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ABSTRACT

Understanding simplicity biases in deep learning offers a promising path toward
developing reliable AI. A common metric for this, inspired by Boolean function
analysis, is average sensitivity, which captures a model’s robustness to single-
token perturbations. We argue that average sensitivity has two key limitations:
it lacks a natural generalization to real-valued domains and fails to explain the
”junta-like” input dependence we empirically observe in modern LLMs. To ad-
dress these limitations, we propose noise stability as a more comprehensive sim-
plicity metric. Noise stability expresses a model’s robustness to correlated noise
applied to all input coordinates simultaneously. We provide a theoretical analy-
sis of noise stability for single-layer attention and ReLU MLP layers and tackle
the multi-layer propagation problem with a covariance interval propagation ap-
proach. Building on this theory, we develop a practical noise stability regulariza-
tion method. Experiments on algorithmic and next-token-prediction tasks show
that our regularizer consistently catalyzes grokking and accelerates training by
approximately 35% and 75% respectively. Our results establish noise stability as
a powerful tool for understanding and improving modern Transformers.

1 INTRODUCTION

Simplicity Biases have been a promising direction of study in recent years (Shah et al., 2020; Va-
sudeva et al., 2024; Bhattamishra et al., 2022) as they provide a unifying framework for generaliza-
tion, interpretability and robustness. Neural networks, including Large Language Models (LLMs),
often converge to the simplest possible functions that explain the training data. Because simpler
functions are inherently more interpretable and robust, this bias provides a solid theoretical frame-
work for improving model reliability.

To quantify simplicity, current research often draws on concepts from Boolean function analysis
(O’Donnell, 2021). In particular, theoretical work on Transformers (Vaswani et al., 2017) has high-
lighted average sensitivity, the expected change in a model’s output given a single-token pertur-
bation, as a key metric. Bhattamishra et al. (2022) formally studied this metric in Transformers,
showing that they learn functions with lower sensitivity than LSTMs. Subsequent work has linked
average sensitivity to learnability: Hahn (2020) and Hahn & Rofin (2024) demonstrated that Trans-
formers struggle to learn functions with high sensitivity, such as PARITY. Further validating its
utility, Vasudeva et al. (2024) connected average sensitivity to the grokking phenomenon and pro-
posed an extension of the metric beyond the Boolean domain.

Despite its usefulness, average sensitivity has notable drawbacks. Theoretically, its origins in
Boolean analysis do not readily extend to real-valued domains. Empirically, it fails to fully explain
the “junta-like” input dependence we observe in models like GPT-2, GEMMA, and ROBERTA,
where outputs rely on a small subset of inputs.

To address these shortcomings, we propose to instead quantify simplicity bias via noise stability. Un-
like average sensitivity’s one-by-one perturbations, noise stability measures a function’s resilience
to noise applied to all inputs simultaneously, offering more robust spectral concentration guarantees.
This approach naturally extends to real-valued domains via the Ornstein-Uhlenbeck operator in the
Gaussian measure, preserving a formal connection to the function spectrum and enabling a more
powerful theoretical analysis.
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1.1 OUR CONTRIBUTIONS

Our primary contributions the following:

1. We observe that LLMs like GPT-2 exhibit a “junta-like” input dependence (Figure 1),
a phenomenon not fully captured by average sensitivity and its extensions (Section 3). To
better characterize this behavior, we propose noise stability (Section 4) as a comprehensive
simplicity metric that naturally extends to real-valued domains.

2. We derive the first theoretical results on noise stability for single-layer Transformers and
ReLU FFNs. We also provide novel insights for the multi-layer setting (Section 5) through
a proxy recurrence-based analysis and a new stability interval propagation technique.

3. We propose noise stability regularization (Section 6), a method that consistently accel-
erates grokking across synthetic (modular addition, sparse parity) and non-synthetic (next-
token-prediction) benchmarks, reducing the training time required for generalization by
≈ 35% and 75% respectively.

1.2 RELATED WORK

Simplicity Bias in Deep Learning. The tendency of neural networks to converge to simple func-
tions has been a subject of intense recent study. This simplicity bias (SB) is analyzed from several
perspectives. One line of research connects SB to spectral concentration in the Conjugate or Neural
Tangent Kernel of networks (Yang & Salman, 2019; Emami et al., 2021; Vasudeva et al., 2024). An-
other uses Fourier analysis to characterize SB as a bias toward low-frequency functions (Xu et al.,
2019; Rahaman et al., 2019). A large body of work investigates SB through the lens of training
dynamics, often in shallow or linear networks (Morwani et al., 2023; Zhang et al., 2019; Yun et al.,
2020; Chen et al., 2020; Boursier & Flammarion, 2024; Chizat & Bach, 2020; Gatmiry et al., 2024;
Tsoy & Konstantinov, 2024). Beyond its mechanisms, SB has been linked to generalization (Valle-
Perez et al., 2018), though it can sometimes lead to degenerate solutions (Shah et al., 2020), and
has been correlated with adversarial robustness (Min & Vidal, 2024; Chen et al., 2020). Specific
to our focus, recent work has begun to explore SB in Transformers, particularly through the lens of
token-to-token interactions in shallow models (Teney et al., 2025; Rende et al., 2024).

Sensitivity Analysis in Transformers. To develop a computationally tractable proxy for spectral
concentration, recent work has adopted average sensitivity from Boolean function analysis. Bhat-
tamishra et al. (2022) showed that Transformers are more biased towards low-sensitivity functions
than LSTMs, enabling generalization even with noisy labels. Hahn (2020); Hahn & Rofin (2024)
established that Transformers struggle to learn high-sensitivity functions like parity, despite having
the capacity to represent them. Further, Vasudeva et al. (2024) demonstrated that average sensitivity
can also serve as a metric for tracking progress in grokking.

Generalizing Sensitivity to Continuous Domains. The concept of average sensitivity has been
generalized to real-valued domains via geometric influences (Keller et al., 2012; 2014). This for-
mulation is equipped with an analogue of Friedgut’s junta theorem for continuous spaces (Bouyrie,
2017), unifying prior results across various discrete and continuous measures (Benjamini et al.,
2016; Wimmer, 2014).

Noise Stability and Sensitivity. Our work is most closely related to that of Li & Mossel (2025),
who study noise sensitivity—a dual measure to our noise stability—for hierarchical functions. They
use an inductive argument to propagate sensitivity bounds across layers in a simple, non-intersecting
neural network. Though they do not study Transformers in practice, their layer-wise propagation
strategy directly inspired our approach for noise stability intervals in multi-layer Transformers.

2 SETUP

We define a simplified Transformer as an L-layer model that maps an input sequence X ∈ Rn×d to
a distribution over nc classes. Each layer i ∈ [L] contains H attention heads. A head j takes the
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layer input Yi ∈ Rn×d and computes an output ai,j ∈ Rn×d via:

ai,j = σ(Y T
i WT

Q,i,jWK,i,jYi)(Y
T
i WV,i,j)

Here, WQ,i,j ,WK,i,j ,WV,i,j ∈ Rd×d are weight matrices and σ is the row-wise softmax1. The
head outputs are concatenated and passed through a Multi-Layer Perceptron (MLP) with a ReLU
activation, ϕ(x) = max{0, x}: âi = ϕ((ai,1 ◦ · · · ◦ ai,H)W

(i)
ϕ ). The final layer’s output âL is then

mean-pooled and projected to produce class logits z ∈ Rnc using an output matrix WO ∈ Rd×nc .

For theoretical simplicity, this definition omits elements like residual connections, layer normaliza-
tion, and attention masks, though we include them in our experiments.

2.1 BOOLEAN FUNCTION ANALYSIS

Our work draws on Boolean function analysis, which studies functions f : {±1}n → R by ex-
panding them as multilinear polynomials via the Fourier spectrum: f =

∑
U⊆[n] f̂UχU , where

χU (x) :=
∏

i∈U xi are the basis functions. For a full overview, see Appendix A.

A key property is the influence of a coordinate i ∈ [n], which measures the expected impact of
flipping the input xi:

Infi[f ] := E
x∼{±1}n

[(
f(x)− f(x⊕i)

2

)2
]
=
∑
S∋i

f̂2
S (1)

The total influence across all coordinates is the average sensitivity, I[f ] =
∑n

i=1 Infi[f ], a common
measure of a function’s robustness to noise.

3 MODELS ARE OFTEN “SIMPLER” THAN EXPECTED

The “simplicity” of a Boolean function f : {±1}n → R is formalized by its dependence on a
few variables. One way to characterize simplicity is spectral concentration, where the most of the
Fourier mass is on low-degree coefficients. A function is (ε, k)-spectrally concentrated if its mass
on terms of degree k or higher is bounded:

n∑
j=k

W j [f ] ≤ ε · ||f ||22, where W j [f ] :=
∑
|U |=j

f̂2
U

A stricter notion is a k-junta, a function that depends on at most k coordinates. A function with
low average sensitivity is simple in both senses: a function is always (ε, I[f ]/ε)-spectrally concen-
trated, and Friedgut’s Junta Theorem (Kelman et al., 2021; Friedgut, 1998) shows it must also be
structurally close to a junta:
Theorem 3.1. For every ϵ > 0, there exists a k-junta g : {−1, 1}n → {−1, 1} such that P[f(x) ̸=
g(x)] ≤ ϵ, where the number of variables k on which g depends is bounded by k ≤ 2O(I(f)/ϵ).

While prior work has used average sensitivity to analyze model simplicity (Vasudeva et al., 2024;
Hahn & Rofin, 2024), we argue it has significant theoretical and empirical drawbacks as a metric for
simplicity bias.

