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Abstract

Contrastive learning, which utilizes positive001
pairs and in-batch negatives to optimize the002
loss objective, has been proven to be an ef-003
fective method for learning sentence embed-004
dings. However, we argue that the previous005
methods of constructing positive pairs only006
through dropout perturbation or entailment re-007
lation are limited. Since there is more sen-008
tence knowable information (SKI) to be mined,009
such as sentence external knowledge, seman-010
tic analysis, and grammatical description. In011
this work, we first hand-craft a simple and ef-012
fective prompt template that is able to obtain013
the knowable information of input sentences014
from LLMs (e.g., LLaMA). Then we combine015
the original sentence and its knowable infor-016
mation to form a positive pair for contrastive017
learning. We evaluate our method on standard018
semantic textual similarity (STS) tasks. Ex-019
perimental results show that our unsupervised020
and supervised models using BERTbase achieve021
an average of 78.65% and 82.45% Spearman’s022
correlation respectively, a 2.40% and 0.88% im-023
provement compared to SimCSE. Our model024
outperforms the previous state-of-the-art model025
PromptBERT in both unsupervised and super-026
vised settings and specifically yields a new027
state-of-the-art performance in supervised set-028
ting.029

1 Introduction030

Learning sentence embeddings is a fundamental031

task of natural language processing (NLP), which032

embeds sentences of natural language text into033

high-dimensional dense vectors containing rich se-034

mantic information. High-quality sentence repre-035

sentations find applications across various practical036

domains, including question answering systems,037

translation systems, recommendation systems, and038

retrieval systems.039

In recent years, Transformer-based (Vaswani040

et al., 2017) pre-trained language models such041

Prompt

External Knowledge

Semantic Analysis

Grammatical Description
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Figure 1: On the left are three training example sen-
tences of SimCSE. Their exclusive SKI on the right is
obtained through the prompt template and LLaMA2-7B.
Notice that both the template and the SKI are excerpts.

as BERT (Devlin et al., 2018) have achieved 042

remarkable results in NLP. However, Reimers 043

and Gurevych (2019) found that the performance 044

of BERT without fine-tuning is even inferior 045

to GloVe (Pennington et al., 2014) on STS 046

tasks (Agirre et al., 2012, 2013, 2014, 2015, 2016; 047

Cer et al., 2017; Marelli et al., 2014), and pro- 048

posed to train SBERT through siamese network 049

structures and supervised data such as NLI (Bow- 050

man et al., 2015; Williams et al., 2017), STS-B, 051

and MRPC (Dolan et al., 2004). Li et al. (2020) 052

analyzed the dilemma of native BERT from the per- 053

spective of anisotropic sentence embedding distri- 054

bution, and proposed the corresponding improved 055

method BERT-flow. Gao et al. (2021) proposed 056

SimCSE, a simple contrastive sentence embedding 057

framework, which improves the sentence vector 058

space in terms of alignment and uniformity (Wang 059

and Isola, 2020), and has made great progress on 060

STS tasks. 061

Witnessing the notable success of SimCSE on 062

STS tasks, many variations (Wu et al., 2021; Jiang 063

et al., 2022; Zhang et al., 2022; Chuang et al., 2022; 064

Wu et al., 2022) of SimCSE have been introduced 065

by researchers. Although many of them have novel 066

ideas and methods, few of them can adapt to both 067
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unsupervised and supervised scenarios. Another068

