

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

NOISE STABILITY OF TRANSFORMER MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Understanding simplicity biases in deep learning offers a promising path toward developing reliable AI. A common metric for this, inspired by Boolean function analysis, is average sensitivity, which captures a model’s robustness to single-token perturbations. We argue that average sensitivity has two key limitations: it lacks a natural generalization to real-valued domains and fails to explain the “*junta-like*” input dependence we empirically observe in modern LLMs. To address these limitations, we propose *noise stability* as a more comprehensive simplicity metric. Noise stability expresses a model’s robustness to correlated noise applied to *all* input coordinates simultaneously. We provide a theoretical analysis of noise stability for single-layer attention and ReLU MLP layers and tackle the multi-layer propagation problem with a covariance interval propagation approach. Building on this theory, we develop a practical *noise stability regularization* method. Experiments on algorithmic and next-token-prediction tasks show that our regularizer consistently catalyzes grokking and accelerates training by approximately 35% and 75% respectively. Our results establish noise stability as a powerful tool for understanding and improving modern Transformers.

1 INTRODUCTION

Simplicity Biases have been a promising direction of study in recent years (Shah et al., 2020; Vasudeva et al., 2024; Bhattacharya et al., 2022) as they provide a unifying framework for generalization, interpretability and robustness. Neural networks, including Large Language Models (LLMs), often converge to the simplest possible functions that explain the training data. Because simpler functions are inherently more interpretable and robust, this bias provides a solid theoretical framework for improving model reliability.

To quantify simplicity, current research often draws on concepts from Boolean function analysis (O’Donnell, 2021). In particular, theoretical work on Transformers (Vaswani et al., 2017) has highlighted average sensitivity, the expected change in a model’s output given a single-token perturbation, as a key metric. Bhattacharya et al. (2022) formally studied this metric in Transformers, showing that they learn functions with lower sensitivity than LSTMs. Subsequent work has linked average sensitivity to learnability: Hahn (2020) and Hahn & Rofin (2024) demonstrated that Transformers struggle to learn functions with high sensitivity, such as PARITY. Further validating its utility, Vasudeva et al. (2024) connected average sensitivity to the *grokking* phenomenon and proposed an extension of the metric beyond the Boolean domain.

Despite its usefulness, average sensitivity has notable drawbacks. Theoretically, its origins in Boolean analysis do not readily extend to real-valued domains. Empirically, it fails to fully explain the “*junta-like*” input dependence we observe in models like GPT-2, GEMMA, and ROBERTA, where outputs rely on a small subset of inputs.

To address these shortcomings, we propose to instead quantify simplicity bias via *noise stability*. Unlike average sensitivity’s one-by-one perturbations, noise stability measures a function’s resilience to noise applied to *all inputs simultaneously*, offering more robust spectral concentration guarantees. This approach naturally extends to real-valued domains via the Ornstein-Uhlenbeck operator in the Gaussian measure, preserving a formal connection to the function spectrum and enabling a more powerful theoretical analysis.

054 1.1 OUR CONTRIBUTIONS
055056 Our primary contributions the following:
057058 1. We observe that LLMs like GPT-2 exhibit a “junta-like” input dependence (Figure 1),
059 a phenomenon not fully captured by average sensitivity and its extensions (Section 3). To
060 better characterize this behavior, we propose **noise stability** (Section 4) as a comprehensive
061 simplicity metric that naturally extends to real-valued domains.
062 2. We derive the first theoretical results on noise stability for single-layer Transformers and
063 ReLU FFNs. We also provide novel insights for the multi-layer setting (Section 5) through
064 a proxy recurrence-based analysis and a new stability interval propagation technique.
065 3. We propose **noise stability regularization** (Section 6), a method that consistently accelerates
066 grokking across synthetic (modular addition, sparse parity) and non-synthetic (next-
067 token-prediction) benchmarks, reducing the training time required for generalization by
068 $\approx 35\%$ and 75% respectively.
069070 1.2 RELATED WORK
071072 **Simplicity Bias in Deep Learning.** The tendency of neural networks to converge to simple functions
073 has been a subject of intense recent study. This simplicity bias (SB) is analyzed from several
074 perspectives. One line of research connects SB to spectral concentration in the Conjugate or Neural
075 Tangent Kernel of networks (Yang & Salman, 2019; Emami et al., 2021; Vasudeva et al., 2024). An-
076 other uses Fourier analysis to characterize SB as a bias toward low-frequency functions (Xu et al.,
077 2019; Rahaman et al., 2019). A large body of work investigates SB through the lens of training
078 dynamics, often in shallow or linear networks (Morwani et al., 2023; Zhang et al., 2019; Yun et al.,
079 2020; Chen et al., 2020; Boursier & Flammarion, 2024; Chizat & Bach, 2020; Gatmiry et al., 2024;
080 Tsoy & Konstantinov, 2024). Beyond its mechanisms, SB has been linked to generalization (Valle-
081 Perez et al., 2018), though it can sometimes lead to degenerate solutions (Shah et al., 2020), and
082 has been correlated with adversarial robustness (Min & Vidal, 2024; Chen et al., 2020). Specific
083 to our focus, recent work has begun to explore SB in Transformers, particularly through the lens of
084 token-to-token interactions in shallow models (Teney et al., 2025; Rende et al., 2024).
085085 **Sensitivity Analysis in Transformers.** To develop a computationally tractable proxy for spectral
086 concentration, recent work has adopted *average sensitivity* from Boolean function analysis. Bhat-
087 tamishra et al. (2022) showed that Transformers are more biased towards low-sensitivity functions
088 than LSTMs, enabling generalization even with noisy labels. Hahn (2020); Hahn & Rofin (2024)
089 established that Transformers struggle to learn high-sensitivity functions like parity, despite having
090 the capacity to represent them. Further, Vasudeva et al. (2024) demonstrated that average sensitivity
091 can also serve as a metric for tracking progress in grokking.
092093 **Generalizing Sensitivity to Continuous Domains.** The concept of average sensitivity has been
094 generalized to real-valued domains via *geometric influences* (Keller et al., 2012; 2014). This for-
095 mulation is equipped with an analogue of Friedgut’s junta theorem for continuous spaces (Bouyrie,
096 2017), unifying prior results across various discrete and continuous measures (Benjamini et al.,
097 2016; Wimmer, 2014).
098098 **Noise Stability and Sensitivity.** Our work is most closely related to that of Li & Mossel (2025),
099 who study *noise sensitivity*—a dual measure to our noise stability—for hierarchical functions. They
100 use an inductive argument to propagate sensitivity bounds across layers in a simple, non-intersecting
101 neural network. Though they do not study Transformers in practice, their layer-wise propagation
102 strategy directly inspired our approach for noise stability intervals in multi-layer Transformers.
103104 2 SETUP
105106 107 We define a simplified *Transformer* as an L -layer model that maps an input sequence $X \in \mathbb{R}^{n \times d}$ to
a distribution over n_c classes. Each layer $i \in [L]$ contains H attention heads. A head j takes the

108 layer input $Y_i \in \mathbb{R}^{n \times d}$ and computes an output $a_{i,j} \in \mathbb{R}^{n \times d}$ via:

$$109 \quad a_{i,j} = \sigma(Y_i^T W_{Q,i,j}^T W_{K,i,j} Y_i) (Y_i^T W_{V,i,j})$$

110 Here, $W_{Q,i,j}, W_{K,i,j}, W_{V,i,j} \in \mathbb{R}^{d \times d}$ are weight matrices and σ is the row-wise softmax¹. The
 111 head outputs are concatenated and passed through a Multi-Layer Perceptron (MLP) with a ReLU
 112 activation, $\phi(x) = \max\{0, x\}$: $\hat{a}_i = \phi((a_{i,1} \circ \dots \circ a_{i,H}) W_\phi^{(i)})$. The final layer's output \hat{a}_L is then
 113 mean-pooled and projected to produce class logits $z \in \mathbb{R}^{n_c}$ using an output matrix $W_O \in \mathbb{R}^{d \times n_c}$.
 114

115 For theoretical simplicity, this definition omits elements like residual connections, layer normalization,
 116 and attention masks, though we include them in our experiments.
 117

118 2.1 BOOLEAN FUNCTION ANALYSIS

120 Our work draws on Boolean function analysis, which studies functions $f : \{\pm 1\}^n \rightarrow \mathbb{R}$ by ex-
 121 panding them as multilinear polynomials via the *Fourier spectrum*: $f = \sum_{U \subseteq [n]} \hat{f}_U \chi_U$, where
 122 $\chi_U(x) := \prod_{i \in U} x_i$ are the basis functions. For a full overview, see Appendix A.
 123

124 A key property is the *influence* of a coordinate $i \in [n]$, which measures the expected impact of
 125 flipping the input x_i :

$$126 \quad \text{Inf}_i[f] := \mathbb{E}_{x \sim \{\pm 1\}^n} \left[\left(\frac{f(x) - f(x^{\oplus i})}{2} \right)^2 \right] = \sum_{S \ni i} \hat{f}_S^2 \quad (1)$$

127 The *total influence* across all coordinates is the **average sensitivity**, $I[f] = \sum_{i=1}^n \text{Inf}_i[f]$, a common
 128 measure of a function's robustness to noise.
 129

132 3 MODELS ARE OFTEN “SIMPLER” THAN EXPECTED

134 The “simplicity” of a Boolean function $f : \{\pm 1\}^n \rightarrow \mathbb{R}$ is formalized by its dependence on a
 135 few variables. One way to characterize simplicity is *spectral concentration*, where the most of the
 136 Fourier mass is on low-degree coefficients. A function is (ε, k) -spectrally concentrated if its mass
 137 on terms of degree k or higher is bounded:

$$139 \quad \sum_{j=k}^n W^j[f] \leq \varepsilon \cdot \|f\|_2^2, \quad \text{where} \quad W^j[f] := \sum_{|U|=j} \hat{f}_U^2$$

141 A stricter notion is a *k-junta*, a function that depends on at most k coordinates. A function with
 142 low average sensitivity is simple in both senses: a function is always $(\varepsilon, I[f]/\varepsilon)$ -spectrally concen-
 143 trated, and *Friedgut’s Junta Theorem* (Kelman et al., 2021; Friedgut, 1998) shows it must also be
 144 structurally close to a junta:

145 **Theorem 3.1.** *For every $\epsilon > 0$, there exists a k -junta $g : \{-1, 1\}^n \rightarrow \{-1, 1\}$ such that $\mathbb{P}[f(x) \neq$*
 146 $g(x)] \leq \epsilon$, where the number of variables k on which g depends is bounded by $k \leq 2^{O(I(f)/\epsilon)}$.
 147

148 While prior work has used average sensitivity to analyze model simplicity (Vasudeva et al., 2024;
 149 Hahn & Rofin, 2024), we argue it has significant theoretical and empirical drawbacks as a metric for
 150 simplicity bias.

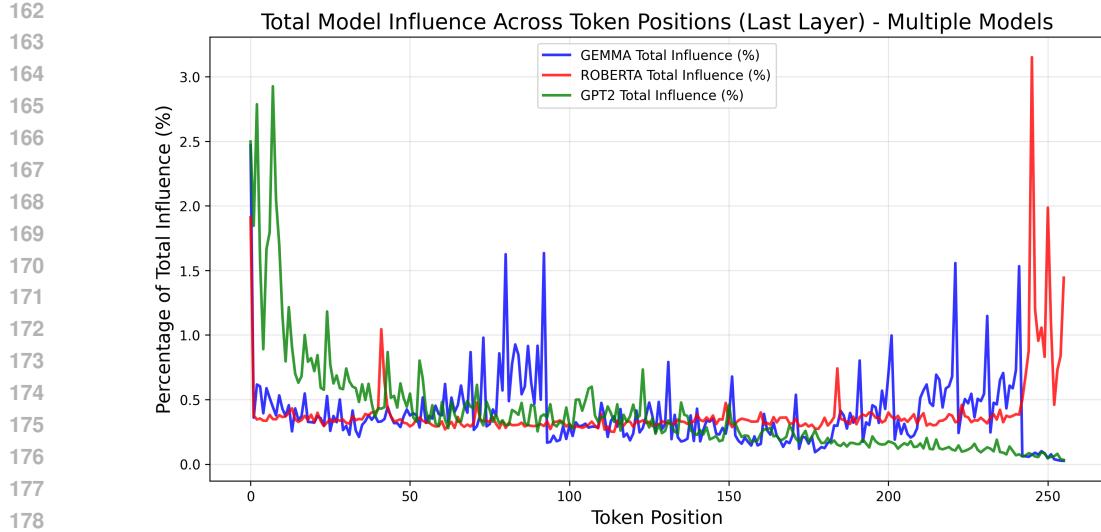
152 **Theoretical Drawbacks: Extending to Real-Valued Domains** First, the theoretical foundation
 153 of average sensitivity in Boolean domains is difficult to extend to the real-valued functions of deep
 154 learning. Approaches using generalized domains that mimic finite fields² are cumbersome, as sensi-
 155 tivity is not naturally defined, and its estimation via sampling is impractical.

156 A more robust alternative is **geometric influence** (Keller et al., 2012), defined for a smooth function
 157 $f : \mathbb{R}^n \rightarrow \mathbb{R}$ and measure μ as:

$$158 \quad I^G[f] := \sum_{i=1}^n \|\partial_i f\|_{L^1(\mu)}$$

161 ¹For convenience, in our theoretical results we will ignore the $1/\sqrt{d}$ factor that appears in these expressions.

²See (O’Donnell, 2021), Chapter 8, for an exposition on Boolean Function Analysis on the hypergrid.

179
180 Figure 1: Comparing the per-coordinate geometric influence of three models for $n = 256$.
181

182 Crucially, this measure has strong theoretical backing, including an analogue of Friedgut’s junta
183 theorem for hypercontractive measures (Bouyrie, 2017). This makes it a more suitable tool for
184 analyzing neural networks and we use it in our empirical study below.
185

186 **Empirical Drawbacks: Mismatch with LLM Behavior** Second, average sensitivity fails to
187 capture the empirical simplicity of LLMs. The exponential bound on influential variables from
188 Friedgut’s theorem is too loose to explain the behavior of modern Transformers, which exhibit far
189 stronger influence concentration. To demonstrate this, we analyze the geometric influence of each
190 input token for GEMMA-2B, ROBERTA, and GPT-2 on sequences of $n = 256$ tokens. Friedgut’s
191 theorem predicts ≤ 1024 variables with influence at least $0.1 \cdot I[f]$, yet Figure 1 only shows 5-10
192 such variables exist, meaning the bound is loose. Our analysis also reveals three key patterns with
193 further experimental details available in Appendix B:

- 194 • **Junta-like Concentration:** A small subset of tokens have disproportionately high influence.
195
- 196 • **Positional Bias:** The first and last tokens are consistently the most influential. This is part
197 agrees with observations made in the KV Cache Compression literature about “attention
sinks” (Xiao et al., 2023).
- 198 • **Sensitivity:** Every token has a non-zero influence, indicating that the models are sensitive
199 to all inputs, even if asymmetrically.
200

201 4 NOISE STABILITY AS A MEASURE OF CONCENTRATION

203 For a more holistic characterization of simplicity that offers finer control over spectral concentration
204 and easily generalizes to real-valued domains, we propose **noise stability**, a concept from Boolean
205 Function Analysis (O’Donnell, 2021) that measures a function’s resilience to correlated noise *ap-
206 plied to all inputs simultaneously*.

207 This concept extends naturally to real-valued functions in $L^2(\gamma)$ by leveraging the Ornstein-
208 Uhlenbeck (OU) semigroup T_ρ . This framework uses the basis of Hermite polynomials under the
209 standard Gaussian measure $\gamma \equiv \mathcal{N}(0, 1)$, allowing for a direct spectral interpretation³. The corre-
210 lated pair (X, Y) is generated by adding scaled Gaussian noise to X :

211 **Definition 4.1.** Let $f \in L^2(\gamma)$ where γ is the Gaussian measure on \mathbb{R}^n . For $\rho \in (0, 1)$, let $X \sim \gamma$
212 and let $Y = \rho X + Z \sqrt{1 - \rho^2}$, where $Z \sim \gamma$ is independent of X . The noise stability of f is:

$$\text{Stab}_\rho(f) := \mathbb{E}_{(X, Y)} [f(X)f(Y)] \quad (2)$$

213
214 ³See Appendix C, following Andersson & Sjögren (2012), for an introduction to OU Semigroup Theory.
215

Noise stability is useful because it relates directly to the function’s spectrum through its Hermite-Fourier coefficients $\tilde{f}(\alpha)$, as shown in Appendix C:

$$\text{Stab}_\rho(f) = \sum_{\alpha \in \mathbb{N}^d} \rho^{|\alpha|} \tilde{f}(\alpha)^2 \quad (3)$$

This connection allows us to formally bound a function’s spectral concentration. The following lemma shows that if a function is highly stable (i.e., its stability is close to its total variance), its Fourier mass must be concentrated on low-degree coefficients. For a fixed correlation ρ and spectral tail budget ε , the degree of concentration T becomes smaller as the ratio δ/ε approaches zero.

