectors, thereby
aligning the visual and textual modalities within a shared multimodal latent space. In the zero-
shot setting with CLIP, class-related textual prompts are constructed with hand-crafted templates
— e.g., “a photo of a [class]” — where “[class]” corresponds to the name ck of each possible
class C = {ck}Nk=1 from a predefined set of classes to classify images. Next, each textual prompt
pk = prompt (ck) corresponding to a specific class ck is fed into the text encoder (ft) to generate
the textual feature vector: tk = ft (pk). Simultaneously, a given test image x is fed into the image
encoder (fi) to generate the image feature vector v = fi(x). To classify the image, cosine similarities
sk = sim (v, tk) are computed between the image feature vector v and each class-specific text
feature vector tk. These similarity scores are then converted into probabilities of predicting class
ck for the test image x using a Softmax function controlled by a temperature parameter τ , which
is fixed at 0.01 during inference. Then, the predicted class becomes the class with the highest
probability, ĉ = argmaxck p(ck | x) with its associated predicted confidence is p̂ = maxck p(ck | x).
This zero-shot framework enables efficient classification across a wide range of categories without
additional fine-tuning, relying solely on the learned multimodal alignment between images and
textual prompts. In contrast to hand-crafted prompts (i.e., hard prompts), prompt tuning has been
explored in CLIP (Chen et al., 2022; Radford et al., 2021; Yao et al., 2023; Zhou et al., 2022b;a) to
optimize trainable prompt embeddings using 16 samples per class from the ImageNet dataset, which
allows the learned prompts to generalize across cross-datasets. Recently, TPT (Shu et al., 2022) has
enabled prompt tuning without labeled data during inference. Although it boosts accuracy, TPT often
raises calibration errors due to overconfident predictions (Guo et al., 2017).

Why is angular diversity better for prompt calibration? While different prompts may yield text
dispersion that results in comparable classification accuracies, their calibration performance can vary
significantly. To further understand the relationship between angular diversity — maximizing the
angular distance (AD) and expected calibration error (ECE) — we conduct experiments with 80
different hard prompt styles (Radford et al., 2021). We followed the C-TPT (Yoon et al., 2024) to
evaluate the impact of angular distance (AD) and calibration error within the same accuracy group.
Specifically, we focus on the 3 well-calibrated (‘a’, ‘a toy’, ‘this is a photo of’) and 2 poor-calibrated
(‘there are [class] objects’, ‘the nearest shape in this image is’) prompt styles that provide lower and
higher ECEs. For illustration, consider the following examples from the Caltech101 dataset, using
CLIP RN50 are categorized into well-calibrated and poor-calibrated prompts:

Hard prompts (See Fig. 3a legend)
◦ a [class] - Acc: 83.2, ECE: 5.66, AD: 0.643

◦ a toy [class] - Acc: 82.8, ECE: 6.65, AD: 0.600

◦ this is a photo of [class] - Acc: 82.4, ECE: 6.15, AD:
0.622

◦ there are [class] objects - Acc: 81.1, ECE: 9.25, AD:
0.543

◦ the nearest shape in this image is [class] - Acc: 80.1,
ECE: 10.84, AD: 0.461

Tuned prompts (See Fig. 3b legend)
◦ a toy [class]: TPT - Acc: 83.9, ECE: 6.18, AD:

0.6216

◦ this is a photo of [class]: TPT + A-TPT - Acc: 86.0,
ECE: 3.74, AD: 0.6333

◦ a [class]: TPT + A-TPT - Acc: 86.6, ECE: 2.23, AD:
0.6486

◦ there are [class] objects: TPT + A-TPT - Acc: 84.1,
ECE: 2.12, AD: 0.6585

While well-calibrated prompts typically yield higher accuracy, the calibration error varies significantly
within the same accuracy group. Similarly, poor-calibrated prompts tend to yield lower accuracy, and
the calibration error varies significantly within the group. That is why in our analysis in Fig. 3, we
collected the prompts that yielded similar accuracy and tried to determine what caused the difference
in the calibration error within the same accuracy group.
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(a) Hard prompts (b) Tuned prompts
Figure 3: t-SNE visualization of class-wise embedded textual features with CLIP RN50 model on the
fine-grained classification dataset (Fei-Fei et al., 2004) for (a) hard prompts and (b) tuned prompts. In both
subfigures, each unique color represents a distinct prompt in the prompt visualization (left) and a distinct class in
the class visualization (right). The legends belong to the prompt visualization (left) for both subfigures.

We visualize t-SNE of class-wise embedded textual features in Fig. 3. In the Prompt Visualization
(left), each point represents a text feature from different prompts for all possible classes. In the Class
Visualization (right), the class embeddings represent text features corresponding to the actual class
labels. These visualizations illustrate the distribution of different hard prompt vectors in the feature
space, providing insights into how the angular diversity affects model calibration. In the case of
Fig. 3a (left), we observed a distinct pattern; poorly calibrated prompts — low angular diversity — are
clustered closely together regardless of their corresponding class labels. This low angular diversity
results in poor calibration, as the text features become highly correlated. In contrast, well-calibrated
prompts — high angular diversity — are well dispersed across the feature space, as shown in Fig. 3a
(left). Notably, the features for well-calibrated prompts tend to group cohesively associated with
their class labels (Fig. 3a (right)). These well-dispersed features allow the model to achieve better
calibration, as the features align closely with their respective class label locations in the feature space.
This pattern suggests that angular diversity disperses class-specific prompts and clusters text features
near their corresponding class labels, reducing calibration errors. In Fig. 3b, when applying Test-time
Prompt Tuning (TPT), the text features tend to cluster together, similar to the poorly calibrated
hard prompts. However, as we introduce angular diversity (A-TPT) and progressively increase the
regularization strength during the optimization process (via λ), the angular distance between the
features increases. As shown in Fig. 3b (left), A-TPT results in greater angular diversity than TPT
alone. Notably, the features align more closely with their respective class labels (Fig. 3b (right)),
similar to the well-calibrated hard prompt scenario. As shown in Figure 4, the examples provided
show a negative correlation between ECE and angular diversity — maximizing the angular distance
(AD) within each group, which aligns with the empirical findings of our paper. These findings suggest
the importance of angular diversity in improving VLM calibration for test-time prompt tuning. By
increasing the angular distance between learned prompt vectors, A-TPT promotes well-calibrated
predictions, crucial for real-world applications that require reliable uncertainty estimation, such as
medical diagnostics and autonomous systems.

Motivation for angular diversity. Prior works have shown that well-calibrated textual features
tend to be more dispersed with L2 distance (Yoon et al., 2024), which is spread farther apart or
benefits from greater angular separation with enforced orthogonality constraints (Sharifdeen et al.,
2025) in the embedding space. Prior work O-TPT (Sharifdeen et al., 2025) found that lower cosine
similarity between textual features corresponds to better model calibration. This suggests that
promoting greater angular separation among class-wise text features can improve the calibration of
VLMs. However, these analyses overlook a crucial aspect: angular diversity among textual features.
We empirically observe that orthogonalization tends to group textual features closer, particularly
when the number of classes is greater than the embedding dimension (Fig. 2, 4a), and does not
guarantee uniformity of angular separation across all prompt vectors. We hypothesize that promoting
angular diversity is more important for better calibration of VLMs than enforcing orthogonality
among textual features. Unlike existing techniques that disperse prompts via L2 dispersion (Yoon
et al., 2024) or orthogonality constraints (Sharifdeen et al., 2025), our approach explicitly focuses
on maximizing the minimum pairwise angular distance among normalized textual features. This
numerical method constructs each prompt-induced feature point uniformly distributed on a unit
hypersphere. Maximizing the minimum pairwise angular distance between the features ensures
each feature vector points in a diverse direction, thereby sharpening class boundaries and improving
zero-shot calibration performance in VLMs (Wang & Isola, 2020) during inference.
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Method Metric Group 1 Group 2 Overall
(N > |D|) (N < |D|)

Baseline Acc. 57.87 62.99 60.43
ECE 3.36 5.44 4.40

TPT Acc. 59.83 64.54 62.19
ECE 12.60 9.89 11.25

C-TPT Acc. 59.70 64.44 62.07
ECE 5.58 5.25 5.42

O-TPT Acc. 58.70 63.63 61.17
ECE 4.27 4.44 4.36

Acc. 58.23 64.30 61.27A-TPT (Ours) ECE 2.92 3.60 3.26

Table 1: Comparison of Accuracy and ECE
across methods with CLIP ViT-B/16 back-
bone and categories based on the number
of classes and TPT text features embedding
dimension (|D|).

