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Abstract

Continual learning, the ability for a model to learn tasks sequentially without
forgetting, remains a formidable challenge in deep learning. This paper introduces
a novel approach, termed cascading hypernetworks, that combines the power of
hypernetworks to generate the weights for multiple neural networks. To address
the limited scalability of previous continual learning algorithms and accommodate
an exponentially growing number of tasks, we propose a cascading architecture
in which hypernetworks learn the weights of other hypernetworks. Additionally,
with auto-generative replay, the hypernetwork generates samples of previous net-
works, mitigating forgetting without the need for an expanding memory buffer.
Our findings highlight the promise of cascading hypernetworks in addressing the
scalability and forgetting challenges inherent in continual learning, by evaluating
their effectiveness on both reinforcement learning tasks and image classification
benchmarks.

1 Introduction

While artificial intelligence (AI) has seen substantial progress, its ability to adapt to new tasks without
compromising previously learned knowledge remains a critical challenge. This phenomenon, known
as catastrophic forgetting [22], hinders the deployment of AI systems in real-world environments
that demand continuous learning and adaptation [29].

1.1 Background

Several approaches have been proposed to address catastrophic forgetting [8, 18]. Regularization
methods (e.g., EWC [16], SI [32], MAS [3]) restrict weight updates to preserve past knowledge.
While they work effectively on small-scale networks, these methods struggle with scalability. Replay
or rehearsal-based approaches [25, 28, 24], approximate interleaved learning by complementing the
training data of the current task or experience with data that are representative of previous ones (e.g.,
GEM [21], A-GEM [14], DER[5]). They are promising but face challenges in memory management
and potential bias [6, 19].

Hypernetworks [9] have emerged as a promising direction for continual learning (CL) due to their
ability to generate weights for neural networks, offering a compact and flexible representation for
knowledge transfer. Recent works such as continual learning with hypernetworks (HNet) [31] and
partial hypernetworks (PHCL) [12] have shown the potential of hypernetworks for CL, in mitigating
forgetting and in enabling efficient multi-task learning.

However, existing hypernetwork-based approaches [31, 12] still face limitations in terms of scalability
and efficiency (as demonstrated in Fig. 2(a),(b)), particularly when dealing with a large number
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of tasks and complex task distributions. Moreover, reliance on an ever-expanding memory buffer
(to accommodate new tasks) for replay can hinder their applicability in scenarios where memory
resources are limited.

1.2 Contributions

We introduce a novel Cascading Hypernetwork architecture that enables scalable continual learning
by leveraging the power of a series of hierarchical hypernetworks to generate the weights of the
networks lower in the hierarchy. With auto-generative replay the hypernetwork regenerates pre-
vious network models, mitigating forgetting without the need for an expanding memory buffer and
node rearrangement to reduce the interference among task-networks weights being learned. We
demonstrate the effectiveness of the proposed technique on image classification and reinforcement
learning tasks (RL), showcasing the ability to accommodate an exponentially growing number of
tasks and networks.

2 Methodology

At the core of our approach is the hypernetwork. In addition to directly training the parameters
(θT ) in any target data distribution or task, also known as the task network model, we also train the
parameters (θH ) of a higher-order network also known as the hypernetwork. This in turn generates
the parameters (θT ) for the target model as required. Essentially, hypernetworks can be seen as
weight generators. They were initially developed to enable dynamic and compressed parameterization
of models, and we extend their use to accommodate the learning of multiple task oriented network
models in a continual learning manner.
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Figure 1: (a) Cascading Hypernetwork Architecture, (b) Auto-Generative Replay, (c) Rearrang-
ing Network Nodes

Instead of producing a high-dimensional output consisting of the entire set of weights, we instead rely
on layerwise chunking [12] to iteratively generate the weights of an entire layer θLi

thus compressing
the model size, at the cost of increased generation steps. Both the layer number Li and the task ID
TID are provided as context inputs to the hypernetwork as seen in Fig. 1(a).

As the hypernetwork continually learns task networks, it is itself subject to catastrophic forgetting. To
mitigate this effect, we propose that the hypernetwork generate models of previously learned networks
and replay these network samples alongside the current task network being learned (Fig. 1(b)). Given
that the hypernetwork inherently functions as a generator, we eliminate the need for an external
generator and instead leverage a mechanism we refer to as auto-generative replay.

