
ATLAS: Adaptive Landmark Acquisition using LLM-Guided Navigation

Utteja Kallakuri
Johns Hopkins University

ukallak1@jh.edu

Bharat Prakash
University of Maryland, Baltimore County

bhp1@umbc.edu

Arnab Neelim Mazumder
University of Maryland, Baltimore County

arnabm1@umbc.edu

Hasib-Al Rashid
University of Maryland, Baltimore County

hrashid1@umbc.edu

Nicholas R. Waytowich
Army Research Laboratory

nicholas.r.waytowich.civ@army.mil

Tinoosh Mohsenin
Johns Hopkins University

tinoosh@jhu.edu

Abstract

Autonomous navigation agents traditionally rely on pre-
defined maps and landmarks, limiting their ability to
adapt to dynamic and unfamiliar environments. This work
presents ATLAS, a novel system that continuously expands
its navigable landmark set and performs complex natural
language-guided navigation tasks. ATLAS integrates three
key components: a path planning module for navigating to
known landmarks, an object detection module for identify-
ing and localizing objects in the environment, and a large
language model (LLM) for high-level reasoning and nat-
ural language understanding. We evaluate ATLAS in di-
verse virtual environments simulated in Gazebo, including
indoor office spaces and warehouses. Results demonstrate
the system’s ability to steadily expand its landmark set over
time and successfully execute navigation tasks of varying
complexity, from simple point-to-point navigation to intri-
cate multi-landmark tasks with natural language descrip-
tions. Our comprehensive tests show that ATLAS expands
its knowledge, achieving a 100% success rate in tasks in-
volving known landmarks and up to 100% in semantically
inferred goals for objects not in the initial Knowledge Base.
We further demonstrate the system’s capacity to enhance its
navigational knowledge incrementally, showcasing its abil-
ity to dynamically adapt and accurately perform complex,
natural language-driven tasks in diverse simulation envi-
ronments.

1. Introduction

Navigation tasks involving natural language instructions
pose a significant challenge for autonomous agents [2, 4].
While traditional navigation systems rely on predefined

maps and landmarks, real-world environments are dynamic
and often require the ability to continuously learn and adapt.
This paper presents a novel approach that combines various
modules, including natural language processing, object de-
tection, and path planning, to create an intelligent naviga-
tion system capable of continuously expanding its knowl-
edge base and performing complex navigation tasks.

The motivation behind this work stems from the obser-
vation that humans excel at navigating unfamiliar environ-
ments by continuously updating their mental maps and ex-
ploiting their ability to understand natural language descrip-
tions. For instance, when exploring a new city, humans can
identify notable landmarks through visual cues and incor-
porate them into their mental map [7, 19]. Furthermore,
they can follow directions like “Head towards the tall clock
tower, then turn left at the fountain” by grounding the lan-
guage instructions to the perceived landmarks. This remark-
able ability to fuse perception, language understanding, and
spatial reasoning enables humans to navigate efficiently in
novel environments [10].

The proposed ATLAS system aims to emulate this
human-like navigation capability by integrating key com-
ponents that enable continuous learning and reasoning. It is
designed to address three objectives: 1) continually grow-
ing the set of navigable landmarks, 2) performing naviga-
tion tasks involving one or more landmarks, and 3) utilizing
a large language model (LLM) to assist with high-level rea-
soning, semantic navigation, and landmark set expansion
[6, 22]. By leveraging these capabilities, the system bridges
the gap between natural language instructions and physical
navigation in dynamic environments. In this work we use
Cohere as the LLM [5].

At the core of ATLAS is a navigation module that can



LLM 
Planner

COO Nav
Package

ROS Action
Server

YOLO Object 
Detector

Knowledge
Base

Plan

The LLM planner accesses 
various landmarks from the 
knowledge base to create 

plans for robot navigation.

COO Nav queries the knowledge 
base for the actual locations of the 
landmarks based on the LLM plan

COO Nav acquires the locations of 
the landmarks from the knowledge 

base and sequentially passes the goals 
to the action server for plan execution

High-Level Planner

Low-Level Policy 
Execution

�

User 
prompt

“main_door”: {”x”: -5.9, “y”: -17.1}

“tv”: {”x”: -6.5, “y”: -10.2}

“couch”: {”x”: 4.8, “y”: 1.1}

“laptop”: {”x”: -0.9, “y”: 7.1}

The Knowledge Base contains 
a set of known landmarks (ID and location)

 and is dynamically updated through 
interactions with the Object Detector. The

detections are filtered using an LLM to only 
push relevant landmarks to the knowledge base

User starts the high level plan-
ning process by providing an 
abstract task for the robot to 
update the knowledge base 
and use LLM subsequently

navigate_to_location()
spin_service()
make_a_stop()

move_forward()
.... 

