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Abstract

Electronic Medical Records (EMRs), while in-001
tegral to modern healthcare, present challenges002
for clinical reasoning and diagnosis due to their003
complexity and information redundancy. To ad-004
dress this, we proposed medIKAL (Integrating005
Knowledge Graphs as Assistants of LLMs),006
a framework that combines Large Language007
Models (LLMs) with knowledge graphs (KGs)008
to enhance diagnostic capabilities. medIKAL009
assigns weighted importance to entities in medi-010
cal records based on their type, enabling precise011
localization of candidate diseases within KGs.012
It innovatively employs a residual network-013
like approach, allowing initial diagnosis by014
the LLM to be merged into KG search results.015
Through a path-based reranking algorithm and016
a fill-in-the-blank style prompt template, it fur-017
ther refined the diagnostic process. We vali-018
dated medIKAL’s effectiveness through exten-019
sive experiments on a newly introduced open-020
sourced Chinese EMR dataset, demonstrating021
its potential to improve clinical diagnosis in022
real-world settings.023

1 Introduction024

Electronic Medical Records (EMRs) are the digi-025

tized record of a patient’s medical and health infor-026

mation and play an important role in the modern027

healthcare system. However, due to their complex-028

ity and information redundancy, clinical diagno-029

sis based on EMRs extremely requires specialized030

medical knowledge and clinical experience. This031

demand has led to the development of automated032

methods to assist and support clinical diagnosis and033

decision-making.034

Recently, large language models (LLMs) have035

demonstrated great potential in various medical do-036

mains (Lee et al., 2023; Lee, 2023; Ayers et al.,037

2023; Nayak et al., 2023). But directly applying038

LLMs to the medical field still has raised con-039

cerns about the generation of erroneous knowledge040

and hallucinations because of their lack of specific041

Patient’s EMR
Chief Complaint(CC): Bilateral lower extremities edema…

History of the present illness(HPI): …Poor appetite and sleep, but normal urination and defecation…

Past medical history(PMH): ……     Physical Examination(PE):  ……

Laboratory and Aided examination(LAE): …NT-proBNP ↑, Uric acid ↑, … Myo/cTnl/CKMB: normal

Search

“NT-proBNP ↑”

→“Mainly Found in”

→“Heart failure”

Subgraphs/Triplets
Heart Failure

1 Misled by non-critical Contexts

2 Chains’ Structure too complex 

3 Too Many Iteration steps 

Search
Diabetes

Instruction
Exceeding context 

length limit Null

…
n-step Iterations

Bilateral lower 

extremities edema

…

Diabetes

Uric acid 

Figure 1: Limitations of existing methods using
KG-augmented LLMs for application to EMR diag-
nostic tasks. 1⃝ use subgraphs/triplets to augment
context. 2⃝use reasoning chains to augment context.
3⃝use the iteration-based approach to involve LLMs
in KG searching and reasoning.

medical knowledge (Bernstein et al., 2023). Train- 042

ing LLM in the medical domain requires a lot of 043

high-quality data, and the best-performing LLMs 044

available are often closed-source, making further 045

training difficult ((Achiam et al., 2023)). Further- 046

more, considering that knowledge in the medical 047

field is constantly being updated and iterated, for 048

already trained LLMs, updating their parameters 049

can only be done through retraining, which is ex- 050

tremely time-consuming and expensive (Baek et al., 051

2023b). 052

As a classic form of large-scale structured knowl- 053

edge base, knowledge graphs (KGs) can provide 054

explicit knowledge representation and interpretable 055

reasoning paths and can be continually modified 056

for correction or update. Therefore, KGs become 057

an ideal complement to LLMs (Pan et al., 2024a). 058

However, existing works on "LLM⊕KG" cannot 059

be directly applied to EMR diagnosis tasks, mainly 060

due to the following reasons: (1) Existing ap- 061
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proaches rely on entity recognition in the input text062