(a) N > |D| (b) N < |D|
Figure 4: Comparison of mean cosine similarity changes for both
categories with CLIP ViT-B/16 backbone. Where, O-TPT fails, but
our A-TPT offers consistent cosine similarity values and achieves
the greatest minimum pairwise angular distance among text features
for all the data points. (suppl. carries more details.)

Comparison of dispersion, orthogonality, and angular diversity. The ATFD (Yoon et al., 2024)
objective disperses textual features by maximizing the L2 distance from their centroid, without
enforcing pairwise angular separation. In contrast, orthogonality constraints (Sharifdeen et al.,
2025) that enforce angular separation by pushing features to be orthogonal to minimize their cosine
similarity, tend to group textual features closer together when the number of classes is greater than the
embedding dimension N > |D|. When the number of classes is lesser N < |D|, it fails to fully utilize
the hyperspherical space effectively. As a result, neither of these methods guarantees the uniformity of
angular separation of features across the hypersphere (Liang et al., 2022). In zero-shot CLIP settings,
normalized textual features are constrained to the surface of a unit hypersphere (Wang & Isola, 2020).
While ATFD may shift the centroid of the text features toward the center of the hypersphere by
adjusting the features, similarly, orthogonality constraints may encourage angular separation by
pairwise orthogonalizing the features on the surface. However, these methods may not effectively
distribute features uniformly across the hypersphere’s surface. To further validate our findings, we
experimented for both where N < |D| (Helber et al., 2018), and N > |D| (Recht et al., 2019) cases.
For each data sample, we extract test-time prompt-tuned text features generated by O-TPT and A-TPT
(ours), compute pairwise cosine similarities, and plot their mean, as shown in Fig. 4. The results
show that O-TPT, which lacks calibration-specific constraints, tends to group textual features closer
when N > |D| (O-TPT fails), exhibits lower, but high fluctuations in cosine similarities, reflecting
its inconsistent calibration performance. In contrast, our method’s angular diversity consistently
produces text features with slightly higher but more consistent cosine similarities, indicating stable,
uniform angular separation. Similarly, O-TPT underutilizes hyperspherical space, showing higher,
slightly fluctuating cosine similarities when N < |D|, while A-TPT shows lower, more consistent
cosine similarities, achieving the greatest possible angular separation. That’s why hypersphere offers
optimal textual feature separation in A-TPT. (suppl. carries more details) In Tab. 1 we present the
accuracy and ECE results for CLIP ViT-B/16 backbone, dividing data into two groups based on
the number of classes relative to the embedding dimension of TPT text features. Group 1 includes
cases with N > |D|, while Group 2 includes N < |D|. We then calculate the ECE and accuracy
separately for each group, allowing a more fine-grained analysis of each method’s performance.
As hypothesized, cases with N > |D| tend to show elevated ECE, indicating poor calibration and
suggesting these are more challenging points. In these challenging cases (Group 1), our method
significantly outperforms C-TPT as well as O-TPT in terms of calibration performance, resulting in
an overall lower ECE. These results highlight the efficacy of our approach in handling both groups. To
achieve well-calibrated predictions, we argue that simple feature dispersion or orthogonal separation
is insufficient, instead promoting angular diversity — by maximizing the minimum pairwise angular
distance — an effective approach to uniformly distributing features across the hypersphere’s surface
and improving calibration in VLMs.

Angular diversity. Motivated by these insights, we introduce angular diversity to better the test-time
prompt calibration of VLMs by promoting angular diversity within the textual feature matrix. Let
each class ck be associated with a textual feature vector tk ∈ R|D|, where |D| is the embedding
dimension. Define the text feature matrix E that contains textual feature vectors for all classes, such
that E ∈ RN×|D|, where N denotes the total number of classes. Each element Eij corresponds to the
embedding of the i-th class in the j-th dimension. This matrix E captures the spatial distribution of
class-specific features across the shared latent space. We normalize E to Ê. To promote uniformity
on a unit hypersphere (Fig. 2), we compute the matrix product ÊÊT , which contains the pairwise
cosine similarities between the text features. Inspired by insights from the ArcFace (Deng et al.,
2019), we propose an angular variant of the cosine loss as the objective function to maximize the
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minimum pairwise angular distance between the normalized prompt vectors.

AD =
1

N

N∑
i=1

min
j∈{1,...,N}\{i}

θij , θ = arccos(ÊÊT ), s.t. # ∀i Êi =
eTi
|ei|

, (1)

Here, θ ∈ RN×N is the matrix of pairwise angular distances. The angular diversity term, denoted as
AD, maximizes the minimum pairwise angular distance between normalized prompt vectors while
ensuring uniformity of text features across the feature space. Thus, we integrate this regularization
term into the overall objective function for the test-time prompt tuning process to better the calibration
performance is formulated as:

p
∗ = argmin

p
(LTPT + λ · LA-TPT) , where LA-TPT = −AD, (2)

LTPT is the TPT negative maximum class log probability (entropy minimization) loss function , p
denotes the learnable prompt parameters, and λ is a hyperparameter that promotes uniformity of
distributed features across the hypersphere and ensures effective utilization of the full feature space
while controlling the strength of the regularization term. By explicitly promoting the angular diversity
term, we systematically achieve maximum angular distance between pairwise textual features to
better prompt calibration in test-time prompt tuning.

Gradient analyses comparison to O-TPT. O-TPT’s orthogonality loss yields gradients that shrink to
zero as the pairwise angular distance θ → 0, making optimization hard when features are already close.
In contrast, A-TPT optimizes the angular distance directly; its gradient norm is angle-independent,
so it stays stable even at small θ. That’s why directly optimizing angular distance rather than using
cosine similarity at test time improves VLM calibration and avoids the stuck near-colinear regime
that hurts calibration. (See Fig. 7 for gradient-norm, and Appendix A.6 for derivations (eqs. (4)–(5)).

Computational complexity. A-TPT’s asymptotic complexity same as O-TPT, with negligible run-
time/memory overhead over C-TPT, while substantially reducing ECE. (See Tab. 8 and Appendix A.7)

4 EXPERIMENTS

We evaluate on different datasets, across various baselines, with CLIP ViT-B/16 (512-d) and RN50
(1024-d); suppl. carries datasets and implementation details in Appendix A.8 and A.10.

Calibration performance on fine-grained classification tasks. We evaluate the proposed A-TPT
method, and we observe better calibration performance across multiple fine-grained classification
tasks with both CLIP ViT-B/16 and CLIP RN50 backbones (Tab. 2. A-TPT consistently reduces ECE
compared to O-TPT (Sharifdeen et al., 2025) and C-TPT (Shu et al., 2022): For CLIP ViT-B/16,
average ECE drops from 5.13 (C-TPT) and 4.23 (O-TPT) to 2.92. For CLIP RN50, ECE reduces
from 6.19 (C-TPT) and 5.45 (O-TPT) to 2.79 These results highlight the efficacy of A-TPT in both
N < |D| and N > |D| cases.

Calibration performance under natural distribution shifts. Tab. 3 shows the calibration results
under natural distribution shifts. All hyperparameters and experimental configurations match with
the implementation section, except for the regularization weight λ, which we set to 10.0. Similar to
Tab. 2, A-TPT shows better calibration performance across ImageNet variants by reducing the ECE
for both CLIP ViT-B/16 and CLIP RN50. For CLIP ViT-B/16, A-TPT lowers the average ECE to
3.92, drops from 4.88 (O-TPT) and 5.82 (C-TPT). For CLIP RN50, A-TPT achieves an average ECE
of 7.82 drops from 9.69 (O-TPT) and 12.1 (C-TPT). Importantly, A-TPT also surpasses the zero-shot
baseline in calibration performance, showing lower ECE on both backbones, without compromising
the high accuracy benefits of TPT for N > |D| and N < |D| cases, which is a feat unmatched by
any other approach.