LLM

Figure 1. High-level system architecture detailing the components and data flow between the LLM Planner, COO Navigation Package,
ROS Action Server, Knowledge Base with Landmarks, and Object Detector. The agent is setup with an initial set of landmarks it can
navigate to in its knowledge base. The agent receives a goal which is parsed by the LLM and looks up the knowledge to get navigation
goals. This is then used by the ROS planner for navigation. The agent detects objects along the way which is then filtered through the
LLM to get a relevant objects. These new objects are stored back in the knowledge base. The dictionary progressively keeps growing as
the agent explores the environment.

plan paths to known landmarks based on their coordinates.
However, the true power of ATLAS lies in its ability to learn
and expand its knowledge through an object detection mod-
ule and an LLM [24]. The detection module enables the
agent to identify objects in its environment, while the LLM
provides high-level reasoning and natural language under-
standing capabilities.

The integration of these components allows ATLAS to
continuously grow its landmark set by interpreting natural
language instructions, detecting and localizing new objects,
and incorporating them as navigable landmarks. Further-
more, the LLM’s semantic understanding capabilities en-
able ATLAS to perform complex navigation tasks involving
multiple landmarks and high-level reasoning, such as inter-
preting and executing instructions like “Go to the kitchen
and then proceed to the living room.”

The key contributions are summarized as follows:
• A system architecture that integrates a path planning

module, object detection, and a large language model for
navigation tasks.

• A novel method for continuously expanding the set of

navigable landmarks by detecting objects in the environ-
ment and incorporating them into the system’s knowledge
base with the assistance of the LLM.

• An approach to performing complex navigation tasks in-
volving multiple landmarks and high-level reasoning by
leveraging the LLM’s semantic understanding capabili-
ties.

• Experimental evaluation demonstrating the system’s per-
formance in various navigation scenarios, highlighting its
adaptability, continuous learning, and execution of com-
plex tasks with natural language instructions.

2. Background and Related Works
Edge deployment of large multimodal models [15–18]
along with the intersection of natural language under-
standing and robotics have led to the field of Vision-and-
Language Navigation (VLN) [2, 14], where the integration
of linguistic instructions with visual perceptions aids au-
tonomous agents navigate and interact within an environ-
ment. The advent of Large Language Models (LLMs) has
introduced new dimensions to decision-making in VLN, di-



verging into two main trajectories: utilizing LLMs as auxil-
iary helpers or primary planners.

In the domain of using LLM as an auxiliary helper,
works such as LM-Nav [20] leverage LLMs to generate
contextual information, such as landmark lists from raw
navigation instructions, aiding vision-language models in
inferring joint probability distributions. These applications
underscore LLMs’ potential beyond mere information gen-
eration, suggesting their capability for comprehensive plan-
ning grounded in real-world environments.

LLM as a primary planner domain explores LLMs’ capa-
bility to craft executable plans, directly or through low-level
planners, for embodied agents [1, 8, 9, 13, 21, 25]. While
these investigations underline the feasibility of LLM-driven
planning, they often rely on the premise of predefined ad-
missible actions, a condition that could limit practical ap-
plicability due to the dynamic nature of real-world environ-
ments and the increasing complexity with the number of
environment objects.

Voyager [23] is one such work in which the authors
present an LLM-powered agent in Minecraft, autonomously
exploring and learning complex skills through a novel cur-
riculum, skill library, and a code refinement process, show-
casing unmatched proficiency and adaptability. ITP [12]
presents a framework that uses language models for robots
to perform tasks and adapt to new goals. ITP leverages
LLMs for high-level planning and execution, integrating
planning, vision, and skill execution. GOAT [3] is a uni-
versal navigation system for mobile robots with three key
contributions: a multimodal approach for handling goals
via category labels, images, and language descriptions; a
lifelong learning capability that utilizes past environmen-
tal experiences for improved navigation; and a platform-
agnostic design enabling deployment across various robotic
platforms.