Theoretical Drawbacks: Extending to Real-Valued Domains First, the theoretical foundation
of average sensitivity in Boolean domains is difficult to extend to the real-valued functions of deep
learning. Approaches using generalized domains that mimic finite fields2 are cumbersome, as sen-
sitivity is not naturally defined, and its estimation via sampling is impractical.

A more robust alternative is geometric influence (Keller et al., 2012), defined for a smooth function
f : Rn → R and measure µ as:

IG [f ] :=

n∑
i=1

||∂if ||L1(µ)

1For convenience, in our theoretical results we will ignore the 1/
√
d factor that appears in these expressions.

2See (O’Donnell, 2021), Chapter 8, for an exposition on Boolean Function Analysis on the hypergrid.
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Figure 1: Comparing the per-coordinate geometric influence of three models for n = 256.

Crucially, this measure has strong theoretical backing, including an analogue of Friedgut’s junta
theorem for hypercontractive measures (Bouyrie, 2017). This makes it a more suitable tool for
analyzing neural networks and we use it in our empirical study below.

Empirical Drawbacks: Mismatch with LLM Behavior Second, average sensitivity fails to
capture the empirical simplicity of LLMs. The exponential bound on influential variables from
Friedgut’s theorem is too loose to explain the behavior of modern Transformers, which exhibit far
stronger influence concentration. To demonstrate this, we analyze the geometric influence of each
input token for GEMMA-2B, ROBERTA, and GPT-2 on sequences of n = 256 tokens. Friegut’s
theorem predicts ≤ 1024 variables with influence at least 0.1 · I[f ], yet Figure 1 only shows 5-10
such variables exist, meaning the bound is loose. Our analysis also reveals three key patterns with
further experimental details available in Appendix B:

• Junta-like Concentration: A small subset of tokens have disproportionally high influence.
• Positional Bias: The first and last tokens are consistently the most influential. This is part

agrees with observations made in the KV Cache Compression literature about “attention
sinks” (Xiao et al., 2023).

• Sensitivity: Every token has a non-zero influence, indicating that the models are sensitive
to all inputs, even if asymmetrically.

4 NOISE STABILITY AS A MEASURE OF CONCENTRATION

For a more holistic characterization of simplicity that offers finer control over spectral concentration
and easily generalizes to real-valued domains, we propose noise stability, a concept from Boolean
Function Analysis (O’Donnell, 2021) that measures a function’s resilience to correlated noise ap-
plied to all inputs simultaneously.

This concept extends naturally to real-valued functions in L2(γ) by leveraging the Ornstein-
Uhlenbeck (OU) semigroup Tρ. This framework uses the basis of Hermite polynomials under the
standard Gaussian measure γ ≡ N (0, 1), allowing for a direct spectral interpretation3. The corre-
lated pair (X,Y ) is generated by adding scaled Gaussian noise to X:
Definition 4.1. Let f ∈ L2(γ) where γ is the Gaussian measure on Rn. For ρ ∈ (0, 1), let X ∼ γ

and let Y = ρX + Z
√

1− ρ2, where Z ∼ γ is independent of X . The noise stability of f is:

Stabρ(f) := E
(X,Y )

[f(X)f(Y )] (2)

3See Appendix C, following Andersson & Sjögren (2012), for an introduction to OU Semigroup Theory.
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Noise stability is useful because it relates directly to the function’s spectrum through its Hermite-
Fourier coefficients f̃(α), as shown in Appendix C:

Stabρ(f) =
∑
α∈Nd

ρ|α|f̃(α)2 (3)

This connection allows us to formally bound a function’s spectral concentration. The following
lemma shows that if a function is highly stable (i.e., its stability is close to its total variance), its
Fourier mass must be concentrated on low-degree coefficients. For a fixed correlation ρ and spectral
tail budget ε, the degree of concentration T becomes smaller as the ratio δ/ε approaches zero.
Lemma 1 (Spectral Concentration via Stability). Let f ∈ L2(γn). If Stabρ(f) ≥ (1 − δ)||f ||22 for
some ρ ∈ (0, 1) and 0 < δ < ε < 1, then f is (ε, T )-spectrally concentrated for any

T ≥ log 1
ρ

(
1− δ

ε

)
Proof Sketch. The proof follows from analyzing the action of the Ornstein-Uhlenbeck semigroup
Tρ on the Hermite expansion of f . The full proof is in Appendix D.

Spectral Concentration Bounds: Sensitivity vs. Stability We compare the predicted Fourier tail
mass (percentage of weight in degrees ≥ 15 with n = 256) for several Transformer models, using
bounds derived from average sensitivity versus those from noise stability. The results in Table 1
show that the noise stability bound offers a more accurate estimate of spectral concentration.

Model Tail Mass Bound from I[f ] Tail Mass Bound from Stabρ(f)

GPT-2 0.003 0.0005
BERT 0.04 0.02
ROBERTA 0.19 0.02
GEMMA 0.043 0.0157

Table 1: Predicted Fourier tail mass (percentage of weight in degrees ≥ 15) for Transformer models.

5 ANALYSIS OF NOISE STABILITY IN TRANSFORMER MODELS

We now present our theoretical results on the noise stability of Transformer components. We begin
by analyzing a single ReLU MLP layer and an attention layer, and then use these results to analyze
the propagation of stability through a multi-layer network.

5.1 NOISE STABILITY OF A SINGLE RELU MLP LAYER

We first analyze the stability of an MLP layer with a ReLU activation, a result closely related to
the arc-cosine kernel. Consider a pair of ρ-correlated standard Gaussian inputs (X,Y ), whose joint
distribution is:

(X,Y ) ∼ N
(
0,

(
1 ρ
ρ 1

))
The noise stability of the ReLU function is given by the following theorem.
Theorem 5.1. The noise stability of the ReLU function under the standard Gaussian measure is:

E
(X,Y )

[ReLU(X)ReLU(Y )] =
1

2π

(√
1− ρ2 + ρ(π − arccos ρ)

)
Proof. The proof is by direct integration and can be found in Appendix E.

While exact, this expression is unwieldy for analyzing layer composition. For practical purposes, it
is well-approximated by its second-order Taylor expansion around ρ = 0:

1

2π

(√
1− ρ2 + ρ(π − arccos ρ)

)
≈ 1

2π
+

1

4
ρ+

1

4π
ρ2 +O(ρ3). (4)
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5.2 NOISE STABILITY OF A SINGLE ATTENTION LAYER

We next analyze the noise stability of a single attention layer, defined as f(X) = σ(XWQW
T
KXT ) ·

XWV . The analysis depends critically on the structure of the product W := WQW
T
K , so we consider

three representative cases.

The Identity Case (W = Id) When W is the identity matrix, the attention mechanism simplifies.
In the high-dimensional limit, the attention matrix σ(XXT ) converges to the identity matrix In,
causing the layer to act as a linear transformation. This results in a linear relationship between input
and output stability (see Figure 2).
Theorem 5.2. Let X ∼ N (0, In×d) and Y = ρX + Z

√
1− ρ2 for Z ∼ N (0, In×d) independent

of X . Let f(X) = σ(XXT )XWV . Then for any i ∈ [n], j ∈ [d]:
lim
d→∞

E[f(X)ijf(Y )ij ] = ρ · ||(WV ):,j ||22 + o(1)

Proof Sketch. As d → ∞, we show that σ(XXT ) → In in probability. The stability calculation
then reduces to that of a linear layer, with a cost of o(1). The full proof is in Appendix F.2.

The Low-Rank Case (W = UUT ) If W is a random low-rank matrix, where U ∈ Rd×k with k ≪
d, the analysis reduces to the identity case. The matrix U acts as a Johnson-Lindenstrauss transform,
projecting the input row vectors into a k-dimensional space while approximately preserving their
inner products (Matoušek, 2008). Consequently, the projected attention matrix again converges to
the identity, and the stability remains linear in ρ.

The Unstructured Case (W ∼ N (0, Id×d)) When W is a random Gaussian matrix, modeling
a randomly initialized layer, the behavior changes. For large d, we the attention matrix AX =
σ(XWXT ) concentrates towards a random permutation matrix, meaning each output token attends
to a single, randomly chosen input token.

Figure 2: Stability of Single Layer Attention (Identity and Unstructured)

The stability now depends on the consistency of this permutation. For a given output row i, suppose
AX selects input row k and AY selects input row k′. The stability is non-zero only if the attention
pattern is preserved (k = k′). Let s(ρ) := P(k = k′) be the probability that the attention pattern is
stable (see Figure 3 for an illustration). The total stability is the product of the linear stability and
this probability factor:

E[f(X)ijf(Y )ij ] =

{
ρ · ||(WV ):,j ||22 if k = k′

0 if k ̸= k′

Averaging over the randomness of the patterns we obtain the following result, which we verify
empirically in Figure 2 (see Appendix G for the proof).
Theorem 5.3. Let X ∼ N (0, In×d) and Y = ρX + Z

√
1− ρ2 for Z ∼ N (0, In×d) independent

of X . Let f(X) = σ(XXT )XWV . Then for any i ∈ [n], j ∈ [d], we have:

lim
d→∞

E[f(X)ijf(Y )ij ]
p
= ρ · s(ρ) · ||(WV ):,j ||22 + o(1), with s(ρ) = n

∫
R2

Φρ2(x, y)n−1fρ2(x, y)

6
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where Φc, fc are the joint CDF and PDF of a bivariate normal distribution with correlation c.

Figure 3: Comparing AX and AY for d = 128 and ρ = 0.01.

5.3 STABILITY PROPAGATION IN DEEP TRANSFORMERS

In the single-layer setting, we have shown that ReLU MLPs dampen stability (Theorem 5.1), while
attention layers can preserve it (Theorem 5.2). This raises the question whether such an analysis can
be performed for the multi-layer setting as well.