Typically, generative replay methods require careful consideration of the generated samples’ quality
and diversity [17]. Our approach bypasses this concern, as the hypernetwork ideally aims to produce
an exact replica of the original task networks. This simplifies the generative replay process and
embraces overfitting, which is beneficial in this context.
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In a continual learning setting, as the number of task networks being learned rises, the hypernetwork
will invariably undergo a proportional degree of forgetting. Additionally, the buffer storing previous
network samples will grow commensurately. To address this hypernetwork saturation, we propose
demoting the hypernetwork itself to the role of a task network, with its weights learned by an even
larger hypernetwork. This creates a cascading hierarchy of hypernetworks, where a new hypernetwork
is introduced to learn a fixed number of tasks, and a parent hypernetwork is added to learn all such
hypernetworks (Fig. 1(a)). This hierarchical structure assigns levels, starting with task networks at
the base (level 0).

This approach serves to minimize the effects of catastrophic forgetting in hypernetworks by dividing
the workload of learning multiple task networks into multi-level hierarchies which only grow upward
as needed. Additionally, this serves to reduce the size of the replay buffer to the number of tasks per
hypernetwork, rather than the total number of tasks.

Lastly, while Fig. 1(a) might suggest linear memory growth with more hypernetworks, our optimiza-
tion strategy caps active networks at three. This includes the root hypernetwork (HR), the current
hypernetwork (HN , optional), and the task network (H0). In deeper hierarchies, HR and HN remain,
while H0 is replaced by the hypernetwork one level below (HN−1). HN−1 then generates the next
lower hypernetwork (HN−2), replacing HN in the process. This continues until the task network is
reached.
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Figure 2: Continual Learning Benchmarks (Task-IL) (a) CIFAR-100, (b) Tiny ImageNet, (c)
Reinforcement Learning Mujoco Environments.

While this process reduces the strain on individual hypernetworks themselves, it adds a reconstruction
cost to the compute and reconstruction error to the generated network models (θw or θh). This error
compounds at every level in the hierarchy, and is analyzed in Section 3. In order to mitigate the
effects of reconstruction error, we try to identify the cause of this error. Reconstruction error grows
based on the number of networks learned by a hypernetwork due to the differing distributions of
weights in task networks. It has been observed that neural networks tend to find it more challenging to
distinguish between similar tasks, as compared to distinct tasks [26]. As the hypernetwork learns the
network models, the overlap between the weight distributions leads to confusion and thus increased
forgetting. We propose a pre-processing step to reduce this overlap by rearranging the nodes of the
network model.

As seen in Fig. 1(c), where the nodes of the hidden layer are rearranged, there is no change in the
actual output of the network and the weights, inputs and edges remain connected in the same pattern.
However, the numerical order of the nodes is shifted. This order does not affect network performance
or operation. However, this order affects the learned representation within the hypernetwork. By
creating maximal separation between the arrangement of subsequent task networks, the reconstruction
error is minimized as seen in Section 3 (Fig. 3(b)).

The nodes are aligned based on their average cumulative incoming edge weights. This is trivial
for small networks, but as the network dimension grows, calculating an optimum sorting order for
N-networks incrementally becomes non-trivial. In this work, we propose the use of sparse distributed
representations (SDR) [15] generated from task IDs to map the nodes of every task network in a
non-overlapping manner. SDRs are inspired from the sparse neural processing that occurs in human
brains [1], and have been formulated in spiking neural network architectures such as HTM [10, 7].
Alternatively non-spiking approaches such as generative models [13] and cellular automata [23] can
also produce acceptable SDRs. In this paper we obtain a quantized linear mapping of the task ID as
described in the Supplementary Materials.
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3 Results

We evaluated our Cascading Hyper Networks (Casper) model on two image classification datasets,
CIFAR-100 [2] and Tiny ImageNet [20], under a Task-IL continual learning scenario [30]. On
CIFAR-100, partitioned into 50 tasks, each training a network on two classes, Casper demonstrated
its ability to effectively learn numerous tasks with smaller network complexity. On Tiny ImageNet,
with 20 tasks training networks on 10 classes each, Casper showcased its capability to handle larger
network complexities in continual learning.

In comparison to state-of-the-art hypernetwork-based continual learning methods (HNet [31],
PHCL [12]) and conventional approaches like replay-based methods [21] and EWC [16], Casper
maintained comparable performance on both benchmarks (Fig. 2(a,b)). Notably, Casper outperformed
these methods when the number of tasks increased substantially (≥ 20). While replay-based methods
exhibited superior performance on Tiny ImageNet, this came at the cost of maintaining very large
replay buffers.