Our paper introduces a novel integration of natural lan-
guage processing, object detection, and a LLMs. Unlike
ITP[12], which relies on predefined guidelines for task
execution, our approach dynamically expands navigable
landmarks through environmental interaction and language
model insights, facilitating continuous learning. Contrary
to VOYAGER’s[23] focus on skill acquisition within simu-
lated settings, our method emphasizes real-world landmark
learning for navigation. Furthermore, our system employs
a language model for semantic reasoning and complex task
execution, a capability not present in GOAT[3]. This in-
tegration enables sophisticated navigation based on natural
language instructions, showcasing our system’s adaptability
and superior performance in real-world scenarios.

3. Proposed Approach
We begin the proposed approach by describing the problem
statement and the overall architecture shown in Figure 1.

3.1. Problem Statement

We consider a system where the agent receives instructions
in the form of natural language describing a navigation task.
The agent has a navigation module which is capable of plan-
ning a path to a landmark provided it has the correspond-
ing co-ordinates on the map. The agent is initialized with a
small set of landmarks to which it can navigate. It is also
equipped with an object detection module that can detect
objects as well as their distances from its current position.
Finally, the agent also has access to an LLM to help with
high-level reasoning.

Given these ingredients, our objective is to build a sys-
tem which can 1) continually grow the set of landmarks it
can navigate to, 2) perform navigation tasks that involve one
or more landmarks. 3) Use the LLM to assist with naviga-
tion, grow the landmark set, and perform semantic naviga-
tion.

3.2. System Architecture

The agent architecture consists of three main modules.
First, a path planning module called the COO Nav (Coor-
dinate Navigation), which is built on top of ROS. Given a
map, this module is used to perform path planning and nav-
igate to a landmarks given a set of co-ordinates. Second,
the high level planner module is an LLM which parses a
natural language input and provides a structured plan. The
plan comprises of a sequence of waypoints or landmarks
that the agent must navigate to. The prompt to the LLM is
constructed such that it has access to the current set knowl-
edge base(KB) of landmarks and the output is a subset of
landmarks required to complete the given task.

Third, the object detection module is responsible to de-
tecting and localizing objects in the environment which is
then used to acquire more landmarks in the environment.
This module uses a YOLO-v5s model [11]—to identify new
objects as the agent is navigating the environment. This
coupled with a depth sensor is used to localize new objects
in the environment. However, the object detector is likely
to detect random objects that might not make sense as land-
marks. Instead of using a human to filter theses, we use an-
other instance of the LLM to perform this task. Since LLMs
capture human intuition, we design a prompt that asks the
LLM to decide if it makes sense to add an object as a land-
mark. These new filtered landmarks are added to the KB
which keeps on growing with time.

Given a natural language instruction, these three compo-
nents act together to perform high level planning, navigate
in the environment, and add new landmarks to the growing
KB. This process is outlined in the algorithm 1.

3.3. Algorithmic Overview

The COO Nav package acting as the low-level policy
bridges the gap between high-level plans generated by



the LLM and the low-level ROS Action Server that con-
trols UGV movement. COO Nav interfaces directly with
ROS’s actionlib to execute navigational tasks providing
the services navigate to location and spin service. The
navigate to location service controls the movement of the
UGV to specified waypoints. It retrieves the coordinates
from the KB based on the input location identifier and sends
a goal to the ROS Action Server, directing the UGV to nav-
igate to these coordinates. The spin service on the other
hand, ensures the robot is able to make a in-place rotation
thereby scanning the environment for any objects of interest
to be added into the KB.

The YOLO object detector is used for real-time object
detection and executes callback functions to manage image
and depth data from appropriate ROS topics and to update
ATLAS with the latest inputs and detections. This operates
in parallel with the navigation components and it continu-
ously scans the UGV’s surroundings to identify and classify
objects which are used to enrich the KB. This ensures that
ATLAS’s environmental understanding evolves with each
deployment, enhancing its navigational intelligence.