Lemma 1 (Spectral Concentration via Stability). *Let $f \in L^2(\gamma^n)$. If $\text{Stab}_\rho(f) \geq (1 - \delta) \|f\|_2^2$ for some $\rho \in (0, 1)$ and $0 < \delta < \varepsilon < 1$, then f is (ε, T) -spectrally concentrated for any*

$$T \geq \log_{\frac{1}{\rho}} \left(1 - \frac{\delta}{\varepsilon} \right)$$

Proof Sketch. The proof follows from analyzing the action of the Ornstein-Uhlenbeck semigroup T_ρ on the Hermite expansion of f . The full proof is in Appendix D. \square

Spectral Concentration Bounds: Sensitivity vs. Stability We compare the predicted Fourier tail mass (percentage of weight in degrees ≥ 15 with $n = 256$) for several Transformer models, using bounds derived from average sensitivity versus those from noise stability. The results in Table 1 show that the noise stability bound offers a more accurate estimate of spectral concentration.

Model	Tail Mass Bound from $I[f]$	Tail Mass Bound from $\text{Stab}_\rho(f)$
GPT-2	0.003	0.0005
BERT	0.04	0.02
ROBERTA	0.19	0.02
GEMMA	0.043	0.0157

Table 1: Predicted Fourier tail mass (percentage of weight in degrees ≥ 15) for Transformer models.

5 ANALYSIS OF NOISE STABILITY IN TRANSFORMER MODELS

We now present our theoretical results on the noise stability of Transformer components. We begin by analyzing a single ReLU MLP layer and an attention layer, and then use these results to analyze the propagation of stability through a multi-layer network.

5.1 NOISE STABILITY OF A SINGLE RELU MLP LAYER

We first analyze the stability of an MLP layer with a ReLU activation, a result closely related to the arc-cosine kernel. Consider a pair of ρ -correlated standard Gaussian inputs (X, Y) , whose joint distribution is:

$$(X, Y) \sim \mathcal{N} \left(0, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$$

The noise stability of the ReLU function is given by the following theorem.

Theorem 5.1. *The noise stability of the ReLU function under the standard Gaussian measure is:*

$$\mathbb{E}_{(X, Y)} [\text{ReLU}(X)\text{ReLU}(Y)] = \frac{1}{2\pi} \left(\sqrt{1 - \rho^2} + \rho(\pi - \arccos \rho) \right)$$

Proof. The proof is by direct integration and can be found in Appendix E. \square

While exact, this expression is unwieldy for analyzing layer composition. For practical purposes, it is well-approximated by its second-order Taylor expansion around $\rho = 0$:

$$\frac{1}{2\pi} \left(\sqrt{1 - \rho^2} + \rho(\pi - \arccos \rho) \right) \approx \frac{1}{2\pi} + \frac{1}{4}\rho + \frac{1}{4\pi}\rho^2 + O(\rho^3). \quad (4)$$

270 5.2 NOISE STABILITY OF A SINGLE ATTENTION LAYER
271

272 We next analyze the noise stability of a single attention layer, defined as $f(X) = \sigma(XW_QW_K^TX^T) \cdot$
273 XW_V . The analysis depends critically on the structure of the product $W := W_QW_K^T$, so we consider
274 three representative cases.

275 **The Identity Case ($W = I_d$)** When W is the identity matrix, the attention mechanism simplifies.
276 In the high-dimensional limit, the attention matrix $\sigma(XX^T)$ converges to the identity matrix I_n ,
277 causing the layer to act as a linear transformation. This results in a linear relationship between input
278 and output stability (see Figure 2).

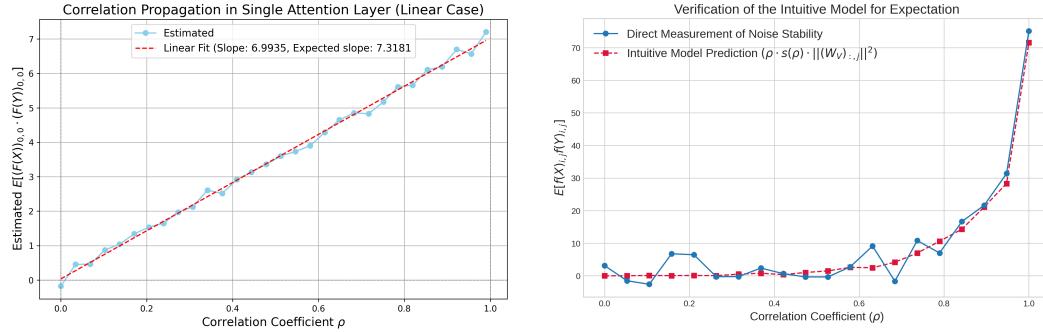
279 **Theorem 5.2.** *Let $X \sim \mathcal{N}(0, I_{n \times d})$ and $Y = \rho X + Z\sqrt{1 - \rho^2}$ for $Z \sim \mathcal{N}(0, I_{n \times d})$ independent
280 of X . Let $f(X) = \sigma(XX^T)XW_V$. Then for any $i \in [n], j \in [d]$:*

$$282 \lim_{d \rightarrow \infty} \mathbb{E}[f(X)_{ij}f(Y)_{ij}] = \rho \cdot \|(W_V)_{:,j}\|_2^2 + o(1)$$

284 *Proof Sketch.* As $d \rightarrow \infty$, we show that $\sigma(XX^T) \rightarrow I_n$ in probability. The stability calculation
285 then reduces to that of a linear layer, with a cost of $o(1)$. The full proof is in Appendix F.2. \square
286

287 **The Low-Rank Case ($W = UU^T$)** If W is a random low-rank matrix, where $U \in \mathbb{R}^{d \times k}$ with $k \ll d$,
288 the analysis reduces to the identity case. The matrix U acts as a Johnson-Lindenstrauss transform,
289 projecting the input row vectors into a k -dimensional space while approximately preserving their
290 inner products (Matoušek, 2008). Consequently, the projected attention matrix again converges to
291 the identity, and the stability remains linear in ρ .

293 **The Unstructured Case ($W \sim \mathcal{N}(0, I_{d \times d})$)** When W is a random Gaussian matrix, modeling
294 a randomly initialized layer, the behavior changes. For large d , we the attention matrix $A_X =$
295 $\sigma(XWX^T)$ concentrates towards a random permutation matrix, meaning each output token attends
296 to a single, randomly chosen input token.

309 Figure 2: Stability of Single Layer Attention (Identity and Unstructured)
310

311 The stability now depends on the consistency of this permutation. For a given output row i , suppose
312 A_X selects input row k and A_Y selects input row k' . The stability is non-zero only if the attention
313 pattern is preserved ($k = k'$). Let $s(\rho) := \mathbb{P}(k = k')$ be the probability that the attention pattern is
314 stable (see Figure 3 for an illustration). The total stability is the product of the linear stability and
315 this probability factor:

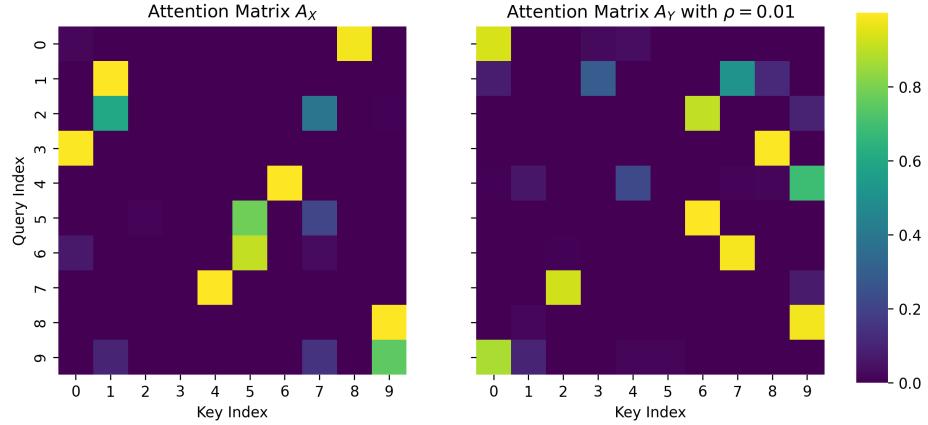
$$316 \mathbb{E}[f(X)_{ij}f(Y)_{ij}] = \begin{cases} \rho \cdot \|(W_V)_{:,j}\|_2^2 & \text{if } k = k' \\ 0 & \text{if } k \neq k' \end{cases}$$

318 Averaging over the randomness of the patterns we obtain the following result, which we verify
319 empirically in Figure 2 (see Appendix G for the proof).

320 **Theorem 5.3.** *Let $X \sim \mathcal{N}(0, I_{n \times d})$ and $Y = \rho X + Z\sqrt{1 - \rho^2}$ for $Z \sim \mathcal{N}(0, I_{n \times d})$ independent
321 of X . Let $f(X) = \sigma(XX^T)XW_V$. Then for any $i \in [n], j \in [d]$, we have:*

$$323 \lim_{d \rightarrow \infty} \mathbb{E}[f(X)_{ij}f(Y)_{ij}] \stackrel{p}{=} \rho \cdot s(\rho) \cdot \|(W_V)_{:,j}\|_2^2 + o(1), \text{ with } s(\rho) = n \int_{\mathbb{R}^2} \Phi_{\rho^2}(x, y)^{n-1} f_{\rho^2}(x, y)$$

324 where Φ_c, f_c are the joint CDF and PDF of a bivariate normal distribution with correlation c .
 325



340
 341 Figure 3: Comparing A_X and A_Y for $d = 128$ and $\rho = 0.01$.
 342

343 5.3 STABILITY PROPAGATION IN DEEP TRANSFORMERS

344 In the single-layer setting, we have shown that ReLU MLPs dampen stability (Theorem 5.1), while
 345 attention layers can preserve it (Theorem 5.2). This raises the question whether such an analysis can
 346 be performed for the multi-layer setting as well.
 347

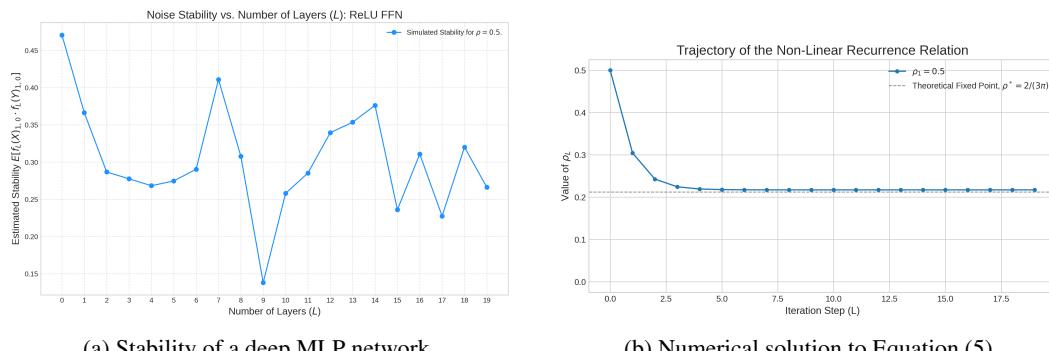
348 **FFN Stability Propagation as a Recurrence and Weak Dampening** Consider a ReLU Feed-
 349 Forward Network (FFN) and suppose we ignore inter-layer distributional shifts. Such a thought ex-
 350 periment is not without precedent in the moment propagation literature for neural networks (Wright
 351 et al., 2024). In this model, the correlation ρ_L after layer L follows the recurrence:

$$352 \quad \rho_L = \frac{1}{2\pi} \left(\sqrt{1 - \rho_{L-1}^2} + \rho_{L-1}(\pi - \arccos(\rho_{L-1})) \right) \quad (5)$$

354 Solving this non-linear recurrence analytically is difficult, so we shall instead use the linear ap-
 355 proximation from Equation (4), to get the following proxy recurrence, which can be solved more
 356 easily:
 357

$$358 \quad \rho_L = \frac{1}{2\pi} + \frac{1}{4}\rho_{L-1} \implies \rho_L = \frac{2}{3\pi} + \left(\frac{1}{2} - \frac{2}{3\pi} \right) \cdot \left(\frac{1}{4} \right)^{L-1}$$

360 This suggests that noise stability for multi-layer ReLU FFNs exhibits *weak dampening*, converging
 361 to the fixed point $\frac{2}{3\pi}$. This is confirmed by a numerical evaluation of Equation (5) in Figure 4b.
 362 Indeed, Figure 4a shows that a multi-layer MLP does exhibit weak dampening.
 363



374 (a) Stability of a deep MLP network.
 375

(b) Numerical solution to Equation (5)

376 For multi-layer Transformers, a recurrence relation analysis does not yield weak dampening. If
 377 we let $W_Q W_K^T = I$ and $\|(W_V)_{:,j}\|_2 = \gamma \leq 1$, a recurrence similar to Equation (5) would yield
 378 candidate fixed points of $\frac{2}{\pi(4-\gamma^2)}$. However, we observe that for $\gamma < 1$ the noise stability signal

378 actually dampens fully to zero, suggesting that the attention map alters the distribution enough to
 379 preclude the weak dampening behavior. For more details, see Appendix H.
 380

381 **Noise Stability Intervals** A more formal approach is to track rigorous upper and lower bounds
 382 on the noise stability as they propagate through the network. We derive such bounds for individual
 383 MLP and attention layers (Appendix I.1 and Appendix I.2). Further empirical work is needed to
 384 determine the tightness of these bounds in practice.
 385

386 6 NOISE STABILITY REGULARIZATION AND ITS BENEFITS

388 We established in Section 4 and Section 5 that high noise stability is a desirable property for cre-
 389 creating robust and interpretable models. To this end, we introduce a regularizer designed to orient a
 390 model’s training towards to or away from stable functions. We designed our regularizer to be (1)
 391 **differentiable** with respect to the model’s parameters, and (2) **data-dependent**, meaning that the
 392 regularization should be evaluated on the model’s outputs for training data, not just its parameters.
 393

394 **Definition 6.1** (Noise Stability Regularization). Let $M : [U]^N \rightarrow \Delta(C)$ be a model, $X \in [U]^N$
 395 be an input sequence, $S \in \{0, 1\}$ be the orientation parameter, and $\rho \in [-1, 1]$ be a correlation
 396 parameter. The **S -oriented noise stability regularizer** is defined as:
 397

$$398 R_{M,S,\rho}(X) = (-1)^S \cdot \sum_{i=1}^C M(X)_i \cdot M(Y)_i, \text{ where:} \quad (6)$$

$$399 Y_i = \begin{cases} X_i, & \text{with probability } \frac{1+\rho}{2} \\ Z \sim \text{uniform}([U]), & \text{otherwise.} \end{cases} \quad (7)$$

402 Setting the orientation parameter $S = 1$ *encourages stability*. For a differentiable loss function ℓ , the
 403 regularized loss then becomes $\ell_{\text{reg}}(M, X) := \ell(M, X) + \gamma \cdot R_{M,S,\rho}(X)$ where γ is a hyperparameter
 404 controlling the regularization strength. We test the effect of positively-oriented noise stability ($S =$
 405 1) by training a Transformer from scratch on two tasks known to exhibit “grokking”: *noisy k-sparse*
 406 *parity* and *modular addition*.
 407

408 Note that calculating the noise stability regularizer requires just one additional forward pass through
 409 the model per training iteration. It is an interesting direction whether the regularization can be
 410 applied in a more cost-effective manner.
 411

412 **Experimental Setup** We use a standard decoder-only Transformer (Appendix J). For all experi-
 413 ments, we compare regularized and non-regularized models. All other hyperparameters, including
 414 the random seed, are held constant across runs (Figure 5).
 415

416 **NOISY k -SPARSE PARITY (NSP)** We learn the function $f(x) = \bigoplus_{i \in I} x_i$ for an input $x \in \{0, 1\}^n$
 417 and a secret sparse index set $I \subset [n]$ of size k . Each training label is flipped with a fixed probability
 418 η . This problem is well-studied in learning theory (Chen et al., 2024; Feldman et al., 2009), and
 419 Transformers can solve it for small values of k (Bhattamishra et al., 2022). We test on inputs of
 420 length $n \in [10, 100]$ with $k \in \{2, 3\}$, using $(\gamma, \rho) = (0.05, 0.05)$.
 421

422 **MODULAR ADDITION** This task is to compute $(X + Y) \pmod{K}$. We study it as a standard
 423 benchmark for grokking in Transformers (Nanda et al., 2023). For our experiments, we use a prime
 424 modulus $K = 113$, train for 10,000 iterations, and set $(\gamma, \rho) = (0.75, 0.25)$.
 425

426 **Noise Stability Regularization Catalyzes Grokking.** Training Transformers on these tasks ex-
 427 hibits an “emergence” phenomenon, where validation loss drops suddenly after a long period of
 428 stagnation. We find that noise stability regularization acts as a catalyst for this emergence. For
 429 modular addition, regularization reduces the iterations required from ≈ 4500 to ≈ 3300 , a 36%
 430 acceleration. We observe a similar $\approx 35\%$ speed-up for the noisy sparse parity task (Figure 5).
 431

432 **Noise Stability Evolution During Training** By observing the noisy sparse parity task, we find
 433 that a Transformer’s noise stability naturally decreases during training to match the target function,
 434 serving as a leading indicator of generalization (Appendix J.2).
 435

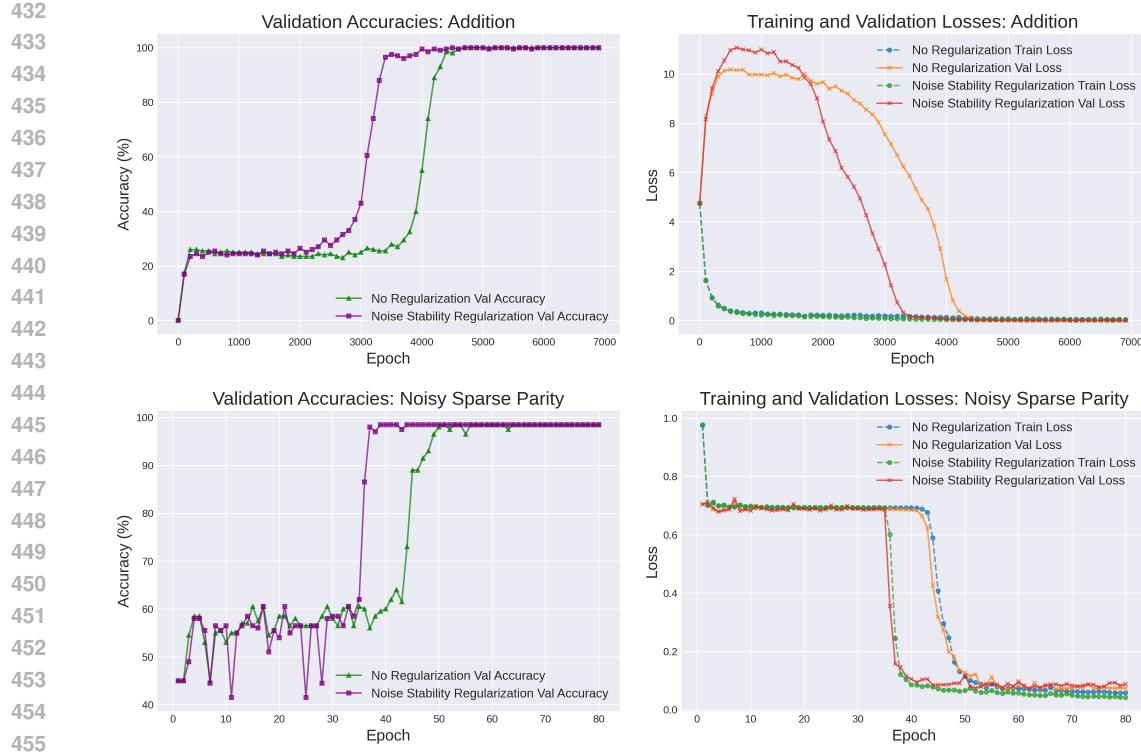


Figure 5: Noise Stability Regularization accelerates training.