FFN Stability Propagation as a Recurrence and Weak Dampening Consider a ReLU Feed-
Forward Network (FFN) and suppose we ignore inter-layer distributional shifts. Such a thought ex-
periment is not without precedent in the moment propagation literature for neural networks (Wright
et al., 2024). In this model, the correlation ρL after layer L follows the recurrence:

ρL =
1

2π

(√
1− ρ2L−1 + ρL−1(π − arccos(ρL−1))

)
(5)

Solving this non-linear recurrence analytically is difficult, so we shall instead use the linear ap-
proximation from Equation (4), to get the following proxy recurrence, which can be solved more
easily:

ρL =
1

2π
+

1

4
ρL−1 =⇒ ρL =

2

3π
+

(
1

2
− 2

3π

)
·
(
1

4

)L−1

This suggests that noise stability for multi-layer ReLU FFNs exhibits weak dampening, converging
to the fixed point 2

3π . This is confirmed by a numerical evaluation of Equation (5) in Figure 4b.
Indeed, Figure 4a shows that a multi-layer MLP does exhibit weak dampening.

(a) Stability of a deep MLP network. (b) Numerical solution to Equation (5)

For multi-layer Transformers, a recurrence relation analysis does not yield weak dampening. If
we let WQW

T
K = I and ||(WV ):,j ||2 = γ ≤ 1, a recurrence similar to Equation (5) would yield

candidate fixed points of 2
π(4−γ2) . However, we observe that for γ < 1 the noise stability signal

7
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actually dampens fully to zero, suggesting that the attention map alters the distribution enough to
preclude the weak dampening behavior. For more details, see Appendix H.

Noise Stability Intervals A more formal approach is to track rigorous upper and lower bounds
on the noise stability as they propagate through the network. We derive such bounds for individual
MLP and attention layers (Appendix I.1 and Appendix I.2). Further empirical work is needed to
determine the tightness of these bounds in practice.

6 NOISE STABILITY REGULARIZATION AND ITS BENEFITS

We established in Section 4 and Section 5 that high noise stability is a desirable property for cre-
ating robust and interpretable models. To this end, we introduce a regularizer designed to orient a
model’s training towards to or away from stable functions. We designed our regularizer to be (1)
differentiable with respect to the model’s parameters, and (2) data-dependent, meaning that the
regularization should be evaluated on the model’s outputs for training data, not just its parameters.
Definition 6.1 (Noise Stability Regularization). Let M : [U ]N → ∆(C) be a model, X ∈ [U ]N

be an input sequence, S ∈ {0, 1} be the orientation parameter, and ρ ∈ [−1, 1] be a correlation
parameter. The S-oriented noise stability regularizer is defined as:

RM,S,ρ(X) = (−1)S ·
C∑
i=1

M(X)i ·M(Y )i, where: (6)

Yi =

{
Xi, with probability 1+ρ

2

Z ∼ uniform([U ]), otherwise.
(7)

Setting the orientation parameter S = 1 encourages stability. For a differentiable loss function ℓ, the
regularized loss then becomes ℓreg(M,X) := ℓ(M,X)+γ ·RM,S,ρ(X) where γ is a hyperparameter
controlling the regularization strength. We test the effect of positively-oriented noise stability (S =
1) by training a Transformer from scratch on two tasks known to exhibit “grokking”: noisy k-sparse
parity and modular addition.

Note that calculating the noise stability regularizer requires just one additional forward pass through
the model per training iteration. It is an interesting direction whether the regularization can be
applied in a more cost-effective manner.

Experimental Setup We use a standard decoder-only Transformer (Appendix J). For all experi-
ments, we compare regularized and non-regularized models. All other hyperparameters, including
the random seed, are held constant across runs (Figure 5).

NOISY k-SPARSE PARITY (NSP) We learn the function f(x) =
⊕

i∈I xi for an input x ∈ {0, 1}n
and a secret sparse index set I ⊂ [n] of size k. Each training label is flipped with a fixed probability
η. This problem is well-studied in learning theory (Chen et al., 2024; Feldman et al., 2009), and
Transformers can solve it for small values of k (Bhattamishra et al., 2022). We test on inputs of
length n ∈ [10, 100] with k ∈ {2, 3}, using (γ, ρ) = (0.05, 0.05).

MODULAR ADDITION This task is to compute (X + Y ) (mod K). We study it as a standard
benchmark for grokking in Transformers (Nanda et al., 2023). For our experiments, we use a prime
modulus K = 113, train for 10, 000 iterations, and set (γ, ρ) = (0.75, 0.25).

Noise Stability Regularization Catalyzes Grokking. Training Transformers on these tasks ex-
hibits an “emergence” phenomenon, where validation loss drops suddenly after a long period of
stagnation. We find that noise stability regularization acts as a catalyst for this emergence. For
modular addition, regularization reduces the iterations required from ≈ 4500 to ≈ 3300, a 36%
acceleration. We observe a similar ≈ 35% speed-up for the noisy sparse parity task (Figure 5).

Noise Stability Evolution During Training By observing the noisy sparse parity task, we find
that a Transformer’s noise stability naturally decreases during training to match the target function,
serving as a leading indicator of generalization (Appendix J.2).

8
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Figure 5: Noise Stability Regularization accelerates training.

6.1 NON-SYNTHETIC EXPERIMENTS ON LANGUAGE GENERATION

We also tested noise stability regularization for the task of next-token-prediction on WikiText-2-v1
(Appendix J.3). We observed that regularized training reaches high validation accuracy in ≈ 75%
fewer iterations (Figure 6). The noise stability of the regularized model notably stays high, while
non-regularized models become increasingly unstable.

Figure 6: Noise Stability Regularization for Next-Token-Prediction (NTK) on WikiText-2

7 CONCLUSION

In this work, we introduced noise stability as a measure of simplicity bias in Transformers, argu-
ing theoretically and empirically that it better explains the spectral concentration observed in LLMs
than average sensitivity. We also proposed a noise stability regularizer and found that it unexpectedly
catalyzes grokking, offering a potential avenue to accelerate model training. Our findings open sev-
eral avenues for future research, including demystifying the mechanism of moment propagation in
deep networks and understanding the practical limits and theoretical underpinnings of noise stability
regularization in LLM settings.
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A ESSENTIALS OF BOOLEAN FUNCTION ANALYSIS

We now review some basic facts on Boolean Function Analysis. A Boolean function is defined on
the hypercube: f : {±1}n → R. Therefore, we can think of the space of boolean functions as R2n .
It is a fundamental fact that every boolean function can be represented uniquely as a multilinear
polynomial. This is a natural outcome of considering the following set of vectors in R2n :

B =

{
χU (x) =

∏
i∈U

xi : U ⊆ [n]

}
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For any U, V we have that:

⟨χU , χV ⟩ = 2n · Ex∈{±1}n [χU (x)χV (x)] = 2n
∏

i∈U△V

E[xi]

which is equal to 1 if and only if U = V . Thus B is an orthonormal basis for the set of Boolean
functions and so we can conclude the following:

Theorem A.1 (Fourier Expansion of Boolean Functions). Let f : {±1}n → R be boolean function.
Then we can write f uniquely as a multilinear polynomial Fourier Expansion:

f =
∑

U⊆[n]

f̂U · χU

where f̂U := ⟨f, χU ⟩ are the Fourier Coefficients of f . The degree deg(f) of f is defined as the
largest cardinality U for which f̂U ̸= 0:

deg(f) := max{|U | : f̂U ̸= 0}

A.1 INFLUENCE AND SENSITIVITY

Given f : {±1}n → R, we define can define its sensitivity by considering fluctuations in its output
when one single bit is pertrubed:

Definition A.2 (Influence). We define the influence of a coordinate i as:

Infi[f ] := Ex

[(
f(x)− f(x⊕i)

2

)2
]

where x⊕i is x with the i-th coordinate flipped. Then we define the total influence of f as:

I[f ] :=

n∑
i=1

Infi[f ]

We can often think of total influence as a measure of average sensitivity.

The following lemma gives us a Fourier representation of influence:

Lemma 2. If f =
∑

f̂SχS then:

Infi[f ] =
∑
S∋i

f̂(S)2 and I[f ] =
∑
S⊆[n]

|S| · f̂(S)2 =

n∑
k=0

k ·W k[f ]

where W k[f ] =
∑

|S|=k

f̂(S)2.

The influence is related to other important quantities about f : its variance and its degree.

Lemma 3 (Poincaré’s inequality). The variance of f is:

Var[f ] = E[f2]− E[f ]2 =
∑
S ̸=∅

f̂(S)2

It is true that:
Var[f ] ≤ I[f ]

The relationship between total influence and degree is very important because it allows us to repre-
sent functions with low total influence as low degree polynomials.

13
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B MORE EXPERIMENTAL RESULTS WITH TOTAL INFLUENCE

In this section we provide additional experimental details from examining the total influence of
four widely used models: GPT2, GEMMA-2-2B, ROBERTA, and BERT. As before, we run our
experiments on n = 256 tokens and experiment both with µ being the uniform distribution and the
distribution the model learns.

We analyze the geometric influence of these models by using forward hooks in Pytorch and col-
lecting the gradients with respect to the input embeddings. We analyze positional influence both
across layers and different attention heads, finding that in deep Transformers there are often layers
with minimal influence towards the output. Such sparsity is an interesting phenomenon that could
warrant further investigation.

(a) Model proxy Distribution (b) Uniform distribution

Figure 7: Per Layer Geometric Influence Heatmaps for 4 different models: We observe that
GEMMA-2-B has a very influential middle layer, while for ROBERTA and GPT2 the few lay-
ers are more influential.