to locate corresponding information in KGs, but063

they do not differentiate the contributions of differ-064

ent types of entities during searching on KGs. (2)065

They typically treat triplets or subgraphs obtained066

from KGs as direct context inputs or simply convert067

them into natural language, which can easily lead to068

the problem of exceeding the input length limit and069

hard to understand for LLMs when encountering070

complex structures and informative contexts. (3)071

It was found that when adopting a RAG paradigm,072

LLMs tend to overly rely on the knowledge in the073

provided context and fail to fully utilize their in-074

ternal knowledge, making it easy to be misled by075

incorrect knowledge (Baek et al., 2023a).076

In this paper, we propose a simple yet ef-077

fective framework called medIKAL (Integrating078

Knowledge Graphs as Assistants of LLMs). Specif-079

ically, unlike other conventional approaches, we080

assign different weights to entities in the medi-081

cal record based on their type, which enables us082

to more precisely localize possible candidate dis-083

eases in the KG. Meanwhile, in order to prevent084

the results from relying too much on the knowl-085

edge graph, we drew inspiration from the idea of086

"residual networks" to allow LLM to first diagnose087

without relying on external knowledge, and then088

merge the diagnosis results with the search results089

of the knowledge graph. Subsequently, we propose090

a path-based rerank algorithm to rank candidate091

diseases. Finally, we designed a special fill-in-the-092

blank style prompt template to help LLMs to better093

inference and error correction.094

In summary, our contributions can be abbre-095

viated as: (1) We raised the problem of a short-096

age of high-quality open-source Chinese electronic097

medical record data and we introduced an open-098

sourced Chinese EMR dataset. (2) We proposed099

an effective method that allows LLMs to handle100

information-dense and highly redundant electronic101

medical records to make effective diagnoses. (3)102

We conducted extensive experiments on our col-103

lected EMR dataset to demonstrate the effective-104

ness of medIKAL.105

2 Related Work106

2.1 Clinical Diagnosis and Prediction on107

EMRs108

Electronic medical records (EMRs) provide de-109

tailed medical information about patients, includ-110

ing symptoms, medical history, test results, and111

treatment records, and are widely used in patient 112

care, clinical diagnosis, and treatment (Xu et al., 113

2024). Prior research has extensively focused on 114

designing deep learning models for EMR data, ad- 115

dressing downstream tasks such as disease diagno- 116

sis and risk assessment (Gao et al., 2020; Xu et al., 117

2022; Wang et al., 2023b). 118

LLMs have demonstrated impressive perfor- 119

mance in various medical tasks, including disease 120

diagnosis and prediction in EMRs. Researchers 121

have explored multiple approaches: Jiang et al. 122

(2023a) used LLMs and biomedical knowledge 123

graphs to construct patient-specific knowledge 124

graphs, processed with a Bidirectional Attention- 125

enhanced Graph Neural Network (BAT GNN); 126

RAM-EHR (Xu et al., 2024) transformed multi- 127

ple knowledge sources into text format, utilizing 128

retrieval-enhanced and consistency-regularized co- 129

training; DR.KNOWS (Gao et al., 2023) combined 130

a knowledge graph built with the Unified Medical 131

Language System (UMLS) and a clinical diagnos- 132

tic reasoning-based graph model for improved diag- 133

nosis accuracy and interpretability; REALM (Zhu 134

et al., 2024) integrated clinical notes and multivari- 135

ate time-series data using LLMs and RAG technol- 136

ogy, with an adaptive multimodal fusion network. 137

Most studies focus on English EMR datasets like 138

MIMIC-III (Johnson et al., 2016), which primarily 139

contains ICU data and may not suffice for model- 140

ing mild cases, rehabilitation, or routine treatments. 141

Research on Chinese EMR datasets remains lim- 142

ited. 143

2.2 Knowledge Graph Augmented LLM 144

Knowledge graphs have advantages in dynamic, 145

explicit, structured knowledge representation and 146

storage, and easy addition, deletion, modification, 147

and querying (Pan et al., 2024b), which has led 148

to increasing interest among researchers in explor- 149

ing the integration of knowledge graphs with large 150

language models. One typical paradigm is to in- 151

corporate knowledge graph triplets into the train- 152

ing data during the training phase and obtain their 153

embedding representations through graph neural 154

network modules (Zhang et al., 2019; Sun et al., 155

2021; Li et al., 2023; Huang et al., 2024). How- 156

ever, LLMs often have a large-scale requirement for 157

pre-training corpora, making it difficult and costly 158

to find or create knowledge graphs of a matching 159

scale (Wen et al., 2023). More importantly, com- 160

bining knowledge graphs with LLMs through em- 161

bedding can result in the loss of their original ad- 162
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vantages, such as interpretability of reasoning and163

efficiency of knowledge updates.164

In recent studies, researchers have attempted to165

integrate KGs with LLMs through prompts (Wen166

et al., 2023; Wu et al., 2024; Yang et al., 2024;167

Wang et al., 2023a). They typically identify enti-168

ties in the input text and locate the correspond-169

ing triplets or subgraphs in the KG, which are170

then transformed into natural language (Wen et al.,171

2023), entity sets (Wu et al., 2024), or reorganized172

triplets (Yang et al., 2024), etc., and concatenated173

with the input prompts to provide additional knowl-174

edge to LLMs. Another approach is to use an iter-175

ative strategy where the LLM acts as an agent to176

explore and reason step-by-step on the KG until it177

obtains sufficient knowledge or reaches the max-178

imum number of iterations (Sun et al., 2023; Jin179

et al., 2024). However, this approach is more suit-180

able for shorter questions. In scenarios with longer181

contexts, larger knowledge graph scales, and more182

complex structures, it can result in excessive inter-183

actions with the LLM and the inability to find the184

correct paths in the knowledge graph.185

3 Method186

3.1 EMR Summarisation and Direct187

Diagnosis via LLM188

Considering that the EMRs contain a large amount189

of redundant information, direct use is easy to190

cause interference in the diagnostic process. So we191

first designed a series of questions to prompt LLM192

to summarize the key information in the EMR, such193

as patient symptoms, medical history, medication194

usage, medical visits, etc. Detailed prompt tem-195

plates are shown in Table 10 and 11 in Appendix F.196

This process can be represented as:197

M = LLM([Promptsum,Morig]) (1)198

whereMorig represents the original input medical199

record,M represents the medical record after de-200

composition and summarization, and Promptsum201

is the textual prompt.202

Based on the decomposed and summarized med-203

ical record, we allow the LLM to rely on its internal204

knowledge for preliminary diagnosis and obtain a205

set of potential diseases DLLM. This process can206

be represented as:207

DLLM = LLM([Promptdiag,M]) (2)208

where Promptdiag denotes the textual instruction209

used to guide the LLM in performing preliminary210

diagnosis and providing predicted diseases (see 211

Table 12 in Appendix F). 212

3.2 Candidate Disease Localization and 213

Reranking via KG 214

3.2.1 Entity Recognition and Matching 215

Before the knowledge graph search process, we per- 216

form entity recognition on the summarized EMR 217

M using a pre-trained NER model. This process 218

can be represented as: 219

EM = e1, e2, . . . , e|E| = NER(M) (3) 220

Where the entity set extracted from the EMR is 221

denoted as EM, and NER denotes the pre-trained 222

NER model. 223

Then for every ei ∈ EM, we link it to the cor- 224

responding node in the knowledge graph G using 225

dense retrieval methods. Specifically, given an en- 226

tity ei ∈ EM, we use an encoding model to get 227

the embedding of ei, and calculate the similarity 228

score between ei and each entity node uj in G’s 229

entity node set EG , and the entity node with the 230

highest similarity score is considered as a match. 231

This process can be formulated as follows: 232

ûi = arg max
uj∈EG

sim(enc(ei), enc(uj)), (4) 233

Where enc denotes the encoding model, and ûi 234

denotes the matched entity node. Finally, the set of 235

matched entities is denoted as EQ. 236

3.2.2 Candidate Disease Localization Based 237

on Entity-Type Weights 238

Most of the previous work using KG to augment 239

LLMs has not made a strict distinction between 240

entity types when using entities for the knowledge 241

graph search process. However, in the EMR, dif- 242

ferent types of entities are supposed to contribute 243

differently to the diagnosis of a disease. For ex- 244

ample, the association between a patient’s current 245

symptoms and the disease is more direct and closer. 246

So in this paper, we propose an entity type- 247

driven method for candidate disease localization 248

and filtering. For every entity ei ∈ EQ, we assign a 249

contribution weight wti according to its entity type 250

ti. Then we search for disease nodes in the 1-hop 251

neighbors of ei in G and obtain the set of disease 252

nodes Di, where the score of each disease in Di 253

will be increased by wti . The algorithm description 254

of the above process can be found in Algorithm 1 255

in Appendix B. After getting the potential disease 256

set DG generated by the KG search process, we 257
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(A).EMR Summarization via LLM

1. Main Symptoms: chest tightness, chest&back pain;

2. Disease History: hypertension, emphysema; 

3. Medication usage: Adalat, Candesartan;  

4.Exam Result: Dullness to percussion in both lung fields,… , arrh

ythmia; Chest and upper abdominal CT scan results: Right pleural 

effusion, Aortic and coronary artery calcification; Mild inflammati

on and fibrous nodules in the lungs; Electrocardiogram: premature 

ventricular beats, T wave changes …

(B).Diagnosis directly via LLM

Diagnosis Result

1. Coronary heart disease; 2. Lung cancer; 3. Pulmonary emphysema; 

4. Tuberculosis; 5. Gallstones…

(C.1).Entity Extraction and Entity-
Node Matching

… … …… …

Entities in EMR

chest tightness, chest&back pain, … hypertension, emphysema,…, Adalat, C

andesartan ,…, CT scan, … 

Nodes in KG

chest tightness, chest and back pain, … hypertension, emphysema,…, Adalat, 

Candesartan, …, CT scan, …

(C.2).Candidate Disease Generation 

Generation Result(Sorted by Scores)

Pulmonary embolism, Rheumatic heart disease, Coronary heart disease, Diab

etes …, Hepatitis B, Heart Failure, Acute myocarditis, …

(D).Pash-based Disease Reranking

Candidate Diseases

Pulmonary embolism, Rheumatic heart disease, Coronary heart dise

ase, Lung cancer , Pulmonary emphysema, … 

Reranked Candidate Diseases

Coronary heart disease, Pulmonary embolism,… Diabetes,…

Path-based Reranking

Matching

(E).Final Decision by LLM

…

hypertension

Pulmonary 

embolism

Diabetes

… …

Entities

chest tightness, chest and back pain, … hypertension, emphysem

a,…, Adalat, Candesartan , …, CT scan, … 

…

Coronary heart disease 

1.Main Symptom Correlation Score:   [9]             

2.Disease History Correlation Score:   [8] 

3.Medication Correlation Score:          [8]

4.Exam Result Correlation Score:        [6]

5.Any wrong or Misleading Info?