6.1 NON-SYNTHETIC EXPERIMENTS ON LANGUAGE GENERATION

We also tested noise stability regularization for the task of next-token-prediction on *WikiText-2-v1* (Appendix J.3). We observed that regularized training reaches high validation accuracy in $\approx 75\%$ fewer iterations (Figure 6). The noise stability of the regularized model notably stays high, while non-regularized models become increasingly unstable.

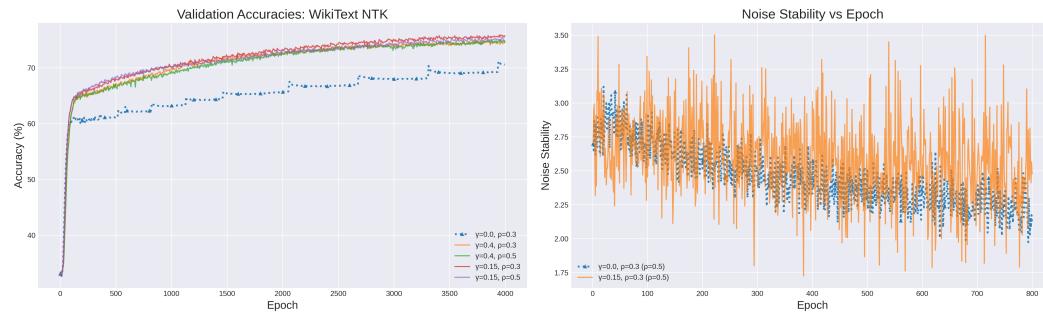


Figure 6: Noise Stability Regularization for Next-Token-Prediction (NTK) on WikiText-2

7 CONCLUSION

In this work, we introduced *noise stability* as a measure of simplicity bias in Transformers, arguing theoretically and empirically that it better explains the spectral concentration observed in LLMs than average sensitivity. We also proposed a noise stability regularizer and found that it unexpectedly catalyzes grokking, offering a potential avenue to accelerate model training. Our findings open several avenues for future research, including demystifying the mechanism of moment propagation in deep networks and understanding the practical limits and theoretical underpinnings of noise stability regularization in LLM settings.

486 REFERENCES
487

488 Adam Andersson and PETER Sjögren. Ornstein-uhlenbeck theory in finite dimension. *Preprint*, 12,
489 2012.

490 Itai Benjamini, David Ellis, Ehud Friedgut, Nathan Keller, and Arnab Sen. Juntas in the ℓ_1 -grid and
491 lipschitz maps between discrete tori. *Random Structures & Algorithms*, 49(2):253–279, 2016.

492

493 Satwik Bhattacharya, Arkil Patel, Varun Kanade, and Phil Blunsom. Simplicity bias in transformers
494 and their ability to learn sparse boolean functions. *arXiv preprint arXiv:2211.12316*, 2022.

495

496 Etienne Boursier and Nicolas Flammarion. Simplicity bias and optimization threshold in two-layer
497 relu networks. *arXiv preprint arXiv:2410.02348*, 2024.

498

499 Raphaël Bouyrie. An unified approach to the junta theorem for discrete and continuous models.
arXiv preprint arXiv:1702.00753, 2017.

500

501 Peijie Chen, Chirag Agarwal, and Anh Nguyen. The shape and simplicity biases of adversarially
502 robust imangenet-trained cnns. *arXiv preprint arXiv:2006.09373*, 2020.

503

504 Xue Chen, Wenxuan Shu, and Zhaienhe Zhou. Algorithms for sparse lpn and lspn against low-noise.
arXiv preprint arXiv:2407.19215, 2024.

505

506 Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks
507 trained with the logistic loss. In *Conference on learning theory*, pp. 1305–1338. PMLR, 2020.

508

509 Melikasadat Emami, Mojtaba Sahraee-Ardakan, Parthe Pandit, Sundeep Rangan, and Alyson K
510 Fletcher. Implicit bias of linear rnns. In *International Conference on Machine Learning*, pp.
2982–2992. PMLR, 2021.

511

512 Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Kumar Ponnuswami. On agnostic
513 learning of parities, monomials, and halfspaces. *SIAM Journal on Computing*, 39(2):606–645,
2009.

514

515 Ehud Friedgut. Boolean functions with low average sensitivity depend on few coordinates. *Combi-*
516 *natorica*, 18(1):27–35, 1998.

517

518 Lazarus Fuchs and Kurt Hensel. *Journal für die reine und angewandte Mathematik*. W. de Gruyter.,
1866.

519

520 Khashayar Gatmiry, Zhiyuan Li, Sashank J Reddi, and Stefanie Jegelka. Simplicity bias via global
521 convergence of sharpness minimization. *arXiv preprint arXiv:2410.16401*, 2024.

522

523 Michael Hahn. Theoretical limitations of self-attention in neural sequence models. *Transactions of
the Association for Computational Linguistics*, 8:156–171, 2020.

524

525 Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? *arXiv preprint
arXiv:2402.09963*, 2024.

526

527 Nathan Keller, Elchanan Mossel, and Arnab Sen. Geometric influences. 2012.

528

529 Nathan Keller, Elchanan Mossel, and Arnab Sen. Geometric influences ii: Correlation inequalities
530 and noise sensitivity. In *Annales de l'IHP Probabilités et statistiques*, volume 50, pp. 1121–1139,
2014.

531

532 Esty Kelman, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Theorems of kkl, friedgut,
533 and talagrand via random restrictions and log-sobolev inequality. In *12th Innovations in The-
534 retical Computer Science Conference (ITCS 2021)*, pp. 26–1. Schloss Dagstuhl–Leibniz-Zentrum
535 für Informatik, 2021.

536

537 Rupert Li and Elchanan Mossel. Noise sensitivity of hierarchical functions and deep learning lower
538 bounds in general product measures. *arXiv preprint arXiv:2502.05073*, 2025.

539

Jiří Matoušek. On variants of the johnson–lindenstrauss lemma. *Random Structures & Algorithms*,
33(2):142–156, 2008.

540 Hancheng Min and René Vidal. Can implicit bias imply adversarial robustness? *arXiv preprint*
 541 *arXiv:2405.15942*, 2024.

542

543 Depen Morwani, Jatin Batra, Prateek Jain, and Praneeth Netrapalli. Simplicity bias in 1-hidden layer
 544 neural networks. *Advances in Neural Information Processing Systems*, 36:8048–8075, 2023.

545 Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures
 546 for grokking via mechanistic interpretability. *arXiv preprint arXiv:2301.05217*, 2023.

547

548 Ryan O’Donnell. Analysis of boolean functions. *arXiv preprint arXiv:2105.10386*, 2021.

549

550 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 551 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International conference*
 552 *on machine learning*, pp. 5301–5310. PMLR, 2019.

553 Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. A distributional simplic-
 554 ity bias in the learning dynamics of transformers. *Advances in Neural Information Processing*
 555 *Systems*, 37:96207–96228, 2024.

556 Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
 557 pitfalls of simplicity bias in neural networks. *Advances in Neural Information Processing Systems*,
 558 33:9573–9585, 2020.

559

560 Damien Teney, Liangze Jiang, Florin Gogianu, and Ehsan Abbasnejad. Do we always need the
 561 simplicity bias? looking for optimal inductive biases in the wild. In *Proceedings of the Computer*
 562 *Vision and Pattern Recognition Conference*, pp. 79–90, 2025.

563 Nikita Tsay and Nikola Konstantinov. Simplicity bias of two-layer networks beyond linearly sepa-
 564 rable data. *arXiv preprint arXiv:2405.17299*, 2024.

565 Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes because the
 566 parameter-function map is biased towards simple functions. *arXiv preprint arXiv:1805.08522*,
 567 2018.

568

569 Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliott Kau, Youqi Huang, and Vatsal Sharan. Simplicity
 570 bias of transformers to learn low sensitivity functions. *arXiv preprint arXiv:2403.06925*, 2024.

571

572 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 573 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 574 *tion processing systems*, 30, 2017.

575 Karl Wimmer. Low influence functions over slices of the boolean hypercube depend on few coordi-
 576 nates. In *2014 IEEE 29th Conference on Computational Complexity (CCC)*, pp. 120–131. IEEE,
 577 2014.

578

579 Oren Wright, Yorie Nakahira, and José MF Moura. An analytic solution to covariance propagation
 580 in neural networks. In *International Conference on Artificial Intelligence and Statistics*, pp. 4087–
 581 4095. PMLR, 2024.

582

583 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 584 language models with attention sinks. *arXiv preprint arXiv:2309.17453*, 2023.

585

586 Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
 587 Fourier analysis sheds light on deep neural networks. *arXiv preprint arXiv:1901.06523*, 2019.

588

589 Greg Yang and Hadi Salman. A fine-grained spectral perspective on neural networks. *arXiv preprint*
 590 *arXiv:1907.10599*, 2019.

591

592 Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in training
 593 linear neural networks. *arXiv preprint arXiv:2010.02501*, 2020.

594

595 Yaoyu Zhang, Zhi-Qin John Xu, Tao Luo, and Zheng Ma. Explicitizing an implicit bias of the
 596 frequency principle in two-layer neural networks. *arXiv preprint arXiv:1905.10264*, 2019.

594	APPENDIX CONTENTS	
595		
596		
597	A Essentials of Boolean Function Analysis	12
598	A.1 Influence and Sensitivity	13
599		
600	B More Experimental Results with Total Influence	14
601		
602		
603	C Basics of Ornstein-Uhlenbeck Theory	14
604	C.1 Hermite Polynomial Basis and its Properties	14
605		
606	C.2 The Ornstein-Uhlenbeck Operator and Semigroup	16
607	C.3 The Mehler Kernel	17
608		
609	C.4 From OU Theory to Stability	19
610		
611	D Proof of Lemma 1	19
612		
613	E Proof of Theorem 5.1	21
614	E.1 Approximating with a quadratic	24
615		
616		
617	F Proof of Theorem 5.2	25
618	F.1 Preliminaries	25
619		
620	F.2 Proving the Theorem	25
621		
622	G Noise Stability Propagation in the Unstructured Case	27
623		
624		
625	H Full Noise Stability Dampening in Multi-Layer Transformers	28
626		
627	I Noise Stability Interval Propagation	29
628		
629	I.1 MLP Stability Under Bonami-Beckner Gaussians	29
630	I.2 Stability Propagation through a single Attention Layer	30
631		
632	J Noise Stability Regularization Experiments	32
633		
634	J.1 Architecture Layout, Hyperparameters and Training Details	32
635	J.2 Evolution of Noise Stability During Training.	33
636		
637	J.3 Experiments on Language Generation	33
638		
639	A ESSENTIALS OF BOOLEAN FUNCTION ANALYSIS	
640		
641		

We now review some basic facts on Boolean Function Analysis. A Boolean function is defined on the hypercube: $f : \{\pm 1\}^n \rightarrow \mathbb{R}$. Therefore, we can think of the space of boolean functions as \mathbb{R}^{2^n} . It is a fundamental fact that every boolean function can be represented *uniquely* as a multilinear polynomial. This is a natural outcome of considering the following set of vectors in \mathbb{R}^{2^n} :

$$B = \left\{ \chi_U(x) = \prod_{i \in U} x_i : U \subseteq [n] \right\}$$

648 For any U, V we have that:
 649

$$650 \quad \langle \chi_U, \chi_V \rangle = 2^n \cdot \mathbb{E}_{x \in \{\pm 1\}^n} [\chi_U(x) \chi_V(x)] = 2^n \prod_{i \in U \Delta V} \mathbb{E}[x_i]$$

$$651$$

$$652$$

653 which is equal to 1 if and only if $U = V$. Thus B is an orthonormal basis for the set of Boolean
 654 functions and so we can conclude the following:

655 **Theorem A.1** (Fourier Expansion of Boolean Functions). *Let $f : \{\pm 1\}^n \rightarrow \mathbb{R}$ be boolean function.
 656 Then we can write f uniquely as a multilinear polynomial Fourier Expansion:*

$$657 \quad f = \sum_{U \subseteq [n]} \hat{f}_U \cdot \chi_U$$

$$658$$

$$659$$

$$660$$

661 where $\hat{f}_U := \langle f, \chi_U \rangle$ are the Fourier Coefficients of f . The degree $\deg(f)$ of f is defined as the
 662 largest cardinality U for which $\hat{f}_U \neq 0$:

$$663 \quad \deg(f) := \max\{|U| : \hat{f}_U \neq 0\}$$

$$664$$

$$665$$

666 A.1 INFLUENCE AND SENSITIVITY

$$667$$

668 Given $f : \{\pm 1\}^n \rightarrow \mathbb{R}$, we define can define its sensitivity by considering fluctuations in its output
 669 when one single bit is pertrubed:

670 **Definition A.2** (Influence). We define the **influence** of a coordinate i as:

$$671$$

$$672 \quad \text{Inf}_i[f] := \mathbb{E}_x \left[\left(\frac{f(x) - f(x^{\oplus i})}{2} \right)^2 \right]$$

$$673$$

$$674$$

675 where $x^{\oplus i}$ is x with the i -th coordinate flipped. Then we define the **total influence** of f as:

$$676$$

$$677 \quad I[f] := \sum_{i=1}^n \text{Inf}_i[f]$$

$$678$$

$$679$$

680 We can often think of total influence as a measure of **average sensitivity**.

$$681$$

682 The following lemma gives us a Fourier representation of influence:

683 **Lemma 2.** *If $f = \sum \hat{f}_S \chi_S$ then:*

$$684$$

$$685 \quad \text{Inf}_i[f] = \sum_{S \ni i} \hat{f}(S)^2 \quad \text{and} \quad I[f] = \sum_{S \subseteq [n]} |S| \cdot \hat{f}(S)^2 = \sum_{k=0}^n k \cdot W^k[f]$$

$$686$$

$$687$$

$$688$$

689 where $W^k[f] = \sum_{|S|=k} \hat{f}(S)^2$.

$$690$$

691 The influence is related to other important quantities about f : its variance and its degree.

$$692$$

693 **Lemma 3** (Poincaré's inequality). *The **variance** of f is:*

$$694$$

$$695 \quad \text{Var}[f] = \mathbb{E}[f^2] - \mathbb{E}[f]^2 = \sum_{S \neq \emptyset} \hat{f}(S)^2$$

$$696$$

$$697$$

698 *It is true that:*

$$699$$

$$699 \quad \text{Var}[f] \leq I[f]$$

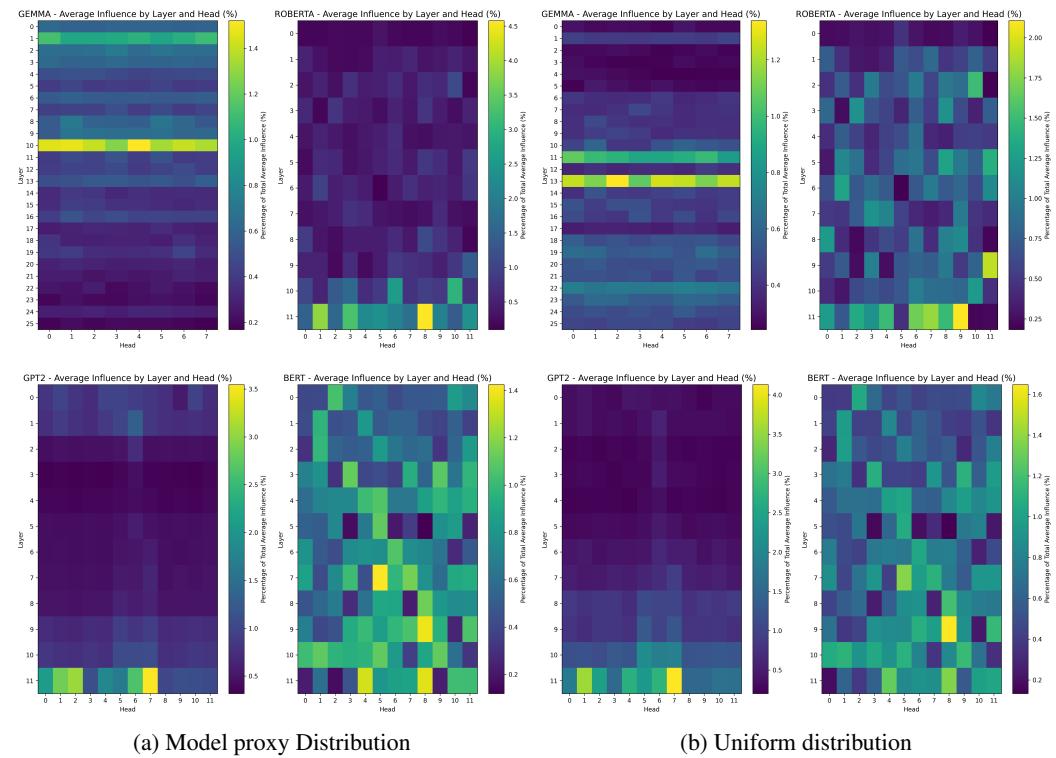
$$700$$

701 The relationship between total influence and degree is very important because it allows us to represent functions with low total influence as low degree polynomials.