C BASICS OF ORNSTEIN-UHLENBECK THEORY

We provide a self-contained review of the Ornstein-Uhlenbeck (OU) theory, culminating in the
derivation of noise stability under the Gaussian measure. We encourage the interested reader to
consult the excellent monograph of Andersson & Sjögren (2012) for more details.

C.1 HERMITE POLYNOMIAL BASIS AND ITS PROPERTIES

The Ornstein-Uhlenbeck theory starts by considering the Gaussian measure dγ(x) = 1
πd/2 e

−|x|2dx

in Rd. Let L2(γ) be the space of square-integrable functions with respect to this measure. Then, the
Physicist’s Hermite Polynomials turn out to be an invaluable way to spectrally decompose functions
in this space.

14
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(a) Model proxy Distribution (b) Uniform distribution

Figure 8: Geometric Influence Plots for two attention heads in 4 different models. We again observe
a junta-like spectral concentration phenomenon in every model. The first and last token positions
are consistently the most influential.

Definition C.1 (Physicist’s Hermite Polynomials). We define H0 = 1 and:

Hn(x) = (−1)nex
2 dn

dxn
e−x2

Some important properties of Hn are captured by the Lemma below:
Lemma 4 (Properties of Hn). The following identities hold:

d

dx
Hn(x) = 2nHn−1(x)

Hn+1(x) = 2xHn(x)− 2nHn−1(x)

Also Hn(x) is a degree n polynomial with leading coefficient 2n.

Proof. Let D = d
dx . We have by the product rule that:

DHn(x) = (−1)nex
2

2xDne−x2

+ (−1)nex
2

D(Dne−x2

)

Then the generalized Leibniz formula gives:

DHn(x) = (−1)nex
2

2xDne−x2

+ (−1)nex
2

n∑
k=0

(
n

k

)
Dk(−2x) ·Dn−ke−x2

Only the terms where k = 0, 1 are non-zero, so we have:

DHn(x) = (−1)nex
2

2xDne−x2

+ (−1)nex
2

(−2xDne−x2

+ (−2)nDn−1e−x2

= 2nHn−1(x)

Now, again by expanding DHn(x) we get:

DHn(x) = (−1)nex
2 dn+1

dxn+1
e−x2

+ (−1)nex
2

2x
dn

dxn
e−x2

= −Hn+1(x) + 2xHn(x)

And this gives:
Hn+1(x) = 2xHn(x)− 2nHn−1(x)

This allows us, by simple induction, to show that the leading coefficient of Hn(x) is equal to 2n.
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The most important statement in the Ornstein-Uhlenbeck theory is the following theorem:
Theorem C.2 (Hermite Orthogonal Basis). The set B = {Hn}∞n=0 forms a complete orthogonal
basis of L2(γ) with ||Hn||L2(γ) = 2n/2

√
n!. This motivates the definition and occasional use of the

normalized Hermite basis:

hn(x) =
1√
2nn!

Hn(x)

which is orthonormal in L2(γ).

Proof. To establish orthogonality, we have by repeated integration by parts that:∫ ∞

−∞
Hn(x)Hm(x)dγ(x) =

(−1)n√
π

Hm(x)ex
2

(Dne−x2

)e−x2

dx

=
(−1)n√

π

∫ ∞

−∞
Hm(x) ·Dn(e−x2

)dx

=
(−1)n√

π

∫ ∞

−∞
DnHm(x)e−x2

dx

If m < n then DnHm(x) = 0 and that gives orthogonality. For m = n, because the leading
coefficient is 2n we have:

||Hn||L2(γ) = 2n/2
√
n!

as desired.

Finally, we have to establish completeness. Recall from analysis that completeness means for every
f ∈ L2(γ) and every ε > 0 there must exist some g ∈ span(B) such that ||f − g||L2(γ) ≤ ε. In
other words, we seek to show that the linear span of B is dense in L2(γ), or, in even different words,
that the closure of the linear span is the whole space L2(γ). It suffices to show that if f ∈ L2(γ) is
such that ⟨f,Hn⟩ = 0 for all n ∈ N then f = 0. To see this, let us consider the spectral expansion
of f with the following coefficients:

f̂(n) :=

∫
f(x)Hn(x)dγ(x) = 0

By Parseval’s identity, we have that:

||f ||2 =

∞∑
n=0

|f̂(n)|2

2nn!
= 0

And thus f = 0, which concludes the proof.

When considering d > 1, we define the Hermite basis as a tensor product over multi-indices:

Ha(x) =

d∏
i=1

Hai
(x), a ∈ Nd

The same theorem about orthogonality and completeness holds in high dimensions as well.

C.2 THE ORNSTEIN-UHLENBECK OPERATOR AND SEMIGROUP

Next, we will define the Ornstein-Uhlenbeck operator. This operator is an analog to the Laplacian
in the L2(γ) space. It uses the adjoint4 of the partial derivative operator ∂i := ∂

∂xi
:

⟨∂if, g⟩ =
1

πd/2

∫ ∞

−∞
∂if(x)g(x)e

−|x|2dx

=
1

πd/2

∫ ∞

−∞
f(x)[2xig(x)− ∂ig(x)]e

−|x|2dx (Integration by parts)

= ⟨f, (2xi − ∂i)g⟩L2(γ)

Thus we arrive at the following definition:
4Recall the adjoint of a linear operator is an operator that moves to the other side of the inner product:

⟨Tx, y⟩ = ⟨x, T ∗y⟩.
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Definition C.3 (Ornstein-Uhlenbeck Operator). The OU Operator is defined as:

L =
1

2

d∑
i=1

∂∗
i ∂i = −1

2
∇+ x∆

This operator is symmetric and positive and it has the wonderful property that the Hermite basis are
actually its eigenfunctions:
Theorem C.4 (Eigenfunctions of the OU operator). The set {Hn}∞n=0 are eigenfunctions of L:

LHα = |a|Hα

where |a| =
d∑

i=1

αi

Proof. Consider d = 1. We have for j ̸= n:

⟨D∗Hn−1, Hj⟩ = 2j⟨Hn−1, Hj−1⟩ = 0

And if j = n we have ⟨D∗Hn−1, Hn⟩ = 2nn!, so D∗Hn−1 = Hn. Thus we have showed that:

D∗Hα−ei = Hα

for all d ≥ 1 and i ∈ [d]. So we know how the adjoint partial operator acts on the Hermite
polynomials. Thus, we can figure out how the OU operator acts on Hα:

LHα =
1

2

d∑
i=1

∂∗
i ∂iHα =

1

2

d∑
i=1

∂∗
i 2αiHα−ei =

d∑
i=1

αiHα = |a|Hα

as claimed.

Now we can define the OU Semigroup. A semigroup is a sequence of operators Tt that describe the
evolution of a process such that T0 = I and T (t+ s) = T (t) · T (s)5

Definition C.5 (The OU Semigroup). The OU Semigroup is defined as:

(Tt)t≥0 = e−tL

where if f =
∑

α f̂(α)Hα, Tt acts on f as:

e−tLf =
∑
α∈Nd

e−t|α|f̂(α)Hα

C.3 THE MEHLER KERNEL

It is easy to verify that (Tt) is indeed a semigroup. A very useful tool for us to analyze properties
of certain semigroups is kernels. If a semigroup is written via a kernel it will be very easy to prove
powerful properties on it. A kernel is just the analogs of matrix multiplication. When operator T
acts on function f , imagine there being some kind of function K(x, y) that for each f(y) tells us
how much that value “contributes” to Tf(x):

Tf(x) =

∫
Rd

K(x, y)f(y)dy

We want to find a kernel for the OU semigroup:

Ttf(x) =

∫
Rd

Mγ
t (x, y)f(y)dγ(y)

Mehler already found this kernel (Fuchs & Hensel, 1866) in 1866!

5Technically there are also some analytic continuity requirements, but we will not dive into them here.
Please refer to (Andersson & Sjögren, 2012) for more details.
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Theorem C.6 (The Mehler Kernel). The Kernel for the OU semigroup is:

Mγ
t (x, y) =

∑
α∈Nd

e−t|α|hα(x)hα(y)

Proof. We shall just verify this. Choose some β and see how the kernel acts on Hβ :∫
y∈Rd

∑
|α|<N

e−t|α|hα(x)hα(y)Hβ(y)dγ(y) =
∑

|α|<N

e−t|α|hα(x)

∫
y∈Rd

hα(y)Hβ(y)dγ(y)

= e−t|β|⟨hβ , Hβ⟩hα(y) (only α = β survives)

= e−t|β|||Hβ ||hβ(x)

= TtHβ

Now take N → ∞ and we arrive at the correct result.

