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Abstract

Deep reinforcement learning for continuous con-
trol has recently achieved impressive progress.
However, existing methods often suffer from pri-
macy bias—a tendency to overfit early experi-
ences stored in the replay buffer—which limits an
RL agent’s sample efficiency and generalizabil-
ity. In contrast, humans are less susceptible to
such bias, partly due to infantile amnesia, where
the formation of new neurons disrupts early mem-
ory traces, leading to the forgetting of initial ex-
periences (Akers et al., 2014). Inspired by this
dual processes of forgetting and growing in neu-
roscience, in this paper, we propose Forget and
Grow (FoG), a new deep RL algorithm with two
mechanisms introduced. First, Experience Re-
play Decay (ER Decay)—“forgetting early expe-
rience”—which balances memory by gradually
reducing the influence of early experiences. Sec-
ond, Network Expansion—“growing neural ca-
pacity”—which enhances agents’ capability to ex-
ploit the patterns of existing data by dynamically
adding new parameters during training. Empirical
results on four major continuous control bench-
marks with more than 40 tasks demonstrate the
superior performance of FoG against SoTA exist-
ing deep RL algorithms, including BRO, SimBa
and TD-MPC2.
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Figure 1. Overview. Top: we illustrate two key components of our
strategy: ER Decay and Network Expansion. Bottom: comparison
of normalized score. FoG outperforms popular model-based and
model-free methods including TD-MPC2, SimBa and BRO.
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1. Introduction
Do humans remember learning how to speak or walk? For
the majority, the answer is no. This phenomenon, known
as infantile amnesia in neural science (Josselyn & Frank-
land, 2012), occurs because the hippocampus generates a
large number of new neurons during infancy, which disrupts
existing memory traces and leads to forgetting (Alberini &
Travaglia, 2017). Observed in humans and other mammals,
this phenomenon plays a critical role in the development of
memory and learning abilities.

Figure 2. Normalized scores of algorithms on DMC-Hard tasks
(5 hardest Dog & Humanoid tasks). The performance of the
OBAC+scaling method is comparable to that of SimBa and BRO,
but when combined with FoG, it achieves superior results.

However, in the field of deep reinforcement learning, agents
typically do not have a natural mechanism to forget their
early training experiences. Instead, they often overfit to
initial data, which is often described as primacy bias (Nik-
ishin et al., 2022b; Qiao et al., 2023). In particular, deep RL
methods that rely heavily on experience replay (Mnih et al.,
2015; Fedus et al., 2020) with high replay ratios (D’Oro
et al., 2022) tend to repeatedly revisit old transitions, rein-
forcing patterns formed in the early stage of training.

To address this issue, previous works (Nikishin et al., 2022b;
Qiao et al., 2023) have introduced a reset mechanism that
periodically resets part of the policy’s network parameters.
While resets partially reduce primacy bias, the older sam-
ples are still replayed more frequently than the newer ones.
Thus, this imbalance could still lead to overfitting on the old
experience, harming the overall performance.

To draw a parallel, infantile amnesia involves two key as-
pects—forget and grow. During infancy, the brain generates
a large number of new neurons, which not only disrupt ex-
isting memory traces and lead to forgetting but also provide
the capacity for reorganizing and forming new structures
critical for memory and learning. This phenomenon inspires

our question: can reinforcement learning agents follow a
similar process, combining forgetting and growth, to miti-
gate primacy bias and improve performance?

Our answer is affirmative, with two novel methods: Experi-
ence Replay Decay (ER Decay) and Network Expansion,
both of which are simple and efficient. ER Decay reduces
the sampling probability of older data in the replay buffer, ef-
fectively allowing the agent to “forget” outdated transitions
in a way analogous to the memory disruption observed in
infantile amnesia. Meanwhile, Network Expansion intro-
duces new neurons to the model early in training, providing
fresh capacity to adapt and reorganize, much like the growth
of new neurons in infancy.

Together, these methods are directly inspired by the “forget
and grow” mechanism observed in infantile amnesia, and
they work in tandem to suppress primacy bias and enhance
overall performance.

In this work, we give theory-based intuition on how does
such a “forgetting plus growth” mechanism work, and
we provide a thorough empirical investigation of its ef-
fectiveness. We also propose a new algorithm Forget-
and-Grow (FoG), which integrates these methods into the
OBAC algorithm (Luo et al., 2024) and further boosts per-
formance using scaled networks and replay ratios. Our
approach achieved highly competitive results across more
than 40 environments in several benchmarks, including Mu-
joco (Todorov et al., 2012), DMControl (Tassa et al., 2018),
Meta-World (Yu et al., 2020), and HumanoidBench (Sfer-
razza et al., 2024) surpassing popular methods including
SimBa (Lee et al., 2024), BRO (Hansen et al., 2024) and
TD-MPC2 (Hansen et al., 2024) in multiple settings.

To summarize, the contributions of this paper are three-fold:

1. We show empirically that reset mechanisms alone can-
not fully resolve the primacy bias issue.

2. We introduce two strategies: ER Decay and Network
Expansion, demonstrating their effectiveness in miti-
gating primacy bias.

3. Develop a new deep continuous control algorithm FoG,
achieving state-of-the-art performance across several
benchmarks.