Medical prompt tuning with A-TPT. We evaluate the generalizability of A-TPT on medical datasets
with medical baselines under the N < |D| regime. Tab. 4 presents the performance of FPT (Huang
et al., 2024) and FPT combined with O-TPT and A-TPT on ISIC 2018 dataset, where A-TPT leads
to a notable reduction in Expected Calibration Error (ECE) while preserving high classification
accuracy. Tab. 5 evaluates PLIP with Prompt Smooth (PS) (Hussein et al., 2024), on KatherColon,
where the combination of A-TPT further better calibration performance. Tab. 6 reports results using
MedCLIP with BAPLe (Hanif et al., 2024), showing that the integration of A-TPT substantially
improves calibration metrics over the baseline.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Metric
Im

ag
eN

et

DTD

Flow
ers

10
2

Foo
d10

1

SUN39
7

Airc
ra

fts

Oxfo
rd

Pets

Calt
ech

10
1

UCF10
1

Euro
SAT

Stan
dfor

d

Car
s

Ave
ra

ge

Pre-trained Backbone: CLIP ViT-B/16 | Embedding dimension: 512-d

Baseline Acc. 66.70 44.30 67.30 83.60 62.50 23.90 88.00 92.90 65.00 41.30 65.30 63.70
ECE 2.12 8.50 3.00 2.39 2.53 5.11 4.37 5.50 3.59 13.89 4.25 4.43

TPT Acc. 69.00 46.70 69.00 84.70 64.50 23.40 87.10 93.80 67.30 42.40 66.30 65.00
ECE 10.60 21.20 13.50 3.98 11.30 16.80 5.77 4.51 2.54 13.20 5.16 11.60

C-TPT Acc. 68.50 46.00 69.80 83.70 64.80 24.85 88.20 93.63 65.70 43.20 65.80 64.57
ECE 3.15 11.90 5.04 3.43 5.04 4.36 1.90 4.24 2.54 13.20 1.59 5.13

O-TPT Acc. 67.33 45.68 70.07 84.13 64.23 23.64 87.95 93.95 64.16 42.84 64.53 64.41
ECE 1.96 7.88 3.87 1.46 4.93 3.68 1.90 3.80 2.34 12.98 1.78 4.23

Acc. 67.70 45.51 69.22 83.64 66.04 23.76 88.33 93.87 66.16 44.06 65.78 64.92A-TPT (Ours) ECE 1.45 4.76 3.61 1.37 3.28 3.14 1.17 2.76 2.12 3.92 1.09 2.61

Pre-trained Backbone: CLIP RN50 | Embedding dimension: 1024-d

Baseline Acc. 58.10 40.00 61.00 74.00 58.60 15.60 83.80 85.80 58.40 23.70 55.70 55.90
ECE 2.09 9.91 3.19 3.11 3.54 6.45 5.91 4.33 3.05 15.40 4.70 5.61

TPT Acc. 60.70 41.50 62.50 74.90 61.10 17.00 84.50 87.00 59.50 28.30 58.00 57.70
ECE 11.40 25.70 13.40 5.25 9.24 16.10 3.65 5.04 12.40 22.50 3.76 11.70

C-TPT Acc. 60.20 42.20 65.20 74.70 61.00 17.00 84.10 86.90 59.70 27.80 56.50 57.75
ECE 3.01 19.80 4.14 1.86 2.93 10.70 2.77 2.07 3.83 15.10 1.94 6.19

O-TPT Acc. 58.97 41.90 65.61 74.22 60.85 16.77 83.40 86.86 58.84 28.35 56.44 57.47
ECE 3.10 16.53 2.50 1.20 3.20 8.18 3.50 2.75 2.60 14.71 1.69 5.45

Acc. 58.44 40.90 64.89 74.10 60.46 14.58 83.48 86.57 60.24 32.14 57.08 57.53A-TPT (Ours) ECE 2.49 6.41 2.39 1.11 2.90 6.14 2.47 1.98 2.34 2.51 1.38 2.92

Table 2: Comparison of methods across fine-grained datasets for Accuracy (Acc.) and Expected Calibration
Error (ECE) with CLIP ViT-B/16 and CLIP RN50 pre-trained backbone for both N > |D| and N < |D| cases.
The overall top best-performing result is in bold.
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Pre-trained Backbone: CLIP ViT-B/16 | Embedding dimension: 512-d

Baseline Acc. 47.80 60.80 74.00 46.10 57.20
ECE 8.61 3.01 3.58 4.95 5.04

TPT Acc. 52.60 63.00 76.70 47.50 59.90
ECE 16.40 11.10 4.36 16.10 12.00

C-TPT Acc. 51.60 62.70 76.00 47.90 59.60
ECE 8.16 6.23 1.54 7.35 5.82

O-TPT Acc. 49.87 61.65 72.55 47.12 57.80
ECE 7.22 3.97 1.46 6.87 4.88

Acc. 50.39 60.90 74.87 46.09 58.06A-TPT (Ours) ECE 6.45 2.96 1.39 4.87 3.92

Pre-trained Backbone: CLIP RN50 | Embedding dimension: 1024-d

Baseline Acc. 21.70 51.40 56.00 33.30 40.60
ECE 21.30 3.33 2.07 3.15 7.46

TPT Acc. 25.20 54.60 58.90 35.10 43.50
ECE 31.00 13.10 9.18 13.70 16.70

C-TPT Acc. 23.40 54.70 58.00 35.10 42.80
ECE 25.40 8.58 4.57 9.70 12.10

O-TPT Acc. 23.07 53.11 54.47 33.98 41.16
ECE 24.56 3.87 4.47 5.85 9.69

Acc. 21.66 51.48 55.78 33.37 40.57A-TPT (Ours) ECE 21.14 3.10 3.96 3.09 7.82

Table 3: Comparison of methods across natural distri-
bution shift datasets for Accuracy (Acc.) and Expected
Calibration Error (ECE) with TPT (baseline) with
CLIP ViT-B/16 (top) and CLIP RN50 (bottom) pre-
trained backbones for both N > |D| and N < |D|
cases. The overall top best-performing result is in
bold.

(a) C-TPT: Food101 (b) C-TPT: DTD (c) C-TPT: Flower102

(d) O-TPT: Food101 (e) O-TPT: DTD (f) O-TPT: Flower102

(g) A-TPT: Food101 (h) A-TPT: DTD (i) A-TPT: Flower102

Figure 5: Reliability diagrams for CLIP ViT-B/16 back-
bone (suppl. carries additional reliability diagrams).

Method Metric ISIC’18 (N = 7)

FPT (512-d) Acc. 98.43
ECE 0.2328

FPT + O-TPT Acc. 98.25
ECE 0.1381

Acc. 98.31FPT + A-TPT ECE 0.0794

Table 4: FPT: FPT + A-TPT on
ISIC 2018.

Method Metric KatherColon (N = 9)

PS (768-d) Acc. 76.6
ECE 15.54

PS + O-TPT Acc. 76.2
ECE 12.73

Acc. 76.4PS + A-TPT ECE 8.86

Table 5: PLIP: Promptsmooth
(PS) + A-TPT on KatherColon
(KC).

Method Metric Covid
BA (N = 2) CA(N = 10)

BAPLe (768-d) Acc. 99.90 82.5
ECE 3.21 15.64

BAPLe + O-TPT Acc. 99.62 81.36
ECE 0.91 5.97

Acc. 99.78 82.19BAPLe + A-TPT ECE 0.42 2.34

Table 6: MedCLIP: BAPLe + A-TPT
on Covid dataset.

Comparison with previous calibration methods. As illustrated in Fig. 6, average ECE across
different datasets, including fine-grained classification and natural distribution shifts, where cali-
bration techniques are applied to TPT (Shu et al., 2022). We compare C-TPT (Yoon et al., 2024),
O-TPT (Sharifdeen et al., 2025), and A-TPT (Ours). A-TPT consistently shows better calibration,
demonstrating its efficacy in improving model reliability across datasets.

Reliability plots. To address under-confidence and over-confidence, while Tables 2 and 3 illustrate
that A-TPT achieves superior calibration performance across multiple fine-grained datasets on both
CLIP ViT-B/16 and CLIP RN-50 backbones, they do not reveal insights into whether the model tends
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Figure 6: Comparison of expected calibration error (ECE) between
C-TPT, O-TPT, and A-TPT (Ours). Results are based on CLIP
ViT-B/16 backbone. Lower ECE provides better prompt calibration.