The efficacy of Casper extended to reinforcement learning (RL) tasks in 3D physics environments
(Mujoco-based Walker, Hopper, Ant) [27, 4]. When presented with 10 tasks sequentially in a
continual learning fashion, Casper exhibited only a 4.57% loss in normalized accuracy compared
to the original task performance prior to catastrophic forgetting. This highlights the potential of
Casper in mitigating forgetting in complex continual learning RL environments (Fig. 2(c)). Varying
hypernetwork model complexity on CIFAR-100 yielded a significant, linear performance gain across
tasks. An average 3.6% improvement was observed per 10k additional parameters (Fig. 3(a)).

A key limitation identified in cascading hypernetworks is the compounding of errors over multiple lev-
els. As a hypernetwork generates a task network, the final accuracy is influenced by both the original
task network’s accuracy and the reconstruction accuracy of the hypernetwork. This compounding can
lead to accuracy degradation over levels, as illustrated in Fig. 3(c). To address this, we explored node
rearrangement methods (Fig. 3(b)). While a random node structure resulted in poor reconstruction
accuracy (89.1%), a complementary arrangement minimized accuracy degradation to 95.3± 5.1%.
However, computing unique complementary patterns for large networks is computationally intensive.
Our proposed SDR-based rearrangement proved equally proficient but more reliable, demonstrating
lower error margins 94.8± 0.9%.
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Figure 3: (a) Impact of hypernetwork size on performance, (b) Reconstruction accuracy based
on node arrangement order, (c) Compounding accuracy degradation across levels.

4 Conclusion

This work introduces Cascading Hypernetworks, an innovative paradigm leveraging hypernetworks
and auto-generative replay to tackle the challenge of continual learning. Our approach demonstrates
superior performance and scalability in image classification tasks, as evidenced by average accuracy
improvements on Cifar-100 (+5.6%) and Tiny Imagenet (+3.4%). These gains even extend to
complex RL environments, where we saw an +8.1% improvement. This architecture mitigates
catastrophic forgetting without the need for expansive memory, overcoming limitations of prior work.
The cascading structure and auto-generative replay present a synergistic solution, enhancing the
ability of models to continuously learn and adapt. Further exploration of this technique promises
significant advancements in continual learning, facilitating the development of more scalable and
intelligent AI systems.
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A Appendix / Supplemental Material

A.1 Casper : Cascading Hypernetworks Algorithm

The pseudocode presented below (Algorithm 1) outlines the implementation of our proposed
hypernetwork-based approach for continual learning. This method leverages the generative ca-
pabilities of hypernetworks to dynamically create task-specific models while mitigating catastrophic
forgetting through auto-generative replay. The hypernetwork parameters (θH ) are continually updated
to generate parameters (θT ) for both the current task network and previously learned task networks.
The replay mechanism allows the hypernetwork to retain knowledge of past tasks, thereby enabling
effective continual learning.

Algorithm 1 Casper
1: Set Root Level or No. of Levels, Nl = 1
2: Set Tasks-per-Network, Nt

3: Set Networks-per-Hypernetwork, Nn

4: Initialize Replay Memory Buffer, Mr = [Mr0 , . . .MrNn
]

5: Initialize Network Memory Buffer, Mn = [Mn0
,Mn1

,Mn2
]

6: Initialize Root Hypernetwork H2 weights θH
7: Store Mn0

← H2

8:
9: while tasks t are available do

10: for n = 0, 1, 2, . . . , Nn do
11: Initialize Task Network H0

n weights θT
12: for Every training epoch ϵt do
13: Train θT using SGD or ϕ-Policy (RL) in an environment for T time steps
14: end for
15: Store Mrn ← H0

n
16: end for
17: Initialize Hypernetwork H1

x weights θH
18: for Every training epoch ϵh do
19: Train θH using SGD on every network sample H0 present in Mr

20: end for
21:
22: L← 1
23: while L < Nl do
24: RecursiveNetworkGenerator(L, TID)
25: Fill Replay Buffer with Hypernetworks HL

0 , . . . , Nmax

26: Store [Mr0 , . . . ,MrNmax
]← [HL

0 , . . . ,H
L
Nmax

]

27: Restore HL+1 ←Mn2

28: Set Hypernetwork HL+1
T [L] weights as θH

29: for Every training epoch ϵh do
30: Train θH using SGD on every network sample HL

x present in Mr

31: end for
32: Update dict(heirarchy[L, T [L]])← Nmax

33: Store MrT [L] ←Mn2

34: end while
35: end while

We separate the Recursive Network Generation process (Algorithm 2) from the main Casper algorithm
(Algorithm 1) for increased clarity. Also, the Recursive Network Generator produces an end-point
hypernetwork given the task-ID (TID) during the inference process (during which Casper is not
required). After the algorithm runs, the final step during inference is the produce the required task
network (H0) from the final hypernetwork (H1), and then use the task network to perform the
required task.