2. Related Works
Off-policy RL. Off-policy reinforcement learning is a fre-
quently used paradigm where agents learn policies from data
generated by previous policies (Mnih et al., 2015; Munos
et al., 2016; Prudencio et al., 2023; Ma et al., 2024), al-
lowing for more efficient use of prior experiences. Due to
the advantage of improving sample efficiency, it is widely
used in scenarios where collecting on-policy data is costly
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or risky. Many approaches focus on real-world application
(Delarue et al., 2020; Yang et al., 2022) and algorithmic
improvements such as reducing bias in Q-value estimation
(Fujimoto et al., 2018; Lan et al., 2021), better utilizing
offline datasets (Fujimoto et al., 2019; Schaul et al., 2016),
and integration with other paradigms (Luo et al., 2024; Tan
et al., 2024).

Primacy bias. The concept of primacy bias in deep rein-
forcement learning (RL) refers to the overfitting of policies
to earlier experiences when training on progressively grow-
ing datasets, which can negatively impact the following
learning process (Nikishin et al., 2022a). This phenomenon
is particularly problematic under high replay ratios, where
policies overfit to out-of-distribution data from past experi-
ences, as noted by Li et al. (2023); Lyu et al. (2023). One
straightforward approach to mitigate primacy bias is re-
initializing the network to restore plasticity, as explored
by Nikishin et al. (2022b); Ma et al. (2023); Nauman et al.
(2024b). There are other methods to alleviate the problem in-
cluding model ensembles (Chen et al., 2021), regularization
(Kumar et al., 2023b), plasticity injection (Nikishin et al.,
2023), and ReDo (Sokar et al., 2023). These approaches aim
to balance stability and adaptability, reducing the impact of
primacy bias and enhancing overall learning performance

Experience replay. To better utilize the previous experi-
ence and improve sample efficiency, Lin (1992) propose the
concept of experience replay, which revisits transitions in
the replay buffer with a uniform sampling strategy to update
the agent. Following Lin (1992), Prioritized Experience Re-
play (Schaul et al., 2016) measures the priority of transitions
according to the magnitude of their temporal-difference
(TD) error so that the agent can focus on transitions that are
more important to improve sample efficiency. Andrychow-
icz et al. (2018) introduces Hindsight Experience Replay
(HER) which incorporates a set of additional goals into each
trajectory to avoid complicated reward engineering. Zhang
& Sutton (2018) proposes Combined Experience Replay
(CER) that adds the latest transition to the batch and uses
the corrected batch to train the agent. Corrected Uniform
Experience Replay (CUER) (Yenicesu et al., 2024) also
adopts the idea of balancing the sampling of the transitions
in the replay buffer to make the sampling distribution more
uniform considering the whole training process.

Model capacity improvement in RL. The most straight-
forward way to improve model capacity is model size scal-
ing (Hestness et al., 2017). However, in RL, naive scaling
can lead to instability or degraded performance (van Has-
selt et al., 2018; Sinha et al., 2020; Bjorck et al., 2022).
High-capacity models have shown effectiveness in offline
RL (Kumar et al., 2023a; Lee et al., 2022) and model-based
RL (Hafner et al., 2024; Hansen et al., 2024; Hamrick

et al., 2021). As for off-policy RL, model size scaling has
exhibited advantages for both discrete action representa-
tion (Schwarzer et al., 2023) and continuous control (Nau-
man et al., 2024b).

Besides scaling, internal structural changes, such as acti-
vation functions and normalization, also improve capacity.
For example, TD-MPC2 (Hansen et al., 2024) enhanced
model performance by incorporating LayerNorm to stabi-
lize gradients, Mish as a smoother activation function, and
SimNorm to maintain stable updates across layers. Simi-
larly, Nauman et al. (2024a) demonstrated that LayerNorm
and residual connections significantly enhance performance,
while SimBa (Lee et al., 2024) used running statistics nor-
malization, residual feedforward blocks, and post-Layer
normalization to address simplicity bias. These modifica-
tions highlight that structural improvements, alongside care-
ful scaling, are crucial for leveraging high-capacity models
effectively in RL.

3. Method
3.1. A Motivating Example

Primacy bias has been studied in previous works (Nikishin
et al., 2022b; Qiao et al., 2023), and a common approach
to mitigate it is to adopt a reset strategy. However, even if
an agent resets multiple times during training, experience
replay remains imbalanced: older transitions dominate the
sampling process. The following theorem formalizes this
issue:

Theorem 3.1. Given a uniformly sampled replay
buffer D that stores N sequentially added transitions
{κ1, κ2, · · · , κN}, the earliest transition is sampled
Ω(β logN) times in expectation, where β (the product of
replay ratio and batch size) is a constant.

More specifically, for any transition κt (with t > 1), its
expected number of samples E[nt] satisfies:

ln
N

t− 1
+

1

N
− 1 <

E[nt]

β
< ln

N

t− 1
+ 1− 1

t− 1
.

Proof. See Appendix A.