Figure 7: Comparison of the gradient norm changed
with pairwise angular distance. Unlike O-TPT’s gradient,
which vanishes as θ → 0, A-TPT’s gradient is stable
and consistent with θ.
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Pre-trained Backbone: CLIP ViT-B/16 | Baseline + CoOp | Embedding dimension: 512-d

Baseline + CoOp Acc. 43.10 67.40 83.20 63.70 18.00 89.20 93.60 66.00 40.10 63.10 63.50
ECE 7.71 3.92 1.55 1.72 9.21 2.92 3.65 3.47 15.30 6.86 5.25

TPT + CoOp Acc. 44.50 68.70 83.80 65.60 20.00 89.10 94.00 67.20 40.60 65.60 63.91
ECE 34.80 19.90 9.66 20.80 29.60 7.40 3.65 19.90 31.30 6.63 18.36

TPT + CoOp + C-TPT Acc. 45.00 69.00 83.70 65.10 19.20 89.30 93.90 66.60 40.70 63.10 63.56
ECE 21.00 10.20 4.49 11.80 21.50 2.12 1.66 12.00 13.20 2.45 10.04

TPT + CoOp + O-TPT Acc. 45.45 68.57 83.55 64.01 18.69 89.07 93.71 65.64 40.17 64.12 63.14
ECE 16.02 6.81 3.59 7.23 16.82 1.92 0.92 9.16 13.76 2.85 7.91

Acc. 43.21 68.94 83.23 65.34 20.58 90.02 93.23 69.99 40.28 65.89 64.07TPT + CoOp + A-TPT ECE 6.33 2.91 3.12 2.63 5.51 1.06 1.08 3.78 7.85 2.04 3.63

Pre-trained Backbone: CLIP ViT-B/16 | Baseline + CoCoOp | Embedding dimension: 1024-d

Baseline + CoCoOp Acc. 44.60 68.40 84.10 63.00 24.20 88.30 91.00 67.00 44.10 64.90 64.30
ECE 3.82 3.82 3.25 4.61 4.06 4.60 3.52 3.28 5.81 6.51 4.20

TPT + CoCoOp Acc. 45.00 68.60 84.60 64.00 24.90 88.50 91.20 67.80 44.50 65.90 64.90
ECE 6.91 4.70 1.94 3.16 6.13 2.22 2.74 3.47 9.03 5.22 4.35

TPT + CoCoOp + C-TPT Acc. 44.70 69.30 84.20 63.60 24.60 88.80 91.40 67.10 44.30 64.90 64.70
ECE 4.18 3.13 2.66 2.96 4.90 3.76 3.45 2.91 5.79 5.09 3.68

Acc. 44.28 68.73 84.12 63.68 24.14 88.37 91.21 67.89 44.16 64.91 64.15TPT + CoCoOp + A-TPT ECE 3.52 3.08 1.91 2.74 4.79 2.09 2.67 2.85 3.49 4.95 3.22

Table 7: Comparison of methods when using CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a) as
a baseline across fine-grained datasets for Accuracy (Acc.) and Expected Calibration Error (ECE) with CLIP
ViT-B/16 pre-trained backbone. The overall best-performing result is in bold.

to be over-confident or under-confident. To further analyze this, we plot reliability diagrams in Fig. 5
for the Food101, DTD, and Flowers102 datasets with the CLIP ViT-B/16 backbone. C-TPT (Yoon
et al., 2024) displays under-confidence on Food101 (Fig. 5a) and over-confidence on DTD (Fig. 5b)
and Flowers102 (Fig. 5c). O-TPT (Sharifdeen et al., 2025) partially mitigates these issues to some
extent (Figs. 5d, 5e, 5f), but noticeable calibration gaps persist, particularly on DTD (Fig. 5e). In
contrast, A-TPT produces the most reliable predictions — correcting under-confidence in Food101
(Fig. 5g) and significantly reducing over-confidence in the other datasets (Figs. 5h, 5i). These results
highlight that A-TPT effectively balances confidence and accuracy, making it an ideal solution for
both under-confidence and over-confidence in VLM calibration.

Supervised-trained prompt embeddings. In addition to tuning prompt parameters during inference
time, we further evaluate the calibration capabilities of A-TPT when combined with supervised-
trained prompt embedding parameters for test-time prompt tuning. Specifically, utilized the officially
published checkpoints of CoOp (Zhou et al., 2022b) and CoCoOp (Zhou et al., 2022a) as presented
in Tab. 7. For CoCoOp, we trained on 16 images per class from half of ImageNet’s total classes with
4 learnable prompt embeddings (Shu et al., 2022; Yoon et al., 2024). As reported in Tab. 7, for CoOp
across 10 fine-grained datasets, A-TPT reduces the overall average ECE to 3.63. Likewise, when
integrating A-TPT with CoCoOp reduces the overall ECE to lowest 3.22.

5 CONCLUSION

We propose a novel technique, called angular diversity, to promote the uniformity of textual features
and disperse them to calibrate test-time prompt tuning of vision-language models. We reveal that
maximizing the minimum pairwise angular distance between textual features while prompt learning
is associated with lower calibration error. We show that achieving uniformity between textual features
is more effective than orthogonalization and dispersion through L2 distance objectives. Moreover,
angular diversity is also effective for prompt learning with significant margins, due to enlarging the
inter-class separability. Therefore, we propose angular diversity on textual features during test-time
prompt tuning, abbreviated as A-TPT. Our approach consistently outperforms state-of-the-art methods
with different backbones and baselines.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLM Usage Statement: We made limited use of large language models to enhance the clarity and
readability of the text. They were not involved in the conception of ideas, experiment design, analysis,
or the production of results.

A.2 ETHICS STATEMENT

We confirm that our research adheres to the highest standards of ethical considerations. All work
presented in this paper is original, and any external contributions or sources have been appropri-
ately cited. Our study does not introduce new datasets, nor does it involve experiments utilizing
demographic or identity characteristics.
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A.3 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have detailed the comprehensive training procedures,
hyperparameters, and experimental settings in Sections 4 and A.10 of the paper.

A.4 LIMITATIONS

A notable limitation of the proposed angular diversity-based calibration method is a slight reduction in
classification accuracy observed in certain scenarios. Although empirical results suggest that overall
accuracy is not significantly affected, some minor degradations in a few cases like semantically
overlapping datasets — typically under 1-2% — have been noted in some instances. This trade-off
aligns with findings from prior test-time prompt calibration-focused approaches (Yoon et al., 2024;
Sharifdeen et al., 2025), which similarly reduce the expected calibration error (ECE) at the expense
of minor compromise in accuracy. Such trade-offs are generally considered acceptable, particularly
in high-stakes applications where better model calibration, reliability, and trustworthy uncertainty
estimation are of critical importance.

Another limitation arises from the method’s reliance on test-time adaptation, which limits access to
labeled training or validation data, making hyperparameter tuning difficult and limiting optimization
during adaptation. Within the A-TPT framework, the trade-off between accuracy and calibration
is governed by a regularization hyperparameter λ (as defined in Eq. 3), which is fixed at 80.0 for
all test instances based on insights from ablation studies. While this fixed value has shown better
performance across various settings, we acknowledge that it may not be optimal for each data sample;
it serves as a practical starting point. Future research could benefit from exploring dynamic, every
data sample adaptation of λ to further better calibration performance, without compromising accuracy.
Notably, any such method does not depend on labeled data to preserve the real-world applicability of
test-time prompt tuning in label-scarce settings.

A.5 EXPECTED CALIBRATION ERROR AND EVALUATION METRIC

Lower expected calibration error (ECE) (Naeini et al., 2015) indicates perfect calibration, where the
model ensures that predicted probabilities correspond accurately to the likelihood of true accuracy. We
define this as: P (ĉ = C | p̂ = p) = p,∀p ∈ [0, 1], where an input image x with its corresponding
ground truth label c, predicted class label ĉ with its predicted confidence p = p̂. Expected Calibration
Error (ECE) partitions predictions into bins based on the confidence metric and evaluates the absolute
difference between the accuracy and the mean confidence within each bin. Mathematically, ECE is
formulated as follows:

ECE =

N∑
n=1

|Bn|
M

|acc (Bn)− conf (Bn)| , (3)

where N denotes the total number of bins, Bn defines the image set with predicted confidence
falling into the n-th bin, |Bn| is the number of images within this bin, and M is the total number of
predictions, Furthermore, acc (Bn), and conf (Bn) represents the accuracy of the predictions and
average prediction confidence of all associated with bin n, respectively.

A.6 GRADIENT ANALYSES COMPARISON TO O-TPT

We analyze and compare the gradients of loss functions for A-TPT with O-TPT. To simplify the
derivation, we only consider the norm of the gradient of the objective function, composing the loss
function, w.r.t. the corresponding text feature matrix E. For intuitive comparison, the analysis results
are presented in Fig. 7.