The following table covers a breakdown of all the required terms mentioned in Algorithms 1 and 2.
RecursiveNetworkGenerator is the function call to Algorithm 2.
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Algorithm 2 Recursive Network Generator
1: L← Nl

2: T ← SparseDistributedRepresentation(TID)
3: T [1, 2...L]← SDR_partition(T, L)
4: Restore Mn0 → HL

5: Copy Mn1 ,Mn2 ←Mn0

6:
7: while L > 2 do
8: Move Mn2

→Mn1

9: Nmax ← dict(heirarchy[L, T [L]])

10: Use HL in Mn1
and T [L] to generate HL−1

h

11: Store Mn2
← HL−1

h
12: L← L− 1
13: end while
14: Move Mn2

→Mn1

15:
16: for n = 0, 1, 2, . . . , Nmax do
17: Use H2

T [L] in Mn1 and T [L] to generate H1
n

18: Store Mrn ← H1
n

19: end for

A.2 Task-Network Details

For the task-network we use a standard ResNet-18 architecture, with pre-trained convolutional filters.
However, this experimental methodology is extended to all other comparative models and benchmarks
used in this test to avoid any bias.

A.3 Hypernetwork Details

In the construction of the hypernetwork, we employ a Multi-Layer Perceptron (MLP) architecture
consisting of N-hidden layers. The task ID serves as the input to this hypernetwork. It is important to
acknowledge that a naive approach to generating the weights of a model would involve generating
all the weights, however this would require the hypernetwork to be of considerate size [12]. To
avoid this, we only learn the parameters of the final fully connected (FC) layers of the model. The
previous convolutional layers are pre-trained on the Imagenet Dataset. However, this experimental
methodology is extended to all other comparative models and benchmarks used in this test to avoid
any bias.

Every hidden layer has 100 hidden units and the number of layers (N ) is determined by the layer
number (L) in the hierarchy given by equation 1. B specifies the base model consisting of 2 hidden
layers of 100 nodes each.

N = B + L× 2 (1)

A.4 Replay Memory Buffer Details

In this work we avoid storing data samples for replay (in raw or latent representations), we also do not
generate the samples. Rather, we store the weights of learned networks in the replay memory buffer.
However, this would also normally scale with the number of tasks being learned. To circumvent this,
we have a fixed replay memory buffer of Nn memory slots Mr (equal to the number of networks per
hypernetwork).

MRB = (Nn + 3)×mem(HN−1) (2)

AverageWeightedSum =

∑n
i=1 wi × i

n
(3)
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Table 1: Algorithm Terminology

Term Definition
Nl Root Level or No. of Levels

This signifies the depth or number of layers
in the hierarchical structure of hypernet-
works.

Nt Tasks-per-Network
This represents the number of distinct tasks
that a single task network (H0) is expected
to learn.

Nn Networks-per-Hypernetwork
This defines how many task networks (H0)
are generated or managed by a single hy-
pernetwork (H1 or higher).

Mr Replay Memory Buffer
This is a crucial storage mechanism that
holds previously generated task networks
(H0) or hypernetworks (H1 and above). It
facilitates the training of higher-level hyper-
networks by providing a fixed length (Nn)
set of samples to learn from.

Mn Network Memory Buffer
This buffer specifically stores the current
weights of a few key networks: the most
recently generated task network or hyper-
network in Mn2

, the hypernetwork cur-
rently being trained in Mn1

, and the root
or highest-level hypernetwork Mn0

.
H0 Task Network

This is the base-level network that directly
interacts with the environment or data to
learn and perform specific tasks.

H1, . . . ,HN Hypernetwork
This hypernetwork generates the weights or
parameters for task networks (H0).

HN Root Hypernetwork
This is the top-level hypernetwork in the
hierarchy, indirectly responsible for gener-
ating the weights of all the hypernetworks
and task-networks in the hierarchy

HL Hypernetwork at Level L
θH Weights of a hypernetwork
θT Weights of a task network
L Current Level
TID Task ID
SGD Stochastic Gradient Descent
ϕ− Policy Reinforcement Learning Policy
ϵt No. of training epochs for a task network
ϵh No. of training epochs for a hypernetwork

In addition to this buffer there are 3 additional memory slots for storing networks Mn. Thus the
size of the replay memory buffer MRB can be given by equation 2. Additionally, the total memory
Mtotal required by Casper is calculated by equation 4, by setting aside the root network HN and the
BaseModel which is ResNet-18 [11] in this work.