The Mehler kernel has a really nice analytical expression. Starting from Hn(y) =

(−1)ne−y2

Dne−y2

and considering the Fourier Transform of the Gaussian: F(e−ξ2)(x) =
√
pi ·

e−x2/4 we have:

Hn(y) = (−1)ney
2 2nin√

π

∫ ∞

−∞
ξne2iyξ−ξ2dξ

And so the Mehler kernel can be written6 as:

Mγ
t (x, y) =

∞∑
n=0

e−tnhn(x)hn(y)

=

∞∑
n=0

e−tnhn(x)(−1)ney
2 2nin√

π

∫ ∞

−∞
ξne2iyξ−ξ2dξ

=
ey

2

√
π

∫ ∞

−∞

∞∑
n=0

1

n!
(−iξe−t)nHn(x)e

2iyξ−ξ2dξ (Switch
∑

and
∫

)

=
ey

2

√
π

∫ ∞

−∞
e2iξ(y−e−tx)−ξ2(1−e−2t)dξ

Letting ξ′ = ξ
√
1− e−2t and taking the inverse Fourier Transform we get that:

Mγ
t (x, y) =

1√
π

ey
2

√
1− e−2t

∫ ∞

−∞
e
2iξ′ y−e−tx√

1−e−2t
−|ξ′|2

dξ

And this brings us to the following important theorem:
Theorem C.7 (Analytical form of Mehler’s Kernel). We have that:

Mγ
t (x, y) =

1

πd/2(1− e−2t)d/2
e
− |y−etx|2

1−e−2t

Some important consequences of this treatment is the easy, via Hölder’s inequality, proof of the
non-expansiveness of Tt:
Lemma 5 (Non-expansiveness of OU operator). For any p ≥ 1 we have that:

||Tt||pLp(γ) ≤ ||Tt|f |p||Lp(γ) ≤ ||f ||pLp(γ)

We also easily get Mehler’s formula, which will be the starting point in our stability argument. Just
perform the change of variables

z =
y − e−tx√
1− e−2t

6Formally, we also need to justify why switching infinite summation and integration is possible by using
dominated convergence, but we will skip this here.
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to get:

Ttf(X) =

∫
f
(
ρX + Z

√
1− ρ2

)
dγ(Z)

where ρ := e−t for t ≥ 0. In other words,

Ttf(X) = EZ∼N (0,1)[f(ρX + Z
√

1− ρ2)]

which allows us to view Tt as the expected outcome of a random process: take X , add some noise
to it to get Y = ρX + Z

√
1− ρ2 and see the expected value of f(Y ).

C.4 FROM OU THEORY TO STABILITY

We are finallyu ready to define stability in familiar terms:

Definition C.8 (Gaussian Noise Stability). Let f ∈ L2(γ) and X ∼ γn where γ ≡ N (0, 1). Let
ρ ∈ (0, 1) and Y = ρX + Z

√
1− ρ2 for Z ∼ N (0, In) independent from X . We define the

stability of f as:
Stabρ(f) := E

(X,Y )
[f(X)f(Y )]

We note the immediate connection between stability and the OU semigroup:

Stabρ(f) = ⟨Tρf, f⟩L2(γ)

Now we know from the spectral expansion of the OU Semigroup action that:

Tρf =
∑
α∈Nd

ρ|α|f̂(α)Hα

By orthogonality of the Hermite polynomials we have:

Stabρ(f) =

〈∑
α∈Nd

ρ|α|f̂(α)Hα,
∑
α∈Nd

ρ|α|f̂(α)Hα

〉
=
∑
α∈Nd

ρ|α|2|α| · α! · f̂(α)2

If we define f̃(a) =
√
2|α|α!f̂(α) we finally get:

Stabρ(f) =
∑
α∈Nd

ρ|α|f̃(α)2

D PROOF OF LEMMA 1

Lemma 6 (Spectral tail bound via stability). Let f ∈ L2(γn) be a square-integrable function under
the standard Gaussian measure γn. Suppose that

Stabρ(f) := E[f(X)f(Y )] ≥ (1− δ)||f ||22
for some ρ ∈ (0, 1) and 0 < δ < ε < 1, where (X,Y ) are standard Gaussian vectors with
correlation ρ, i.e., Y = ρX +

√
1− ρ2Z for Z ∼ γn independent of X .

Then f is (ε, T )-concentrated for

T ≥ log (1− δ/ε)

log ρ

in the sense that: ∑
k≥T

∑
|α|=k

f̂(α)2 · 2|α|α! ≤ ε||f ||22

where f(x) =
∑

α∈Nn f̂(α)Hα(x) is the expansion of f in the multivariate physicists’ Hermite
polynomial basis.
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Proof. Let us write the Hermite expansion of f as

f(x) =
∑
α∈Nn

f̂(α)Hα(x)

where Hα(x) =
∏n

i=1 Hαi
(xi), and Hk is the physicists’ Hermite polynomial of degree k. The

Hermite polynomials are orthogonal in L2(γn) with squared norm ∥Hα∥2 = 2|α|α!.

Parseval’s identity in this basis reads:

∥f∥22 =
∑
α

f̂(α)2 · 2|α|α!

We define the Hermite level-k weight of f as:

W (k)[f ](f) :=
∑
|α|=k

f̂(α)2 · 2|α|α!

With this notation, Parseval’s identity is simply ∥f∥22 =
∑∞

k=0 W
(k)[f ](f).

The Ornstein–Uhlenbeck semigroup Tρ acts on the Hermite expansion by

Tρf(x) =
∑
α

ρ|α|f̂(α)Hα(x)

The noise stability can therefore be written as:

Stabρ(f) = ⟨f, Tρf⟩

=
∑
α

ρ|α|f̂(α)2 · 2|α|α!

=

∞∑
k=0

ρkW (k)[f ](f)

Fix a threshold T ∈ N. We can split the sum at degree T :

Stabρ(f) =
∑
k<T

ρkW (k)[f ](f) +
∑
k≥T

ρkW (k)[f ](f)

Since ρ ∈ (0, 1), we can upper-bound the terms in the sums by ρk ≤ 1 for k < T and ρk ≤ ρT for
k ≥ T . This gives:

Stabρ(f) ≤
∑
k<T

W (k)[f ](f) + ρT
∑
k≥T

W (k)[f ](f)

=

∥f∥22 −
∑
k≥T

W (k)[f ](f)

+ ρT
∑
k≥T

W (k)[f ](f)

= ∥f∥22 − (1− ρT )
∑
k≥T

W (k)[f ](f)

Rearranging the inequality to isolate the tail sum, we have:∑
k≥T

W (k)[f ](f) ≤
∥f∥22 − Stabρ(f)

1− ρT

Using the assumption that Stabρ(f) ≥ (1− δ) ∥f∥22, we can further bound the numerator:∑
k≥T

W (k)[f ](f) ≤
∥f∥22 − (1− δ) ∥f∥22

1− ρT
=

δ ∥f∥22
1− ρT

To ensure this tail sum is at most ε ∥f∥22, it suffices to have:

δ ∥f∥22
1− ρT

≤ ε ∥f∥22
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Assuming f is not the zero function, we can cancel ∥f∥22 and solve for T :

T log ρ ≤ log

(
1− δ

ε

)

T ≥ log (1− δ/ε)

log ρ

This bound is well-defined provided the argument of the logarithm is positive, which holds due to
the assumption that δ < ε.

E PROOF OF THEOREM 5.1

Theorem E.1 (Stability of ReLU). Let (X,Y ) ∼ N
(
0,

[
1 ρ
ρ 1

])
for ρ ∈ (−1, 1). Then:

E[ReLU(X)ReLU(Y )] =
1

2π

(√
1− ρ2 + ρ(π − arccos ρ)

)
Proof. We compute the expectation:

I(ρ) := E[ReLU(X)ReLU(Y )] = E[max(0, X)max(0, Y )].

The joint density function of (X,Y ) is

f(x, y) =
1

2π
√

1− ρ2
exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
.

Thus, we can compute:

I(ρ) =

∫ ∞

0

∫ ∞

0

xy · f(x, y) dy dx.

We perform a change to polar coordinates x = r cos θ, y = r sin θ, r ∈ [0,∞), θ ∈ [0, π/2] so
that x, y ≥ 0. Then the Jacobian is dx dy = r dr dθ and the exponent becomes:

x2 − 2ρxy + y2

2(1− ρ2)
=

r2(cos2 θ − 2ρ cos θ sin θ + sin2 θ)

2(1− ρ2)
(Substitute polar coordinates)

=
r2(1− ρ sin(2θ))

2(1− ρ2)
(sin(2θ) = 2 sin θ cos θ)

So the integral becomes:

I(ρ) =

∫ π/2

0

∫ ∞

0

r2 cos θ sin θ · 1

2π
√
1− ρ2

exp

(
−r2(1− ρ sin(2θ))

2(1− ρ2)

)
r dr dθ

=
1

2π
√
1− ρ2

∫ π/2

0

cos θ sin θ

∫ ∞

0

r3 exp

(
−r2(1− ρ sin(2θ))

2(1− ρ2)

)
dr dθ.

Now let

a(θ) =
1− ρ sin(2θ)

2(1− ρ2)
.

Use the substitution u = r2 ⇒ du = 2r dr, so:∫ ∞

0

r3e−a(θ)r2 dr =
1

2

∫ ∞

0

ue−a(θ)u du =
1

2
· 1

a(θ)2
(Standard integral:

∫∞
0

ue−audu = 1
a2 )
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So we obtain:

I(ρ) =
1

2π
√
1− ρ2

∫ π/2

0

cos θ sin θ · 1

2a(θ)2
dθ

=
1

4π
√
1− ρ2

∫ π/2

0

cos θ sin θ

a(θ)2
dθ.

Now recall that:

a(θ) =
1− ρ sin(2θ)

2(1− ρ2)
⇒ a(θ)2 =

(1− ρ sin(2θ))2

4(1− ρ2)2

So:

1

a(θ)2
=

4(1− ρ2)2

(1− ρ sin(2θ))2

Plugging in:

I(ρ) =
1

4π
√
1− ρ2

∫ π/2

0

cos θ sin θ · 4(1− ρ2)2

(1− ρ sin(2θ))2
dθ

=
(1− ρ2)3/2

π

∫ π/2

0

cos θ sin θ

(1− ρ sin(2θ))2
dθ.

Now make the substitution u = tan θ, so:

sin(2θ) =
2u

1 + u2
, cos θ sin θ dθ =

u

(1 + u2)2
du

Thus:∫ π/2

0

cos θ sin θ

(1− ρ sin(2θ))2
dθ =

∫ ∞

0

u

(1 + u2)2
(
1− ρ · 2u

1+u2

)2 du =

∫ ∞

0

u

(u2 + 1− 2ρu)
2 du.

This integral can be evaluated by completing the square:

u2 − 2ρu+ 1 = (u− ρ)2 + (1− ρ2)

So, now consider the integral

I :=

∫ ∞

0

u(
(u− ρ)2 + (1− ρ2)

)2 du,

where we define
a :=

√
1− ρ2.