This result indicates that older transitions are sampled con-
siderably more often, regardless of how frequently resets
happen. In fact, shorter reset intervals often lead to higher
replay ratios and can even exacerbate primacy bias. To
verify this, we train four agents on humanoid-walk and
HalfCheetah-v4 with a replay ratio of 10 and batch size of
256 (i.e., β = 2560). To ensure stability of training under
such a high replay ratio, we add a layernorm after every
dense layer.
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Figure 3. Learning Curves and Heat Maps of SAC Variants. Top Left: Return curves of various SAC variants in humanoid-walk. Top
Center: Critic loss heatmap of Normal SAC in humanoid-walk. Top Right: Critic loss heatmap of SAC with reset in the humanoid-walk
environment. Bottom Left: Return curves of various SAC variants in the HalfCheetah-v4. Bottom Center: Critic loss heatmap
of Balanced SAC in humanoid-walk. Bottom Right: Critic loss heatmap of Expanded SAC in humanoid-walk. About Critic Loss
Heatmaps: Every 100k steps, we measure critic loss over the entire buffer and average the loss every 100k steps to get critic loss heatmaps.
The darker the color near the diagonal, the less influenced by primacy bias; conversely, the darker the color towards the top-right corner
indicates greater influence from primacy bias.

• SAC: A baseline Soft Actor-Critic agent (Mnih et al.,
2015) with uniform replay buffer and no resets.

• SAC with reset: SAC that resets at 15k, 50k, 100k,
200k, 400k, 600k, and 800k steps.

• PER-SAC: Based on SAC with reset, plus PER (prior-
itized experience replay) (Schaul et al., 2016).

• Balanced SAC: Based on SAC with reset, plus our
ER decay mechanism to mitigate primacy bias, with
ϵ = 1e− 4, τ = 1e− 1.

• Expanded SAC: Based on SAC with reset, plus both
ER decay and network expansion, which expands critic
networks from 3 dense layers to 7 dense layers, at 50k
and 200k network iterations after each reset, 2 layers
at a time.

We measure the critic loss across the buffer every 100k steps
to generate critic loss heatmaps. As shown in Figure 3, the
critic loss of Normal SAC is significantly higher than that
of other SAC variants that incorporate resets, indicating its
failure to fit the data after millions of updates. Even SAC
with reset experiences a spike in loss in the diagonal areas
as training progresses. This suggests that, despite multiple
resets, the SAC with reset agent still overfits to early data
and fails to adapt effectively to newer transitions. This
observation highlights that resetting alone is insufficient to
mitigate primacy bias.

In contrast, Expanded SAC exhibits a darker diagonal area,
indicating that the model is less influenced by primacy bias,
with little to no increase in loss over time. Not only does
Expanded SAC reduce the loss on recent transitions more
effectively than SAC with reset, but it also achieves superior
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performance across both tasks. Specifically, it delivers 53%
and 27% improvements in final scores on humanoid-walk
and HalfCheetah-v4, respectively, compared to SAC with
reset. Furthermore, Expanded SAC outperforms recent
methods like SimBa (Lee et al., 2024) by 74% and 22%,
while maintaining a simpler design.

Although this small-scale experiment is not exhaustive, it
underscores the critical role of addressing primacy bias in
experience replay and provides strong motivation for our
proposed method.

3.2. Experience Replay Decay and Network Expansion

Experience replay decay. We incorporate a decay factor
into experience replay so that the sampling probability of
older transitions gradually decreases. This strategy partially
“forgets” older samples and mitigates primacy bias.

Theorem 3.2. Let D be a replay buffer with ER decay ϵ.
For any transition κi in D, the expected number of times it
is sampled, E[ni], is bounded by a constant C.

Proof. See Appendix A.

This result implies that the sampling frequency of older
transitions stays within a constant range. However, a purely
exponential decay quickly diminishes the sample weight of
older transitions, causing them to virtually disappear from
the replay buffer. This effectively reduces the buffer size
and, in practice, can harm the final performance. Therefore,
we set a lower bound for sampling weights:

w{t,i} = max
(
τ, (1− ϵ) t−i

)
,

where ϵ is the decay rate, τ is the minimum weight, and the
sampling probability of transition κi at time t is:

P{t,i} =
w{t,i}∑t
j=1 w{t,j}

.

Simulation (see Figure 4) shows that ER decay can effec-
tively suppress sample times of older transitions and balance
the sample times of transitions across a large range of steps.

During the experiments, we compared the performance of
our ER decay method with Prioritized Experience Replay
(PER). PER assigns higher replay weights to transitions
with larger TD errors. In the previously discussed motivat-
ing example, we analyzed the loss landscape of both PER
and ER decay. As demonstrated in Figure 5, the value in
the diagonal row of ER Decay is generally smaller than
those of PER, which indicates that ER Decay may better
alleviate primacy bias. Experimentally, ER decay achieved
a significant advantage over PER in the motivating example.
This result was further validated through ablation studies
conducted on a broader range of scenarios.
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Figure 4. Sample times of transitions in a normal buffer and a
decayed buffer with ϵ = 1e− 4,τ = 0.01 over 100k steps.

Figure 5. Changes in critic loss over time for PER(left) and ER
decay(right) in humanoid-walk. The darker the color near the
diagonal, the less influenced by primacy bias; conversely, the
darker the color towards the top-right corner indicates greater
influence from primacy bias.

Network expansion. Early training relies heavily on ini-
tial transitions in replay buffer, which often deviate signif-
icantly from the final policy distribution. Yet during this
stage, the neural network has the highest plasticity. To
address this, we propose network expansion, inspired by
infantile amnesia in mammals. The method involves grad-
ually adding new parameters to the critic network early in
training (e.g., after each reset) through residual connections.
These newly added parameters are not influenced by early
transitions, enabling better adaptation to data shifts when
combined with ER decay.

Our network structure is based on BRO’s design, which
incorporates layer normalization after each dense layer and
residual connections for parameter management. Building
on this, we modularized the network into distinct blocks,
facilitating the implementation of network expansion.