Corresponding to the O-TPT, the gradient norm is derived as follows:

∥∥∥∥∥∂ ÊÊT

∂ei

∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
∂

(
eTi ej

∥ei∥∥ej∥

)
∂ei

∥∥∥∥∥∥∥∥ =
∥(I −Mei) ej∥

∥ei∥ ∥ej∥
=

∥ej∥ ∥sinθij∥
∥ei∥ ∥ej∥

=
∥sinθij∥
∥ei∥

, Mei =
eie

T
i

∥ei∥2
(4)

where Mei
represents the projection matrix of ei. From the above derivation and Fig. 7, we can

see that the gradient norm is very small when the pairwise angle is close to zero. That is why the
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orthogonality constraint is hard to converge for the case that ei and ej are close to each other in both
N < |D| & N > |D| categories. Next, we derive the gradient norm corresponding to the A-TPT:∥∥∥∥∂θij

∂ei

∥∥∥∥ =

∥∥∥∥∥ ∂θij

∂ ÊÊT

∂ ÊÊT

∂ei

∥∥∥∥∥ =
1

sinθij

sinθij

∥ei∥
=

1

∥ei∥
(5)

Compared to the gradient norm corresponding to the orthogonality constraints, as referred to Equa-
tion 4, the gradient norm corresponding to the angular diversity is independent of the pairwise angle
θij , so it would not encounter the very small gradient even though θij is zero. Fig. 7 shows that
the gradient norm corresponding to angular diversity empirically proves that the A-TPT is better
than the O-TPT, primarily due to its more stable and consistent gradient during test-time prompt
tuning. Therefore, directly optimizing angular distance rather than using cosine similarity, and getting
near-optimal solutions for the Tammes problem, sufficiently justifies the design choice for both
N < |D| & N > |D| categories (Fig. 4), especially for N > |D|.

A.7 COMPUTATIONAL COMPLEXITY

As shown in the Tab. 8, we compare C-TPT, O-TPT, and A-TPT on the larger, higher-dimensional
embeddings natural distribution shift dataset (Recht et al., 2019) for the N > |D| case from the
perspective of asymptotic complexity, calculating time per batch, occupied memory, and ECE.
Compared to L2 Regularization, the orthogonality constraints and angular diversity slightly increase
the asymptotic complexity, calculation time, and occupied memory, while reducing ECE.

However, the orthogonality constraints greatly increase that due to the computational overhead of
all the pairwise matrix operations. In terms of ECE, the angular diversity reduces over the L2
regularization by a substantial margin. The angular diversity is also the most effective to enlarge the
minimal pairwise angular distance of textual features to sharpening class boundaries, which would
increase the inter-class separability and better calibration performance. Besides, as a simple plug-in
regularizer with negligible computational overhead, it is shown to be pre-trained backbone-agnostic
and produces better calibration on fine-grained classification tasks and natural distribution shifts.
Therefore, the key advantage of angular diversity highlighted in this paper is not only significant but
also scalable.

Method Regularization Asymptotic Time (s) Memory ECE
Complexity /Batch (MiB)

C-TPT L2 Regularization O(N · |D|) 1.055 21838 6.23

O-TPT Orthogonality O(N2 · |D|) 1.064 23740 3.97Constraints

A-TPT Angular
(Ours) Diversity O(N2 · |D|) 1.058 21840 2.96

Table 8: Comparison of different regularization methods on ImageNet-V2 (Recht et al., 2019). The angular
diversity achieves lower ECE with negligible computational overhead.

A.8 DETAILS ON THE DATASETS

We evaluate our approach on multiple datasets encompassing both fine-grained classification and
natural distribution shift scenarios (suppl. carries details). For fine-grained classification, we conduct
experiments using the ImageNet (Deng et al., 2009) and Caltech101 (Fei-Fei et al., 2004) along
with diverse datasets across various domains: DTD (Cimpoi et al., 2014) for texture identification,
Flower102 (Nilsback & Zisserman, 2008) and OxfordPets (Parkhi et al., 2012) for plants and animal
categories, Food101 (Bossard et al., 2014) for food classification, StanfordCars (Krause et al., 2013)
and Aircraft (Maji et al., 2013) for transportation classification, SUN397 (Xiao et al., 2010) for scene
categorization, UCF101 (Soomro et al., 2012) for human action recognition, and EuroSAT (Helber
et al., 2018) for satellite imagery in environmental categorization. For natural distribution shifts, we
utilize several ImageNet variants: ImageNet-V2 (Recht et al., 2019) (natural images), ImageNet-A
(Hendrycks et al., 2021b) (natural adversarial examples), ImageNet-R (Hendrycks et al., 2021a)
(artistic renditions), and ImageNet-Sketch (Wang et al., 2019) (black and white sketches) datasets, as
benchmarks for out-of-distribution (OOD) performance evaluation.

Tab. 9 (left) summarizes the details of each dataset, such as the number of classes, test set size, and
the corresponding task descriptions.
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A.9 CLIP’S EMBEDDING DIMENSION

Tab. 10 (right) presents the embedding dimensions associated with various CLIP backbone archi-
tectures. For the ResNet-based models, CLIP RN50 and CLIP RN101 produce 1024-dimensional
and 512-dimensional embeddings, respectively. In contrast, the Vision Transformer (ViT) variants,
including ViT-B/16, ViT-B/32, and ViT-L/14, generate embeddings of 512, 512, and 768 dimensions,
respectively. These embedding sizes reflect the representational capacity of the model and play a
crucial role in angular diversity for zero-shot performance, across diverse tasks where the relationship
between the number of classes N and the embedding dimension |D| influences calibration (N < |D|
and N > |D|) via feature angular separation.

Dataset # Classes Test set size Text feature matrix (E)
CLIP ViT-B/16 CLIP RN50

fine-grained classification datasets [N, |D|]
ImageNet 1000 50,000 [1000, 512] [1000, 1024]
Caltech101 100 2,465 [100, 512] [100, 1024]
OxfordPets 37 3,669 [37, 512] [37, 1024]
StanfordCars 196 8,041 [196, 512] [196, 1024]
Flowers102 102 2,463 [102, 512] [102, 1024]
Food101 101 30,300 [101, 512] [101, 1024]
FGVCAircraft 100 3,333 [100, 512] [100, 1024]
SUN397 397 19,850 [397, 512] [397, 1024]
DTD 47 1,692 [47, 512] [47, 1024]
EuroSAT 10 8,100 [10, 512] [10, 1024]
UCF101 101 3,783 [101, 512] [101, 1024]

natural distribution shift datasets

ImageNet-A 200 7,500 [200, 512] [200, 1024]
ImageNetV2 1000 10,000 [1000, 512] [1000, 1024]
ImageNet-R 200 30,000 [200, 512] [200, 1024]
ImageNet-Sketch 1000 50,889 [1000, 512] [1000, 1024]

Table 9: The detailed statistics of datasets used in the experiments.

CLIP pre-trained Embedding
backbone dimension
RN50 1024-d
RN101 512-d

ViT-B/16 512-d
ViT-B/32 512-d
ViT-L/14 768-d

Table 10: CLIP ResNet and
ViT’s embedding dimension.

A.10 IMPLEMENTATION DETAILS

We employ two CLIP backbones: CLIP ViT-B/16 and CLIP RN50. For all experimental setups, we
use test-time prompt tuning (TPT) (Shu et al., 2022) as the primary objective to maximize accuracy
while incorporating A-TPT as an auxiliary objective to better the calibration performance as described
in Eq. 2. We fix the λ as 80.0 for all cases unless otherwise specified. We perform prompt optimization
for a single-step update with the AdamW (Loshchilov & Hutter, 2017) optimizer and set the learning
rate to 5e-3. We initialize the prompt embeddings with hard prompts, following C-TPT (Yoon et al.,
2024) and all other settings following the standard TPT (Shu et al., 2022) configurations. We conduct
all experiments with a batch size of 64 on a single NVIDIA Quadro RTX 6000 GPU (24GB memory).

A.11 WEIGHTED AVERAGE COMPARISON

The formula for the weighted average metric is:

Weighted Average Metric =

∑
(Test Set Sizei × Metrici)∑

(Test Set Sizei)
(6)

In Tab. 11, we present the weighted average accuracy and ECE results of the proposed A-TPT
method based on the test set size, and we observe better calibration performance with both CLIP
ViT-B/16 and CLIP RN50 backbones. Our method (A-TPT) significantly outperforms C-TPT as
well as O-TPT in terms of calibration performance, resulting in a lower ECE without compromising
accuracy. Specifically, with the CLIP ViT-B/16 backbone, the average ECE drops from 4.74 ( C-TPT)
and 3.91 (O-TPT) to 2.73 with A-TPT. Similarly, for the CLIP RN50 backbone, ECE reduces from
6.11 (C-TPT) and 4.88 (O-TPT) to 3.32 and outperforms C-TPT and O-TPT with a substantial
improvement in both settings.
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Method Metric CLIP ViT-B/16 CLIP RN50

Baseline Acc. 62.99 51.75
ECE 3.93 4.04

TPT Acc. 64.84 54.00
ECE 10.23 11.48

C-TPT Acc. 64.60 53.64
ECE 4.74 6.11

O-TPT Acc. 63.54 52.51
ECE 3.91 4.88

Acc. 63.89 52.40A-TPT (Ours) ECE 2.73 3.32

Table 11: Comparison of Weighted Average Accuracy and Expected Calibration Error (ECE) with
CLIP ViT-B/16 and CLIP RN50 backbones.