Algorithm 1 Dynamic Navigation and Knowledge Enrich-
ment
Require: Small Predefined set of known locations in KB

1: function NAVIGATETOLOCATION(location)
2: coo = getCoordFromKB(location)
3: ros navigate(coo)
4: spin()
5: return success
6: end function
7: function UPDATEKB(detectedObjects)
8: relevantObjs = LLM filter(detectedObjects)
9: for all object in relevantObjs do

10: objPos, objOrient = getPosOrient(object)
11: if object not in KB then
12: Add object, objPos, objOrient to KB
13: end if
14: end for
15: end function
16: Initialize COO Nav and YOLO Object Detector
17: while UGV is operational do
18: Capture user prompt and parse via LLM Planner
19: Translate LLM output to locations
20: NAVIGATETOLOCATION(location)
21: objs = detectObjects()
22: UPDATEKNOWLEDGEBASE(objs)
23: end while

4. Experimental Setup and Results
4.1. Environment

To evaluate the performance of ATLAS, we conducted ex-
tensive experiments in diverse virtual environments using
the Gazebo simulator. Gazebo provides a realistic 3D sim-
ulation of robotic environments, enabling us to rigorously
test ATLAS’s capabilities in controlled yet complex scenar-
ios. We constructed multiple virtual worlds with varying
landmark configurations, object placements, and environ-
mental conditions, mimicking real-world settings such as
indoor office spaces, residential spaces, and natural land-
scapes.

Within these simulated environments, we deployed a
mobile robot equipped with sensors for perception and navi-
gation, replicating the setup of ATLAS. The robot’s percep-
tion module utilized a simulated RGB-D camera and a Li-
DAR sensor to detect and localize objects, while the naviga-
tion module planned and executed paths based on the avail-
able landmark information. The LLM operated in parallel,
processing natural language instructions and assisting the
robot in expanding its landmark knowledge and reasoning
about complex navigation tasks. This experimental setup al-
lowed us to systematically evaluate ATLAS’s performance
across a range of navigation scenarios, from simple point-
to-point navigation to complex multi-landmark tasks with
natural language descriptions.

4.2. Results

The first set of results illustrates ATLAS’s capability to con-
tinuously grow its navigable landmark set over time. We
present a graph that plots the number of landmarks in the
robot’s KB as a function of time spent exploring the virtual
environment. The graph demonstrates a steady increase in
the set of landmarks, showcasing ATLAS’s ability to suc-
cessfully detect, localize, and incorporate new objects as
navigable landmarks with the assistance of the LLM. For
the second set of results, we evaluate ATLAS’s performance
on various types of navigation tasks, ranging from simple
point-to-point navigation to complex multi-landmark tasks
with natural language descriptions. We report the task suc-
cess rate, a metric that measures the percentage of navi-
gation tasks successfully completed by the robot. We also
test ATLAS’s ability in semantic goal reaching which eval-
uates the agent’s ability to leverage the language model’s
semantic understanding to interpret and execute navigation
instructions involving landmarks not present in the current
landmark set.

4.2.1 Growing Knowledge Base

The effectiveness of a fully autonomous system can be de-
termined by its adaptive learning capabilities, specifically



its ability to continuously integrate new environmental data
into its navigational framework. In our case, this is captured
in the expansion of the KB. The KB, initialized with a basic
set of landmarks (referred to as ‘KL INIT ‘), is progres-
sively augmented as the UGV explores its environment and
identifies new objects of interest, as shown in Figure 2.

Figure 2. The total number of unique objects discovered by the
UGV over time in two distinct environments. This shows the abil-
ity of the UGV to dynamically update its Knowledge Base with
new landmarks as it navigates in the environments. Env 1 rep-
resents a residential setting, while Env 2 represents a warehouse
setting.

The incremental discovery process is shown by the
UGV’s exploration in two different environments. In ‘Env
1‘, a household environment, the UGV’s KB grew from the
initial three landmarks to a total of eleven. Each additional
entry in the dictionary represents the inclusion of a newly
identified landmark during a task execution, such as ’Go to
Room 1’ and ’Go to Room 2’.

For ‘Env 2‘, a warehouse setting, a more complex en-
vironment, this KB growth is more evident. Here we start
with five pre-known landmarks and extending to a compre-
hensive suite of seventeen. This environment has a broader
array of object classes, showing the UGV’s capacity to
adapt its KB in diverse settings.

The growth of the KB over time has significant implica-
tions for the execution of navigational tasks. With an en-
riched set of landmarks, the UGV is more equipped to un-
derstand and navigate to new locations, facilitating a higher
task success rate while enabling the high level planner
(HLP) to make more efficient plans. The relation between
the breadth of the KB and the UGV’s navigational perfor-
mance highlights ATLAS’s ability to leverage its growing
database for enhanced autonomous operation.