702 B MORE EXPERIMENTAL RESULTS WITH TOTAL INFLUENCE 703

704 In this section we provide additional experimental details from examining the total influence of
705 four widely used models: GPT2, GEMMA-2-2B, ROBERTA, and BERT. As before, we run our
706 experiments on $n = 256$ tokens and experiment both with μ being the uniform distribution and the
707 distribution the model learns.

708 We analyze the geometric influence of these models by using forward hooks in Pytorch and col-
709 lecting the gradients with respect to the input embeddings. We analyze positional influence both
710 across layers and different attention heads, finding that in deep Transformers there are often layers
711 with minimal influence towards the output. Such sparsity is an interesting phenomenon that could
712 warrant further investigation.



739 Figure 7: Per Layer Geometric Influence Heatmaps for 4 different models: We observe that
740 GEMMA-2-B has a very influential middle layer, while for ROBERTA and GPT2 the few lay-
741 ers are more influential.

744 C BASICS OF ORNSTEIN-UHLENBECK THEORY 745

746 We provide a self-contained review of the Ornstein-Uhlenbeck (OU) theory, culminating in the
747 derivation of noise stability under the Gaussian measure. We encourage the interested reader to
748 consult the excellent monograph of Andersson & Sjögren (2012) for more details.

751 C.1 HERMITE POLYNOMIAL BASIS AND ITS PROPERTIES

752 The Ornstein-Uhlenbeck theory starts by considering the Gaussian measure $d\gamma(x) = \frac{1}{\pi^{d/2}} e^{-|x|^2} dx$
753 in \mathbb{R}^d . Let $L^2(\gamma)$ be the space of square-integrable functions with respect to this measure. Then, the
754 *Physicist's Hermite Polynomials* turn out to be an invaluable way to spectrally decompose functions
755 in this space.

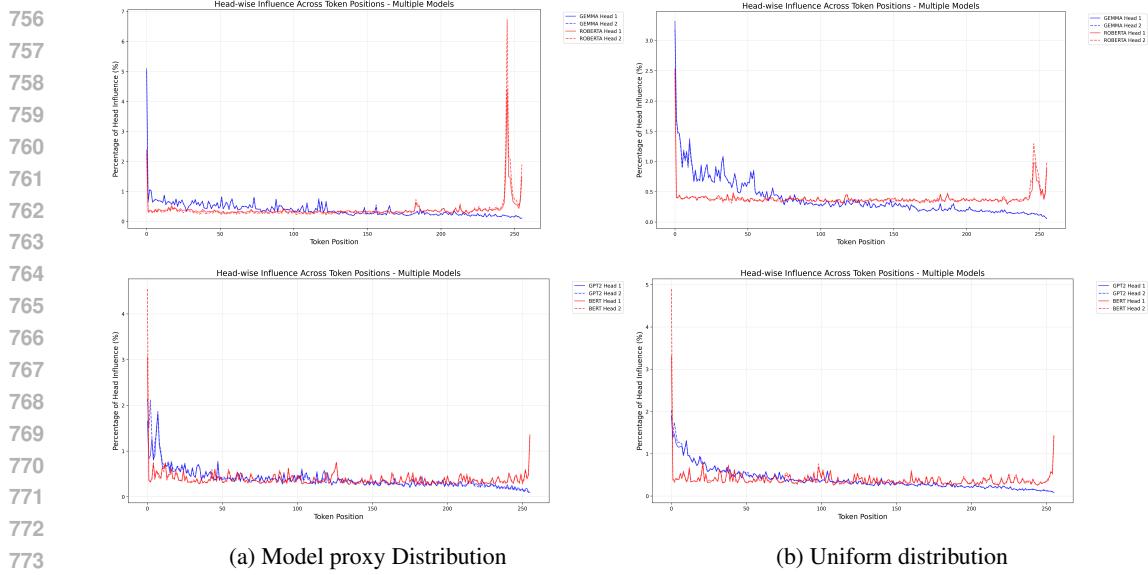


Figure 8: Geometric Influence Plots for two attention heads in 4 different models. We again observe a junta-like spectral concentration phenomenon in every model. The first and last token positions are consistently the most influential.

Definition C.1 (Physicist’s Hermite Polynomials). We define $H_0 = 1$ and:

$$H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

Some important properties of H_n are captured by the Lemma below:

Lemma 4 (Properties of H_n). *The following identities hold:*

$$\begin{aligned} \frac{d}{dx} H_n(x) &= 2nH_{n-1}(x) \\ H_{n+1}(x) &= 2xH_n(x) - 2nH_{n-1}(x) \end{aligned}$$

Also $H_n(x)$ is a degree n polynomial with leading coefficient 2^n .

Proof. Let $D = \frac{d}{dx}$. We have by the product rule that:

$$DH_n(x) = (-1)^n e^{x^2} 2x D^n e^{-x^2} + (-1)^n e^{x^2} D(D^n e^{-x^2})$$

Then the generalized Leibniz formula gives:

$$DH_n(x) = (-1)^n e^{x^2} 2x D^n e^{-x^2} + (-1)^n e^{x^2} \sum_{k=0}^n \binom{n}{k} D^k (-2x) \cdot D^{n-k} e^{-x^2}$$

Only the terms where $k = 0, 1$ are non-zero, so we have:

$$DH_n(x) = (-1)^n e^{x^2} 2x D^n e^{-x^2} + (-1)^n e^{x^2} (-2x D^n e^{-x^2} + (-2)n D^{n-1} e^{-x^2}) = 2nH_{n-1}(x)$$

Now, again by expanding $DH_n(x)$ we get:

$$\begin{aligned} DH_n(x) &= (-1)^n e^{x^2} \frac{d^{n+1}}{dx^{n+1}} e^{-x^2} + (-1)^n e^{x^2} 2x \frac{d^n}{dx^n} e^{-x^2} \\ &= -H_{n+1}(x) + 2xH_n(x) \end{aligned}$$

And this gives:

$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x)$$

This allows us, by simple induction, to show that the leading coefficient of $H_n(x)$ is equal to 2^n . \square

810 The most important statement in the Ornstein-Uhlenbeck theory is the following theorem:
 811

812 **Theorem C.2** (Hermite Orthogonal Basis). *The set $B = \{H_n\}_{n=0}^{\infty}$ forms a complete orthogonal
 813 basis of $L^2(\gamma)$ with $\|H_n\|_{L^2(\gamma)} = 2^{n/2}\sqrt{n!}$. This motivates the definition and occasional use of the
 814 normalized Hermite basis:*

$$815 \quad h_n(x) = \frac{1}{\sqrt{2^n n!}} H_n(x)$$

816 which is orthonormal in $L^2(\gamma)$.
 817

818 *Proof.* To establish orthogonality, we have by repeated integration by parts that:
 819

$$820 \quad \int_{-\infty}^{\infty} H_n(x) H_m(x) d\gamma(x) = \frac{(-1)^n}{\sqrt{\pi}} H_m(x) e^{x^2} (D^n e^{-x^2}) e^{-x^2} dx \\ 821 \\ 822 = \frac{(-1)^n}{\sqrt{\pi}} \int_{-\infty}^{\infty} H_m(x) \cdot D^n (e^{-x^2}) dx \\ 823 \\ 824 = \frac{(-1)^n}{\sqrt{\pi}} \int_{-\infty}^{\infty} D^n H_m(x) e^{-x^2} dx \\ 825$$

826 If $m < n$ then $D^n H_m(x) = 0$ and that gives orthogonality. For $m = n$, because the leading
 827 coefficient is 2^n we have:
 828

$$829 \quad \|H_n\|_{L^2(\gamma)} = 2^{n/2}\sqrt{n!}$$

830 as desired.

831 Finally, we have to establish completeness. Recall from analysis that completeness means for every
 832 $f \in L^2(\gamma)$ and every $\varepsilon > 0$ there must exist some $g \in \text{span}(B)$ such that $\|f - g\|_{L^2(\gamma)} \leq \varepsilon$. In
 833 other words, we seek to show that the linear span of B is dense in $L^2(\gamma)$, or, in even different words,
 834 that the closure of the linear span is the whole space $L^2(\gamma)$. It suffices to show that if $f \in L^2(\gamma)$ is
 835 such that $\langle f, H_n \rangle = 0$ for all $n \in \mathbb{N}$ then $f = 0$. To see this, let us consider the spectral expansion
 836 of f with the following coefficients:

$$837 \quad \hat{f}(n) := \int f(x) H_n(x) d\gamma(x) = 0$$

838 By Parseval's identity, we have that:

$$839 \quad \|f\|^2 = \sum_{n=0}^{\infty} \frac{|\hat{f}(n)|^2}{2^n n!} = 0$$

840 And thus $f = 0$, which concludes the proof. □
 841

842 When considering $d > 1$, we define the Hermite basis as a tensor product over multi-indices:
 843

$$844 \quad H_a(x) = \prod_{i=1}^d H_{a_i}(x), a \in \mathbb{N}^d$$

845 The same theorem about orthogonality and completeness holds in high dimensions as well.
 846

847 C.2 THE ORNSTEIN-UHLENBECK OPERATOR AND SEMIGROUP

848 Next, we will define the Ornstein-Uhlenbeck operator. This operator is an analog to the Laplacian
 849 in the $L^2(\gamma)$ space. It uses the *adjoint*⁴ of the partial derivative operator $\partial_i := \frac{\partial}{\partial x_i}$:

$$850 \quad \langle \partial_i f, g \rangle = \frac{1}{\pi^{d/2}} \int_{-\infty}^{\infty} \partial_i f(x) g(x) e^{-|x|^2} dx \\ 851 \\ 852 = \frac{1}{\pi^{d/2}} \int_{-\infty}^{\infty} f(x) [2x_i g(x) - \partial_i g(x)] e^{-|x|^2} dx \quad (\text{Integration by parts}) \\ 853 \\ 854 = \langle f, (2x_i - \partial_i) g \rangle_{L^2(\gamma)}$$

855 Thus we arrive at the following definition:
 856

857 ⁴Recall the adjoint of a linear operator is an operator that moves to the other side of the inner product:
 858 $\langle Tx, y \rangle = \langle x, T^*y \rangle$.
 859

864 **Definition C.3** (Ornstein-Uhlenbeck Operator). The **OU Operator** is defined as:
 865

$$866 \quad 867 \quad L = \frac{1}{2} \sum_{i=1}^d \partial_i^* \partial_i = -\frac{1}{2} \nabla + x \Delta \\ 868$$

869 This operator is symmetric and positive and it has the wonderful property that the Hermite basis are
 870 actually its eigenfunctions:
 871

872 **Theorem C.4** (Eigenfunctions of the OU operator). *The set $\{H_n\}_{n=0}^{\infty}$ are eigenfunctions of L :*

$$873 \quad LH_{\alpha} = |a|H_{\alpha} \\ 874$$

$$875 \quad 876 \quad \text{where } |a| = \sum_{i=1}^d \alpha_i \\ 877$$

878 *Proof.* Consider $d = 1$. We have for $j \neq n$:

$$879 \quad \langle D^* H_{n-1}, H_j \rangle = 2j \langle H_{n-1}, H_{j-1} \rangle = 0 \\ 880$$

881 And if $j = n$ we have $\langle D^* H_{n-1}, H_n \rangle = 2nn!$, so $D^* H_{n-1} = H_n$. Thus we have showed that:

$$882 \quad D^* H_{\alpha-e_i} = H_{\alpha} \\ 883$$

884 for all $d \geq 1$ and $i \in [d]$. So we know how the adjoint partial operator acts on the Hermite
 885 polynomials. Thus, we can figure out how the OU operator acts on H_{α} :

$$886 \quad LH_{\alpha} = \frac{1}{2} \sum_{i=1}^d \partial_i^* \partial_i H_{\alpha} = \frac{1}{2} \sum_{i=1}^d \partial_i^* 2\alpha_i H_{\alpha-e_i} = \sum_{i=1}^d \alpha_i H_{\alpha} = |a|H_{\alpha} \\ 887 \\ 888$$

889 as claimed. □
 890

891 Now we can define the OU Semigroup. A semigroup is a sequence of operators T_t that describe the
 892 evolution of a process such that $T_0 = I$ and $T(t+s) = T(t) \cdot T(s)$ ⁵
 893

894 **Definition C.5** (The OU Semigroup). The **OU Semigroup** is defined as:

$$895 \quad (T_t)_{t \geq 0} = e^{-tL} \\ 896$$

897 where if $f = \sum_{\alpha} \hat{f}(\alpha) H_{\alpha}$, T_t acts on f as:

$$898 \quad e^{-tL} f = \sum_{\alpha \in \mathbb{N}^d} e^{-t|\alpha|} \hat{f}(\alpha) H_{\alpha} \\ 899 \\ 900$$

901 C.3 THE MEHLER KERNEL

902 It is easy to verify that (T_t) is indeed a semigroup. A very useful tool for us to analyze properties
 903 of certain semigroups is **kernels**. If a semigroup is written via a kernel it will be very easy to prove
 904 powerful properties on it. A kernel is just the analogs of matrix multiplication. When operator T
 905 acts on function f , imagine there being some kind of function $K(x, y)$ that for each $f(y)$ tells us
 906 how much that value “contributes” to $Tf(x)$:

$$907 \quad Tf(x) = \int_{\mathbb{R}^d} K(x, y) f(y) dy \\ 908$$

909 We want to find a kernel for the OU semigroup:
 910

$$911 \quad T_t f(x) = \int_{\mathbb{R}^d} M_t^{\gamma}(x, y) f(y) d\gamma(y) \\ 912$$

913 Mehler already found this kernel (Fuchs & Hensel, 1866) in 1866!

914 ⁵Technically there are also some analytic continuity requirements, but we will not dive into them here.
 915 Please refer to (Andersson & Sjögren, 2012) for more details.