{*****************************}

6.Consider the disease as a diagnosis? [y]

Pulmonary embolism
…………

… … … … …

Coronary 

heart disease
Pulmonary 

embolism
Diabetes

…

…

Disease-Patient Condition Correlation
Coronary heart disease

1.Main Symptom Correlation: chest tightness(direct),  …

2.Disease History Correlation: hypertension(direct), … 

3.Medication Correlation: Adalat(direct), Candesartan(strong)

4.Exam Result Correlation: …, Right pleural effusion(direct), …, Mild infla

mmation and fibrous nodules in the lungs(None),… 

Pulmonary embolism

Chief Complaint(CC): Feeling chest tightness and chest/back pain for over 7 years, worsened in the past week.

History of the present illness(HPI):  Experiencing chest tightness and chest/back pain a week ago,… The pain lasts a few minutes each time and the epis

odes are frequent, … Today, the symptoms occurred more often at night…

Past medical history(PMH): A history of hypertension for over 10 years, … Currently taking medication, Adalat and Candesartan, … A long-standing histo

ry of chronic obstructive pulmonary disease (COPD).

Physical Examination(PE):  Dullness to percussion in both lung fields, decreased breath sounds in the right lung, scattered wheezing sounds in both lung

s, … Heart rate of 89 beats per minute, arrhythmia …

Laboratory and Aided examination(LAE): Upper abdominal CT scan results: 1. … ; 2. Aortic and coronary artery calcification, 3. Mild inflammation 

and fibrous nodules in the lungs… Electrocardiogram: Sinus rhythm, premature ventricular beats, …

Entity: chest tightness         Type: symptoms(weight:       )

1-hop Neighbor Triplets:

(chest tightness,  radiological_examination,  coronary angiography)

(Pulmonary embolism,  Clinical_manifestation, chest tightness), 

(chest tightness, Adjunctive_therapy,  bed rest)

(Diabetes,  Clinical_manifestation, chest tightness)

……

Entity: Adalat        Type: drug(weight:       ) 

……

… … … … …

… … … … …

Figure 2: The overall workflow of medIKAL. It contains three main modules, namely: Module 1. preprocess before
KG search (A, B, and C.1); Module 2. Candidate Disease Localization and Reranking via KG (C.2 and D); Module
3. Collaborative Reasoning for LLM and KG (E).

merge DG with the potential disease set DLLM ob-258

tained through LLM in Section 3.1, resulting in a259

candidate disease set Dcan = DLLM ∪ DG . Here260

we have drawn inspiration from the idea of residual261

networks (He et al., 2016). We hope to make more262

use of the LLM’s internal knowledge in this way,263

rather than relying solely on the knowledge graph264

for searching correct diagnosis.265

3.2.3 Candidate Disease Reranking Based on266

Paths.267

In actual clinical diagnosis, doctors usually make268

a diagnosis based on a series of information such269

as the patient’s symptoms, medical history, exami-270

nation results, etc. Therefore, a correct diagnosis271

should be correlated with most of the patient in- 272

formation. In order to model this correlation, we 273

propose a path-based reranking algorithm. Specif- 274

ically, we define dist(Di, ej) to denote the short- 275

est path distance between disease Di and entity 276

ej ∈ EQ on G. Diseases with closer total dis- 277

tances to the entity set EQ are considered to have a 278

stronger association with the patient’s information, 279

making them more likely to be the correct diag- 280

nostic results. The specific process of path-based 281

reranking can be found in Algorithm 2. 282
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Coronary 
Heart Disease

Hypertension

Upper 
abdominal CT 

scan 

Candesartan

Chest 
Tightness

Cause of

medication

Cholecystolithiasis
Exam

Appendectomy

Path Too Long

Correlation Info between Coronary Heart Disease & EMR

Main Symptom: Chest Tightness (Direct), … 

Medical History:  Hypertension (Direct), … , Appendectomy (Weak), …     

Medication: Candesartan (Strong, Candesartan Hypertension Coronary Heart Disease ), … 

Exam Result: Cholecystolithiasis (None, Too many entities in the path), … 

Figure 3: An illustration of how to combine rerank process with the knowledge construction process.