We rewrite the numerator as

I =

∫ ∞

0

(u− ρ) + ρ(
(u− ρ)2 + a2

)2 du

=

∫ ∞

0

u− ρ(
(u− ρ)2 + a2

)2 du+ ρ

∫ ∞

0

1(
(u− ρ)2 + a2

)2 du

= I1 + ρI2.
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Integral I1: Substitute v = u−ρ, then du = dv, and the integration limits become v = −ρ to ∞:

I1 =

∫ ∞

−ρ

v

(v2 + a2)2
dv.

Using the antiderivative
d

dv

(
1

v2 + a2

)
= − 2v

(v2 + a2)2
,

we have ∫
v

(v2 + a2)2
dv = − 1

2(v2 + a2)
+ C.

Evaluating at the limits:

I1 =

[
− 1

2(v2 + a2)

]v→∞

v=−ρ

= lim
M→∞

(
− 1

2(M2 + a2)
+

1

2(ρ2 + a2)

)
= 0 +

1

2(ρ2 + a2)
=

1

2 · 1
=

1

2
,

since ρ2 + a2 = ρ2 + (1− ρ2) = 1.

Integral I2: Again substitute v = u− ρ, so

I2 =

∫ ∞

−ρ

1

(v2 + a2)2
dv.

The antiderivative is known:∫
dv

(v2 + a2)2
=

v

2a2(v2 + a2)
+

1

2a3
arctan

(v
a

)
+ C.

Evaluating at the limits:

I2 = lim
M→∞

(
M

2a2(M2 + a2)
+

1

2a3
arctan

(
M

a

))
−
(

−ρ

2a2(ρ2 + a2)
+

1

2a3
arctan

(
−ρ

a

))
.

Since

lim
M→∞

M

2a2(M2 + a2)
= 0, and lim

M→∞
arctan

(
M

a

)
=

π

2
,

we get

I2 =
π

4a3
+

ρ

2a2
− 1

2a3
arctan

(
−ρ

a

)
.

Using the oddness of arctangent,
arctan(−x) = − arctan(x),

we rewrite
I2 =

π

4a3
+

ρ

2a2
+

1

2a3
arctan

(ρ
a

)
.

Combining I1 and I2:

I = I1 + ρI2 =
1

2
+ ρ

(
π

4a3
+

ρ

2a2
+

1

2a3
arctan

(ρ
a

))
.

Finally, recall the trigonometric identity:

arctan
(ρ
a

)
=

π

2
− arccos ρ,

which allows for the final form after multiplying back by the outer constant (1− ρ2)3/2/π, we get:

E[ReLU(X)ReLU(Y )] =
1

2π

(√
1− ρ2 + ρ(π − arccos ρ)

)
.
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E.1 APPROXIMATING WITH A QUADRATIC

The expression we gave above for the stability propagation is hard to evaluate. We can approximate
it with a quadratic really well:

Lemma 7 (Quadratic Approximation of f(ρ)). Define the function

s(ρ) :=
1

2π

(√
1− ρ2 + ρ

(
π − arccos ρ

))
for ρ ∈ (−1, 1). Then the quadratic approximation of s around ρ = 0 is

s(ρ) =
1

2π
+

1

4
ρ+

1

4π
ρ2 + o(ρ2).

Proof. First, evaluate the function at zero:

s(0) =
1

2π

(√
1− 02 + 0 · (π − arccos 0)

)
=

1

2π
.

Next, compute the first derivative:

s′(ρ) =
1

2π

(
− ρ√

1− ρ2
+ π − arccos ρ− ρ · d

dρ
arccos ρ

)
.

Using d
dρ arccos ρ = − 1√

1−ρ2
, this simplifies to

s′(ρ) =
1

2π
(π − arccos ρ) .

Evaluating at ρ = 0:

s′(0) =
1

2π

(
π − π

2

)
=

1

4
.

Now compute the second derivative:

s′′(ρ) =
1

2π

d

dρ
(π − arccos ρ) =

1

2π

1√
1− ρ2

,

and at ρ = 0:

s′′(0) =
1

2π
.

Therefore, the quadratic approximation at ρ = 0 is

s(ρ) ≈ s(0) + S′(0)ρ+
s′′(0)

2
ρ2 =

1

2π
+

1

4
ρ+

1

4π
ρ2.

Figure 9: Approximating the stability of MLP with a quadratic
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F PROOF OF THEOREM 5.2

F.1 PRELIMINARIES

We will make use of the following mathematical tools in the proofs below:

Lemma 8 (Laurant-Massart Concentration Bounds for χ2
d Random Variables). Let Z be a chi-

squared random variable with d degrees of freedom. Then:

Pr
[
|Z − d| ≥ 2

√
du+ 2u

]
≤ e−u

Lemma 9 (Concentration of Gaussian Random Variable). Let Z ∼ N (0, σ2). Then:

Pr [Z ≥ α] ≤ e−α2/(2σ2)

Proposition 1 (Weighted Cauchy-Schwarz Inequality). Let a1, ..., an be non-negative constants and
y1, ..., yn ∈ Rd. It is true that:∣∣∣∣∣∣

∣∣∣∣∣∣
n∑

j=1

ajyj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤

 n∑
j=1

aj

1/2

·

 n∑
j=1

aj ||yj ||22

1/2

Proof. First, by the triangle inequality for the ℓ2-norm and the fact that aj ≥ 0, we have:∥∥∥∥∥∥
n∑

j=1

ajyj

∥∥∥∥∥∥
2

2

≤

 n∑
j=1

∥ajyj∥2

2

=

 n∑
j=1

aj∥yj∥2

2

=

 n∑
j=1

√
aj ·

√
aj · ∥yj∥2

2

Next, we apply the Cauchy-Schwarz inequality to the term on the right-hand side, to obtain: n∑
j=1

√
aj · (

√
aj∥yj∥2)

2

≤

 n∑
j=1

aj

 n∑
j=1

aj∥yj∥22


which finalizes the proof.

F.2 PROVING THE THEOREM

Theorem F.1 (Stability of Attention Layer, WQW
T
K = Id). Let X ∼ N (0, In×d) and Y = ρX +

Z
√

1− ρ2 for Z ∼ N (0, In×d) ⊥ X . Let f : Rn×d → Rn×d where f(X) = σ(XXT ) · XWV ,
WV ∈ Rd×d and σ is the row-softmax function. Then for all i ∈ [n] and j ∈ [d] we have that:

lim
d→∞

E[f(X)ijf(Y )ij ] = ρ||(WV ):,j ||22

Proof. Let x1, ..., xn ∈ Rd be the rows of X . We first show that W := σ(XXT ) converges to In
in probability as d → ∞ with exponential tails in d.

First, fix some i ∈ [n] and let σ2 := ||xi||22. We know that σ2 ∼ χ2
d and so by Lemma 8 we have

that:

Pr

[
23d

32
≤ σ2 ≤ 41d

32

]
≥ 1− 2e−d/64

Let A be the likely event defined above. Let us condition on A happening.

Now, condition on xi and let Vj := ⟨xi, xj⟩−σ2. Since xi ⊥ xj we have that Vj ∼ N (−σ2, σ2) | xi

and so by Lemma 9 we have:

Pr

[
Vj ≥ −σ2

2
| xi

]
= Pr

[
⟨xi, xj⟩ ≥

σ2

2
| xi

]
≤ e−

σ4/4

2σ2 = e−σ2/8 ≤ e−23d/256
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By a union bound, we have that:

Pr

[
∃j ̸= i s.t. Vj ≥ −σ2

2
| xi, A

]
≤ (n− 1)e−

23
256d

Removing the conditioning on xi and A, we get that:

Pr

[
∃j ̸= i s.t. Vj ≥ −σ2

2

]
≤ Pr[¬A] + (n− 1)e−

23
256d ≤ 2e−d/64 + (n− 1)e−

23
256d

Therefore, with probability at least 1 − e−Θ(d) it holds that Vj ≤ −σ2

2 ≤ − 23d
64 . Let us call this

event B and condition on it.

Now, we focus on the i-th row of W . For j ̸= i, we have:

Wij =
exp(Vj)

1 +
∑

k ̸=i exp(Vk)
≤ exp(Vj) ≤ exp

(
−23

64
d

)
Conditioning on Hd, we have proven that:

Pr

[
max
j ̸=i

Wij > exp

(
−41d

64

)]
≤ O

(
ne−Θ(d)

)
In other words, Wij

p→ 0 as d → ∞ with an exponential tail.

Similarly, when i = j, we have that:

Wii =
1

1 +
∑

k ̸=i exp(Vk)
≤ 1

1− (n− 1) exp(− 23
64d)

meaning that Wii
p→ 1 .

Now that we have shown that W
p→ In as d → ∞, let us consider the product Wi,: · XWV . We

want to treat this product as eiXA, so we show that the error goes to 0:

Wi,: ·XA− e1 ·XWV =
∑
j ̸=i

wijxjWV =: EX

We have by the weighted Cauchy-Schwatz inequality that:

E
[
||EX ||22

]
≤

∑
j ̸=i

Wij

 ·

∑
j ̸=i

WijE||xjWV ||22


≤ (n− 1)

∑
j ̸=i

E[Md · ||xjWV ||22]

where Md := maxj ̸=i Wij ∈ [0, 1]. We know that Md → 0 in probability, so by the dominated

convergence theorem we get that E[Md] → 0 as d → ∞. Also, E

[∑
j ̸=i

||xjWV ||22

]
is a constant

with respect to d. Applying Cauchy-Schwartz again, we get:

E[||EX ||22] ≤ (n− 1)

√√√√√E[M2
d ] · E

∑
j ̸=i

||xjWV ||22

 →
d→∞

0

Similarly, we can also show that E[||EY ||22] → 0 as d → ∞.