918 **Theorem C.6** (The Mehler Kernel). *The Kernel for the OU semigroup is:*

$$919 \quad M_t^\gamma(x, y) = \sum_{\alpha \in \mathbb{N}^d} e^{-t|\alpha|} h_\alpha(x) h_\alpha(y)$$

920 *Proof.* We shall just verify this. Choose some β and see how the kernel acts on H_β :

$$921 \quad \int_{y \in \mathbb{R}^d} \sum_{|\alpha| < N} e^{-t|\alpha|} h_\alpha(x) h_\alpha(y) H_\beta(y) d\gamma(y) = \sum_{|\alpha| < N} e^{-t|\alpha|} h_\alpha(x) \int_{y \in \mathbb{R}^d} h_\alpha(y) H_\beta(y) d\gamma(y)$$

$$922 \quad = e^{-t|\beta|} \langle h_\beta, H_\beta \rangle h_\beta(y) \quad (\text{only } \alpha = \beta \text{ survives})$$

$$923 \quad = e^{-t|\beta|} \|H_\beta\| h_\beta(x)$$

$$924 \quad = T_t H_\beta$$

925 Now take $N \rightarrow \infty$ and we arrive at the correct result. \square

926 The Mehler kernel has a really nice analytical expression. Starting from $H_n(y) = (-1)^n e^{-y^2} D^n e^{-y^2}$ and considering the Fourier Transform of the Gaussian: $\mathcal{F}(e^{-\xi^2})(x) = \sqrt{\pi} e^{-x^2/4}$ we have:

$$927 \quad H_n(y) = (-1)^n e^{y^2} \frac{2^n i^n}{\sqrt{\pi}} \int_{-\infty}^{\infty} \xi^n e^{2iy\xi - \xi^2} d\xi$$

928 And so the Mehler kernel can be written⁶ as:

$$929 \quad M_t^\gamma(x, y) = \sum_{n=0}^{\infty} e^{-tn} h_n(x) h_n(y)$$

$$930 \quad = \sum_{n=0}^{\infty} e^{-tn} h_n(x) (-1)^n e^{y^2} \frac{2^n i^n}{\sqrt{\pi}} \int_{-\infty}^{\infty} \xi^n e^{2iy\xi - \xi^2} d\xi$$

$$931 \quad = \frac{e^{y^2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} \sum_{n=0}^{\infty} \frac{1}{n!} (-i\xi e^{-t})^n H_n(x) e^{2iy\xi - \xi^2} d\xi \quad (\text{Switch } \sum \text{ and } \int)$$

$$932 \quad = \frac{e^{y^2}}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{2i\xi(y - e^{-t}x) - \xi^2(1 - e^{-2t})} d\xi$$

933 Letting $\xi' = \xi\sqrt{1 - e^{-2t}}$ and taking the inverse Fourier Transform we get that:

$$934 \quad M_t^\gamma(x, y) = \frac{1}{\sqrt{\pi}} \frac{e^{y^2}}{\sqrt{1 - e^{-2t}}} \int_{-\infty}^{\infty} e^{2i\xi' \frac{y - e^{-t}x}{\sqrt{1 - e^{-2t}}} - |\xi'|^2} d\xi$$

935 And this brings us to the following important theorem:

936 **Theorem C.7** (Analytical form of Mehler's Kernel). *We have that:*

$$937 \quad M_t^\gamma(x, y) = \frac{1}{\pi^{d/2} (1 - e^{-2t})^{d/2}} e^{-\frac{|y - e^{-t}x|^2}{1 - e^{-2t}}}$$

938 Some important consequences of this treatment is the easy, via Hölder's inequality, proof of the
939 non-expansiveness of T_t :

940 **Lemma 5** (Non-expansiveness of OU operator). *For any $p \geq 1$ we have that:*

$$941 \quad \|T_t\|_{L^p(\gamma)}^p \leq \|T_t|f|^p\|_{L^p(\gamma)} \leq \|f\|_{L^p(\gamma)}^p$$

942 We also easily get *Mehler's formula*, which will be the starting point in our stability argument. Just
943 perform the change of variables

$$944 \quad z = \frac{y - e^{-t}x}{\sqrt{1 - e^{-2t}}}$$

945 ⁶Formally, we also need to justify why switching infinite summation and integration is possible by using
946 dominated convergence, but we will skip this here.

972 to get:

$$973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000 \quad 1001 \quad 1002 \quad 1003 \quad 1004 \quad 1005 \quad 1006 \quad 1007 \quad 1008 \quad 1009 \quad 1010 \quad 1011 \quad 1012 \quad 1013 \quad 1014 \quad 1015 \quad 1016 \quad 1017 \quad 1018 \quad 1019 \quad 1020 \quad 1021 \quad 1022 \quad 1023 \quad 1024 \quad 1025$$

$$T_t f(X) = \int f(\rho X + Z\sqrt{1-\rho^2}) d\gamma(Z)$$

where $\rho := e^{-t}$ for $t \geq 0$. In other words,

$$T_t f(X) = \mathbb{E}_{Z \sim \mathcal{N}(0,1)}[f(\rho X + Z\sqrt{1-\rho^2})]$$

which allows us to view T_t as the expected outcome of a random process: take X , add some noise to it to get $Y = \rho X + Z\sqrt{1-\rho^2}$ and see the expected value of $f(Y)$.

C.4 FROM OU THEORY TO STABILITY

We are finally ready to define stability in familiar terms:

Definition C.8 (Gaussian Noise Stability). Let $f \in L^2(\gamma)$ and $X \sim \gamma^n$ where $\gamma \equiv \mathcal{N}(0, 1)$. Let $\rho \in (0, 1)$ and $Y = \rho X + Z\sqrt{1-\rho^2}$ for $Z \sim \mathcal{N}(0, I_n)$ independent from X . We define the stability of f as:

$$\text{Stab}_\rho(f) := \mathbb{E}_{(X,Y)}[f(X)f(Y)]$$

We note the immediate connection between stability and the OU semigroup:

$$\text{Stab}_\rho(f) = \langle T_\rho f, f \rangle_{L^2(\gamma)}$$

Now we know from the spectral expansion of the OU Semigroup action that:

$$T_\rho f = \sum_{\alpha \in \mathbb{N}^d} \rho^{|\alpha|} \hat{f}(\alpha) H_\alpha$$

By orthogonality of the Hermite polynomials we have:

$$\text{Stab}_\rho(f) = \left\langle \sum_{\alpha \in \mathbb{N}^d} \rho^{|\alpha|} \hat{f}(\alpha) H_\alpha, \sum_{\alpha \in \mathbb{N}^d} \rho^{|\alpha|} \hat{f}(\alpha) H_\alpha \right\rangle = \sum_{\alpha \in \mathbb{N}^d} \rho^{|\alpha|} 2^{|\alpha|} \cdot \alpha! \cdot \hat{f}(\alpha)^2$$

If we define $\tilde{f}(a) = \sqrt{2^{|\alpha|} \alpha!} \hat{f}(\alpha)$ we finally get:

$$\text{Stab}_\rho(f) = \sum_{\alpha \in \mathbb{N}^d} \rho^{|\alpha|} \tilde{f}(\alpha)^2$$

D PROOF OF LEMMA 1

Lemma 6 (Spectral tail bound via stability). Let $f \in L^2(\gamma^n)$ be a square-integrable function under the standard Gaussian measure γ^n . Suppose that

$$\text{Stab}_\rho(f) := \mathbb{E}[f(X)f(Y)] \geq (1 - \delta) \|f\|_2^2$$

for some $\rho \in (0, 1)$ and $0 < \delta < \varepsilon < 1$, where (X, Y) are standard Gaussian vectors with correlation ρ , i.e., $Y = \rho X + \sqrt{1-\rho^2}Z$ for $Z \sim \gamma^n$ independent of X .

Then f is (ε, T) -concentrated for

$$T \geq \frac{\log(1 - \delta/\varepsilon)}{\log \rho}$$

in the sense that:

$$\sum_{k \geq T} \sum_{|\alpha|=k} \hat{f}(\alpha)^2 \cdot 2^{|\alpha|} \alpha! \leq \varepsilon \|f\|_2^2$$

where $f(x) = \sum_{\alpha \in \mathbb{N}^n} \hat{f}(\alpha) H_\alpha(x)$ is the expansion of f in the multivariate physicists' Hermite polynomial basis.

1026 *Proof.* Let us write the Hermite expansion of f as
 1027

$$1028 \quad f(x) = \sum_{\alpha \in \mathbb{N}^n} \hat{f}(\alpha) H_\alpha(x)$$

1030 where $H_\alpha(x) = \prod_{i=1}^n H_{\alpha_i}(x_i)$, and H_k is the physicists' Hermite polynomial of degree k . The
 1031 Hermite polynomials are orthogonal in $L^2(\gamma^n)$ with squared norm $\|H_\alpha\|^2 = 2^{|\alpha|} \alpha!$
 1032

1033 Parseval's identity in this basis reads:

$$1034 \quad \|f\|_2^2 = \sum_{\alpha} \hat{f}(\alpha)^2 \cdot 2^{|\alpha|} \alpha!$$

1036 We define the Hermite level- k weight of f as:

$$1038 \quad W^{(k)}f := \sum_{|\alpha|=k} \hat{f}(\alpha)^2 \cdot 2^{|\alpha|} \alpha!$$

1040 With this notation, Parseval's identity is simply $\|f\|_2^2 = \sum_{k=0}^{\infty} W^{(k)}f$.
 1041

1042 The Ornstein–Uhlenbeck semigroup T_ρ acts on the Hermite expansion by

$$1044 \quad T_\rho f(x) = \sum_{\alpha} \rho^{|\alpha|} \hat{f}(\alpha) H_\alpha(x)$$

1046 The noise stability can therefore be written as:

$$\begin{aligned} 1047 \quad \text{Stab}_\rho(f) &= \langle f, T_\rho f \rangle \\ 1048 &= \sum_{\alpha} \rho^{|\alpha|} \hat{f}(\alpha)^2 \cdot 2^{|\alpha|} \alpha! \\ 1049 &= \sum_{k=0}^{\infty} \rho^k W^{(k)}f \end{aligned}$$

1053 Fix a threshold $T \in \mathbb{N}$. We can split the sum at degree T :

$$1055 \quad \text{Stab}_\rho(f) = \sum_{k < T} \rho^k W^{(k)}f + \sum_{k \geq T} \rho^k W^{(k)}f$$

1057 Since $\rho \in (0, 1)$, we can upper-bound the terms in the sums by $\rho^k \leq 1$ for $k < T$ and $\rho^k \leq \rho^T$ for
 1058 $k \geq T$. This gives:

$$\begin{aligned} 1060 \quad \text{Stab}_\rho(f) &\leq \sum_{k < T} W^{(k)}f + \rho^T \sum_{k \geq T} W^{(k)}f \\ 1061 &= \left(\|f\|_2^2 - \sum_{k \geq T} W^{(k)}f \right) + \rho^T \sum_{k \geq T} W^{(k)}f \\ 1062 &= \|f\|_2^2 - (1 - \rho^T) \sum_{k \geq T} W^{(k)}f \end{aligned}$$

1068 Rearranging the inequality to isolate the tail sum, we have:

$$1069 \quad \sum_{k \geq T} W^{(k)}f \leq \frac{\|f\|_2^2 - \text{Stab}_\rho(f)}{1 - \rho^T}$$

1073 Using the assumption that $\text{Stab}_\rho(f) \geq (1 - \delta) \|f\|_2^2$, we can further bound the numerator:

$$1074 \quad \sum_{k \geq T} W^{(k)}f \leq \frac{\|f\|_2^2 - (1 - \delta) \|f\|_2^2}{1 - \rho^T} = \frac{\delta \|f\|_2^2}{1 - \rho^T}$$

1077 To ensure this tail sum is at most $\varepsilon \|f\|_2^2$, it suffices to have:

$$1079 \quad \frac{\delta \|f\|_2^2}{1 - \rho^T} \leq \varepsilon \|f\|_2^2$$

1080 Assuming f is not the zero function, we can cancel $\|f\|_2^2$ and solve for T :
 1081

$$1082 \quad T \log \rho \leq \log \left(1 - \frac{\delta}{\varepsilon}\right)$$

$$1085 \quad T \geq \frac{\log(1 - \delta/\varepsilon)}{\log \rho}$$

1087 This bound is well-defined provided the argument of the logarithm is positive, which holds due to
 1088 the assumption that $\delta < \varepsilon$. \square
 1089

1090 E PROOF OF THEOREM 5.1

1093 **Theorem E.1** (Stability of ReLU). *Let $(X, Y) \sim \mathcal{N} \left(0, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}\right)$ for $\rho \in (-1, 1)$. Then:*

$$1095 \quad \mathbb{E}[\text{ReLU}(X)\text{ReLU}(Y)] = \frac{1}{2\pi} \left(\sqrt{1 - \rho^2} + \rho(\pi - \arccos \rho) \right)$$

1098 *Proof.* We compute the expectation:
 1099

$$1100 \quad I(\rho) := \mathbb{E}[\text{ReLU}(X)\text{ReLU}(Y)] = \mathbb{E}[\max(0, X)\max(0, Y)].$$

1102 The joint density function of (X, Y) is
 1103

$$1104 \quad f(x, y) = \frac{1}{2\pi\sqrt{1 - \rho^2}} \exp\left(-\frac{x^2 - 2\rho xy + y^2}{2(1 - \rho^2)}\right).$$

1107 Thus, we can compute:
 1108

$$1109 \quad I(\rho) = \int_0^\infty \int_0^\infty xy \cdot f(x, y) dy dx.$$

1111 We perform a change to polar coordinates $x = r \cos \theta$, $y = r \sin \theta$, $r \in [0, \infty)$, $\theta \in [0, \pi/2]$ so
 1112 that $x, y \geq 0$. Then the Jacobian is $dx dy = r dr d\theta$ and the exponent becomes:
 1113

$$1114 \quad \frac{x^2 - 2\rho xy + y^2}{2(1 - \rho^2)} = \frac{r^2(\cos^2 \theta - 2\rho \cos \theta \sin \theta + \sin^2 \theta)}{2(1 - \rho^2)} \quad (\text{Substitute polar coordinates})$$

$$1115 \quad = \frac{r^2(1 - \rho \sin(2\theta))}{2(1 - \rho^2)} \quad (\sin(2\theta) = 2 \sin \theta \cos \theta)$$

1119 So the integral becomes:
 1120

$$1121 \quad I(\rho) = \int_0^{\pi/2} \int_0^\infty r^2 \cos \theta \sin \theta \cdot \frac{1}{2\pi\sqrt{1 - \rho^2}} \exp\left(-\frac{r^2(1 - \rho \sin(2\theta))}{2(1 - \rho^2)}\right) r dr d\theta$$

$$1122 \quad = \frac{1}{2\pi\sqrt{1 - \rho^2}} \int_0^{\pi/2} \cos \theta \sin \theta \int_0^\infty r^3 \exp\left(-\frac{r^2(1 - \rho \sin(2\theta))}{2(1 - \rho^2)}\right) dr d\theta.$$

1126 Now let

$$1128 \quad a(\theta) = \frac{1 - \rho \sin(2\theta)}{2(1 - \rho^2)}.$$

1131 Use the substitution $u = r^2 \Rightarrow du = 2r dr$, so:

$$1132 \quad \int_0^\infty r^3 e^{-a(\theta)r^2} dr = \frac{1}{2} \int_0^\infty u e^{-a(\theta)u} du = \frac{1}{2} \cdot \frac{1}{a(\theta)^2} \quad (\text{Standard integral: } \int_0^\infty u e^{-au} du = \frac{1}{a^2})$$

1134 So we obtain:
 1135

$$\begin{aligned} 1136 \quad I(\rho) &= \frac{1}{2\pi\sqrt{1-\rho^2}} \int_0^{\pi/2} \cos\theta \sin\theta \cdot \frac{1}{2a(\theta)^2} d\theta \\ 1137 \\ 1138 \quad &= \frac{1}{4\pi\sqrt{1-\rho^2}} \int_0^{\pi/2} \frac{\cos\theta \sin\theta}{a(\theta)^2} d\theta. \\ 1139 \\ 1140 \\ 1141 \end{aligned}$$

1142 Now recall that:

$$\begin{aligned} 1143 \quad a(\theta) &= \frac{1 - \rho \sin(2\theta)}{2(1 - \rho^2)} \Rightarrow a(\theta)^2 = \frac{(1 - \rho \sin(2\theta))^2}{4(1 - \rho^2)^2} \\ 1144 \\ 1145 \end{aligned}$$

1146 So:
 1147

$$\begin{aligned} 1148 \quad \frac{1}{a(\theta)^2} &= \frac{4(1 - \rho^2)^2}{(1 - \rho \sin(2\theta))^2} \\ 1149 \\ 1150 \end{aligned}$$

1151 Plugging in:
 1152

$$\begin{aligned} 1153 \quad I(\rho) &= \frac{1}{4\pi\sqrt{1-\rho^2}} \int_0^{\pi/2} \cos\theta \sin\theta \cdot \frac{4(1 - \rho^2)^2}{(1 - \rho \sin(2\theta))^2} d\theta \\ 1154 \\ 1155 \quad &= \frac{(1 - \rho^2)^{3/2}}{\pi} \int_0^{\pi/2} \frac{\cos\theta \sin\theta}{(1 - \rho \sin(2\theta))^2} d\theta. \\ 1156 \\ 1157 \\ 1158 \end{aligned}$$

1159 Now make the substitution $u = \tan\theta$, so:

$$\begin{aligned} 1160 \quad \sin(2\theta) &= \frac{2u}{1+u^2}, \quad \cos\theta \sin\theta d\theta = \frac{u}{(1+u^2)^2} du \\ 1161 \\ 1162 \end{aligned}$$

1163 Thus:
 1164

$$\begin{aligned} 1165 \quad \int_0^{\pi/2} \frac{\cos\theta \sin\theta}{(1 - \rho \sin(2\theta))^2} d\theta &= \int_0^\infty \frac{u}{(1+u^2)^2 \left(1 - \rho \cdot \frac{2u}{1+u^2}\right)^2} du = \int_0^\infty \frac{u}{(u^2 + 1 - 2\rho u)^2} du. \\ 1166 \\ 1167 \\ 1168 \end{aligned}$$

1169 This integral can be evaluated by completing the square:
 1170

$$1171 \quad u^2 - 2\rho u + 1 = (u - \rho)^2 + (1 - \rho^2)$$

1172 So, now consider the integral
 1173

$$\begin{aligned} 1174 \quad I &:= \int_0^\infty \frac{u}{((u - \rho)^2 + (1 - \rho^2))^2} du, \\ 1175 \\ 1176 \\ 1177 \end{aligned}$$

1178 where we define
 1179

$$a := \sqrt{1 - \rho^2}.$$

1180

1181 We rewrite the numerator as
 1182

$$\begin{aligned} 1183 \quad I &= \int_0^\infty \frac{(u - \rho) + \rho}{((u - \rho)^2 + a^2)^2} du \\ 1184 \\ 1185 \quad &= \int_0^\infty \frac{u - \rho}{((u - \rho)^2 + a^2)^2} du + \rho \int_0^\infty \frac{1}{((u - \rho)^2 + a^2)^2} du \\ 1186 \\ 1187 \quad &= I_1 + \rho I_2. \end{aligned}$$

1188 **Integral I_1 :** Substitute $v = u - \rho$, then $du = dv$, and the integration limits become $v = -\rho$ to ∞ :

1189

$$1190 \quad I_1 = \int_{-\rho}^{\infty} \frac{v}{(v^2 + a^2)^2} dv.$$

1191

1192 Using the antiderivative

1193

$$1194 \quad \frac{d}{dv} \left(\frac{1}{v^2 + a^2} \right) = -\frac{2v}{(v^2 + a^2)^2},$$

1195

we have

1196

$$1197 \quad \int \frac{v}{(v^2 + a^2)^2} dv = -\frac{1}{2(v^2 + a^2)} + C.$$

1198

Evaluating at the limits:

1200

$$1201 \quad I_1 = \left[-\frac{1}{2(v^2 + a^2)} \right]_{v=-\rho}^{v \rightarrow \infty} = \lim_{M \rightarrow \infty} \left(-\frac{1}{2(M^2 + a^2)} + \frac{1}{2(\rho^2 + a^2)} \right)$$

1202

$$1203 \quad = 0 + \frac{1}{2(\rho^2 + a^2)} = \frac{1}{2 \cdot 1} = \frac{1}{2},$$

1204

since $\rho^2 + a^2 = \rho^2 + (1 - \rho^2) = 1$.