A.12 EXPANDED STUDY

We have expanded this study by collecting another 6 prompt templates within 80 different hard
prompt styles (Radford et al., 2021). For illustration, consider the following examples from the
natural distribution shift ImageNet dataset (Deng et al., 2009) using CLIP ViT-B/16, categorized into
well-calibrated and poor-calibrated prompts:

• well-calibrated prompts (similar accuracy, higher
AD, lower ECE):

◦ a photo of a [class] - Acc: 66.8, ECE: 2.12, AD:
0.65

◦ a good photo of the [class] - Acc: 66.7, ECE: 3.46,
AD: 0.62

◦ a photo of the weird [class] - Acc: 67.1, ECE:
5.38, AD: 0.57

• poor-calibrated prompts (lower AD, higher ECE):

◦ a sculpture of a [class] - Acc: 61.8, ECE: 6.08,
AD: 0.54

◦ graffiti of a [class] - Acc: 62.4, ECE: 4.19, AD:
0.57

◦ a cartoon [class] - Acc: 62.1, ECE: 2.24, AD: 0.59

As shown, these examples provide important insight into the relationship between AD and calibration
error (ECE) within the same accuracy group, aligning with the empirical findings of our paper. We
agree that it needs a lot of prompt templates, datasets, and models to support the conclusion of Figure
4 further. However, finding prompt templates within the same accuracy group across different hard
prompt styles (Radford et al., 2021) is a challenging task.

Lastly, while different prompt template certainly affects calibration error, our empirical results suggest
that accuracy is not a sufficient indicator of calibration, and directly optimizing for angular diversity
leads to improved ECE across different settings.

A.13 RESULTS ON STANDARD DEVIATION ACROSS RANDOM SEEDS

Tab. 12 presents the mean and standard deviation of accuracy and ECE over three random runs with
different seeds for A-TPT across five datasets with CLIP ViT-B/16 backbone. Compared to C-TPT
and O-TPT, A-TPT shows a lower mean standard deviation in both accuracy and ECE, indicating
more stable performance to randomness in prompt initialization and greater consistency in calibration.
This consistency highlights A-TPT’s reliability in maintaining stable performance across runs, a
critical property for practical deployment in scenarios that demand reproducibility and calibration
stability.

Method Metric
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Pre-trained Backbone: CLIP ViT-B/16 | Embedding dimension: 512-d

C-TPT Std. Acc. ±.12 ±.16 ±.16 ±.22 ±.20 ±.17
Std. ECE ±.24 ±.18 ±.24 ±.12 ±.19 ±.19

O-TPT Std. Acc. ±.14 ±.11 ±.03 ±.10 ±.19 ±.11
Std. ECE ±.17 ±.25 ±.14 ±.20 ±.10 ±.18

Std. Acc. ±.15 ±.09 ±.04 ±.08 ±.14 ±.10A-TPT (Ours) Std. ECE ±.12 ±.15 ±.10 ±.09 ±.08 ±.0.11

Table 12: Standard deviation of three random runs with different seeds with CLIP ViT-B/16 backbone.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.14 RESULTS WITH OTHER CALIBRATION METRICS: SCE CALIBRATION PERFORMANCE
COMPARISON

Since the ECE metric could suffer from bias, In addition to evaluating model calibration through
Expected Calibration Error (ECE), we also examine calibration using Static Calibration Error (SCE)
(Nixon et al., 2019), which serves as a class-wise variant of ECE. Tab. 13 compares the SCE results
across ten fine-grained classification datasets with the CLIP ViT-B/16 and CLIP RN50 backbones. The
performance of our proposed A-TPT method is benchmarked against several alternative approaches,
including the Baseline, TPT, C-TPT, and O-TPT. A-TPT consistently achieves superior calibration
performance, demonstrating a substantial reduction in SCE across all datasets. For the CLIP-ViT-B/16
backbone, our method outperforms the alternatives, with an overall average SCE reduction of up
to 0.89 compared to 1.06 for Baseline, 1.15 for TPT, 1.11 for C-TPT, and 1.07 for O-TPT. For the
CLIP RN50 1.03 compared to 1.22 for Baseline, 1.30 for TPT, 1.27 for C-TPT, and 1.24 for O-TPT.
This substantial improvement highlights the efficacy of angular diversity in better prompt calibration
performance.
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Pre-trained Backbone: CLIP ViT-B/16 | Metric: SCE | Embedding dimension: 512-d

Baseline 1.33 0.59 0.20 0.12 0.52 0.68 0.25 0.52 6.18 0.23 1.06
TPT 1.44 0.51 0.17 0.15 0.58 0.60 0.16 0.57 7.07 0.25 1.15
C-TPT 1.31 0.52 0.22 0.14 0.56 0.58 0.22 0.52 6.81 0.22 1.11
O-TPT 1.24 0.53 0.19 0.12 0.56 0.57 0.17 0.51 6.58 1.07 1.07
A-TPT 1.11 0.51 0.15 0.11 0.53 0.56 0.13 0.49 5.04 0.22 0.89
Pre-trained Backbone: CLIP RN50 | Metric: SCE | Embedding dimension: 1024-d

Baseline 1.31 0.66 0.29 0.12 0.54 0.73 0.35 0.54 7.39 0.23 1.22
TPT 1.52 0.63 0.25 0.11 0.60 0.54 0.38 0.51 8.23 0.24 1.30
C-TPT 1.43 0.62 0.26 0.11 0.53 0.67 0.32 0.51 8.07 0.23 1.27
O-TPT 1.34 0.60 0.27 0.12 0.51 0.69 0.30 0.50 7.85 0.22 1.24
A-TPT 1.16 0.59 0.24 0.10 0.49 0.58 0.28 0.49 6.20 0.21 1.03

Table 13: Static Calibration Error (SCE) (10e-2) performance comparison across fine-grained datasets
with CLIP ViT-B/16 and CLIP RN50 backbone. The overall best-performing result is in bold.

A.15 RELIABILITY PLOTS AND CONFIDENCE HISTOGRAM

Figs. 8 and 9 present the reliability diagrams for the CLIP ViT-B/16 and CLIP RN50 backbones,
respectively, comparing the calibration performance of C-TPT, O-TPT, and A-TPT across the Aircraft,
UCF101, StandfordCars, and SUN397 datasets. For the CLIP ViT-B/16 backbone (Fig. 8), A-TPT
exhibits a marked improvement in addressing the overconfidence problem, outperforming both
O-TPT and C-TPT as evidenced in the reliability diagrams presented in the first, second and third
rows of Fig. 8. Similarly, the results corresponding to the CLIP RN50 backbone, (Fig. 9) show
that A-TPT yields substantially better calibration compared to O-TPT and C-TPT, particularly in
reducing the prevalence of overconfident predictions. Additional reliability diagrams for fine-grained
classification tasks and natural distribution shifts — evaluated on EuroSAT (N < |D|), ImageNet-V2,
K (N > |D|) datasets with both backbones — are provided in Figs. 10a, 11, further validating the
potency of A-TPT under varying conditions.

In addition to the reliability diagrams on EuroSAT (Fig. 10a), confidence histogram diagrams (as
shown in Fig. 10b) are also included to provide a complementary perspective on the distribution of
model confidence scores. These histograms illustrate how frequently different confidence levels are
assigned to predictions, thereby offering deeper insight into the calibration characteristics of each
method. A well-calibrated model is expected to produce a confidence distribution that aligns closely
with the true likelihood of correctness, and the confidence histograms further highlight the extent to
which A-TPT mitigates overconfident predictions.

A.16 WHY HYPERSPHERE OFFERS OPTIMAL TEXTUAL FEATURE SEPARATION IN A-TPT?

Existing test-time prompt tuning techniques (Yoon et al., 2024; Sharifdeen et al., 2025) may not
guarantee optimal angular separation among textual features distributed across the hypersphere,
which can often result in inconsistent fluctuating, but slightly lower (for N > |D|, where angular
separation (orthogonalization) fails), and showing higher (for N < |D|, underutilize hyperspherical
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(a) C-TPT: Air (b) C-TPT: UCF (c) C-TPT: Car (d) C-TPT: SUN

(e) O-TPT: Air (f) O-TPT: UCF (g) O-TPT: Car (h) O-TPT: SUN

(i) A-TPT: Air (j) A-TPT: UCF (k) A-TPT: Car (l) A-TPT: SUN

Figure 8: Reliability diagrams for CLIP ViT-B/16
backbone.

(a) C-TPT: Air (b) C-TPT: UCF (c) C-TPT: Car (d) C-TPT: SUN

(e) O-TPT: Air (f) O-TPT: UCF (g) O-TPT: Car (h) O-TPT: SUN

(i) A-TPT: Air (j) A-TPT: UCF (k) A-TPT: Car (l) A-TPT: SUN

Figure 9: Reliability diagrams for CLIP RN50 back-
bone.