Although starting with a large network can provide better
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Figure 6. Network expansion illustration. We initialize networks
with fewer parameters and progressively add a new block (in the
frame) to residual connections at each expansion step.

performance in the early stages of training, it tends to en-
counter early convergence issues in the mid-to-late stages.
In contrast, agents trained with network expansion adapt
more effectively to changing training objectives. This
observation is further validated in the FoG algorithm. Even
when training begins with a network significantly larger than
the one used in the motivating example, without network
expansion, the agent is highly prone to loss explosions under
larger replay ratios. This directly impacts the agent’s stabil-
ity. Therefore, network expansion is a necessary component
in FoG. For more details, refer to Section 4.

A similar idea, called plasticity injection (Nikishin et al.,
2023), also involves network expansion. However, com-
pared to the complex parameter adjustments required by
plasticity injection, our approach is simpler to implement,
imposing minimal constraints. Our experiments demon-
strate its superior performance and efficiency.

3.3. The Forget and Grow Strategy (FoG)

We combine ER decay and network expansion into a uni-
fied algorithm, FoG, built on the following key ideas:

OBAC backbone. Our FoG is based on the Offline
Boosted Actor-Critic (Luo et al., 2024). OBAC enhances
online policies using offline data and demonstrates strong
performance across various standard benchmarks.

Scaled critic networks and replay ratio. For scaling up
the networks, we utilize a larger network for the critic. To
increase flexibility, we modularized the network structure,
constructing the critic entirely from blocks connected via
residual connections. Each block contains two dense layers,
each followed by a layer normalization. This modular archi-
tecture proves highly compatible with our FoG mechanism.

Additionally, we increase the replay ratio to 10 and introduce
a reset list to manage the agent’s reset behavior effectively.

ER decay and network expansion. We introduce ER
decay into the replay buffer, where older transitions are
assigned lower sampling probabilities, and apply network
expansion to the critic networks early in training. Together,
these methods embody the concept of forget and grow, al-
lowing the agent to better adapt to shifts in replay data.
While simply scaling up OBAC yields performance on par
with SimBa or BRO, the forget-and-grow approach is crucial
for FoG’s superior performance.

4. Experiment
To evaluate the performance of FoG, we collect in total 41
tasks from 4 domains: Mujoco (Todorov et al., 2012), DM-
Control (Tassa et al., 2018), Meta-World (Yu et al., 2020),
and HumanoidBench (Sferrazza et al., 2024), covering a
wide range of challenges, including high-dimensional states
and actions, sparse rewards, multi-object and delicate manip-
ulation, and complex locomotion. The implementation de-
tails and environment settings are provided in Appendix B.

Baselines. We compare FoG against 3 state-of-the-art off-
policy RL algorithms, including 2 model-free methods and 1
model-based method. Our baselines contain: 1) BRO (Nau-
man et al., 2024b), which scales the critic network of SAC
while integrating distributional Q-learning, optimistic ex-
ploration, and periodic resets. 2) SimBa (Lee et al., 2024),
which adopts running statistics normalization, residual feed-
forward blocks, and post-layer normalization to address
simplicity bias. 3) TD-MPC2 (Hansen et al., 2024), a high-
efficient model-based RL method that combines model pre-
dictive control and TD-learning.

4.1. Experimental Results

Figure 7 presents the learning curves that demonstrate the
performance of FoG alongside various baselines across di-
verse task suites. Overall, we observe that FoG typically
outperforms most model-free and model-based baselines
across various environments in terms of exploration effi-
ciency and asymptotic performance. In HumanoidBench,
FoG also exhibits comparable capabilities to the best base-
line TD-MPC2.

Notably, with identical hyperparameters, FoG achieves con-
sistently high performance across all benchmarks. Other
baselines have certain weaknesses in some benchmarks.
Due to the task-specific done signal setting, TD-MPC2 may
perform poorly on Mujoco. SimBa gets lower scores in
simple environments with small action dimensions, such as
Mujoco and DMC-Easy while BRO performs worse in more
complex environments with high action dimensions, such
as DMC-Hard and HumanoidBench.

The key takeaway is that with very simple algorithmic
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Figure 7. Main results. We provide performance comparisons for 16 of the 41 tasks, four for each task suite. Please refer to Appendix C
for the comprehensive results. The solid lines are the average return/success rate, while the shades indicate 95% confidence intervals. All
algorithms are evaluated with 3 random seeds.

changes, including ER decay, network expansion, and sim-
ple model structure modifications, FoG successfully over-
comes primacy bias and achieves better performance. No-
tably, previous studies found that model performance sat-
urated when the model parameters reached 5M (Nauman
et al., 2024b). However, with the help of network expan-
sion, FoG unlocks new levels of favorable model size scal-
ing up to 23M parameters. We will discuss in detail the
performance improvements from each modification in the
upcoming ablation section.

4.2. Ablation Studies

We conduct several ablations to demonstrate the effective-
ness of the design choices of FoG in this section.