1206 **Integral I_2 :** Again substitute $v = u - \rho$, so

1207

$$1208 \quad I_2 = \int_{-\rho}^{\infty} \frac{1}{(v^2 + a^2)^2} dv.$$

1209

1210 The antiderivative is known:

1211

$$1212 \quad \int \frac{dv}{(v^2 + a^2)^2} = \frac{v}{2a^2(v^2 + a^2)} + \frac{1}{2a^3} \arctan\left(\frac{v}{a}\right) + C.$$

1213

Evaluating at the limits:

1215

$$1216 \quad I_2 = \lim_{M \rightarrow \infty} \left(\frac{M}{2a^2(M^2 + a^2)} + \frac{1}{2a^3} \arctan\left(\frac{M}{a}\right) \right)$$

1217

$$1218 \quad - \left(\frac{-\rho}{2a^2(\rho^2 + a^2)} + \frac{1}{2a^3} \arctan\left(\frac{-\rho}{a}\right) \right).$$

1219

1220 Since

1221

$$1222 \quad \lim_{M \rightarrow \infty} \frac{M}{2a^2(M^2 + a^2)} = 0, \quad \text{and} \quad \lim_{M \rightarrow \infty} \arctan\left(\frac{M}{a}\right) = \frac{\pi}{2},$$

1223

we get

1224

$$1225 \quad I_2 = \frac{\pi}{4a^3} + \frac{\rho}{2a^2} - \frac{1}{2a^3} \arctan\left(-\frac{\rho}{a}\right).$$

1226 Using the oddness of arctangent,

1227

$$1228 \quad \arctan(-x) = -\arctan(x),$$

we rewrite

1229

$$1230 \quad I_2 = \frac{\pi}{4a^3} + \frac{\rho}{2a^2} + \frac{1}{2a^3} \arctan\left(\frac{\rho}{a}\right).$$

1231

1232 **Combining I_1 and I_2 :**

1233

$$1234 \quad I = I_1 + \rho I_2 = \frac{1}{2} + \rho \left(\frac{\pi}{4a^3} + \frac{\rho}{2a^2} + \frac{1}{2a^3} \arctan\left(\frac{\rho}{a}\right) \right).$$

1235

Finally, recall the trigonometric identity:

1236

$$1237 \quad \arctan\left(\frac{\rho}{a}\right) = \frac{\pi}{2} - \arccos \rho,$$

1238

1239 which allows for the final form after multiplying back by the outer constant $(1 - \rho^2)^{3/2}/\pi$, we get:

1240

$$1241 \quad \mathbb{E}[\text{ReLU}(X)\text{ReLU}(Y)] = \frac{1}{2\pi} \left(\sqrt{1 - \rho^2} + \rho(\pi - \arccos \rho) \right).$$

□

1242 E.1 APPROXIMATING WITH A QUADRATIC
12431244 The expression we gave above for the stability propagation is hard to evaluate. We can approximate
1245 it with a quadratic really well:1246 **Lemma 7** (Quadratic Approximation of $f(\rho)$). *Define the function*
1247

1248
$$s(\rho) := \frac{1}{2\pi} \left(\sqrt{1 - \rho^2} + \rho(\pi - \arccos \rho) \right)$$

1249

1250 for $\rho \in (-1, 1)$. Then the quadratic approximation of s around $\rho = 0$ is
1251

1252
$$s(\rho) = \frac{1}{2\pi} + \frac{1}{4}\rho + \frac{1}{4\pi}\rho^2 + o(\rho^2).$$

1253

1254 *Proof.* First, evaluate the function at zero:
1255

1256
$$s(0) = \frac{1}{2\pi} \left(\sqrt{1 - 0^2} + 0 \cdot (\pi - \arccos 0) \right) = \frac{1}{2\pi}.$$

1257

1259 Next, compute the first derivative:
1260

1261
$$s'(\rho) = \frac{1}{2\pi} \left(-\frac{\rho}{\sqrt{1 - \rho^2}} + \pi - \arccos \rho - \rho \cdot \frac{d}{d\rho} \arccos \rho \right).$$

1262

1264 Using $\frac{d}{d\rho} \arccos \rho = -\frac{1}{\sqrt{1 - \rho^2}}$, this simplifies to
1265

1266
$$s'(\rho) = \frac{1}{2\pi} (\pi - \arccos \rho).$$

1267

1268 Evaluating at $\rho = 0$:

1269
$$s'(0) = \frac{1}{2\pi} \left(\pi - \frac{\pi}{2} \right) = \frac{1}{4}.$$

1270

1271 Now compute the second derivative:
1272

1273
$$s''(\rho) = \frac{1}{2\pi} \frac{d}{d\rho} (\pi - \arccos \rho) = \frac{1}{2\pi} \frac{1}{\sqrt{1 - \rho^2}},$$

1274

1275 and at $\rho = 0$:

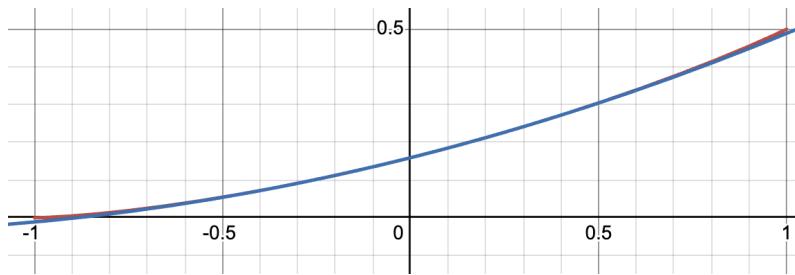
1276
$$s''(0) = \frac{1}{2\pi}.$$

1277

1279 Therefore, the quadratic approximation at $\rho = 0$ is
1280

1281
$$s(\rho) \approx s(0) + s'(0)\rho + \frac{s''(0)}{2}\rho^2 = \frac{1}{2\pi} + \frac{1}{4}\rho + \frac{1}{4\pi}\rho^2.$$

1282

1283 \square
12841294 Figure 9: Approximating the stability of MLP with a quadratic
1295

1296 **F PROOF OF THEOREM 5.2**
12971298 **F.1 PRELIMINARIES**
1299

1300 We will make use of the following mathematical tools in the proofs below:

1301 **Lemma 8** (Laurant-Massart Concentration Bounds for χ_d^2 Random Variables). *Let Z be a chi-
1302 squared random variable with d degrees of freedom. Then:*
1303

1304
$$\Pr [|Z - d| \geq 2\sqrt{du} + 2u] \leq e^{-u}$$

1305

1306 **Lemma 9** (Concentration of Gaussian Random Variable). *Let $Z \sim \mathcal{N}(0, \sigma^2)$. Then:*
1307

1308
$$\Pr [Z \geq \alpha] \leq e^{-\alpha^2/(2\sigma^2)}$$

1309 **Proposition 1** (Weighted Cauchy-Schwarz Inequality). *Let a_1, \dots, a_n be non-negative constants and
1310 $y_1, \dots, y_n \in \mathbb{R}^d$. It is true that:*
1311

1312
$$\left\| \sum_{j=1}^n a_j y_j \right\|_2 \leq \left(\sum_{j=1}^n a_j \right)^{1/2} \cdot \left(\sum_{j=1}^n a_j \|y_j\|_2^2 \right)^{1/2}$$

1313
1314
1315

1316 *Proof.* First, by the triangle inequality for the ℓ_2 -norm and the fact that $a_j \geq 0$, we have:
1317

1318
$$\left\| \sum_{j=1}^n a_j y_j \right\|_2^2 \leq \left(\sum_{j=1}^n \|a_j y_j\|_2 \right)^2 = \left(\sum_{j=1}^n a_j \|y_j\|_2 \right)^2 = \left(\sum_{j=1}^n \sqrt{a_j} \cdot \sqrt{a_j} \cdot \|y_j\|_2 \right)^2$$

1319
1320
1321

1322 Next, we apply the Cauchy-Schwarz inequality to the term on the right-hand side, to obtain:
1323

1324
$$\left(\sum_{j=1}^n \sqrt{a_j} \cdot (\sqrt{a_j} \|y_j\|_2) \right)^2 \leq \left(\sum_{j=1}^n a_j \right) \left(\sum_{j=1}^n a_j \|y_j\|_2^2 \right)$$

1325
1326

1327 which finalizes the proof. \square
13281329 **F.2 PROVING THE THEOREM**
13301331 **Theorem F.1** (Stability of Attention Layer, $W_Q W_K^T = I_d$). *Let $X \sim \mathcal{N}(0, I_{n \times d})$ and $Y = \rho X +$*
1332 $Z\sqrt{1 - \rho^2}$ *for $Z \sim \mathcal{N}(0, I_{n \times d}) \perp X$. Let $f : \mathbb{R}^{n \times d} \rightarrow \mathbb{R}^{n \times d}$ where $f(X) = \sigma(X X^T) \cdot X W_V$,
1333 $W_V \in \mathbb{R}^{d \times d}$ and σ is the row-softmax function. Then for all $i \in [n]$ and $j \in [d]$ we have that:*
1334

1335
$$\lim_{d \rightarrow \infty} \mathbb{E}[f(X)_{ij} f(Y)_{ij}] = \rho \| (W_V)_{:,j} \|_2^2$$

1336

1337 *Proof.* Let $x_1, \dots, x_n \in \mathbb{R}^d$ be the rows of X . We first show that $W := \sigma(X X^T)$ converges to I_n
1338 in probability as $d \rightarrow \infty$ with exponential tails in d .
13391340 First, fix some $i \in [n]$ and let $\sigma^2 := \|x_i\|_2^2$. We know that $\sigma^2 \sim \chi_d^2$ and so by Lemma 8 we have
1341 that:
1342

1343
$$\Pr \left[\frac{23d}{32} \leq \sigma^2 \leq \frac{41d}{32} \right] \geq 1 - 2e^{-d/64}$$

1344

1345 Let A be the likely event defined above. Let us condition on A happening.
13461347 Now, condition on x_i and let $V_j := \langle x_i, x_j \rangle - \sigma^2$. Since $x_i \perp x_j$ we have that $V_j \sim \mathcal{N}(-\sigma^2, \sigma^2) \mid x_i$
1348 and so by Lemma 9 we have:
1349

1349
$$\Pr \left[V_j \geq -\frac{\sigma^2}{2} \mid x_i \right] = \Pr \left[\langle x_i, x_j \rangle \geq \frac{\sigma^2}{2} \mid x_i \right] \leq e^{-\frac{\sigma^4/4}{2\sigma^2}} = e^{-\sigma^2/8} \leq e^{-23d/256}$$

1350 By a union bound, we have that:
 1351

$$1352 \Pr \left[\exists j \neq i \text{ s.t. } V_j \geq -\frac{\sigma^2}{2} \mid x_i, A \right] \leq (n-1)e^{-\frac{23}{256}d}$$

1354 Removing the conditioning on x_i and A , we get that:
 1355

$$1356 \Pr \left[\exists j \neq i \text{ s.t. } V_j \geq -\frac{\sigma^2}{2} \right] \leq \Pr[\neg A] + (n-1)e^{-\frac{23}{256}d} \leq 2e^{-d/64} + (n-1)e^{-\frac{23}{256}d}$$

1358 Therefore, with probability at least $1 - e^{-\Theta(d)}$ it holds that $V_j \leq -\frac{\sigma^2}{2} \leq -\frac{23d}{64}$. Let us call this
 1359 event B and condition on it.
 1360

1361 Now, we focus on the i -th row of W . For $j \neq i$, we have:
 1362

$$1363 W_{ij} = \frac{\exp(V_j)}{1 + \sum_{k \neq i} \exp(V_k)} \leq \exp(V_j) \leq \exp\left(-\frac{23}{64}d\right)$$

1365 Conditioning on H_d , we have proven that:
 1366

$$1367 \Pr \left[\max_{j \neq i} W_{ij} > \exp\left(-\frac{41d}{64}\right) \right] \leq O\left(ne^{-\Theta(d)}\right)$$

1370 In other words, $W_{ij} \xrightarrow{p} 0$ as $d \rightarrow \infty$ with an exponential tail.
 1371

1372 Similarly, when $i = j$, we have that:
 1373

$$1374 W_{ii} = \frac{1}{1 + \sum_{k \neq i} \exp(V_k)} \leq \frac{1}{1 - (n-1)\exp(-\frac{23}{64}d)}$$

1376 meaning that $W_{ii} \xrightarrow{p} 1$.
 1377

1378 Now that we have shown that $W \xrightarrow{p} I_n$ as $d \rightarrow \infty$, let us consider the product $W_{i,:} \cdot XW_V$. We
 1379 want to treat this product as $e_i X A$, so we show that the error goes to 0:
 1380

$$1381 W_{i,:} \cdot XA - e_1 \cdot XW_V = \sum_{j \neq i} w_{ij} x_j W_V =: E_X$$

1383 We have by the weighted Cauchy-Schwartz inequality that:
 1384

$$1385 \mathbb{E} [\|E_X\|_2^2] \leq \left(\sum_{j \neq i} W_{ij} \right) \cdot \left(\sum_{j \neq i} W_{ij} \mathbb{E}[\|x_j W_V\|_2^2] \right) \\ 1386 \leq (n-1) \sum_{j \neq i} \mathbb{E}[M_d \cdot \|x_j W_V\|_2^2]$$

1391 where $M_d := \max_{j \neq i} W_{ij} \in [0, 1]$. We know that $M_d \rightarrow 0$ in probability, so by the dominated
 1392 convergence theorem we get that $\mathbb{E}[M_d] \rightarrow 0$ as $d \rightarrow \infty$. Also, $\mathbb{E} \left[\sum_{j \neq i} \|x_j W_V\|_2^2 \right]$ is a constant
 1393 with respect to d . Applying Cauchy-Schwartz again, we get:
 1394

$$1396 \mathbb{E}[\|E_X\|_2^2] \leq (n-1) \sqrt{\mathbb{E}[M_d^2] \cdot \mathbb{E} \left[\sum_{j \neq i} \|x_j W_V\|_2^2 \right]} \xrightarrow{d \rightarrow \infty} 0$$

1400 Similarly, we can also show that $\mathbb{E}[\|E_Y\|_2^2] \rightarrow 0$ as $d \rightarrow \infty$.
 1401

1402 With that, if we fix $j \in [d]$, let $\varepsilon_{X,i,j} := f(X)_{i,j} - (x_i A)_j$. We have:
 1403

$$\mathbb{E}[\varepsilon_{X,i,j}^2] \leq \mathbb{E}[\|E_X\|_2^2] \rightarrow 0, \quad \mathbb{E}[\varepsilon_{Y,i,j}^2] \leq \mathbb{E}[\|E_Y\|_2^2] \rightarrow 0$$

1404 We can therefore claim that:
 1405

$$\mathbb{E}[f(X)_{i,j} \cdot f(Y)_{i,j}] = \mathbb{E}[(x_i W_V)_j \cdot (y_i W_V)_j] + o(1)$$

1407 To see this, observe that:
 1408

$$f(X)_{i,j} f(Y)_{i,j} - (x_i W_V)_j (y_i W_V)_j = (x_i W_V)_j \cdot \varepsilon_{X,i,j} + (y_i W_V)_j \cdot \varepsilon_{Y,i,j} + \varepsilon_{X,i,j} \cdot \varepsilon_{Y,i,j}$$