This dynamic learning ability, combined with the lan-
guage model’s semantic understanding, allows the UGV
to extend its navigational capabilities beyond the initial
landmark set, demonstrating ATLAS’s potential in adaptive
long-term deployment and unseen scenarios.

4.2.2 Task-Oriented Navigation and Incremental
Learning in Varied Settings

Figure 3 presents a detailed visualization of an autonomous
task execution within a residential setting by the UGV, re-
sulting in the dynamic update of the KB. The task begins
with a user prompt, which is sequentially processed by the
high-level and low-level planning stages.

The process initiates with a user prompt:“Investigate
Rooms 1 and 2”. The HLP interprets this high-level com-
mand to provide a sequential plan to investigate two specific
rooms within the residential environment. The HLP trans-
lates the user prompt into actionable goals for the UGV:
first, to Go to Room 1, and then Go to Room 2. These goals
are then broken down into discrete actions by the Low-
Level Planner, which commands the UGV to move to the
corresponding locations using the navigate to location
service and execute a spin service. This spin ensures that
the UGV performs a 30◦ in-place rotation in the clock-wise
and counterclockwise directions to scan the environment for
any objects of interest.

As the UGV executes the planned navigation the percep-
tion component, identifies and localizes objects such as a re-
frigerator, suitcase, potted plant, couch, and laptop. These
objects are highlighted by bounding boxes in the Camera
Front View. Each detected object is assessed against the
current KB; if an object is not already present in the KB
and is within a specified distance threshold, it is added
as a new landmark. This process is shown by the grow-
ing entries in the KB, where new objects like ’Refriger-
ator’ and ’Laptop’ are incorporated as the UGV explores
Rooms 1 and 2. The Gazebo and camera views collectively
illustrate the UGV’s field of operation and its perception
field, respectively. The integration of these views with the
planning stages and the KB updates provides a comprehen-
sive feedback loop that not only demonstrates the ATLAS’s
current operational state but also informs its future behav-
ior by increasing its spatial understanding and navigational
database.

Similarly, Figure 4 depicts task-oriented navigation in a
warehouse setting. The sequence again starts with a user-
defined task that undergoes systematic processing through
various stages of planning and execution. In this setting,
the user instructs the UGV with a prompt:“Navigate to the
garage to check if the delivery truck is still here.” This initi-
ates a series of operations in which the HLP devises a pre-
liminary plan to visit the garage. Consequently, the Low-
Level Planner dispatches commands to the UGV to execute
the navigate to garage service coupled with a spin service.
The scenario continues as the UGV is sequentially tasked
with navigating to the cafe to fetch a water bottle and de-
liver to the lounge. The UGV adapts to this complex, multi-
step operation by leveraging the updated KB to facilitate
navigation and object interaction.



Gazebo View Camera Front View

User Prompt: Investigate Rooms 1 and 2 High-Level Planner: Go to room 1
Low-Level Planner:  navigate_to_room1 & spin_service

High-Level Planner: Go to room 2
Low-Level Planner:  navigate_to_room2 & spin_service

User prompt:         Find the fridge
High-Level Planner: Go to the fridge
Low-Level Planner:  navigate_to_fridge & spin_service

Gazebo View

Gazebo ViewGazebo View Camera Front View

Camera Front View

Camera Front View

Suitcase

Refrigerator

Laptop
Potted
Plant Couch

Refrigerator

Bounding boxes

Robot location

Legends

Figure 3. Sequential flow of the UGV’s autonomous task execution, starting from the user prompt to the final KB update. The process is
depicted in a residential setting, showcasing the UGV’s interaction with the environment through the Gazebo and Rviz interfaces.

Gazebo View Camera Front View

User Prompt: Navigate to the  garage to check 
if the delivery truck is still here

High-Level Planner: Go to the garage
Low-Level Planner:  navigate_to_ garage & spin_service

User prompt:         Navigate to the cafe, grab a water 
bottle and drop it off at the lounge

High-Level Planner: Go to cafe
Low-Level Planner:  navigate_to_cafe & spin_service

High-Level Planner: Go to the lounge
Low-Level Planner:  navigate_to_lounge & spin_service

Gazebo View

Gazebo ViewGazebo View Camera Front View

Camera Front View

Camera Front View

Bounding boxes

Robot location

Legends

Truck Car

Refrigerator

Sink Bottle

Cup

Potted
Plant

Couch

Figure 4. Sequential flow of the UGV’s autonomous task execution, starting from the user prompt to the final KB update. The process is
depicted in a residential setting, showcasing the UGV’s interaction with the environment through the Gazebo and Rviz interfaces.