Choice of experience replay methods. One of the key
designs of our algorithm is ER decay, which gradually de-
creases the sampling weight of older transitions. To evalu-
ate its effectiveness, we implement other experience replay
methods including PER and CUER. For the sake of fair-
ness, we simply replace the experience replay method of
FoG while keeping other parts unchanged for comparison.
Additionally, we also test the results without using any ex-
perience replay method. Results are shown in Figure 8. We
observe that both using PER and ER decay significantly im-
prove the final performance and convergence speed, with ER
decay showing the best results. However, the improvement
with CUER is marginal. In certain cases, CUER provides
no improvement.
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Figure 8. Choice of experience replay methods. We adopt 4 tasks from Mujoco and DMControl, two for each task suite, to compare
different experience replay methods. Mean of 3 runs; shaded areas are 95% confidence intervals.

Figure 9. Ablation on network expansion. We adopt 4 tasks from Mujoco and DMControl, two for each task suite, to showcase the
necessity of network expansion. Mean of 3 runs; shaded areas are 95% confidence intervals.

Figure 10. Critic buffer loss with and without network expan-
sion. We visualize the critic buffer loss of the first 300k steps for
the 2 tasks of DMControl suite. Mean of 3 runs; shaded areas are
95% confidence intervals.

Necessity of network expansion. To establish the impor-
tance of network expansion in our Framework of Growth
(FoG), we conducted a series of experiments. Firstly, we
compared the standard FoG, which incorporates dynamic
network expansion, against versions with a fixed model size,
denoted FoG (fixed). These fixed models were configured
with either 2 or 4 additional blocks, and network expansion
was disabled. As illustrated in Figure 9, enabling network
expansion leads to a discernible performance improvement
over both fixed-size configurations. The critic buffer loss,
presented in Figure 10, offers insight into this advantage:
after resetting the network, the critic buffer network overfits
early transitions and generate incorrect behavior cloning
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Figure 11. Dormant ratio during training. We measure the ra-
tio of dormant neurons during training on HalfCheetah-v4 and
humanoid-walk. Red lines indicate time steps where network
expansion happens.

signals, causing the loss to explode. However, network ex-
pansion helps to suppress this excessive catastrophic growth
in the loss.

Furthermore, network expansion significantly enhances
model plasticity by reducing the prevalence of dormant neu-
rons. Activated neurons, characterized by non-zero gradi-
ents, can be updated by new data, whereas dormant neurons
remain static during training. Consequently, a higher ratio
of dormant neurons indicates a more severe loss of plasticity.
This metric has been adopted in several recent studies as an
indicator of a model’s representational capacity and plastic-
ity degradation (Liu et al., 2024; Sokar et al., 2023; Xu et al.,
2023). Our experiments, shown in Figure 11, reveal that
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Figure 12. T-SNE visualization of representations. We visual-
ize the representations via t-SNE after training 0.2M steps on
HalfCheetah-v4. From left to right are the t-SNE results of 2
blocks, 4 blocks and expansion from 2 to 4 blocks.

FoG effectively reduces the number of dormant neurons.
Notably, this reduction is achieved even when compared
to baseline models that, despite possessing a larger overall
parameter count than a fully expanded FoG agent, do not
employ network expansion. This highlights the efficacy of
the expansion mechanism itself. Moreover, steep drops in
the dormant neuron ratio are consistently observed immedi-
ately following network expansion events, underscoring its
direct role in reactivating parts of the network.

To further understand how the expanded network adapts
to new memories and improves representations, we con-
ducted a representation analysis on the HalfCheetah-v4. We
sampled experiences from the replay buffer, passed them
through the critic network, and extracted features from the
final layer for t-SNE visualization in a 2D space. We com-
pared three settings: FoG with network expansion, FoG
(fixed) with 2 blocks, and FoG (fixed) with 4 blocks. As
depicted in Figure 12, network expansion facilitates the
formation of clearer clusters in the feature space. This ob-
servation suggests that network expansion enables the learn-
ing of better-separated and more structured representations,
contributing to the overall performance gains.

5. Conclusion
In this work, we propose Forget-and-Grow (FoG), which
effectively addresses the primacy bias problem in deep con-
tinuous control through two simple yet effective methods:
ER decay and network expansion. By incorporating forget
and grow, FoG enables agents to mitigate the overfitting to
early experiences and boost their performance across vari-
ous continuous control tasks. Abundant experiment results
show the superiority of FoG compared with existing state-
of-the-art off-policy RL and model-based RL algorithms,
including BRO, SimBa and TD-MPC2. Our findings reveal
a new perspective to alleviate the primacy bias, highlighting
the potential of integrating inspired cognitive mechanisms
into reinforcement learning frameworks. While FoG outper-
forms existing algorithms across various continuous control
tasks, it is important to note that the increased computa-

tional complexity and longer training times may limit its
practicality in scenarios that require rapid training. Addi-
tionally, the effectiveness of our two strategies is primarily
supported by empirical experiments and intuitive theoreti-
cal insights, lacking a thorough and in-depth investigation
into their mechanisms. Future works include seeking theo-
retical guarantees for the FoG strategies and applying the
Forget-and-Grow strategy to a broader range of algorithms.