1410 Each term has expectation $o(1)$:
 1411

- 1412 • $\mathbb{E}[(x_i W_V)_j \cdot \varepsilon_{Y,i,j}] \leq \sqrt{\mathbb{E}[(x_i W_V)_j^2]} \cdot \sqrt{\mathbb{E}[\varepsilon_{Y,i,j}^2]} = \|(W_V)_{:,j}\|_2 \cdot o(1) = o(1)$
 1413
- 1414 • $\mathbb{E}[(y_i W_V)_j \cdot \varepsilon_{X,i,j}] = o(1)$ symmetrically.
 1415
- 1416 • $\mathbb{E}[\varepsilon_{X,i,j} \cdot \varepsilon_{Y,i,j}] \leq \sqrt{\mathbb{E}[\varepsilon_{X,i,j}^2]} \cdot \sqrt{\mathbb{E}[\varepsilon_{Y,i,j}^2]} = o(1) \cdot o(1) = o(1)$.
 1417

1418 Finally, we can obtain the final calculation:
 1419

$$\begin{aligned} \lim_{d \rightarrow \infty} \mathbb{E}[f(X)_{i,j} f(Y)_{i,j}] &= \mathbb{E}[(x_i W_V)_j \cdot (y_i W_V)_j] + o(1) \\ &= \mathbb{E}[\langle x_i, (W_V)_{:,j} \rangle \cdot \langle y_i, (W_V)_{:,j} \rangle] + o(1) \\ &= \sum_{k,\ell} (W_V)_{k,j} (W_V)_{\ell,j} \cdot \mathbb{E}[x_{i,k} \cdot y_{i,\ell}] + o(1) \\ &= \rho \cdot \sum_{\ell} (W_V)_{\ell,j}^2 + o(1) \quad (\text{By definition of } (X, Y)) \\ &= \rho \cdot \|(W_V)_{:,j}\|_2^2 + o(1) \end{aligned}$$

1420 as claimed. □
 1421

1431 G NOISE STABILITY PROPAGATION IN THE UNSTRUCTURED CASE

1432 In this section we prove the following theorem:
 1433

1434 **Theorem G.1.** *The noise stability of an attention layer in the unstructured case is:*

$$1435 \lim_{d \rightarrow \infty} \mathbb{E}[f(X)_{ij} f(Y)_{ij}] \stackrel{p}{=} \rho \cdot s(\rho) \cdot \|(W_V)_{:,j}\|_2^2 + o(1), \text{ with:}$$

$$1436 s(\rho) = n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi_{\rho^2}(x, y)^{n-1} f_{\rho^2}(x, y) dx dy$$

1437 where Φ_c is the joint CDF of a bivariate normal distribution with correlation c and f_c is the respective PDF.
 1438

1439 *Proof.* We first prove that each row of the softmax matrix is a permutation:
 1440

1441 **Lemma 10.** *Let $P_{i,j} := x_i^T W x_j$. Then:*
 1442

$$1443 \sigma(P_{i,1}, \dots, P_{i,n}) \xrightarrow{p} e_k, \text{ where } k = \arg \max_{j \in [n]} P_{i,j}$$

1444 A similar statement also holds for Y .
 1445

1446 *Proof.* The proof of this statement is very similar to our argument from Theorem 5.2. We have that:
 1447

$$1448 P_{ij} = \sum_{a,b \in [d]} x_{i,a} W_{a,b} x_{j,b}$$

1449 Conditioning on X , P_{ij} is normal with mean 0 and variance $\|x_i\|_2^2 \cdot \|x_j\|_2^2 = \Theta(d^2)$ (Lemma 8).
 1450 So we can write $P_{ij} = d \cdot Y_{ij}$ where $Y_{ij} \sim \mathcal{N}(0, 1)$ conditioned on X . Let $k^* = \arg \max_{j \in [n]} P_{i,j} =$

1458 $\arg \max_{j \in [n]} Y_{i,j}$. Let $\Delta_k = P_{ik^*} - P_{ik} = d(Y_{ik^*} - Y_{ik})$. We know that for $k \neq k^*$ the quantity Δ_k
 1459 converges to ∞ in probability as $d \rightarrow \infty$, so:

1460

$$\frac{e^{P_{ik}}}{\sum_s e^{P_{is}}} = \frac{e^{-\Delta_k}}{1 + \sum_{s \neq k^*} e^{-\Delta_s}} \xrightarrow{p} 0$$

1461 as $d \rightarrow \infty$. For $k = k^*$ however, we have:

1462

$$\frac{e^{P_{ik^*}}}{\sum_s e^{P_{is}}} = \frac{1}{1 + \sum_{s \neq k^*} e^{-\Delta_s}} \xrightarrow{p} 1$$

1463 This establishes the lemma. \square

1464 Now, let $L_{ij} = y_i^T W y_j$ and let $s = \Pr[\arg \max_{j \in [n]} P_{i,j} = \arg \max_{j \in [n]} L_{i,j}]$. We know that P_{ij} and L_{ij}
 1465 have correlation ρ^2 as:

1466

$$\mathbb{E} \left[\left(\sum_{a,b \in [d]} x_{i,a} W_{a,b} x_{j,b} \right) \cdot \left(\sum_{a,b \in [d]} y_{i,a} W_{a,b} y_{j,b} \right) \right] = \sum_{a,b,c,d \in [n]} \mathbb{E}[x_{i,a} x_{j,b} y_{i,c} y_{j,c} W_{a,b} W_{c,d}] = d\rho^2$$

1467 The joint conditional distribution of both $P_{i,j}$ and $L_{i,j}$ is a standard bivariate normal with correlation
 1468 ρ^2 :

1469

$$f_{\rho^2}(x, y) = \frac{1}{2\pi\sqrt{1-\rho^4}} \exp \left(-\frac{x^2 - 2\rho^2 xy + y^2}{2(1-\rho^4)} \right)$$

1470 It's CDF is:

1471

$$\Phi_{\rho^2}(x, y) = \int_{-\infty}^x \int_{-\infty}^y f_{\rho^2}(u, v) du dv$$

1472 Thus, we can calculate:

1473

$$s = s(\rho) = n \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi_{\rho^2}(x, y)^{n-1} f_{\rho^2}(x, y) dx dy$$

1474 The remainder of the proof concludes as in the main text by considering the events of the maxima
 1475 matching or not, taking the expectation and de-conditioning. \square

1476 H FULL NOISE STABILITY DAMPENING IN MULTI-LAYER TRANSFORMERS

1477 Let $W_Q W_K = I$ and $\|(W_V)_{:,j}\|_2 = \gamma \leq 1$. Ignoring distributional shifts, we can combine Theorem 5.1 and Theorem 5.2 to get the following recurrence:

1478

$$\rho_L = \frac{1}{2\pi} \left(\sqrt{1 - \gamma^4 \rho_{L-1}^2} + \gamma^2 \rho_{L-1} (\pi - \arccos(\gamma^2 \rho_{L-1})) \right) \quad (8)$$

1479 Substituting the linear approximation of Equation (4) and setting $\rho_1 = \frac{1}{2}$, we obtain:

1480

$$\rho_L = \frac{1}{2\pi} + \frac{\gamma^2}{4} \rho_{L-1} \implies \rho_L = \frac{2}{\pi(4 - \gamma^2)} + \left(\frac{1}{2} - \frac{2}{\pi(4 - \gamma^2)} \right) \cdot \left(\frac{\gamma^2}{4} \right)^{L-1}$$

1481 This suggests that for $\gamma \leq 1$ the noise stability propagation through a multi-layer transformer
 1482 converges to $\frac{2}{\pi(4 - \gamma^2)}$.

1483 However, empirical verification suggests this is not the case. Figure 10 shows that for $\gamma < 1$ we
 1484 observe full dampening, while for $\gamma = 1$ weak dampening remains. This is due to the fact that for
 1485 $\gamma \neq 1$ the output of the Transformer layer decreases exponentially with γ , which also affects the
 1486 noise stability.

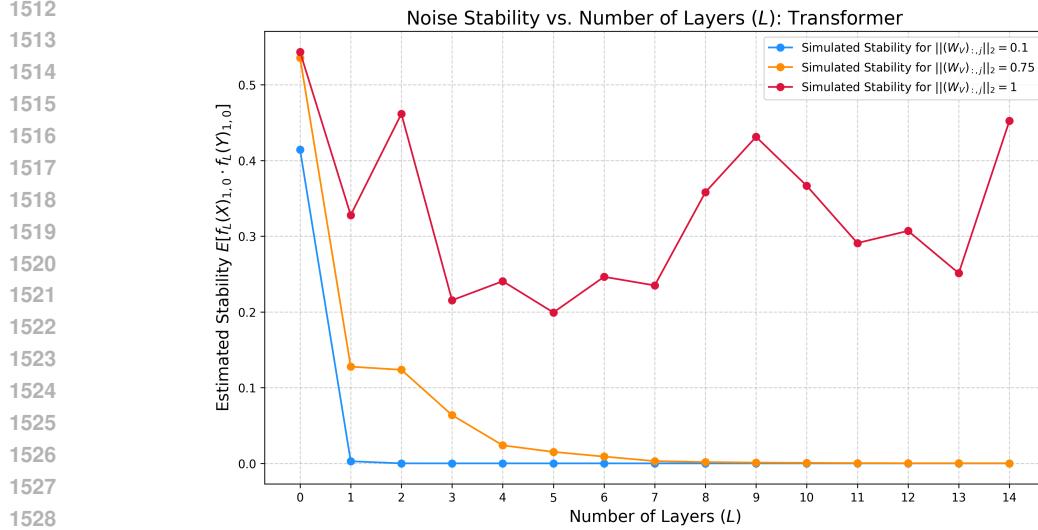


Figure 10: Transformer exhibits full dampening in the multi-layer setting.

I NOISE STABILITY INTERVAL PROPAGATION

In this section we present some analytical results on the propagation of noise stability intervals. These are lemmata that provide more flexibility towards the task of analyzing noise stability throughout a deep Transformer, though distributional assumptions still need to be made. Such assumptions can be quite detrimental to the validity of the analysis, as we have already seen.

I.1 MLP STABILITY UNDER BONAMI-BECKNER GAUSSIANS

Lemma 11 (Propagation of Stability in MLP Layer). *Let $X \in \mathbb{R}^{n \times d}$ be a random variable where $X_{ij} \sim \mathcal{N}(\mu_{ij}, \sigma_{ij})$ (not necessarily independent of each other). Consider a random variable Y generated by a scaled Bonami-Beckner noise process:*

$$Y_{ij} = \begin{cases} \alpha X_{ij}, & \text{with probability } \rho_{ij} \in [0, 1] \\ \sim \mathcal{N}(\mu_{ij}, \sigma_{ij}), & \text{iid, otherwise} \end{cases}$$

where $\alpha > 0$. Let $\phi : \mathbb{R} \rightarrow \mathbb{R}$ be the element-wise ReLU function. Then we have that:

$$\mathbb{E}[\phi(X_{ij}) \cdot \phi(Y_{ij})] = \rho_{ij} \alpha E_1 + (1 - \rho_{ij}) E_2^2$$

for all $(i, j) \in [n] \times [d]$, where:

$$\begin{aligned} E_1 &= \sigma_{ij} f\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) + \mu_{ij} \Phi\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) \\ E_2 &= (\mu_{ij}^2 + \sigma_{ij}^2) \Phi\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) + \sigma_{ij} \mu_{ij} f\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) \end{aligned}$$

and f, Φ is the PDF and CDF of the standard $\mathcal{N}(0, 1)$ Gaussian distribution.

Proof. Let us fix some i, j and use the law of total expectation:

$$\mathbb{E}[\phi(X_{ij}) \phi(Y_{ij})] = \rho_{ij} \alpha \mathbb{E}[\phi(X_{ij})^2] + (1 - \rho_{ij}) \mathbb{E}[\phi(X_{ij})]^2$$

1566

For the second moment, we have:

1567

$$\begin{aligned}
1568 \quad \mathbb{E}[\phi(X_{ij})^2] &= \int_0^\infty z^2 \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(z-\mu_{ij})^2}{2\sigma_{ij}^2}} \\
1569 &= \frac{1}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty (u\sigma_{ij} + \mu_{ij})^2 e^{-\frac{u^2}{2}} du \quad (u = \frac{z-\mu_{ij}}{\sigma_{ij}}) \\
1570 &= \frac{\sigma_{ij}^2}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty u^2 e^{-\frac{u^2}{2}} du + \frac{2\sigma_{ij}\mu_{ij}}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty ue^{-\frac{u^2}{2}} du + \frac{\mu_{ij}^2}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty e^{-\frac{u^2}{2}} du
\end{aligned}$$

1571

1572

1573

1574

1575

1576

1577

1578

For the third summand in this expression, we have that:

1579

1580

1581

$$\frac{\mu_{ij}^2}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty e^{-\frac{u^2}{2}} du = \mu_{ij}^2 \left(1 - \Phi\left(-\frac{\mu_{ij}}{\sigma_{ij}}\right) \right) = \mu_{ij}^2 \Phi\left(\frac{\mu_{ij}}{\sigma_{ij}}\right)$$

1582

For the second summand, it is:

1583

1584

1585

$$\frac{2\sigma_{ij}\mu_{ij}}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty ue^{-\frac{u^2}{2}} du = \frac{2\sigma_{ij}\mu_{ij}}{\sqrt{2\pi}} \left[-e^{u^2/2} \right]_{-\mu_{ij}/\sigma_{ij}}^\infty = 2\mu_{ij}\sigma_{ij}f\left(\frac{\mu_{ij}}{\sigma_{ij}}\right)$$

1586

For the first summand, we can use integration by parts to get:

1587

1588

1589

1590

1591

1592

$$\begin{aligned}
\frac{\sigma_{ij}^2}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty u^2 e^{-\frac{u^2}{2}} du &= \frac{\sigma_{ij}^2}{\sqrt{2\pi}} \cdot \left(\left[-ue^{-u^2/2} \right]_{-\mu_{ij}/\sigma_{ij}}^\infty + \int_{-\mu_{ij}/\sigma_{ij}}^\infty e^{-\frac{u^2}{2}} du \right) \\
&= \sigma_{ij}^2 \frac{-\mu_{ij}}{\sigma_{ij}} f\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) + \sigma_{ij}^2 \Phi\left(\frac{\mu_{ij}}{\sigma_{ij}}\right)
\end{aligned}$$

1593

Combining, we get an expression for the second moment:

1594

1595

1596

1597

1598

$$\begin{aligned}
E_1 := \mathbb{E}[\phi(X_{ij})^2] &= \sigma_{ij}^2 \frac{-\mu_{ij}}{\sigma_{ij}} f\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) + \sigma_{ij}^2 \Phi\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) + 2\mu_{ij}\sigma_{ij}f\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) + \mu_{ij}^2 \Phi\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) \\
&= (\sigma_{ij}^2 + \mu_{ij}^2) \Phi\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) + \mu_{ij}\sigma_{ij}f\left(\frac{\mu_{ij}}{\sigma_{ij}}\right)
\end{aligned}$$

1599

Now for the mean, we have:

1600

1601

1602

1603

1604

1605

1606

1607

$$\begin{aligned}
\mathbb{E}[\phi(X_{ij})] &= \int_0^\infty z \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(z-\mu_{ij})^2}{2\sigma_{ij}^2}} \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty (u\sigma_{ij} + \mu_{ij}) e^{-\frac{u^2}{2}} du \quad (u = \frac{z-\mu_{ij}}{\sigma_{ij}})
\end{aligned}$$

Splitting up this sum, we have:

1608

1609

1610

1611

1612

$$\begin{aligned}
E_2 := \mathbb{E}[\phi(X_{ij})] &= \frac{\sigma_{ij}}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty ue^{-\frac{u^2}{2}} du + \frac{\mu_{ij}}{\sqrt{2\pi}} \int_{-\mu_{ij}/\sigma_{ij}}^\infty e^{-\frac{u^2}{2}} du \\
&= \sigma_{ij}f\left(\frac{\mu_{ij}}{\sigma_{ij}}\right) + \mu_{ij}\Phi\left(\frac{\mu_{ij}}{\sigma_{ij}}\right)
\end{aligned}$$

1613

This concludes the proof. \square

1614

1615

I.2 STABILITY PROPAGATION THROUGH A SINGLE ATTENTION LAYER

1616

1617

1618

1619

For convenience, the following result defines a **stability matrix**, which captures the correlation of each input token with the other. Assuming all the entries in that matrix are bounded in some interval, we analyze the noise stability propagation through an attention layer. We also assume some structural properties of the weight matrices to allow for stability propagation in our proof:

1620 **Lemma 12** (Stability Propagation through an Attention Layer). *Let X, Y have stability matrix*
 1621 *$\{C\}_{k\ell,k'\ell'} = \mathbb{E}[X_{k\ell}Y_{k'\ell'}] \in \mathbb{R}^{nd \times nd}$ with $0 < \rho_\ell \leq C_{k\ell,k'\ell'} \leq \rho_r$ for all $k, k' \in [n], \ell, \ell' \in [d]$,*
 1622 *and suppose $\|X\|_\infty, \|Y\|_\infty \leq B$ with probability 1. Consider an attention layer with matrices*
 1623 *$W_K, W_Q, W_V \in \mathbb{R}^{d \times d}$ and denote, for two vectors $x, y \in \mathbb{R}^d$ the following quantities:*

$$1625 \quad S^+(x, y) = \sum_{i,j \in [d]} \max(0, x_i y_j), \quad S^-(x, y) = \sum_{i,j \in [d]} \min(0, x_i y_j)$$