CLIP ViT-B/16 CLIP RN50
(a) Reliability diagrams (A-TPT: EuroSAT).

CLIP ViT-B/16 CLIP RN50
(b) Confidence histograms (A-TPT: EuroSAT).

Figure 10: Reliability and confidence histogram diagrams for EuroSAT on fine-grained classification
tasks with CLIP ViT-B/16 (N < |D|, left) and CLIP RN50 (N < |D|, right) backbone.

A-TPT: ImageNet-V2 A-TPT: ImageNet-K
(a) CLIP ViT-B/16

A-TPT: ImageNet-V2 A-TPT: ImageNet-K
(b) CLIP RN50

Figure 11: Reliability diagrams for (ImageNet-V2,K) on natural distribution shifts with CLIP ViT-
B/16 (N > |D|) and CLIP RN50 (N < |D|) backbone, respectively.

space, which is available to achieve even greater angular separation (even lower cosine similarities) in
cases where TPT fails (these challenging points), as illustrated in Fig. 2, cosine similarities between
textual features, thereby leading to suboptimal model calibration performance. For better calibration,
we hypothesize that mere feature dispersion and orthogonalization are insufficient; instead, promoting
uniform angular separation across textual features is more beneficial to achieving optimal calibration
performance.

Figs. 12 and 13 present a comparative analysis of the cosine similarity distribution among textual
features generated by the O-TPT and our proposed A-TPT method under varying dataset regimes.
Fig. 12 examines the natural distribution shifts (ImageNet-V2 (Recht et al., 2019)) with the CLIP
ViT-B/16 backbone, which is shown for the case where the number of classes exceeds the embedding
dimensionality (N > |D|). Under this regime, A-TPT exhibits a slightly higher but markedly more
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consistent mean cosine similarity score across each data sample relative to O-TPT. The corresponding
histograms further illustrate that A-TPT produces a narrower distribution (lower variance) of cosine
similarities, indicating greater angular uniformity and stability in the angular relationships among
textual feature embeddings.

Fig. 13 present a similar analysis on the fine-grained classification tasks (EuroSAT (Helber et al.,
2018)) with the same backbone, representing the scenario where the number of classes is lesser
than the embedding dimensionality (N < |D|). In this setting, A-TPT yields a substantially lower
and more consistent mean cosine similarity score and narrower distribution (lower variance) around
the mean relative to O-TPT, as evidenced by both the sample-wise cosine similarity plots and
corresponding histograms. This suggests that A-TPT is particularly effective at promoting greater
angular diversity and increasing feature dispersion when the hyperspherical space is underutilized.

Overall, these findings highlight A-TPT’s capability to enforce stable and uniform angular separation
among textual features, regardless of the relationship between the number of classes and embedding
dimensionality. These empirical findings validate that angular diversity enables optimal angular
separation, better utilization of the hyperspherical space, and increased dispersion among features are
indicative of clearer class boundaries and improved calibration performance.

(a) Cosine similarity between features. O-TPT: ImageNet-V2 A-TPT: ImageNet-V2
(b) Histogram of cosine similarities.

Figure 12: Comparison of mean cosine similarity changes on a natural distribution dataset (ImageNet-
V2) (Recht et al., 2019)) with CLIP ViT-B/16 backbone. When N > |D| our A-TPT offers slightly
higher but more consistent cosine similarity values among text features for all the data points.

(a) Cosine similarity between features. O-TPT: EuroSAT A-TPT: EuroSAT
(b) Histogram of cosine similarities.

Figure 13: Comparison of mean cosine similarity changes on a fine-grained classification dataset
(EuroSAT (Helber et al., 2018)) with CLIP ViT-B/16 backbone. When N < |D| our A-TPT offers
much lower and more consistent cosine similarity values among text features for all the data points.
A.17 SOME THEORETICAL ASPECTS ON A-TPT OVER O-TPT.

Firstly, based on the Tammes problem (Tammes, 1930), the uniform distribution (best-packing)
means the distance between two points is maximized; therefore, while A-TPT builds upon the TPT
framework, it introduces a novel angular diversity that is boosted to the utmost extent. Angular
diversity (AD) focuses on the uniform distribution — maximizing the angular distance between
textual features corresponding to their actual class labels, thereby maximizing the inter-class feature
separability for better prompt calibration. Prior work (Wang & Isola, 2020) has shown that uniformity
(uniformly distributed feature points on the unit hypersphere) preserves maximal information, closely
associated with strong zero-shot CLIP performance. Therefore, we argue that uniformly distributed
textual features are the way to ensure better class separation and improve VLM calibration. Unlike
orthogonality constraints pursue orthogonality for all the pairwise textual features and suffer from
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Pre-trained Backbone: CLIP ViT-B/16 | Embedding dimension: 512-d

Baseline Acc. 38.40 64.50 81.40 62.40 22.70 86.20 88.10 67.60 34.60 66.50 61.24
ECE 7.43 4.59 1.10 6.11 2.83 7.43 14.10 2.65 14.10 4.59 7.01

TPT Acc. 45.50 67.90 84.90 65.90 24.50 87.40 91.50 66.40 43.30 67.20 64.45
ECE 20.00 14.60 5.74 13.30 19.20 6.34 3.11 14.10 18.20 6.36 12.09

C-TPT Acc. 46.30 69.60 84.10 65.50 24.70 88.80 91.70 67.00 43.00 66.90 64.76
ECE 18.00 10.60 2.43 10.70 10.50 1.59 1.89 7.42 8.73 1.64 7.35

O-TPT Acc. 44.62 68.29 84.82 63.05 23.16 88.28 91.48 64.74 44.81 66.02 63.92
ECE 12.85 4.67 1.85 2.67 6.37 3.59 3.00 4.08 8.33 2.71 5.01

Acc. 40.84 69.27 82.84 62.59 23.58 87.54 92.13 67.38 43.90 66.54 63.66A-TPT ECE 6.91 2.95 1.38 2.17 4.24 2.22 2.28 3.47 2.47 2.45 3.05

Pre-trained Backbone: CLIP RN50 | Embedding dimension: 1024-d

Baseline Acc. 39.60 57.70 73.00 56.50 16.10 79.80 80.90 56.30 21.90 56.90 60.24
ECE 6.94 5.14 1.49 3.33 6.42 3.30 4.79 3.76 13.90 4.83 5.39

TPT Acc. 39.20 61.60 75.80 60.20 17.40 82.60 86.50 59.70 26.30 58.80 56.81
ECE 24.80 17.00 7.93 11.40 17.50 7.31 6.02 14.40 15.70 4.49 12.65

C-TPT Acc. 39.10 67.00 76.00 60.30 17.40 83.50 87.10 59.60 26.10 57.20 57.33
ECE 18.00 6.34 3.70 8.28 13.50 1.75 2.85 8.82 11.20 1.65 7.61

O-TPT Acc. 40.54 65.49 75.51 58.98 15.99 83.78 86.98 58.79 26.89 56.77 56.97
ECE 12.42 3.03 1.32 3.35 8.36 4.47 3.53 3.27 7.21 2.74 4.97

Acc. 39.79 64.32 74.21 58.36 16.03 83.44 86.89 58.33 26.37 56.37 56.41A-TPT ECE 6.61 2.97 1.39 2.79 6.11 3.53 2.89 2.83 3.34 2.19 3.46

Table 14: Comparison of calibration performance with CLIP ViT-B/16 and CLIP RN50 backbone
with the prompt of “a photo of the cool [class]”.
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Pre-trained Backbone: CLIP ViT-B/16 | Embedding dimension: 512-d

Baseline Acc. 42.40 64.70 83.90 61.40 22.30 82.50 90.90 64.80 38.80 64.60 61.63
ECE 4.94 4.70 2.78 3.33 7.09 2.91 7.51 2.79 13.40 2.49 5.64

TPT Acc. 45.80 69.40 84.80 65.30 22.90 83.00 93.00 67.10 40.70 67.30 63.93
ECE 20.50 12.20 5.05 7.94 16.20 7.30 2.91 11.60 20.80 6.26 11.07

C-TPT Acc. 45.40 71.50 84.30 66.00 23.60 86.90 93.80 66.40 51.50 66.60 65.60
ECE 15.50 4.49 1.36 3.54 9.05 2.89 1.62 3.87 5.18 1.75 4.93

O-TPT Acc. 45.45 70.32 84.79 64.50 22.77 87.76 93.35 65.40 51.01 66.25 65.16
ECE 11.79 3.22 2.92 4.62 7.92 3.29 3.24 2.63 5.08 1.92 4.66