3.3 Collaborative Reasoning between LLM283

and KG Knowledge284

After completing the search and reranking process285

based on the knowledge graph, we reconstructed286

the search results to provide additional contextual287

information for LLM for collaborative reasoning.288

3.3.1 Reconstruction of KG Knowledge289

EMRs are different from conventional medical QA290

tasks. Even though we have previously summa-291

rized them, they are still information-dense and292

complex-context structures, so the retrieved KG293

knowledge will also become extensive. If we still294

follow previous work and directly input triplets or295

knowledge chain paths as context knowledge, it296

would lead to overly chaotic structures that LLMs297

can hardly understand, which increases the pos-298

sibilities of hallucination. Therefore, in this pa-299

per, we propose a way to reconstruct knowledge300

graph information. For each candidate disease301

Di ∈ Drerank, we classify and organize the infor-302

mation related to Di according to several aspects303

like the correlations between Di and the patient’s304

main symptoms, or between Di and the patient’s305

medical history, etc. An example illustration is306

shown in Figure 3.307

In this way, we transform the information of308

paths and entities retrieved from the knowledge309

graph into a semi-structured representation of310

knowledge, which maximizes the manifestation311

of the association between each candidate disease312

and the content of the medical record, enabling the313

model to make more intuitive judgments and anal-314

yses. Moreover, since the association between the315

majority of entities and diseases has already been316

established during the processing of Section 3.2.2317

and Section 3.2.3, the knowledge reconstruction318

process does not require re-searching G, avoiding319

additional time consumption.320

3.3.2 Clinical Reasoning and Diagnosis Based 321

on Fill-in-the-Blank Prompt Templates 322

Based on the reconstructed knowledge described 323

above, we designed a special prompt template in a 324

fill-in-the-blank style to make the reasoning paths 325

of LLM more rational. We guide LLM to quanti- 326

tatively evaluate the degree of correlation between 327

a specific disease Di and the aspects mentioned 328

above, giving a score ranging from 0 to 10 (the 329

higher the score, the higher the degree of correla- 330

tion), and then calculate a total score. If the total 331

score is higher than a pre-defined threshold θ, we 332

consider the current candidate disease Di as one of 333

the final diagnostic results. Additionally, to ensure 334

the self-consistency of LLM, we also check the 335

consistency between this total score and the pre- 336

diction made by LLM. If they are inconsistent, we 337

will check the original prediction DLLM to decide 338

whether to drop Di. The specific prompt template 339

can be found in Table 13 in Appendix F and rele- 340

vant case studies can be found in Appendix 5. 341

4 Experiments 342

4.1 Experimental Setup 343

4.1.1 Datasets 344

CMEMR Dataset Construction: Considering 345

the current lack of high-quality and widely cov- 346

ered EMR datasets in the Chinese community, 347

we construct a dataset CMEMR (Chinese Multi- 348

department Electronic Medical Records) collected 349

from a Chinese medical website1. We filtered 350

the collected electronic medical records, exclud- 351

ing those with existing problems or missing key 352

information. The details of the dataset can be seen 353

in Table 5 in the Appendix. In order to ensure the 354

correctness and usability of the collected medical 355

records, we randomly sampled a batch of medical 356

1 https://bingli.iiyi.com/
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records in each department and consulted the cor-357

responding department experts, mainly focusing358

on the correctness of the diagnosis results (i.e., the359

labels of our task).360

In addition, to further validate our proposed361

method, we selected the following three datasets as362

supplements: (1) CMB-Clin (Wang et al., 2023c):363

The CMB-Clin dataset contains 74 high-quality,364

complex, real EMRs, each of which will contain365

several medical QA pairs. To be consistent with366

our approach, we simplify the task of this dataset to367

a pure disease diagnosis task. (2) GMD (Liu et al.,368

2022): The GMD dataset was constructed based on369

EMRs. Each sample in the dataset contains a target370

disease along with its explicit and implicit symp-371

tom information. (3) CMD (Yan et al., 2023): The372

CMD dataset is a follow-up to the GMD dataset.373

Its format is the same as the GMD dataset, and374

also sourced from EMRs. The only difference is375

that CMD contains a more variety of diseases and376

symptoms.377

4.1.2 Baselines378

We compared our proposed medIKAL with three379

series of baseline methods: LLM-only, LLM⊕KG,380

and LLM⊗KG (Sun et al., 2023):381

LLM-only: They do not rely on external knowl-382

edge and only use the LLMs’ internal knowledge383

for reasoning, including CoT (Wei et al., 2022),384

ToT (Yao et al., 2024), and Sc-CoT (Wang et al.,385

2022)).386

LLM⊕KG: We selected four representative387

works, namely MindMap (Wen et al., 2023),388

ICP (Wu et al., 2024), HyKGE (Jiang et al., 2023b),389

, and KG-rank (Yang et al., 2024), all of which are390

aimed at medical question-answering and reason-391

ing tasks, so we believe they are highly relevant to392

our work in this paper.393

LLM⊗KG: This is the concept proposed by (Sun394

et al., 2023). It enables LLMs to participate in395

the search and reasoning process on KGs, check396

whether the current knowledge is sufficient to an-397

swer the question, and make decisions for the398

subsequent search process iteratively. We se-399

lected ToG (Sun et al., 2023) and Graph Chain-400

of-Thought (Jin et al., 2024) as baselines.401

4.1.3 Evaluation metric402

To enhance the scientific rigor and effectiveness of403

the evaluation, particularly in identifying disease404

diagnoses, following (Fan et al., 2024), we adopted405

the International Classification of Diseases (ICD-406

10) (Percy et al., 1990) as the authoritative source 407

and link standardized disease terminologies with 408

natural language based diagnostic results. Initially, 409

we extract disease entities from the diagnostic re- 410

sults and the label in the EMR. Then we implement 411

a fuzzy matching process with a predefined thresh- 412

old of 0.5 to link these disease entities with ICD-10 413

terminology, building two normalized disease sets 414

SD̂ and SR. Finally we use these two sets to cal- 415

culate the Precision, Recall and F1-score metrics. 416

More details are shown in Appendix D. 417

4.1.4 Implementation Details 418

For the backbone model, we choose Qwen models 419

with different parameter scales ([7B, 14B, 72B]). 420

In all experiments, we set do_sample to false for 421

consistent responses. 422

For the knowledge graph, we choose the 423

CPubMed-KG. For the NER model mentioned in 424

section 3.2.1, we utilize the RaNER (Wang et al., 425

2021) model released by Tongyi-Laboratory. For 426

the Entity-node matching process in section 3.2.1, 427

we choose CoROM (Long et al., 2022) model as 428

our embedding model. The further implementation 429

details are listed in Appendix C. 430

4.2 Experimental Results 431

4.2.1 Overall Performance 432

The main experimental results on CMEMR dataset 433

are shown in Table 1. From the results, we can 434

draw the following analysis: 435

(1) Our method significantly outperforms other 436

baselines using LLM⊕KG paradigm on CMEMR 437

dataset, which demonstrated the effectiveness of 438

our method on EMR-diagnosis task. 439

(2) The methods using LLM⊗KG (i.e., ToG (Sun 440

et al., 2023) and Graph-CoT (Jin et al., 2024)) per- 441

form poorly on EMR-diagnosis Tasks, since they 442

are designed for short multi-hop QA task. The it- 443

eration steps and the complexity of beam search 444

increase greatly as the amount of context and the 445

size of KG increase, which makes it easily reach 446

the upper limit of the number of iterative steps with- 447

out collecting enough information, or exceed the 448

input length limit of LLMs. 449

(3) As we expected, the performance of medIKAL 450

improves with the scale of backbone models due to 451

the increase of model’s reasoning and instruction- 452

following ability. Considering the plug-and-play 453

and train-free nature of our method, it can be flexi- 454

bly deployed to backbone models of different sizes 455

depending on the needs of different scenarios. 456
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Methods
Qwen-7b-chat Qwen-14b-chat Qwen-72b-chat

R P F1 R P F1 R P F1
I Direct 41.07 31.23 35.48 42.98 32.50 37.01 45.12 34.45 39.06

II
CoT 41.24 31.06 35.43 42.58 31.67 36.32 46.01 33.19 38.56
ToT 39.25 31.77 35.11 43.19 32.56 37.12 45.45 34.87 39.46
SC-CoT 41.99 31.69 36.12 42.34 32.90 37.40 45.49 34.59 39.29

III

MindMap 41.42 32.30 36.29 43.59 33.81 38.08 45.14 35.62 39.81
KG-Rank 39.13 28.61 33.05 41.34 31.45 35.72 44.79 32.95 37.96
ICP 40.13 30.67 34.76 41.58 30.23 35.00 44.00 32.38 37.30
HyKGE 42.05 32.42 36.61 43.76 33.45 37.91 45.91 34.30 39.26
ToG 38.78 26.94 31.79 39.09 27.31 32.15 40.39 27.81 32.93
Graph-CoT 35.90 24.01 28.77 38.67 25.11 30.44 39.68 27.48 32.47
Ours 42.16 32.86 36.93 43.96 33.65 38.12 46.43 35.72 40.37

Table 1: Experimental results on CMEMR dataset with different scale of backbone models. The best results are
highlighted in bold.