With that, if we fix j ∈ [d], let εX,i,j := f(X)i,j − (xiA)j . We have:

E[ε2X,i,j ] ≤ E[||EX ||22] → 0, E[ε2Y,i,j ] ≤ E[||EY ||22] → 0
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We can therefore claim that:

E[f(X)i,j · f(Y )i,j ] = E[(xiWV )j · (yiWV )j ] + o(1)

To see this, observe that:

f(X)i,jf(Y )i,j − (xiWV )j(yiWV )j = (xiWV )j · εX,i,j + (yiWV )j · εY,i,j + εX,i,j · εY,i,j
Each term has expectation o(1):

• E[(xiWV )j · εY,i,j ] ≤
√

E[(xiWV )2j ] ·
√

E[ε2Y,i,j ] = ||(WV ):,j ||2 · o(1) = o(1)

• E[(yiWV )j · εX,i,j ] = o(1) symmetrically.

• E[εX,i,j · εY,i,j ] ≤
√
E[ε2X,i,j ] ·

√
E[ε2Y,i,j ] = o(1) · o(1) = o(1).

Finally, we can obtain the final calculation:

lim
d→∞

E[f(X)i,jf(Y )i,j ] = E[(xiWV )j · (yiWV )j ] + o(1)

= E[⟨xi, (WV ):,j⟩ · ⟨yi, (WV ):,j⟩] + o(1)

=
∑
k,ℓ

(WV )k,j(WV )ℓ,j · E[xi,k · yi,ℓ] + o(1)

= ρ ·
∑
ℓ

(WV )
2
ℓ,j + o(1) (By definition of (X,Y ))

= ρ · ||(WV ):,j ||22 + o(1)

as claimed.

G NOISE STABILITY PROPAGATION IN THE UNSTRUCTURED CASE

In this section we prove the following theorem:
Theorem G.1. The noise stability of an attention layer in the unstructured case is:

lim
d→∞

E[f(X)ijf(Y )ij ]
p
= ρ · s(ρ) · ||(WV ):,j ||22 + o(1), with:

s(ρ) = n

∞∫
−∞

∞∫
−∞

Φρ2(x, y)n−1fρ2(x, y)dxdy

where Φc is the joint CDF of a bivariate normal distribution with correlation c and fc is the respec-
tive PDF.

Proof. We first prove that each row of the softmax matrix is a permutation:

Lemma 10. Let Pi,j := xT
i Wxj . Then:

σ(Pi,1, ..., Pi,n)
p→ ek, where k = argmax

j∈[n]

Pi,j

A similar statement also holds for Y .

Proof. The proof of this statement is very similar to our argument from Theorem 5.2. We have that:

Pij =
∑

a,b∈[d]

xi,aWa,bxj,b

Conditioning on X , Pij is normal with mean 0 and variance ||xi||22 · ||xj ||22 = Θ(d2) (Lemma 8).
So we can write Pij = d · Yij where Yij ∼ N (0, 1) conditioned on X . Let k∗ = argmax

j∈[n]

Pi,j =

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

argmax
j∈[n]

Yi,j . Let ∆k = Pik∗ − Pik = d(Yik∗ − Yik). We know that for k ̸= k∗ the quantity ∆k

converges to ∞ in probability as d → ∞, so:

ePik∑
s e

Pis
=

e−∆k

1 +
∑

s̸=k∗ e−∆s

p→ 0

as d → ∞. For k = k∗ however, we have:

ePik∗∑
s e

Pis
=

1

1 +
∑

s̸=k∗ e−∆s

p→ 1

This establishes the lemma.

Now, let Lij = yTi Wyj and let s = Pr[argmax
j∈[n]

Pi,j = argmax
j∈[n]

Li,j ]. We know that Pij and Lij

have correlation ρ2 as:

E

 ∑
a,b∈[d]

xi,aWa,bxj,b

 ·

 ∑
a,b∈[d]

yi,aWa,byj,b

 =
∑

a,b,c,d∈[n]

E[xi,axj,byi,cyj,cWa,bWc,d] = dρ2

The joint conditional distribution of both Pi,j and Li,j is a standard bivariate normal with correlation
ρ2:

fρ2(x, y) =
1

2π
√

1− ρ4
exp

(
−x2 − 2ρ2xy + y2

2(1− ρ4)

)
It’s CDF is:

Φρ2(x, y) =

x∫
−∞

y∫
−∞

fρ2(u, v) du dv

Thus, we can calculate:

s = s(ρ) = n

∞∫
−∞

∞∫
−∞

Φρ2(x, y)n−1fρ2(x, y)dxdy

The remainder of the proof concludes as in the main text by considering the events of the maxima
matching or not, taking the expectation and de-conditioning.

H FULL NOISE STABILITY DAMPENING IN MULTI-LAYER TRANSFORMERS

Let WQWK = I and ||(WV ):,j ||2 = γ ≤ 1. Ignoring distributional shifts, we can combine Theo-
rem 5.1 and Theorem 5.2 to get the following recurrence:

ρL =
1

2π

(√
1− γ4ρ2L−1 + γ2ρL−1(π − arccos(γ2ρL−1))

)
(8)

Substituting the linear approximation of Equation (4) and setting ρ1 = 1
2 , we obtain:

ρL =
1

2π
+

γ2

4
ρL−1 =⇒ ρL =

2

π(4− γ2)
+

(
1

2
− 2

π(4− γ2)

)
·
(
γ2

4

)L−1

This suggests that for γ ≤ 1 the noise stability propagation through a multi-layer transformer con-
verges to 2

π(4−γ2) .

However, empirical verification suggests this is not the case. Figure 10 shows that for γ < 1 we
observe full dampening, while for γ = 1 weak dampening remains. This is due to the fact that for
γ ̸= 1 the output of the Transformer layer decreases exponentially with γ, which also affects the
noise stability.
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Figure 10: Transformer exhibits full dampening in the multi-layer setting.

I NOISE STABILITY INTERVAL PROPAGATION

In this section we present some analytical results on the propagation of noise stability intervals.
These are lemmata that provide more flexibility towards the task of analyzing noise stability through-
out a deep Transformer, though distributional assumptions still need to be made. Such assumptions
can be quite detrimental to the validity of the analysis, as we have already seen.

I.1 MLP STABILITY UNDER BONAMI-BECKNER GAUSSIANS

Lemma 11 (Propagation of Stability in MLP Layer). Let X ∈ Rn×d be a random variable where
Xij ∼ N (µij , σij) (not necessarily independent of each other). Consider a random variable Y
generated by a scaled Bonami-Beckner noise process:

Yij =

{
αXij , with probability ρij ∈ [0, 1]

∼ N (µij , σij), iid, otherwise

where α > 0. Let ϕ : R → R be the element-wise ReLU function. Then we have that:

E[ϕ(Xij) · ϕ(Yij)] = ρijαE1 + (1− ρij)E
2
2

for all (i, j) ∈ [n]× [d], where:

E1 = σijf

(
µij

σij

)
+ µijΦ

(
µij

σij

)
E2 = (µ2

ij + σ2
ij)Φ

(
µij

σij

)
+ σijµijf

(
µij

σij

)
and f,Φ is the PDF and CDF of the standard N (0, 1) Gaussian distribution.

Proof. Let us fix some i, j and use the law of total expectation:

E[ϕ(Xij)ϕ(Yij)] = ρijαE[ϕ(Xij)
2] + (1− ρij)E[ϕ(Xij)]

2
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For the second moment, we have:

E[ϕ(Xij)
2] =

∞∫
0

z2
1√
2πσ2

ij

e
−

(z−µij)
2

2σ2
ij

=
1√
2π

∫ ∞

−µij/σij

(uσij + µij)
2e−

u2

2 du (u =
z−µij

σij
)

=
σ2
ij√
2π

∫ ∞

−µij/σij

u2e−
u2

2 du+
2σijµij√

2π

∫ ∞

−µij/σij

ue−
u2

2 du+
µ2
ij√
2π

∫ ∞

−µij/σij

e−
u2

2 du

For the third summand in this expression, we have that:

µ2
ij√
2π

∫ ∞

−µij/σij

e−
u2

2 du = µ2
ij

(
1− Φ

(
−µij

σij

))
= µ2

ijΦ

(
µij

σij

)
For the second summand, it is:

2σijµij√
2π

∫ ∞

−µij/σij

ue−
u2

2 du =
2σijµij√

2π

[
−eu

2/2
]∞
−µij/σij

= 2µijσijf

(
µj

σij

)
For the first summand, we can use integration by parts to get:

σ2
ij√
2π

∫ ∞

−µij/σij

u2e−
u2

2 du =
σ2
ij√
2π

·

([
−ue−u2/2

]∞
−µij/σij

+

∫ ∞

−µij/σij

e−
u2

2 du

)

= σ2
ij

−µij

σij
f

(
µij

σij

)
+ σ2

ijΦ

(
µij

σij

)
Combining, we get an expression for the second moment:

E1 := E[ϕ(Xij)
2] = σ2

ij

−µij

σij
f

(
µij

σij

)
+ σ2

ijΦ

(
µij

σij

)
+ 2µijσijf

(
µj

σij

)
+ µ2

ijΦ

(
µij

σij

)
= (σ2

ij + µ2
ij)Φ

(
µij

σij

)
+ µijσijf

(
µj

σij

)
Now for the mean, we have:

E[ϕ(Xij)] =

∞∫
0

z
1√
2πσ2

ij

e
−

(z−µij)
2

2σ2
ij

=
1√
2π

∫ ∞

−µij/σij

(uσij + µij)e
−u2

2 du (u =
z−µij

σij
)

Splitting up this sum, we have:

E2 := E[ϕ(Xij)] =
σij√
2π

∫ ∞

−µij/σij

ue−
u2

2 du+
µij√
2π

∫ ∞

−µij/σij

e−
u2

2 du

= σijf

(
µij

σij

)
+ µijΦ

(
µij

σij

)
This concludes the proof.