4.2.3 Analysis of Task Handling with Adaptive Knowl-
edge Base

The comparative performance of our ATLAS, equipped
with a dynamic and growing KB, versus a system relying
on a static, handcrafted KB, is outlined in Table 1. The
table shows the success rate and efficiency of executing a
range of navigation tasks of varying complexity defined by
whether the landmark existed in the KB or not.

The tasks listed range from basic navigation to complex

multi-step actions involving object interaction. Our sys-
tem demonstrates its adaptability by successfully complet-
ing tasks that extend beyond the initial KB, showcasing an
ability to assimilate new environmental data and utilize it
effectively for task execution.

For simple navigation tasks, both systems perform
equally well, as these tasks rely on pre-existing KB entries.
However, ATLAS shows a distinct advantage for tasks that
require interaction with objects not present in the initial KB.



Table 1. Task handling and success rate comparison between a static handcrafted Knowledge Base and our dynamic growing Knowledge
Base for a residential setting (Environment 1).

Environment 1

Complexity User Prompt
Handcrafted

Knowledge-Base
Growing

Knowledge-Base (Ours)
No. of sub-tasks
(success / total) Success No. of sub-tasks

(success / total) Success

Exists in
Knowledge Base

Navigate to Room 1 1/1 Yes 1/1 Yes
Navigate to Room 2 1/1 Yes 1/1 Yes

Added to the
Knowledge Base

Over time

Navigate to the refrigerator, grab a beverage
and deliver it at the laptop 0/2 No 2/2 Yes

Navigate to room 2, grab the cup and water
the potted plant 1/3 No 3/3 Yes

Turn off the TV in room 2 and head over the
couch 1/3 No 3/3 Yes

Table 2. Task handling and success rate comparison between a static handcrafted Knowledge Base and our dynamic growing Knowledge
Base for a warehouse setting (Environment 2).

Environment 2

Complexity User Prompt
Handcrafted

Knowledge-Base
Growing

Knowledge-Base (Ours)
No. of steps

(success / total) Success No. of steps
(success / total) Success

Exists in
Knowledge Base

Navigate to the garage 1/1 Yes 1/1 Yes
Navigate to the lounge 1/1 Yes 1/1 Yes
Navigate to the Cafe 1/1 Yes 1/1 Yes

Navigate to the game room 1/1 Yes 1/1 Yes

Added to the
Knowledge Base

Over time

Navigate to the garage to check
if the delivery truck is still here 1/1 Yes 1/1 Yes

Navigate to the cafe, grab a water
bottle and drop it off at the lounge 1/3 No 3/3 Yes

Fill the cup in the cafe with water at the sink
And water the potted plant 1/4 No 4/4 Yes

It successfully completes these tasks by dynamically updat-
ing its KB and effectively parsing complex user prompts
into actionable sub-tasks, as indicated by the ’Number of
steps’ column.

The ’Growing Knowledge-Base (Ours)’ column shows
the system’s ability to update the KB on the fly. For exam-
ple, upon receiving the prompt to ”Navigate to the refrig-
erator, grab a beverage, and deliver it to the laptop,” AT-
LASnot only identified the refrigerator and laptop as useful
landmarks but also updated its KB with these entities, thus
allowing it to successfully execute the full task sequence in
future attempts.

The success rate improvements from ’No’ in the hand-
crafted system to ’Yes’ in ours underline the advantages of
autonomous learning. Tasks that were initially beyond the
system’s capability due to KB constraints become feasible
as it learns, demonstrating the potential for continuous im-
provement and the capacity for handling increasingly com-

plex scenarios.
This comparative analysis underscores the significance

of a growing KB in advancing the capabilities of au-
tonomous systems. It provides a clear illustration of how
a dynamic and learning-based approach can yield superior
performance, particularly in environments where adaptabil-
ity and learning from interaction are essential.