Methods
CMB-Clin GMD CMD

R P F1 R P F1 R P F1
I Direct 40.35 26.77 32.18 42.01 21.03 28.02 50.26 25.11 33.48

II
CoT 40.66 27.23 32.62 42.44 21.30 28.36 51.02 25.49 33.99
ToT 39.94 25.90 31.42 41.68 20.80 27.75 49.39 24.48 32.73
SC-CoT 41.10 26.31 32.08 42.73 21.37 28.49 51.14 25.57 34.09

III

MindMap 39.26 29.24 33.51 41.44 21.18 28.03 49.75 25.62 33.82
KG-Rank 41.70 27.12 32.86 38.16 19.54 25.84 47.91 23.92 31.90
ICP 40.27 25.54 31.25 39.38 19.63 26.20 46.26 23.15 30.85
HyKGE 41.53 28.21 33.59 40.33 21.36 27.92 48.67 24.35 32.45
ToG 35.41 19.18 24.88 41.76 20.85 27.81 50.73 25.24 33.70
Graph-CoT 36.35 20.66 26.07 38.13 19.06 25.54 49.07 24.51 32.69
Ours 41.89 27.68 33.33 42.37 21.43 28.46 51.26 25.74 34.27

Table 2: Experimental results on CMB-Clin, GMD, and CMD datasets using Qwen-7B-chat. The best results are
highlighted in bold.

We also tested our method on three additional457

datasets and the experimental results are shown458

in Table 2. Our method performs stably on the459

CMB-Clin dataset, whose data format is also stan-460

dard EMRs. On the GMD and CMD datasets,461

there is a slight degradation in the performance462

of our method. This is because although GMDs463

and CMDs are also constructed using EMRs, they464

contain too little patient information (only symp-465

toms), which can easily localize to other related466

diseases on the knowledge graph leading to errors.467

4.2.2 In-depth Analysis468

How do different knowledge graph augmented469

prompts affect medIKAL’s performance? In470

order to verify our proposed special prompt471

template’s superiority, we compare it with sev-472

eral knowledge graph-augmented prompt tem- 473

plates, including entities (Wu et al., 2024), rel- 474

evant triplets (Yang et al., 2024), natural lan- 475

guage, reasoning chains (Jiang et al., 2023b), and 476

mindmap (Wen et al., 2023). The experimental 477

results are shown in Table 3. According to the re- 478

sults, using relevant entities is very ineffective as 479

it does not utilize the relational information con- 480

tained in the knowledge graph at all. For the reason- 481

ing chains and mindmap, due to the information- 482

intensive nature of EMR data, they can easily form 483

overly large and complex-structure prompt con- 484

texts, making it difficult for LLMs (especially mod- 485

els with small parameters) to reason. 486

Does medIKAL integrate KG and LLM better 487

compared with other baselines? The problem 488

with most of the existing work based on knowledge 489

7



Methods R P F1
Relevant Entities 39.22 28.74 33.17
Natural Language 39.88 28.92 33.52
Relevant Triples 40.26 29.61 34.12
Reasoning Chains 40.97 31.16 35.39
MindMap 41.10 31.41 35.60
FBP(ours) 42.16 32.86 36.93

Table 3: Performances of medIKAL using differ-
ent knowledge graph-augmented prompt templates on
CMEMR dataset. Note that we kept all the rest parts
of the medIKAL and only replaced the final “fill-in-
the-blanks” prompts with other methods to conduct this
experiment.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Useful Predictions Retained

HyKGE

KG-Rank

ICP

MindMap

medIKAL

M
et

ho
d

Retained Lost

Figure 4: Evaluation results for medIKAL and other
baseline methods’ capabilities of utilizing LLM’s in-
ternal knowledge. "Retained" denotes that the useful
diagnosis from LLM’s original predictions are kept as
final results, and "Lost" denotes the opposite.

graphs is that the models can be overly dependent490

on the information obtained from KG and fail to491

use their own knowledge. Therefore, we counted492

the proportion of useful predictions in the original493

predictions of the model retained by medIKAL and494

other baseline methods. From the experimental re-495

sults in Figure 4, medIKAL is able to minimize the496

model’s over-reliance on knowledge graph knowl-497

edge and retains the majority of useful predictions498

compared to other baselines.499

Moreover, from the case study in Figure 5, we500

can find that medIKAL can not only complement501

(Figure 5-(a)) and correct (Figure 5-(d)) the predic-502

tions of LLM using KG, but also effectively guide503

LLM to analyze and reason (Figure 5-(b)). Be-504

sides, the cross-validation approach through quan-505

titative assessment and model judgment can also506

effectively improve the fault tolerance for LLMs’507

hallucination(Figure 5-(c)).508

4.2.3 Ablation Study509

We conduct the following ablation studies to510

demonstrate the importance of different modules511

Method R P F1
medIKAL 42.16 32.86 36.93
w/o SUM 41.56 32.37 36.39
w/o ETW 41.19 29.88 34.63
w/o PR 41.91 32.44 36.57
w/o RI 40.16 30.32 34.55

Table 4: Ablation study results on CMEMR dataset. w/o
indicates removal of the corresponding module. "SUM"
denotes "summarization". "ETW" denotes "Entity Type
Weight". "PR" denotes "Path-based Reranking". "RI"
denotes "Resnet-like Integration".

in medIKAL. 512

(a).w/o SUM (summarization): Remove the 513

summarization step when pre-processing medical 514

records and instead use the raw content directly. 515

(b).w/o ETW (Entity-Type Weight): Remove the 516

entity-type weight when performing entity-based 517

candidate disease searches, with all entities con- 518

tributing equal weights. 519

(c).w/o PR (Path-based Reranking): Remove the 520

reranking process for candidate diseases. 521

(d).w/o RM (Resnet-like Merging): Do not inte- 522

grate the LLM’s direct diagnosis result into the 523

candidate disease. 524

The results in Table4 show that both removing 525

the “SUM” module and the “ETW” settings can 526

seriously interfere with the performance, as the for- 527

mer leads to the introduction of a lot of redundant 528

information in the original EMRs, while the latter 529

leads to unimportant entities overly influencing the 530

results. Removing the “RM” module would result 531

in results that are entirely dependent on the KG 532

search process, while the internal knowledge of the 533

LLM is almost completely unused, thus causing a 534

severe performance decrease. 535

5 Conclusion 536

In this paper, we proposed medIKAL, a framework 537

that seamlessly integrates LLMs with knowledge 538

graphs to enhance clinical diagnosis on EMRs, with 539

its key innovation being the weighted importance 540

assignment to medical entities and a resnet-like in- 541

tegration approach. Experimental results showed 542

that medIKAL significantly outperforms baselines, 543

demonstrating its potential to improve diagnostic 544

accuracy and efficiency in real-world clinical set- 545

tings. medIKAL offers a promising direction for 546

AI-assisted clinical diagnosis, paving the way for 547

more advanced healthcare applications. 548
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Limitations549