I.2 STABILITY PROPAGATION THROUGH A SINGLE ATTENTION LAYER

For convenience, the following result defines a stability matrix, which captures the correlation of
each input token with the other. Assumming all the entries in that matrix are bounded in some
interval, we analyze the noise stability propagation through an attention layer. We also assume some
structural properties of the weight matrices to allow for stability propagation in our proof:
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Lemma 12 (Stability Propagation through an Attention Layer). Let X,Y have stability matrix
{C}kℓ,k′ℓ′ = E[XkℓYk′ℓ′ ] ∈ Rnd×nd with 0 < ρℓ ≤ Ckℓ,k′ℓ′ ≤ ρr for all k, k′ ∈ [n], ℓ, ℓ′ ∈ [d],
and suppose ||X||∞, ||Y ||∞ ≤ B with probability 1. Consider an attention layer with matrices
WK ,WQ,WV ∈ Rd×d and denote, for two vectors x, y ∈ Rd the following quantities:

S+(x, y) =
∑

i,j∈[d]

max(0, xiyj), S−(x, y) =
∑

i,j∈[d]

min(0, xiyj)

Suppose that WV is such that ρℓS+(wj , wj′) + ρrS
−(wj , wj′) > 0 for all j, j′ ∈ [d], where

wj = (WV ):,j is the j-th column of WV . Hence, let:

Rℓ := inf
j,j′∈[d]

{ρℓS+(wj , wj′) + ρrS
−(wj , wj′)} > 0

Rr := sup
j,j′∈[d]

{ρrS+(wj , wj′)}

Now, let A(X) ∈ Rn×d be the output of the attention layer. Then we have that:

0 <
Rℓ

E
≤ E(A(X)ijA(Y )i′j′) ≤ Rr · E (9)

for all i, i′ ∈ [n], j, j′ ∈ [d], where E := exp(4d2B2||WK ||∞||WQ||∞)

Proof. Let SX = σ(XWQW
T
KXT ) and V X := XWV . We have that A(X)ij = ⟨SX

i,:, V
X
:,j ⟩, so:

E(A(X)ij ·A(Y )i′j′) = E
[
⟨SX

i,:, V
X
:,j ⟩ · ⟨SY

i,:, V
Y
:,j ⟩
]

= E

[(
n∑

k=1

SX
ikV

X
kj

)
·

(
n∑

k′=1

SY
i′k′V Y

k′j′

)]

= E

∑
k,k′

SX
ikS

Y
i′;k′V X

kj V
Y
k′j′


Now let qXi := Xi,: ·WQ ∈ Rd, kXi = Xi,: ·WK . We have:

SX
ik =

exp(qXi · kk)
n∑

s=1
exp(qXi · ks)

Therefore:

E(A(X)ij ·A(Y )i′j′)

= E

∑
k,k′

exp(qXi kk)
n∑

s=1
exp(qXi ks)

· exp(qYi′ kk′)
n∑

s=1
exp(qYi′ ks)

· V X
kj V

Y
k′j′



= E

∑
k,k′

exp(Xi,:WQW
T
KXT

k,:)
n∑

s=1
exp(Xi,:WQWT

KXT
s,:)

·
exp(Yi′,:WQW

T
KY T

k′,:)
n∑

s=1
exp(Yi′,:WQWT

KY T
s,:)

·Xk,:(WV ):,jYk′,:(WV ):,j′


We will bound the softmax terms using the norms of WQ,WK and X . For any s1, s2 we have:

|Xs1,:WQW
T
KXT

s2,:| ≤ d2B2||WQ||∞ · ||WK ||∞
And this implies that:

1

n
exp(−2d2B2||WK ||∞||WQ||∞) ≤

exp(Xi,:WQW
T
KXT

k,:)
n∑

s=1
exp(Xi,:WQWT

KXT
s,:)

≤ 1

n
exp(2d2B2||WK ||∞||WQ||∞)
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We now analyze the isolated terms

E[Xk,:(WV ):,jYk′,:(WV ):,j ]

We can use our prior information on the stability matrix C. Fix some k, k′ and we have that:

E[Xk,:(WV ):,jYk′,:(WV ):,j ] =
∑
ℓ,ℓ′

E [Xkℓ(WV )ℓjYk′ℓ′(WV )ℓ′j′ ]

=
∑
ℓ,ℓ′

(WV )ℓj(WV )ℓ′j′ · E [XkℓYk′ℓ′ ]

∈ [Rℓ, Rr] (as E [XkℓYk′ℓ′ ] ∈ (rℓ, rr))

Overall, if we let E := exp(4d2B2||WK ||∞||WQ||∞), we get that:

0 <
Rℓ

E
≤ E(A(X)ij ·A(Y )i′j′) ≤ Rr · E

J NOISE STABILITY REGULARIZATION EXPERIMENTS

J.1 ARCHITECTURE LAYOUT, HYPERPARAMETERS AND TRAINING DETAILS

We present details of our architecture, training and hyperparameters. These can also be found in our
codebase. Each Transformer layer uses multi-head self-attention followed by a position-wise feed-
forward network, with residual connections around both sublayers. We use sinusoidal positional
encodings, as well as binary attention masking M . We also use dropout, applied to attention weights,
attention output, and FFN hidden layer with rate p. The activation function we use for our FFN is
ReLU. To produce a classification label we use mean pooling over the label dimension.

For initialization, linear layers are initialized with N (0, 0.022) and zero biases. Every other learn-
able parameter is initialized via Xavier initialization. Positional encodings are fixed and not train-
able.

For training, we use AdamW with learning rate η and ℓ2 weight decay regularization λ. Our loss is
the cross entropy loss. We use a learning rate scheduler that reduces η on validation loss plateau.
The patience and factor parameters of the scheduler are hyperparameters we set. Our codebase
also provides support for multi-GPU and distributed training, though our models were too small to
benefit from such augmentations.

Table 2: Model Hyperparameters and Training Configuration for MODULAR ADDITION

Name Symbol Default
Embedding dimension dmodel 128
Transformer layers L 2
Attention heads H 2
Max seq length (PE) max length 512
Vocab size |V| K + 5
Num classes C K = 113
Dropout rate p 0.1
Batch size B 256
Epochs T 7000
Learning rate η 0.001
Weight decay λ 0.001
Label smoothing – 0.0
Scheduler patience – 10 epochs
Scheduler factor – 0.8
Train samples – 2000

Continued on next page
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Figure 11: Evolution of noise stability and validation loss for noisy sparse parity. Stability (green)
begins to decrease before the validation loss (blue) drops, acting as a leading indicator for general-
ization.

Table 2 – continued from previous page
Name Symbol Default
Val/Test samples – 200 / 200

J.2 EVOLUTION OF NOISE STABILITY DURING TRAINING.

We also analyze how noise stability (with ρ = 1/2) evolves during training without regularization,
focusing on the noisy sparse parity (NSP) task first because its target function has a known, low
noise stability of ρk (O’Donnell, 2021). We make three key observations:

• A randomly initialized Transformer exhibits high noise stability, which decreases through-
out training to converge toward the low stability level of the target function (Figure 11).

• Noise stability is a leading indicator for generalization. Figure 11 shows that stability
begins to decrease well before the sharp drop in validation loss, signaling that internal
model adjustments precede performance improvements.

• Stability can serve as a secondary metric for model selection. Among models with similar
validation loss, the one whose stability best aligns with the theoretical properties of the
target function may be preferable.

J.3 EXPERIMENTS ON LANGUAGE GENERATION

We also tested noise stability regularization on a language generation task. We trained a 4 layer
transformer model with dmodel = 30 and H = 6 on the next-token-prediction task. The dataset we
used was WikiText-2-v1 (Small), with sequence length N = 20, a vocabulary size of 500, batch size
of 200 and 1000 training examples7. We trained our transformer without noise stability regulariza-
tion, with weight decay λ = 0.02 and with numerous settings of (ρ, γ). We tracked noise stability,
validation loss and validation accuracy throughout training.

We first observe that even in this non-synthetic task noise stability regularization offers deep benefits
for training. As shown in Figure 12, the model climbs to 70% accuracy within 1000 iterations in
the grokking phase. On the other hand, it takes the non-regularized model 4000 iterations to do

7Our setup can also be found in full in our codebase.
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so, amounting to a 75% speedup. The situation is similar for the validation losses: the regularized
models exhibit more stability in training, while the non-regularized training fluctuates in validation
loss. Noise stability regularization also causes the validation loss to decrease much faster and earlier
than without it, while grokking.

Examining the noise stability at ρ = 1/2 for the regularized and non-regularized settings (Figure 14)
we can see a fundamental difference between the models. The non-regularized model becomes less
and less stable, which could explain its instability. Regularized models stay stable as the training
dynamics force the model to improve while remaining robust. Understanding the benefits of this
regularization better is definitely an interesting direction for future work.

Finally, we can see that noise stability regularization offers benefits for a variety of different settings
of the hyperparameters (ρ, γ). Ultimately however, the best performance is found via a thorough
hyperparameter sweep, as Figure 13 shows.

Figure 12: Accuracy Comparison on Next-Token-Prediction

Figure 13: Training and Validation Losses for Next-Token Prediction
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Figure 14: Noise Stability Comparison: Regularization vs Non-Regularization. We see that the non-
regularized model tends to become more unstable, while regularization maintains stability.
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