Impact Statement
This work contributes to advancing the field of Reinforce-
ment Learning (RL), particularly in the domain of off-policy
RL algorithms. The proposed algorithm holds potential im-
plications for real-world applications, especially in areas
such as robotics. It’s worth noting that exploration of an RL
agent in real-world environments may require several safety
considerations to avoid unsafe behavior during the process.
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A. Proofs
A.1. Proof of Theorem 3.1

Proof. Given a uniformly sampled replay buffer D that stores N sequentially added transitions {κ1, κ2, · · · , κN}, transition
κt (with t > 1) is sampled with probability 1

i , where i > t is the number of transitions at sample time. So the expectation of
sample times E[nt] can be calculated as:

E[nt] = β(

N∑
i=t

1

i
) = β(

N∑
i=1

1

i
−

t−1∑
i=1

1

i
) = β(HN −Ht−1)

where HN is the N -th harmonic number, and Ht−1 is the (t−1)-th harmonic number. And we have the following inequality:

lnn+
1

n
< Hn < lnn+ 1

So we can get:

ln
N

t− 1
+

1

N
− 1 = (lnN +

1

N
)− (ln t− 1 + 1) <

E[nt]

β
< (lnN + 1)− (ln t− 1 +

1

t− 1
) = ln

N

t− 1
+ 1− 1

t− 1

For the earliest transition κ1, its expected sample times E[n1] is bounded by:

lnN +
1

N
<

E[n1]

β
< lnN + 1

The earliest transition is at least sampled Ω(β logN) times in expectation.

A.2. Proof of Theorem 3.2

Proof. Let D be a replay buffer with ER decay ϵ. For any transition κi in D, its expected sample times E[ni] can be
calculated as:

E[ni] = β(

∞∑
t=0

(1− ϵ)t

1 + (1− ϵ) + · · ·+ (1− ϵ)i+t−1
)

We have:
E[ni] ≤ E[n1],∀i ∈ {1, 2, · · · , N}

So the expected sample times of any transition in D is bounded by the earliest transition.

E[n1] = β(

∞∑
t=0

(1− ϵ)t

1 + (1− ϵ) + · · ·+ (1− ϵ)t
) = β(

∞∑
t=0

ϵ(1− ϵ)t

1− (1− ϵ)t+1
)

As ϵ = 1− (1− ϵ) < 1− (1− ϵ)t+1, we have:

E[n1] < β(

∞∑
t=0

(1− ϵ)t) =
β

ϵ

So we can find a constant C such that:
E[ni] < C,∀i ∈ {1, 2, · · · , N}

The expected sample times of any transition in D is bounded by a constant.

B. Implementation Details
B.1. Hyperparameters

In this section, we delve into the specific implementation details of FoG. Our Hyperparameters are listed in Table 1.
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Table 1. The hyperparameters of the proposed method

Hyperparameters Hyperparameter Value

Optimizer (Critic) AdamW
Critic learning rate 3e-4
Critic initial depth 2
Critic maximal depth 4
Critic expansion iters 50k, 200k
Optimizer (Actor) Adam
Actor dense layers 3
Actor learning rate 3e-4
Actor log std clipping (-20,2)
Discount factor 0.99
Batch size 256
Replay buffer size 1e6
ER Decay ϵ 1e-5
Minimal buffer weight τ 0.1
Behavior clone weight λ 1e-3

Network Architecture Network hidden dim 512
Network activation function elu
Critic depth 2-4

For all tasks, we use a max-entropy framework (Haarnoja et al., 2018) for the online learning policy π with automatic
temperature tuning. Besides, we set the pessimism of the online policy (Moskovitz et al., 2022) to 0 in MetaWorld tasks to
further encourage exploration. In other benchmarks it is set to 1.

We use two reset lists for FoG. For 4 relatively simple locomotion tasks (h1-stand, h1-walk, h1-stair and h1-slide) in
HumanoidBench, we use a reset list of 15k, 50k, 250k, 500k, 750k (The same as BRO’s reset list) to further improve
exploitation. We use a reset list of 15k, 50k, 100k, 200k, 400k, 600k, 800k for other benchmarks and other tasks in
HumanoidBench.

B.2. Details of Network Expansion

The expansion of the critic network is a key component of FoG. Each expansion step adds a new block composed of two
dense layers with 512 hidden dims and ELU activation functions. Surprisingly, we find that there is no restriction on the
initialization of the new block, and we initialize the new block with the same initialization as the original network (which
is orthogonal init with scale of

√
2).

At each expansion step, we reinitialize the optimizer and decay the learning rate by the number of parameters in the network.
Namely, we use init lr × init params

current params to decay the learning rate, where init lr is the initial learning rate, init params is
approximated by the number of dense layers in the initial network, and current params is the number of dense layers in the
current network.

Each time the network is reset, we reinitialize the depth of the critic network back to 2, so the network can expand again.

B.3. Other Implementation Details

Small actor network Previous work (Lee et al., 2024; Nauman et al., 2024b) has shown that scaling up the actor
network only provides marginal improvements in performance. To simplify our framework, we did not impose any
special characteristics or constraints on the actor network or optimizer beyond what is typically done in standard SAC
implementations. Specifically, we used the simplest MLP architecture and the Adam optimizer, which also provides a solid
foundation for deploying the actor.
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About OBAC implementation In the OBAC algorithm, an offline agent is used to improve the online agent. Specifically,
the offline agent adds a constraint to the online actor, encouraging it to learn from the offline agent when the Q-value
estimate of the online actor is lower than that of the offline agent. In our experiments, we found that after a reset during
training, the offline agent could quickly gain an advantage over the online actor by better utilizing the information in the
buffer. Allowing the actor to immediately learn from the offline agent could lead to early convergence. To address this, we
introduced a ”protection period” for the online actor, during which the OBAC algorithm is temporarily disabled after a reset.
This period, which we call OBAC wait, was found to yield fine results when set to 250k network iterations in all cases. Thus,
we use 250k as the default in all experiments.