The limitations of collected CMEMR dataset.550

Although we have meticulously examined, desensi-551

tized, and verified the CMEMR dataset with medi-552

cal experts, occasionally, the quality of the medical553

records may still fall short in actual experiments.554

Additionally, due to the limited sources of data, our555

medical record dataset exhibits an uneven distribu-556

tion across departments.557

The limitations of proposed medIKAL frame-558

work. Although medIKAL has demonstrated its559

effectiveness and great potential in the healthcare560

field, it still has some limitations. Firstly, while it561

is not strictly limited to EMR format inputs, it re-562

quires a high amount of information from the input563

data samples. When the input data information is564

sparse, the improvement in model reasoning per-565

formance by medIKAL decreases, and there is also566

an increased risk of hallucinations. Furthermore,567

medIKAL is unable to fully utilize numerical types568

of medical test results through calculation. Ad-569

dressing this issue is a key problem that needs to570

be solved in our future work.571
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A Detailed Information of the CMEMR792

dataset793

Specific information on the CMEMR dataset is794

shown in Table 5.795

B Algorithms for medIKAL796

We summarize the comprehensive algorithmic pro-797

cedure of ToG and ToG-R, as shown in Algorithm 1798

and 2.799

C Detailed Setting-ups for Different800

Modules in medIKAL Workflow801

C.1 Details of the NER Model802

The RaNER (Wang et al., 2021) model we use in803

this paper is released by Tongyi-Laboratory, which804

is trained on the CMeEE dataset (Zhang et al.,805

2022). RaNER adopts the Transformer-CRF model,806

using StructBERT as the pre-trained model base,807

integrating the relevant sentences recalled by ex-808

ternal tools as additional context, and employing809

Multi-view Training for training. It can recognize810

a total of 9 types of entities, including body (bod),811

department (dep), disease (dis), drugs (dru), med-812

ical equipment (equ), medical examination items813

Algorithm 1 Entity Type-driven Candidate Disease
Localization and Filtering

Require: Entity Set EQ, Knowledge graph G,
Number of candidate diseases topm

Ensure: Candidate disease set Dcan

1: Initialize the set of diseases D ← ∅
2: for each entity ei ∈ EQ do
3: Assign a contribution weight wti according

to its entity type ti
4: Obtain 1-hop neighbor triplets in G to locate

relevant diseases Di = {di1, di2, . . . , din}
5: for each disease dij ∈ Di do
6: if dij ∈ D then
7: Add wti to the score of dij
8: else
9: Add dij to D with an initial score wti

10: end if
11: end for
12: end for
13: Sort the diseases in D in descending order

based on their scores
14: Select the topm diseases to form DG
15: Merge DG with DLLM to form Dcan ←
DLLM ∪ DG

16: return Dcan

Algorithm 2 Candidate Disease Reranking Based
on Paths
Require: Subgraph Gs = (V,E), Set of candidate

diseases Dcan, Set of entities EQ, Number of
reranked candidate diseases topn

Ensure: Reranked candidate diseases Drerank

1: Initialize an empty list scores
2: for each disease Di ∈ Dcan do
3: Initialize score← 0
4: for each entity ej ∈ EG do
5: Compute the shortest path dist(Di, ej)
6: if dist(Di, ej) =∞ then
7: score← score + 0
8: else
9: score← score + 1

dist(Di,ej)

10: end if
11: end for
12: Append (Di, score) to scores
13: end for
14: Sort scores by the second element (score) in

descending order
15: Drerank ← Select the first topn elements from

scores
16: return Drerank
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Department Num Avg Len
Gynaecology 411 627.46
Otolaryngology 212 967.99
Obstetrics&Gynecology 1316 489.15
Nursing 52 584.88
Emergency 87 552.96
Psychiatry 127 867.66
Rehabilitation 284 631.13
Dentistry 130 342.56
Anesthesiology 232 634.25
Internal Medicine 3590 528.72
Dermatology 286 518.08
Neurosurgery 3152 531.82
Ophthalmologic 100 453.24
Oncology 471 855.66
Total 10450 558.60

Table 5: Departments distribution of the collected
EMRs. "Num" denotes the total number of EMRs of the
department. "Avg Len" denotes the average number of
words per record.

Retriever R P F1
bm25 40.37 29.86 34.32
tf-idf 40.25 29.68 34.16
m3e 41.95 32.63 36.70
all-mpnet 42.01 32.75 36.80
bge 42.20 32.81 36.91
corom 42.16 32.86 36.93
bge + bm25 41.62 30.57 35.24
corom + bm25 41.75 30.46 35.22

Table 6: Performances of medIKAL using differ-
ent retrieval methods during entity-node matching on
CMEMR dataset.