Following the evaluation presented in Table 1, a similar
analysis in a different context, Environment 2, a warehouse
setting, further serves to show the efficacy of our adap-
tive KB system. Table 2 presents the system’s performance
across a range of tasks within the warehouse.

Again, the tasks vary from elementary single-step navi-
gational tasks to multi-step operations. As shown, our ap-
proach surpasses the static KB system by achieving a 100%
success rate, even for tasks that introduce new landmarks
during the UGV’s explorations.

For single-step navigation commands involving known



Table 3. Performance of ATLAS in semantic goal-reaching tasks where the target object is not directly listed in the Knowledge Base.

Complexity Prompt Landmark
(suggested / actual)

Success
Rate

Does not exist in
KB

What is the closest landmark near
which i can find a sink.

Refrigerator / Refrigerator
70%Couch / Refrigerator

What is the closest landmark near
which i can find a keyboard and mouse. Laptop / Laptop 100%

What is the closest landmark near
which i can find a oven.

Refrigerator / Refrigerator
80%Chair / Refrigerator

What is the closest landmark near
which i can find a cloth hamper.

Suitcase / Suitcase
60%Store / Suitcase

What is the closest landmark near
which i can find a monitor. Laptop / Laptop 100%

locations, such as ”Navigate to the game room” or ”Navi-
gate to the lounge,” both systems show success, confirming
the initial robustness of the static KB. However, in scenarios
that involve new landmarks or require complex interactions,
for instance, when instructed to ”Navigate to the cafe, grab
a water bottle and drop it off at the lounge,” our system dy-
namically uses the previously added ’bottle’ from the KB,
enabling successful task completion.

4.2.4 Semantic Goal Reaching

ATLAS’s capability extends beyond the retrieval of known
landmarks within the KB. It can also perform advanced se-
mantic reasoning by navigating to the most proximate and
contextually relevant landmark when tasked to find an ob-
ject absent from the KB. Table 3 illustrates the ATLAS’s
performance on semantic goal-reaching tasks.

In scenarios where the user poses queries like ”What is
the closest landmark near which I can find a sink,” the sys-
tem can intelligently suggest ’Refrigerator’ as the landmark,
leveraging the semantic clustering of objects in the environ-
ment. Despite ’Sink’ not being a direct entry in the KB, the
LLM deduces that a sink can often be found in proximity to
refrigerators in residential layouts.

The ’Landmark (suggested / actual)’ column showcases
the LLM-prompted landmark versus the actual landmark.
The success rate measures the number of times the appro-
priate landmark is prompted while the experiment is run 10
times.

This ability to perform semantic goal-reaching by con-
necting the dots between related objects significantly en-
hances ATLAS’s navigational efficiency, particularly in en-
vironments rich with contextually grouped entities. This
ability makes the UGV not just a follower of direct com-
mands but an intelligent agent capable of making inferences
about its surroundings.

5. Conclusion

In this paper we introduced ATLAS an autonomous naviga-
tion system that integrates path planning, object detection
and LLMs to navigate using natural language instructions.
The key contributions include ATLAS’s ability to dynam-
ically expand its knowledge base with new landmarks and
use them to execute complex multi-step navigation tasks.
Our results demonstrate ATLAS’s ability to adapt and learn
incrementally achieving a high success rate across both
known and semantically inferred navigation tasks in sim-
ulated environments.

Future work will explore extending ATLAS with more
complex object detectors with a strong open-vocabulary
detection capability and grounding ability. This allows
us to further bridge the gap between the way humans
and robots perceive and interact with their surroundings
making autonomous navigation more versatile and intelli-
gent.

References
[1] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Cheb-

otar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu,
Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i
can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022. 3

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and
Anton Van Den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3674–3683,
2018. 1, 2

[3] Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram
Yenamandra, Dhruv Shah, So Yeon Min, Kavit Shah, Chris
Paxton, Saurabh Gupta, Dhruv Batra, et al. Goat: Go to any
thing. arXiv preprint arXiv:2311.06430, 2023. 3

[4] Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely,
and Yoav Artzi. Touchdown: Natural language navigation
and spatial reasoning in visual street environments. In Pro-



ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12538–12547, 2019. 1

[5] Cohere. Command language model api, 2022. 1
[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[7] Russell Epstein. The cortical basis of visual scene process-
ing. Visual Cognition, 12(6):954–978, 2005. 1