1627 *Suppose that W_V is such that $\rho_\ell S^+(w_j, w_{j'}) + \rho_r S^-(w_j, w_{j'}) > 0$ for all $j, j' \in [d]$, where*
 1628 *$w_j = (W_V)_{:,j}$ is the j -th column of W_V . Hence, let:*

$$1630 \quad R_\ell := \inf_{j,j' \in [d]} \{\rho_\ell S^+(w_j, w_{j'}) + \rho_r S^-(w_j, w_{j'})\} > 0$$

$$1632 \quad R_r := \sup_{j,j' \in [d]} \{\rho_r S^+(w_j, w_{j'})\}$$

1634 *Now, let $A(X) \in \mathbb{R}^{n \times d}$ be the output of the attention layer. Then we have that:*

$$1636 \quad 0 < \frac{R_\ell}{E} \leq \mathbb{E}(A(X)_{ij} A(Y)_{i'j'}) \leq R_r \cdot E \quad (9)$$

1638 *for all $i, i' \in [n], j, j' \in [d]$, where $E := \exp(4d^2 B^2 \|W_K\|_\infty \|W_Q\|_\infty)$*

1640 *Proof.* Let $S^X = \sigma(XW_QW_K^TX^T)$ and $V^X := XW_V$. We have that $A(X)_{ij} = \langle S_{i,:}^X, V_{:,j}^X \rangle$, so:

$$\begin{aligned} 1642 \quad \mathbb{E}(A(X)_{ij} \cdot A(Y)_{i'j'}) &= \mathbb{E} [\langle S_{i,:}^X, V_{:,j}^X \rangle \cdot \langle S_{i,:}^Y, V_{:,j'}^Y \rangle] \\ 1643 \quad &= \mathbb{E} \left[\left(\sum_{k=1}^n S_{ik}^X V_{kj}^X \right) \cdot \left(\sum_{k'=1}^n S_{i'k'}^Y V_{k'j'}^Y \right) \right] \\ 1644 \quad &= \mathbb{E} \left[\sum_{k,k'} S_{ik}^X S_{i'k'}^Y V_{kj}^X V_{k'j'}^Y \right] \end{aligned}$$

1649 Now let $q_i^X := X_{i,:} \cdot W_Q \in \mathbb{R}^d$, $k_i^X = X_{i,:} \cdot W_K$. We have:

$$1652 \quad S_{ik}^X = \frac{\exp(q_i^X \cdot k_k)}{\sum_{s=1}^n \exp(q_i^X \cdot k_s)}$$

1655 Therefore:

$$\begin{aligned} 1656 \quad \mathbb{E}(A(X)_{ij} \cdot A(Y)_{i'j'}) &= \mathbb{E} \left[\sum_{k,k'} \frac{\exp(q_i^X k_k)}{\sum_{s=1}^n \exp(q_i^X k_s)} \cdot \frac{\exp(q_{i'}^Y k_{k'})}{\sum_{s=1}^n \exp(q_{i'}^Y k_s)} \cdot V_{kj}^X V_{k'j'}^Y \right] \\ 1659 \quad &= \mathbb{E} \left[\sum_{k,k'} \frac{\exp(X_{i,:} W_Q W_K^T X_{k,:}^T)}{\sum_{s=1}^n \exp(X_{i,:} W_Q W_K^T X_{s,:}^T)} \cdot \frac{\exp(Y_{i',:} W_Q W_K^T Y_{k',:}^T)}{\sum_{s=1}^n \exp(Y_{i',:} W_Q W_K^T Y_{s,:}^T)} \cdot X_{k,:} (W_V)_{:,j} Y_{k',:} (W_V)_{:,j'} \right] \end{aligned}$$

1667 We will bound the softmax terms using the norms of W_Q, W_K and X . For any s_1, s_2 we have:

$$1668 \quad |X_{s_1,:} W_Q W_K^T X_{s_2,:}^T| \leq d^2 B^2 \|W_Q\|_\infty \cdot \|W_K\|_\infty$$

1670 And this implies that:

$$1671 \quad \frac{1}{n} \exp(-2d^2 B^2 \|W_K\|_\infty \|W_Q\|_\infty) \leq \frac{\exp(X_{i,:} W_Q W_K^T X_{k,:}^T)}{\sum_{s=1}^n \exp(X_{i,:} W_Q W_K^T X_{s,:}^T)} \leq \frac{1}{n} \exp(2d^2 B^2 \|W_K\|_\infty \|W_Q\|_\infty)$$

1674 We now analyze the isolated terms
 1675

$$\mathbb{E}[X_{k,:}(W_V)_{:,j}Y_{k',:}(W_V)_{:,j}]$$

1677 We can use our prior information on the stability matrix C . Fix some k, k' and we have that:
 1678

$$\begin{aligned} \mathbb{E}[X_{k,:}(W_V)_{:,j}Y_{k',:}(W_V)_{:,j}] &= \sum_{\ell, \ell'} \mathbb{E}[X_{k\ell}(W_V)_{\ell j}Y_{k'\ell'}(W_V)_{\ell' j'}] \\ &= \sum_{\ell, \ell'} (W_V)_{\ell j}(W_V)_{\ell' j'} \cdot \mathbb{E}[X_{k\ell}Y_{k'\ell'}] \\ &\in [R_\ell, R_r] \quad (\text{as } \mathbb{E}[X_{k\ell}Y_{k'\ell'}] \in (r_\ell, r_r)) \end{aligned}$$

1685 Overall, if we let $E := \exp(4d^2B^2\|W_K\|_\infty\|W_Q\|_\infty)$, we get that:
 1686

$$0 < \frac{R_\ell}{E} \leq \mathbb{E}(A(X)_{ij} \cdot A(Y)_{i'j'}) \leq R_r \cdot E$$

1689 \square
 1690

1691 J NOISE STABILITY REGULARIZATION EXPERIMENTS

1692 J.1 ARCHITECTURE LAYOUT, HYPERPARAMETERS AND TRAINING DETAILS

1695 We present details of our architecture, training and hyperparameters. These can also be found in our
 1696 codebase. Each Transformer layer uses multi-head self-attention followed by a position-wise feed-
 1697 forward network, with residual connections around both sublayers. We use sinusoidal positional
 1698 encodings, as well as binary attention masking M . We also use dropout, applied to attention weights,
 1699 attention output, and FFN hidden layer with rate p . The activation function we use for our FFN is
 1700 ReLU. To produce a classification label we use mean pooling over the label dimension.

1701 For initialization, linear layers are initialized with $\mathcal{N}(0, 0.02^2)$ and zero biases. Every other learn-
 1702 able parameter is initialized via Xavier initialization. Positional encodings are fixed and not train-
 1703 able.

1704 For training, we use AdamW with learning rate η and ℓ_2 weight decay regularization λ . Our loss is
 1705 the cross entropy loss. We use a learning rate scheduler that reduces η on validation loss plateau.
 1706 The patience and factor parameters of the scheduler are hyperparameters we set. Our codebase
 1707 also provides support for multi-GPU and distributed training, though our models were too small to
 1708 benefit from such augmentations.

1710 Table 2: Model Hyperparameters and Training Configuration for MODULAR ADDITION

Name	Symbol	Default
Embedding dimension	d_{model}	128
Transformer layers	L	2
Attention heads	H	2
Max seq length (PE)	<code>max_length</code>	512
Vocab size	$ \mathcal{V} $	$K + 5$
Num classes	C	$K = 113$
Dropout rate	p	0.1
Batch size	B	256
Epochs	T	7000
Learning rate	η	0.001
Weight decay	λ	0.001
Label smoothing	—	0.0
Scheduler patience	—	10 epochs
Scheduler factor	—	0.8
Train samples	—	2000

1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888

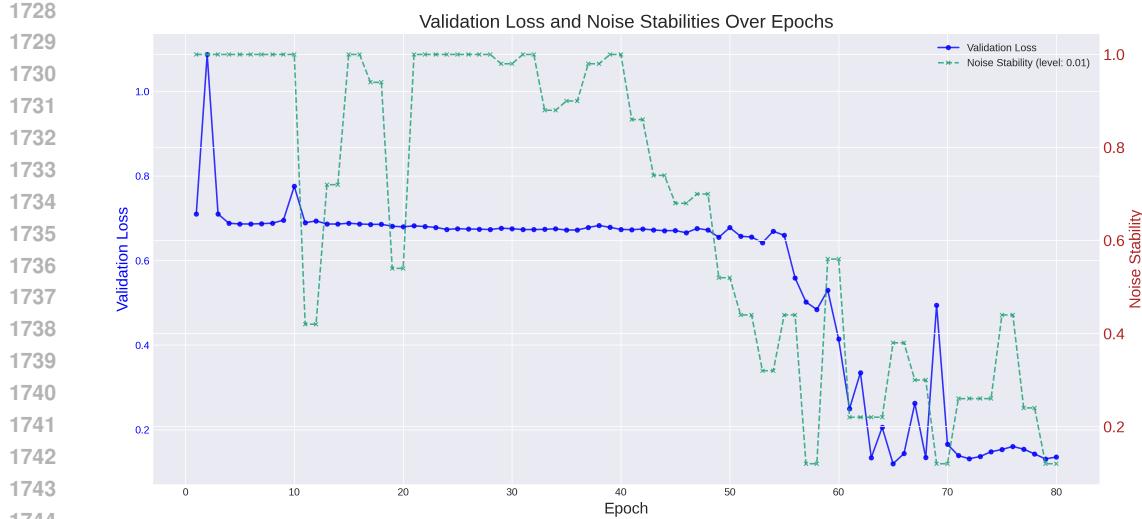


Figure 11: Evolution of noise stability and validation loss for noisy sparse parity. Stability (green) begins to decrease before the validation loss (blue) drops, acting as a leading indicator for generalization.

Table 2 – continued from previous page

Name	Symbol	Default
Val/Test samples	–	200 / 200

J.2 EVOLUTION OF NOISE STABILITY DURING TRAINING.

We also analyze how noise stability (with $\rho = 1/2$) evolves during training without regularization, focusing on the noisy sparse parity (NSP) task first because its target function has a known, low noise stability of ρ^k (O’Donnell, 2021). We make three key observations:

- A randomly initialized Transformer exhibits high noise stability, which decreases throughout training to converge toward the low stability level of the target function (Figure 11).
- Noise stability is a leading indicator for generalization. Figure 11 shows that stability begins to decrease well before the sharp drop in validation loss, signaling that internal model adjustments precede performance improvements.
- Stability can serve as a secondary metric for model selection. Among models with similar validation loss, the one whose stability best aligns with the theoretical properties of the target function may be preferable.

J.3 EXPERIMENTS ON LANGUAGE GENERATION

We also tested noise stability regularization on a language generation task. We trained a 4 layer transformer model with $d_{\text{model}} = 30$ and $H = 6$ on the next-token-prediction task. The dataset we used was *WikiText-2-v1 (Small)*, with sequence length $N = 20$, a vocabulary size of 500, batch size of 200 and 1000 training examples⁷. We trained our transformer without noise stability regularization, with weight decay $\lambda = 0.02$ and with numerous settings of (ρ, γ) . We tracked noise stability, validation loss and validation accuracy throughout training.

We first observe that even in this non-synthetic task noise stability regularization offers deep benefits for training. As shown in Figure 12, the model climbs to 70% accuracy within 1000 iterations in the grokking phase. On the other hand, it takes the non-regularized model 4000 iterations to do

⁷Our setup can also be found in full in our codebase.

1782 so, amounting to a 75% speedup. The situation is similar for the validation losses: the regularized
 1783 models exhibit more stability in training, while the non-regularized training fluctuates in validation
 1784 loss. Noise stability regularization also causes the validation loss to decrease much faster and earlier
 1785 than without it, while grokking.

1786 Examining the noise stability at $\rho = 1/2$ for the regularized and non-regularized settings (Figure 14)
 1787 we can see a fundamental difference between the models. The non-regularized model becomes less
 1788 and less stable, which could explain its instability. Regularized models stay stable as the training
 1789 dynamics force the model to improve while remaining robust. Understanding the benefits of this
 1790 regularization better is definitely an interesting direction for future work.

1791 Finally, we can see that noise stability regularization offers benefits for a variety of different settings
 1792 of the hyperparameters (ρ, γ) . Ultimately however, the best performance is found via a thorough
 1793 hyperparameter sweep, as Figure 13 shows.

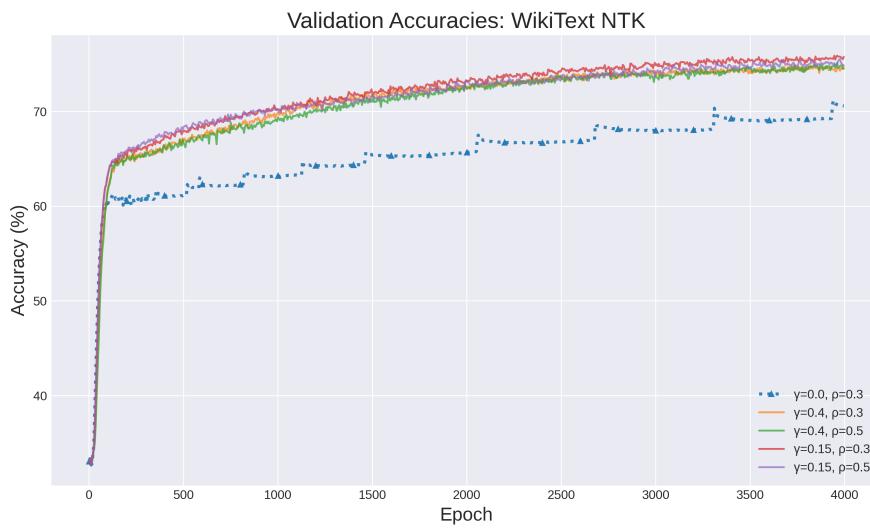


Figure 12: Accuracy Comparison on Next-Token-Prediction

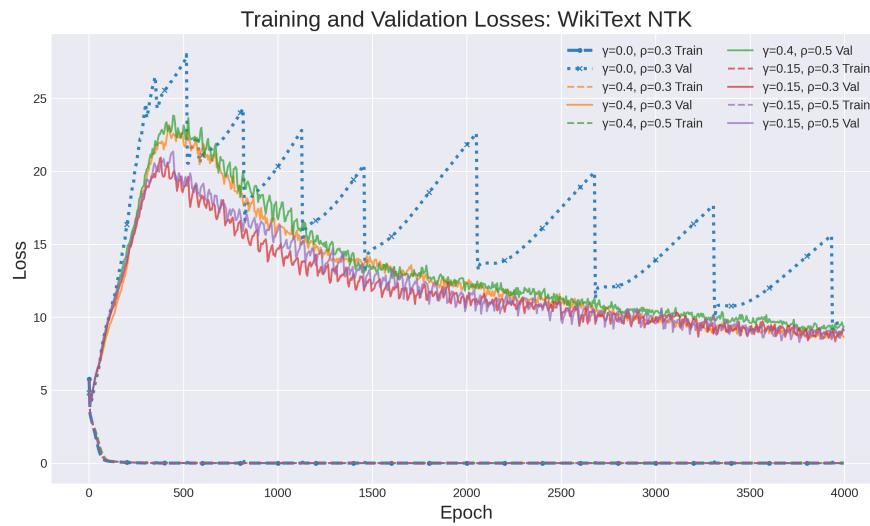


Figure 13: Training and Validation Losses for Next-Token Prediction

1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889

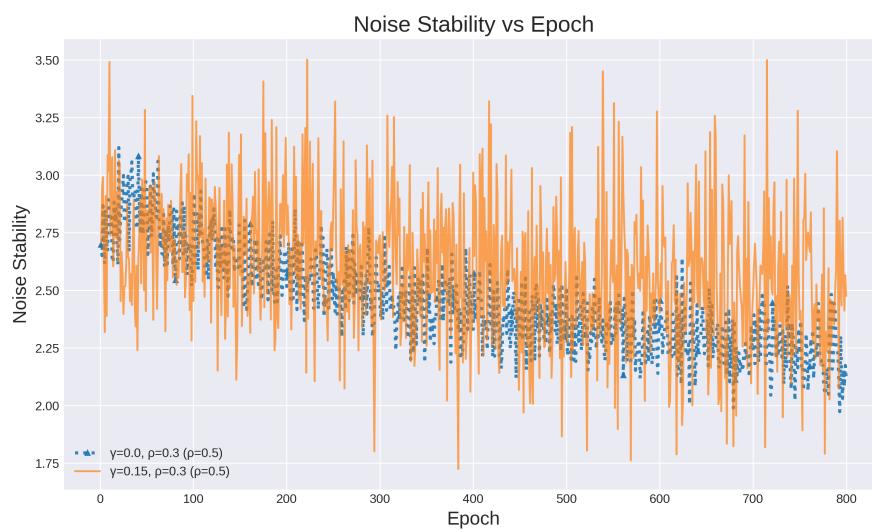


Figure 14: Noise Stability Comparison: Regularization vs Non-Regularization. We see that the non-regularized model tends to become more unstable, while regularization maintains stability.