(ite), microorganisms (mic), medical procedures814

(pro), and clinical symptoms (sym).815

C.2 Retrieval Method816

In entity-node matching process mentioned in sec-817

tion 3.2.1, we used a dense retrieval method to link818

EMR’s entities to KG’s nodes. In order to better819

explore the appropriate retrieval method, we imple-820

mented three types of retrieval methods based on821

the retriv library2: sparse retrieval, dense retrieval,822

and hybrid retrieval.823

• Sparse Retrieval: We evaluated two represen-824

tative methods, namely bm25 and tf-idf.825

2 https://github.com/AmenRa/retriv

• Dense Retrieval: We evaluated several rep- 826

resentative embedding models, namely m3e- 827

large (Wang Yuxin, 2023), all-mpnet-base-v2, 828

bge-large-zh-v1.5, and CoROM. 829

• Hybrid Retrieval: We evaluated two combina- 830

tions: "bge + bm25" and "corom + bm25". 831

The results are shown in Table 6. As we expected, 832

the effect of dense retrieval is better than that of 833

sparse retrieval and hybrid retrieval, because when 834

the entity to be retrieved contains a large number 835

of Chinese characters, sparse retrieval methods are 836

very prone to mis-matching due to the lack of con- 837

sideration of word order and semantics. According 838

to the results, we choose the CoROM model as 839

embedding model of the dense retrieval process. 840

The CoROM Chinese-medical text representa- 841

tion model we use in this paper is also released 842

by Tongyi-Laboratory. It employs the classic dual- 843

encoder text representation model and is trained 844

on medical domain data with Multi-CPR (Long 845

et al., 2022). The training process is divided into 846

two stages – in the first stage, negative sample data 847

is randomly sampled from the official document 848

set, and in the second stage, difficult negative sam- 849

ples are mined via Dense Retrieval to augment the 850

training data for retraining. 851

C.3 The Number of Candidate Diseases Set 852

To explore the influence of the number of candi- 853

date diseases Top-k on medIKAL’s performance, 854

we conduct experiments under settings with Top-k 855

ranging in [1, 2, 3, 5] . The results are shown in Ta- 856

ble 7. According to the results, the Recall gradually 857

decreases with the increase of Top-k, while the Pre- 858

cision increases. When the Top-k is set very large 859

or very small, although it can get a higher recall or 860

precision rate accordingly, but from the practical 861

clinical application scenario, too large or too small 862

Top-k is not conducive to assisting doctors in clini- 863

cal diagnosis and decision-making. Therefore, in 864

this paper we set Top-k to 3 on CMEMR dataset, 865

and 2 on CMB-Clin, GMD and CMD datasets. 866

C.4 Detailed Settings about Knowledge 867

Graph 868

The knowledge graph we use in this paper is 869

CPubMedKG-v1(Large-scale Chinese Open Med- 870

ical Knowledge Graph)3 developed by Harbin In- 871

stitute of Technology (Shenzhen). It is currently 872

3 https://cpubmed.openi.org.cn/graph/wiki
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Top-k R P F1
1 27.27 56.74 36.83
2 34.15 41.21 37.34
3 42.16 32.86 36.93
5 49.42 24.27 32.55

10 60.85 13.92 22.74

Table 7: Performances of medIKAL with different
numbers of candidate diseases (denoted as Top-k) on
CMEMR dataset.

the largest fully open Chinese medical knowledge873

graph in China. The knowledge is derived from874

over 2 million high-quality Chinese core medi-875

cal journals under the umbrella of the Chinese876

Medical Association. It is regularly updated and877

conforms to mainstream Chinese medical stan-878

dards in terms of entity and relationship specifi-879

cations. The sources of entities and relationships880

are clearly defined, traceable, and easily distin-881

guishable. The graph contains a total of 4,383,910882

disease-centered triples. It includes 523,052 dis-883

ease entities, 188,667 drug entities, 145,908 symp-884

tom entities, and a total of 1,728,670 entities. There885

are more than 40 types of relationships covering886

drug treatment, complications, laboratory tests, in-887

dications, risk factors, affected populations, mortal-888

ity rates, and more. The total number of structured889

knowledge triples reaches 3.9 million.890

For the entity type weights, we obtain the entity891

type weight allocation scores through the following892

two methods:893

• We extract paragraphs related to diagnosis894

from the medical textbooks provided by (Jin895

et al., 2021). Specific example can be found896

in Table 8-(1).897

• We selected 500 medical records with detailed898

diagnostic evidence from our collection and899

collected all diagnostic evidence. Specific ex-900

ample can be found in Table 8-(2).901

We calculate the entity type proportions of all902

the segments above, obtaining initial entity type903

weights. We then fine-tune on randomly sampled904

medical record samples, the setting in our experi-905

ments can be found in Table 9. It is important to906

note that entity type weights are not fixed and can907

be adjusted according to different tasks, which is908

also the advantage of the method we propose.909

For the shortest path algorithm in path-based910

(1) Example:
[Diagnosis]: History of vitamin D over-
dose. Early elevation of blood calcium >
3 mmol/L (12 mg/dl), strong positive uri-
nary calcium (Sulkowitch reaction), rou-
tine urinalysis shows positive urinary pro-
teins, and in severe cases, red blood cells,
leukocytes, and tubular patterns are seen.
(2) Example:
[Diagnostic Evidence]: 1.history of prior
radiotherapy for esophageal cancer, long
history of hypertension, history of smok-
ing. 2.left limb weakness for 1 day.
3.Examination revealed hypertension, de-
creased muscle strength of the left limb,
and decreased tenderness. 4.Ancillary
tests showed immediate elevated blood
glucose, ECG T-wave abnormality, cervi-
cal vascular ultrasound and cranial CT and
MRI suggestive of cerebral infarction.

Table 8: (1).A specific example of paragraphs related to
diagnosis from the medical textbooks provided by (Jin
et al., 2021). (2).A specific example of diagnostic evi-
dences in our collected EMRs.

reranking, we use GraphDataScience 4 framework 911

to implement it. 912

Type Weight
dis .1638
pro .0043
sym .6297
dru .1391
bod .0212
ite .0372
equ .0029
mic .0009
dep .0004

Table 9: Entity-type weight settings in our experiments.

D Evaluation Metrics Calculation 913

Firstly, for the disease entities in the diagnosis re- 914

sults D̂ and the reference diagnosis resultsR in the 915

medical records, we employed a fuzzy matching 916

process (with a predefined threshold of 0.5) to as- 917

sociate these disease entities with ICD-10 terms, 918

thus mapping D̂ andR to two standardized disease 919

4 https://neo4j.com/product/graph-data-science/
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Main Symptom Correlation: sour regurgitation(direct), cough(direct), …

Disease History Correlation: … bronchitis (weak)…

Medication Correlation: Null,  no medication history.   

Exam Result Correlation: Positive intraesophageal reflux monitoring (direct),…Correlation
Information

LLM 
Judgement

Disease: Gastroesophageal Reflux Disease (GERD)

1. Main Symptom Correlation Score: [9], acid reflux… are consistent with…

2. Disease History Correlation Score: [6], bronchitis history, weakly correlated...

3. Medication Correlation Score: [null],  patient's medication history is not available. 

4. Exam Result Correlation Score: [9]: Positive intraesophageal reflux monitoring…

5. Any wrong or Misleading Info ?: None.

6. Consider the disease as a diagnosis?: [y], based on the above information,…

Judgement Result: Positive

LLM Original Diagnosis: [COPD, Esophageal Hiatal Hernia, …]

Total Score: 24(Positive) Final Decision:

(a). KG complementing LLM (b). LLM detecting error from KG 

Main Symptom Correlation: yellow urine(strong, [$connection chains]), …

Disease History Correlation: … headache (strong)…

Medication Correlation: analgesic (weak).   

Exam Result Correlation: HBsAg positive (none), TBIL34.4U/L(weak)…Correlation
Information

Disease: Type II diabetes

1. Main Symptom Correlation Score: [7], yellow urine … are consistent with…

2. Disease History Correlation Score: [7],  headache may caused by diabetes...

3. Medication Correlation Score: [2],  analgesic are not used to cure diabetes… 

4. Exam Result Correlation Score: [2], HBsAg is used to detect hepatitis …

5. Any wrong or Misleading Info ?: according to…. Headache is not …

6. Consider the disease as a diagnosis?: [n], based on the above information,…

Judgement Result: Negative

LLM Original Diagnosis: [Viral Hepatitis, Hepatic Insufficiency…]

Total Score: 18(Negative) Final Decision:

LLM 
Judgement

Main Symptom Correlation: urgent micturition (direct), dysuria(direct), …

Disease History Correlation: … hypertension (weak)…

Medication Correlation: Null,  no medication history.   