Acc. 43.44 70.53 84.80 65.37 22.42 86.64 93.32 65.50 46.10 65.12 64.32A-TPT ECE 6.87 3.13 1.64 3.44 6.15 2.44 2.31 2.54 3.20 1.31 3.30

Pre-trained Backbone: CLIP RN50 | Embedding dimension: 1024-d

Baseline Acc. 41.10 58.10 75.20 56.20 16.10 75.70 80.30 56.30 25.50 55.80 48.45
ECE 5.20 3.04 3.31 3.68 4.80 2.52 7.91 3.76 9.43 4.80 4.85

TPT Acc. 41.20 62.70 76.10 60.70 17.90 77.20 87.10 57.70 29.40 57.70 56.77
ECE 20.20 12.20 4.83 8.19 15.20 6.98 5.12 15.30 11.10 5.52 10.46

C-TPT Acc. 41.20 65.40 75.80 61.40 17.60 78.00 88.40 58.40 30.40 57.10 57.37
ECE 15.60 2.97 1.90 4.84 7.16 2.72 2.89 6.99 7.69 2.05 5.48

O-TPT Acc. 41.19 65.49 75.62 60.97 16.71 77.79 88.36 57.94 33.32 56.73 57.41
ECE 13.59 2.49 1.47 3.38 6.60 2.55 2.56 6.20 5.07 2.69 4.66

Acc. 41.09 65.24 75.36 59.85 16.43 77.64 87.70 58.64 31.82 56.51 57.03A-TPT ECE 7.05 2.43 1.22 3.19 6.15 2.52 2.18 5.57 2.76 2.52 3.56

Table 15: Comparison of calibration performance with CLIP ViT-B/16 and CLIP RN50 backbone
with the prompt of “an example of [class]”.

poor calibration when N > |D|, our numerical optimization (A-TPT) is robust with negligible
computational overhead across both N > |D| and N < |D| settings. Secondly, inspired by insights
from ArcFace (Deng et al., 2019), Figs. 2, 4, and Appendix A.16 of the main paper demonstrate
that AD gets the greatest minimum pairwise angular distance across all N > |D| & N < |D|
cases, and therefore the most diverse prompt vectors. Thirdly, as discussed in the paper, orthogonal
regularization tends to group textual features closer, especially when the number of classes is greater
than the embedding dimension. Fourthly, we argue that the improvement over other methods is
significant.
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A.18 CALIBRATION PERFORMANCE OF DIFFERENT PROMPT INITIALIZATIONS

This section evaluates the calibration performance of the proposed A-TPT approach when initialized
with different prompt templates, such as “a photo of the cool [class]” and “an example of [class]”,
evaluated across CLIP ViT-B/16 and CLIP RN50 backbones. Tab. 14 reports the calibration results
of A-TPT with the prompt “a photo of the cool [class]” with 5 tunable context tokens. For CLIP
ViT-B/16 backbone, A-TPT achieves an overall reduced Expected Calibration Error (ECE) of 3.05,
compared to 5.01 for O-TPT and 7.35 for C-TPT. Similarly, with the CLIP RN50 backbone, attains a
calibration error of 3.46, compared to 4.97 for O-TPT and 7.61 for C-TPT.

Similarly, Tab. 15 presents the calibration results for the prompt “an example of [class]” with 4
tunable context tokens. In this setting, A-TPT again outperforms C-TPT, achieving a reduced
calibration error of 3.30 (CLIP ViT-B/16) compared to 4.66 for O-TPT, and 4.93 for C-TPT. For
(CLIP RN50) backbone, A-TPT attains an ECE of 3.56 compared to 4.66 for O-TPT and 5.48 for
C-TPT. These results consistently demonstrate that A-TPT maintains strong calibration capabilities
(reduces calibration errors) across different prompt initializations, showcasing its robustness and
adaptability in diverse settings and affirming its potency in better prompt-based VLM calibration.

A.19 CALIBRATION PERFORMANCE WITH COMBINED C-TPT AND A-TPT

Tab. 16 presents the calibration results of a combined approach that integrates C-TPT and A-TPT.
The findings indicate that combining A-TPT with C-TPT leads to superior calibration performance
and can outcompete A-TPT alone. This enhancement reveals the generalizability of A-TPT over a
stronger baseline.

Method Metric DTD Flowers102 UCF101

C-TPT Acc. 46.00 69.80 65.70
ECE 11.90 5.04 2.54

A-TPT Acc. 45.51 69.22 66.16
ECE 4.76 3.61 2.12

Acc. 45.15 69.51 66.23C-TPT + A-TPT ECE 4.11 3.49 1.96

Table 16: C-TPT + A-TPT on DTD, Flowers102 and UCF101.

A.20 PARETO FRONT: VISUALIZING THE EFFECT OF A-TPT

Fig. 14 presents the Pareto frontier analysis on the Flowers102 and Food101 datasets, highlighting
the trade-off between classification accuracy and Expected Calibration Error (ECE) across varying
values of λ’s. The proposed A-TPT method does not merely achieve higher ECE at the expense of
lower accuracy. Instead, it seeks an optimal balance between these two metrics than TPT, C-TPT,
and O-TPT across a wide range of λ settings in two datasets. This suggests that A-TPT effectively
optimizes the trade-off, achieving superior model calibration performance without compromising
predictive accuracy and providing a more detailed picture of the performance characteristics of
A-TPT, ensuring that the increased performance is not solely due to the better hyperparameter λ.

A.21 CAN ANGULAR DIVERSITY LOSS DEGRADE ACCURACY FOR SEMANTICALLY
OVERLAPPING CLASSES?

We distinguish A-TPT results on fine-grained, semantically overlapping datasets like Oxford Pets
(37 breeds), Stanford Cars (196 models), FGVC Aircraft (100 variants), Flowers-102, and Food-101
across CLIP-ViT-B/16 and RN50 backbone.

In principle, any text dispersion regularizer (L2 distance, orthogonality constraints, and angular
diversity) can degrade top-1 accuracy if over-weighted on semantically overlapping classes (near-
synonymous labels or fine-grained siblings). In A-TPT, angular diversity is an auxiliary term added
to standard TPT. TPT still boosts accuracy, and angular diversity improves calibration. On CLIP
ViT-B/16: Overall Acc changes from 66.10 → 66.15, while ECE drops 9.04 → 2.08. RN50: Overall
Acc changes from 59.38 → 58.83, while ECE drops 8.43 → 2.70.
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Figure 14: Pareto front analysis on Flowers102 and Food101. The ◦ represents A-TPT (Ours),
compared against zero-shot baseline, TPT, C-TPT, and O-TPT.
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Pre-trained Backbone: CLIP ViT-B/16 | Embedding dimension: 512-d

TPT Acc. 87.10 66.30 23.40 69.00 84.70 66.10
ECE 5.77 5.16 16.80 13.50 3.98 9.04

C-TPT Acc. 88.20 65.80 24.85 69.80 83.70 66.47
ECE 1.90 1.59 4.36 5.04 3.43 3.26

O-TPT Acc. 87.95 64.53 23.64 70.07 84.13 66.06
ECE 1.90 1.78 3.68 3.87 1.46 2.54

Acc. 88.33 65.78 23.76 69.22 83.64 66.15A-TPT (Ours) ECE 1.17 1.09 3.14 3.61 1.37 2.08

Pre-trained Backbone: CLIP RN50 | Embedding dimension: 1024-d

TPT Acc. 84.50 58.00 17.00 62.50 74.90 59.38
ECE 3.65 3.76 16.10 13.40 5.25 8.43

C-TPT Acc. 84.10 56.50 17.00 65.20 74.70 59.50
ECE 2.77 1.94 10.70 4.14 1.86 4.28

O-TPT Acc. 83.40 56.44 16.77 65.61 74.22 59.29
ECE 3.50 1.69 8.18 2.50 1.20 3.41

Acc. 83.48 57.08 14.58 64.89 74.10 58.83
A-TPT (Ours) ECE 2.47 1.38 6.14 2.39 1.11 2.70

Table 17: Accuracy and ECE on semantically overlapping datasets. A-TPT preserve accuracy
comparable to C-TPT/O-TPT while consistently lowering ECE.

Empirically, in our runs, this shows up as small drops (typically ≤1-2%) in a few cases, for ex-
ample, Aircraft (RN50), Food 101 (ViT-B/16), with overall accuracy remaining comparable while
substantially lowering ECE across datasets and backbones. In the paper, Appendix A.4, limita-
tions, we explicitly acknowledge this trade-off and fix a moderate λ to avoid over-regularization on
near-synonyms.
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