[8] Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram
Burgard. Visual language maps for robot navigation. In 2023
IEEE International Conference on Robotics and Automation
(ICRA), pages 10608–10615. IEEE, 2023. 3

[9] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor
Mordatch. Language models as zero-shot planners: Extract-
ing actionable knowledge for embodied agents. In Interna-
tional Conference on Machine Learning, pages 9118–9147.
PMLR, 2022. 3

[10] Ray Jackendoff and Barbara Landau. Spatial language and
spatial cognition. In Bridges between psychology and lin-
guistics, pages 157–182. Psychology Press, 2013. 1

[11] Glenn Jocher. YOLOv5 by Ultralytics, 2020. 3
[12] Boyi Li, Philipp Wu, Pieter Abbeel, and Jitendra Malik. In-

teractive task planning with language models. arXiv preprint
arXiv:2310.10645, 2023. 3

[13] Yujie Lu, Weixi Feng, Wanrong Zhu, Wenda Xu, Xin Eric
Wang, Miguel Eckstein, and William Yang Wang. Neuro-
symbolic procedural planning with commonsense prompt-
ing. arXiv preprint arXiv:2206.02928, 2022. 3

[14] Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter An-
derson, Devi Parikh, and Dhruv Batra. Improving vision-
and-language navigation with image-text pairs from the web.
In Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part
VI 16, pages 259–274. Springer, 2020. 2

[15] Hasib-Al Rashid and Tinoosh Mohsenin. Hac-pocd:
Hardware-aware compressed activity monitoring and fall de-
tector edge poc devices. In 2023 IEEE Biomedical Circuits
and Systems Conference (BioCAS), pages 1–5. IEEE, 2023.
2

[16] Hasib-Al Rashid, Pretom Roy Ovi, Aryya Busart, Carl Gan-
gopadhyay, and Tinoosh Mohsenin. Tinym2net: A flexible
system algorithm co-designed multimodal learning frame-
work for tiny devices. ArXiv, 2022.

[17] Hasib-Al Rashid, Argha Sarkar, et al. Tinyvqa: Compact
multimodal deep neural network for visual question answer-
ing on resource-constrained hardware. ArXiv, 2024.

[18] Hasib-Al Rashid et al. Tinym2net-v2: A compact low power
software hardware architecture for Multimodal deep neural
networks. ACM Transactions on Embedded Computing Sys-
tems, 2023. 2

[19] Kai-Florian Richter and Stephan Winter. Landmarks.
Springer Cham Heidelberg New York Dordrecht London.
doi, 10:978–3, 2014. 1

[20] Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-
nav: Robotic navigation with large pre-trained models of lan-
guage, vision, and action. In Conference on robot learning,
pages 492–504. PMLR, 2023. 3

[21] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal,
Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse Thomason,
and Animesh Garg. Progprompt: Generating situated robot
task plans using large language models. In 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 11523–11530. IEEE, 2023. 3

[22] Jesse Thomason, Aishwarya Padmakumar, Jivko Sinapov,
Nick Walker, Yuqian Jiang, Harel Yedidsion, Justin Hart, Pe-
ter Stone, and Raymond J Mooney. Improving grounded nat-
ural language understanding through human-robot dialog. In
2019 International Conference on Robotics and Automation
(ICRA), pages 6934–6941. IEEE, 2019. 1

[23] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar,
Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandku-
mar. Voyager: An open-ended embodied agent with large
language models. arXiv preprint arXiv:2305.16291, 2023. 3

[24] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong
Wu. Object detection with deep learning: A review. IEEE
transactions on neural networks and learning systems, 30
(11):3212–3232, 2019. 2

[25] Kaizhi Zheng, Kaiwen Zhou, Jing Gu, Yue Fan, Jialu Wang,
Zonglin Di, Xuehai He, and Xin Eric Wang. Jarvis: A neuro-
symbolic commonsense reasoning framework for conversa-
tional embodied agents. arXiv preprint arXiv:2208.13266,
2022. 3


	. Introduction
	. Background and Related Works
	. Proposed Approach
	. Problem Statement
	. System Architecture
	. Algorithmic Overview

	. Experimental Setup and Results
	. Environment
	. Results
	Growing Knowledge Base
	Task-Oriented Navigation and Incremental Learning in Varied Settings
	Analysis of Task Handling with Adaptive Knowledge Base
	Semantic Goal Reaching


	. Conclusion