Exam Result Correlation: bladder wall thickening (direct), …Correlation
Information

Disease: Urinary Tract Infection (UTI)

1. Main Symptom Correlation Score: [10], urgent micturition … are consistent with…

2. Disease History Correlation Score: [4], hypertension is not directly related...

3. Medication Correlation Score: [null],  patient's medication history is not available. 

4. Exam Result Correlation Score: [9]: bladder wall thickening probably caused by…

5. Any wrong or Misleading Info ?: None.

6. Consider the disease as a diagnosis?: [n], based on the above information,…

Judgement Result: Negative

LLM Original Diagnosis: [Benign Prostatic Hyperplasia (BPH), UTI, …]

Total Score: 23(Positive) Final Decision:

LLM 
Judgement

(c). LLM self-consistence checking

Main Symptom Correlation: nasal obstruction (strong, [$connection chains]), …

Disease History Correlation: … Sjögren's syndrome (weak)…

Medication Correlation: Null,  no medication history.   

Exam Result Correlation: nasal turbinate hypertrophy (weak), …Correlation
Information

Disease: Allergic Rhinitis (AR)

1. Main Symptom Correlation Score: [6], nasal obstruction … but consider the time…

2. Disease History Correlation Score: [3], Sjögren's syndrome is weakly related...

3. Medication Correlation Score: [null],  patient's medication history is not available. 

4. Exam Result Correlation Score: [4]: NTH is more of a structural problem…

5. Any wrong or Misleading Info ?: None.

6. Consider the disease as a diagnosis?: [n], based on the above information,…

Judgement Result: Negative

LLM Original Diagnosis: [Sphenoiditis, Allergic Rhinitis (AR), …]

Total Score: 13(Negative) Final Decision:

LLM 
Judgement

(d). KG-Assisted LLM self-error-correction

Figure 5: Case study.

sets SD̂ and SR respectively. We then define: True920

Positives (TP): The number of disease entities in921

the predicted result SD̂ that correctly match with922

the reference diagnosis SR.923

False Positives (FP): The number of disease924

entities that appear in the predicted result SD̂ but925

do not match correctly with the reference diagnosis926

SR.927

False Negatives (FN): The number of disease928

entities in the reference diagnosis SR that do not929

appear in the predicted result SD̂. Based on the930

above statistical values, we calculate the following931

evaluation metrics:932

Recall (R) : R =
TP

TP + FN
(5)933

Precision (P) : P =
TP

TP + FP
(6)934

F1 Score (F1) : F =
2× P ×R

P +R
(7)935

E Case Study936

We show representative case studies in Figure 5937

to demonstrate the effectiveness of our proposed938

medIKAL.939

F The prompt templates used in this940

paper941
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[Role]<SYS>
You are an outstanding AI medical expert. You can summarize critical information for diagnosis
based on the content of the patient’s medical records.
[Role]<USR>
Below is a portion of the electronic medical record of a real patient. Please read the following
content carefully to understand the patient’s basic condition.
## Patient Medical Record Content
"""
"History of Present Illness": ${HPI}
"Past Medical History": ${PMH}
"""
## Task:
Based on the above content, please summarize the key information useful for diagnosis and
treatment and generate a summary report.
## Report Format Requirements:
Please fill in the "[]" sections according to the following format to complete the report. Use
concise language whenever possible.
"""
1. Main symptoms: []
2. Recent medical visits: [] (if none, write "none")
3. Past medical history: [] (if none, write "none")
4. Past surgical history: [] (if none, write "none")
5. Medication usage: [] (if none, write "none")
"""
## Output:
${}

Table 10: The default prompt for the LLM Summarization module (for the patients’ basic condition) .
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[Role]<SYS>
You are an excellent AI medical expert. You can summarize key information useful for diagnosis
based on the patient’s examination results.
[Role]<USR>
## Task:
Please summarize and generalize the key information useful for diagnosis based on the patient’s
examination results.
## Example
"""
[Patient’s Examination Results]
"Physical Examination": Bilateral waistline symmetry, no tenderness in the bilateral ureteral
regions, bladder area distended, no palpable mass, no redness or abnormal discharge at the
urethral opening, no abnormalities in the scrotum, and no abnormalities in the bilateral testicles
and epididymis. Digital rectal exam: Prostate approximately 4.0×5.0cm in size, soft, central
area slightly shallow, small nodules palpable.
"Laboratory and Aided Examination": Ultrasound results show 1. Bilateral kidney cysts 2.
Prostatic hyperplasia 3. No abnormalities in the ureters and bladder.
[Summary]
"Physical Examination": Digital rectal exam: Prostate approximately 4.0×5.0cm in size, central
area slightly shallow, small nodules palpable. "Laboratory and Aided Examination": Ultrasound
results show 1. Bilateral kidney cysts 2. Prostatic hyperplasia.
"""
Please refer to the above example to summarize the patient’s examination results.
[Patient’s Examination Results]
"Physical Examination": ${PE}
"Laboratory and Aided Examination": ${LAE}
##Output:
${}

Table 11: The default prompt for the LLM Summarization module (for the patients’ exam results).

[Role]<SYS>
You are an outstanding AI medical expert. You can perform a preliminary disease diagnosis
based on the patient’s condition.
[Role]<USR>
##Patient Information
"""
[General Condition]: ${summary_1}
[Examination Findings]: ${summary_2}
"""
##Task
Based on the patient’s symptoms, medical visit history, past medical history, and examination
results, predict the possible diseases the patient may have (you can provide the top-${n} possible
predictions). Please only output the prediction results, do not output any other content.
##Prediction Results
Predicted Disease 1: ${} Predicted Disease 2: ${} Predicted Disease 3: ${} ...

Table 12: The default prompt for the LLM Direct Diagnose Module.
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[Role]<SYS>
You are an experienced medical expert. You can evaluate the reasonableness of existing
diagnostic results by considering the patient’s symptoms, medical history, medication usage,
and examination results.
[Role]<USR>
##Patient Information
"""
[General Condition]: ${summary_1}
[Examination Findings]: ${summary_2}
"""
A doctor has made a preliminary diagnosis based on the above information, with the diagnosis
being: ${disease}
You need to consider whether this diagnosis is correct. To do this, you queried a medical
knowledge graph and obtained the following information:
##Correlation Information
"""
Correlation between diagnosis ${disease} and patient’s main symptoms: ${correlation_1}
Correlation between diagnosis ${disease} and patient’s medical history: ${correlation_2}
Correlation between diagnosis ${disease} and patient’s medication usage: ${correlation_3}
Correlation between diagnosis ${disease} and patient’s examination results: ${correlation_4}
"""
##Task
Based on the patient’s condition and the above information, and in combination with your own
knowledge, please quantitatively evaluate the reasonableness of the diagnosis ${disease}.
##Requirements
"""
1.Consistency with the patient’s chief complaint score: [?] (out of 10)
2.Correlation with the patient’s medical history score: [?] (out of 10)
3.Correlation with the patient’s medication usage score: [?] (out of 10)
4.Correlation with the patient’s examination results score: [?] (out of 10)
5.Are there any errors or misleading information in the "Correlation Information" section ?
6.Can this disease be used as a diagnostic result: [?] (y/n)
"""
##Output:
${}

Table 13: The default prompt for the LLM Diagnosis Evaluation Module.
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