B.4. Is Forget and Grow a Universal Technique?

In the FoG algorithm, we use OBAC as the foundational framework, combined with scaling the network size and replay
ratio. A natural question arises: is the Forget and Grow technique universally applicable?

We tested SAC in the MuJoCo environment and observed the following: even with the standard SAC algorithm at a replay
ratio of 1, using ER decay ”forget” technique led to stable performance improvements. However, network expansion
required a larger replay ratio to achieve relatively significant effects. This may be due to the fact that the newly introduced
parameters in network expansion require more intense updates before they become effective.

Figure 13. The results of SAC and SAC with ER decay 4 tasks in Mujoco.

We also evaluated the data efficiency of the FoG-enhanced SAC (FoG-SAC) algorithm in both DMC-Hard and MuJoCo
environments. We found that FoG-SAC achieved data efficiency close to that of BRO, showing significant improvement in
the later stages of training. However, it did not outperform BRO, which had undergone other algorithmic adjustments.

We also tested FoG with BRO, but FoG-BRO yielded performance very similar to that of the original BRO. This suggests
that some of the adjustments in BRO may conflict with the FoG mechanism.

Overall, our experiments indicate that FoG integrates well with the native SAC and OBAC algorithms. However, its
effectiveness when combined with other existing algorithms warrants further investigation.

B.5. Baselines and Environments

We compare FoG with BRO, SimBa and TD-MPC2, we use their official implementations, hyperparameters and results to
ensure a fair comparison.
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Figure 14. The results of FoG-SAC

1. BRO: We use the official implementation from https://github.com/naumix/BiggerRegularizedOptimistic.

2. SimBa: We use SimBa-SAC from official implementation and results from https://github.com/SonyResearch/simba.

3. TD-MPC2: We use the official implementation and results from https://github.com/nicklashansen/tdmpc2.

4. SAC: We use implementation from https://github.com/proceduralia/high replay ratio continuous control.

We use the official setting of each task domain, including the reward setting, the task horizon, the done signal and there
original state-action spaces.

B.6. Official Implementation of FoG

Please check https://github.com/nothingbutbut/FoG.git for official implementation of FoG.

C. Complete Experimental Results
To show the superiority of FoG, we list all the experimental results in this section.

C.1. Numerical Results

Table 2. Normalized Score over benchmarks
Environment FoG TD-MPC2 SimBa BRO

Mujoco 0.96 ± 0.02 0.07 ± 0.00 0.58 ± 0.03 0.85 ± 0.04
DMC-Easy 0.99 ± 0.00 0.73 ± 0.01 0.74 ± 0.04 0.90 ± 0.11
DMC-Medium 0.85 ± 0.05 0.65 ± 0.03 0.63 ± 0.02 0.79 ± 0.04
DMC-Hard 0.99 ± 0.01 0.50 ± 0.02 0.75 ± 0.01 0.76 ± 0.02
MetaWorld 0.99 ± 0.00 0.90 ± 0.08 0.64 ± 0.07 0.96 ± 0.04
HumanoidBench 0.82 ± 0.02 0.81 ± 0.02 0.73 ± 0.04 0.54 ± 0.01

Total 0.92 ± 0.01 0.70 ± 0.02 0.69 ± 0.02 0.76 ± 0.02
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Table 3. Returns of 600k steps from Mujoco tasks

Method FoG TD-MPC2 SimBa BRO

Ant 6979.19 ± 98.06 563.04 ± 54.12 4827.24 ± 148.80 6798.11 ± 237.61
HalfCheetah 15119.91 ± 583.41 2445.42 ± 48.43 10393.10 ± 656.98 13765.24 ± 712.18
Humanoid 7170.79 ± 24.58 282.40 ± 25.21 2803.31 ± 290.75 6038.88 ± 918.07
Walker2d 5310.89 ± 320.60 93.38 ± 66.43 3365.35 ± 695.81 4223.97 ± 457.07

Table 4. Returns of 150k steps from DMC-Easy tasks

Method FoG TD-MPC2 SimBa BRO

Cartpole Balance 999.62 ± 0.08 997.77 ± 0.58 999.64 ± 0.17 999.70 ± 0.22
Cartpole Swingup 879.58 ± 0.43 839.40 ± 35.20 872.01 ± 8.37 878.20 ± 0.88
finger-spin 983.07 ± 4.49 947.50 ± 27.89 703.57 ± 124.98 941.23 ± 20.54
Hopper Stand 922.97 ± 14.54 28.17 ± 28.21 237.10 ± 106.32 604.57 ± 416.54

Table 5. Returns of 500k steps from DMC-Medium tasks

Method FoG TD-MPC2 SimBa BRO

Acrobot Swingup 423.88 ± 21.81 368.27 ± 39.63 377.23 ± 28.29 509.34 ± 38.23
Hopper Hop 409.42 ± 119.77 285.43 ± 56.43 278.30 ± 2.66 288.40 ± 9.97
Humanoid Stand 866.60 ± 27.14 401.87 ± 40.85 402.85 ± 46.63 769.53 ± 131.23
Walker Run 820.02 ± 2.45 818.07 ± 7.18 753.80 ± 10.10 760.53 ± 18.42