As the size of the replay buffer is minimal and fixed to the Nn specification, we cannot perform an
ablation study on the size of the buffer. However, we can analyze the effect of the degree of replay
required while incrementally learning a new network. For both datasets, the accuracy is measured
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while varying both the percentage of network samples replayed while learning a new network and the
number of networks assigned to each hypernetwork. The results observed in figure 4 show a steady
performance being held for > 60% and > 80% replayed samples for CIFAR-100 and Tiny-ImageNet
respectively. This is observed to be the case across denser network-to-hypernet configurations, albeit
at slightly lower accuracies. After this point, there is a sharp decline in performance thereby indicating
a significant amount of replay required for knowledge retention.
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Figure 4: Analysis of the effect of the percentage of the replay buffer network samples required
to be replayed during Task-IL on (a) CIFAR-100 (b) Tiny-ImageNet, for architectures with a
varying number of networks learned per hypernetwork.

Mtotal = mem(HN ) + [(Nn + 2)×mem(HN−1)] +mem(BaseModel) (4)

A.5 Overlapping Nodes Algorithm

The average weighted sum at a node in a neural network, as calculated by equation 5, represents
a unique aggregation of incoming signals. In addition to weighting each input by its connection
strength, it also factors in the ordinal position or index (i) of the connection. This approach implies
that the importance of an input increases linearly with its position in the sequence of connections. The
equation calculates this weighted sum (AWS) by multiplying each weight value by its corresponding
index, summing these products, and then dividing by the total number of connections

AverageWeightedSum =

∑n
i=1 wi × i

n
(5)

The AWS for every node in a layer is then re-ordered according to the representation produced by
the SDR.

A.6 Sparse Distributed Representation Details

In order to transform a fixed-point binarized representation of a large integer (TID) into a sparse
distributed representation, we begin by structuring the binary sequence into the rows of a square
matrix. Subsequently, we employ a distance metric from the center of the matrix and the cosine of the
angle with the horizontal axis for each “1” in the matrix to generate a new binary representation. This
resultant binary representation constitutes the sparse distributed representation, or SDR. This approach
leverages spatial properties within the matrix to encode the original integer into a high-dimensional,
sparse format, offering advantages in terms of memory efficiency and pattern recognition capabilities.

However, this is a simplistic approach for SDR generation and unsuitable for RL tasks which require
temporal information about the tasks. We prefer a relatively new approach of using cellular automata
[23] to generate the SDR for temporal tasks. This work does not explicitly mention SDRs however
the final state of the cellular automata after exposure to any spatio-temporal input results in a viable
SDR. Especially since the training methodology prioritizes maximally separated output spaces, the
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resultant matrix after cellular automata computation will be sparse and unique to every temporal
sequence i.e. task.

A.7 Compute Overheads : Retraining

After a new task-network is trained on a target task, the task-network can be learned by the parent
hypernetwork. However, the replay buffer needs to be present during this training process. During
online training, the previous immediate task-networks are already present in the replay buffer, and thus
the generation compute cost is zero. However, when a random previous task (not a child of the current
hypernetwork) recurs and needs to be retrained, the entire replay buffer of sibling task-networks need
to be regenerated.

A.8 Compute Overheads : Task-Transition (Inference)

The greatest drawback of this method is the compute overhead and transition time delay while task
switching during the inference phase. Unlike steady-state methods [16, 32] which do not require any
change in the architecture while task-switching during inference, Casper requires the current task
network to be regenerated. The Task-ID either explicitly provided or inferred by a SDR provides
in the input for regeneration. Depending on the number of levels in the cascading hierarchy, the
regeneration from root to task-network will require Nl full network regeneration cycles. This is a
considerable overhead and can be time consuming. Thus, the Casper architecture is better suited to
slow task-switching application domains.

A.9 Computing Resources and Experiments

All the training procedures carried out in the work were trained on a 12-core CPU workstation
(i9-10920x) with 2 NVIDIA RTX 3090 GPUs serving as accelerators for the machine learning
workload. The following average runtimes were recorded for the different benchmarks mentioned in
the results section 3.

Table 2: Computing Metrics

Dataset Tasks/Network Networks/Hypernet Total Tasks Training Time

Cifar-100 2 5 50 346 mins

Tiny ImageNet 10 5 20 492 mins

Mujoco RL 1 2 10 644 mins
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