Table 6. Returns of 1000k steps from DMC-Hard tasks

Method FoG TD-MPC2 SimBa BRO

Dog Run 652.78 ± 7.02 183.13 ± 14.75 534.02 ± 16.77 479.68 ± 12.26
Dog Trot 911.62 ± 7.98 423.13 ± 42.88 856.32 ± 26.84 842.09 ± 51.18
Dog Walk 954.09 ± 6.14 719.83 ± 55.70 924.67 ± 8.60 948.46 ± 4.95
Humanoid Run 436.34 ± 10.87 178.17 ± 2.93 177.10 ± 9.81 235.07 ± 48.55
Humanoid Walk 932.03 ± 6.96 572.10 ± 14.33 609.73 ± 36.53 609.56 ± 3.05
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Table 7. Success rates of 1000k steps from Metaworld tasks

Method FoG TD-MPC2 SimBa BRO

Assembly 1.00 ± 0.00 0.67 ± 0.47 0.70 ± 0.42 1.00 ± 0.00
Coffee pull 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.93 ± 0.09
Coffee push 0.93 ± 0.05 1.00 ± 0.00 0.97 ± 0.05 0.87 ± 0.19
Disassemble 1.00 ± 0.00 0.67 ± 0.47 1.00 ± 0.00 1.00 ± 0.00
Pick out of hole 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Pick place 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Pick place wall 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.80 ± 0.28
Push back 1.00 ± 0.00 0.67 ± 0.47 0.67 ± 0.47 1.00 ± 0.00
Shelf place 1.00 ± 0.00 1.00 ± 0.00 0.10 ± 0.14 1.00 ± 0.00
Stick push 1.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00

Table 8. Returns of 1000k steps from HumanoidBench tasks

Method FoG TD-MPC2 SimBa BRO

Balance Hard 72.84 ± 1.82 61.23 ± 2.83 79.87 ± 9.15 62.10 ± 2.48
Balance Simple 546.66 ± 66.01 52.88 ± 8.01 256.46 ± 135.38 68.77 ± 5.11
Crawl 971.02 ± 0.65 963.36 ± 2.48 939.58 ± 18.65 897.50 ± 31.20
Hurdle 86.31 ± 7.19 363.48 ± 34.69 208.65 ± 7.76 48.50 ± 0.65
Maze 380.13 ± 5.53 323.64 ± 4.12 389.39 ± 19.61 273.00 ± 61.73
Pole 817.70 ± 73.53 647.96 ± 172.64 754.56 ± 4.06 340.60 ± 24.14
Reach 3963.71 ± 289.43 3913.07 ± 740.94 4418.50 ± 395.17 3984.43 ± 236.95
Run 437.49 ± 49.97 780.80 ± 3.18 262.65 ± 73.32 49.33 ± 12.19
Sit Hard 814.95 ± 12.93 749.94 ± 14.30 667.38 ± 206.50 829.10 ± 4.34
Sit Simple 843.99 ± 8.91 801.01 ± 1.15 860.78 ± 5.00 850.03 ± 3.88
Slide 396.74 ± 25.44 329.21 ± 26.01 270.43 ± 17.06 250.10 ± 7.94
Stair 386.91 ± 117.06 562.50 ± 24.62 226.79 ± 162.50 77.57 ± 0.70
Stand 806.14 ± 27.59 812.80 ± 2.95 845.22 ± 9.60 799.73 ± 16.74
Walk 842.72 ± 8.53 813.88 ± 1.38 619.36 ± 200.68 186.17 ± 27.30

C.2. Learning Curves

One thing to notice about DMC-easy tasks Figure 16 is that the starting point of the learning curve is 25k steps, which
is because the first evaluation step of BRO is at 25k steps. At this time, FoGhas already achieved convergence in some
environments, like cartpole-swingup.

Figure 15. The results of 4 tasks in Mujoco.
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Figure 16. The results of 4 tasks in DM Control Easy.

Figure 17. The results of 4 tasks in DM Control Medium.

Figure 18. The results of 5 tasks in DM Control Hard.
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Figure 19. The results of 5 tasks in Meta-World.
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Figure 20. The results of 14 tasks in HumanoidBench.

D. Performance comparison under similar computation cost
To demonstrate that the performance gains of FoG are not merely due to increased computation, we provide a performance
comparison under similar computational costs.

We evaluate SimBa (depth=10, approximately 42M parameters), TD-MPC2 (19M version), and BRO (depth=10, approxi-
mately 42M parameters) on the humanoid benchmark to compare their performance against FoG, despite all of them having
more parameters than FoG (at most 21M). Our experiments demonstrate that FoG outperforms competitive baselines even
when compared to larger models, achieving superior performance while using less computation in this setup.
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Figure 21. The results under similar computation cost

E. Comparison to similar methods
We conducted a comparative analysis between FoG and the Neuroplastic Expansion (NE) algorithm(Liu et al., 2024),
utilizing the official NE implementation to ensure fairness. The evaluation was performed across four diverse tasks:
HalfCheetah-v4, dog-run, dog-walk, and humanoid-walk. Both the original NE model and a variant with expanded capacity
were tested to examine the impact of model scaling on performance.

The results consistently demonstrate that FoG outperforms NE across all tasks, even when operating at relatively low
update-to-data ratios. Notably, increasing the capacity of the NE model yields only marginal performance gains, whereas
FoG maintains robust improvements without requiring significant model enlargement. These findings underscore FoG’s
superior scalability and adaptability, establishing it as a more effective approach for handling complex reinforcement
learning environments.
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Figure 22. Comparison to Neuroplastic Expansion method

22