prevalent issue among them is the way to construct069

positive pairs, which often relies solely on min-070

imal data augmentation1 (MDA). We think that071

more knowable information of sentences can be072

mined to construct positive pairs to enhance the073

knowledge, semantics and grammar of sentence074

representations.075

Recently, LLMs such as ChatGPT (Ouyang et al.,076

2022; OpenAI, 2023) and LLaMA (Touvron et al.,077

2023) have attracted widespread attention. By078

leveraging the comprehension and generation capa-079

bilities of LLMs, coupled with our effective hand-080

crafted prompt template, we are able to obtain081

knowable information about input sentences, as082

shown in Figure 1. We further use input sentences083

and generated sentences as positive pairs to com-084

pute the contrastive loss, and make a trade-off with085

the original loss through the weighting coefficient.086

Our main contributions can be summarized as087

the following two points:088

• We propose to use sentence knowable infor-089

mation mined by LLMs to form positive pairs090

with original sentences to enhance sentence091

representations. Our approach to construct092

positive pairs is an excellent complement to093

the previous ones that mainly focused on min-094

imal data augmentation.095

• Our proposed method works on both unsuper-096

vised and supervised settings, weighing our097

additional contrastive loss against the original098

ones, resulting in extraordinary improvements.099

We yield a new state-of-the-art performance100

on STS tasks in supervised setting based on101

BERTbase.102

2 Related Work103

2.1 Contrastive Objective104

Contrastive learning can effectively improve the105

sentence vector space by pulling semantically re-106

lated vectors closer while pushing apart semanti-107

cally irrelevant ones.108

SimCSE (Gao et al., 2021), by applying the stan-109

dard dropout twice, obtains two different embed-110

dings as positive pairs. ESimCSE (Wu et al., 2021)111

proposes word repetition and momentum contrast112

applied on positive and negative pairs separately113

1This expression originates from SimCSE, where dropout
is characterized as a form of minimal data augmentation.

to enhance SimCSE. PromptBERT (Jiang et al., 114

2022) reformulates the output way of sentence em- 115

beddings as a fillin-the-blanks problem based on 116

prompt templates. SemCSR (Wang et al., 2023) 117

also uses LLMs as tools, but they generate pseudo- 118

NLI data and filter low-quality data through the 119

evaluation capabilities of LLMs. 120

2.2 Integrate with Other Objectives 121

Many researchers inject other learning objectives 122

to conduct a multi-task learning based on the tradi- 123

tional contrastive objective, or transform it. 124

DiffCSE (Chuang et al., 2022) uses additional 125

generator and discriminator to perform the Re- 126

placed Token Detection task with the cross-entropy 127

loss. InfoCSE (Wu et al., 2022) designs an aux- 128

iliary network for MLM task to force the repre- 129

sentation of [CLS] positions to aggregate denser 130

sentence information. ArcCSE (Zhang et al., 2022) 131

models pairwise and triple-wise sentence relations 132

with Additive Angular Margin Contrastive Loss 133

and Triplet Loss. AnglE (Li and Li, 2023) intro- 134

duces angle optimization which mitigates the ad- 135

verse effects of the saturation zone in the cosine 136

function. 137

3 Methodology 138

3.1 Prompt Template for SKI 139

We design the prompt template, “1) Answer objec- 140

tively what you know about the sentence. 2) Make 141

sure your answers are no more than four sentences 142

and contain important information.”, to obtain the 143

SKI of input sentences. 144

The first sentence is the core of the prompt tem- 145

plate. We find that when we ask LLMs whether 146

they know anything about the sentence we input, 147

they do their best to answer from the three aspects 148

we summarized in Figure 1. If there are entities in 149

the input sentence that contain external knowledge, 150

LLMs will explain and supplement them. Other- 151

wise, LLMs will perform semantic and grammati- 152

cal analysis of the sentence. The word “objectively” 153

is intended to alleviate hallucinations (Huang et al., 154

2023) in LLMs. The purpose of the second sen- 155

tence is to keep LLMs’ answers from being over- 156

whelming and to emphasize that the answers should 157

not be irrelevant information. 158

3.2 Introduce SKICSE 159

Our SKICSE can be seen as combining the orig- 160

inal objective from SimCSE with the additional 161
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Figure 2: An illustration for the composition of unsupervised SKICSE loss and supervised ones.

contrastive learning objective which leverages SKI.162

3.2.1 Unsupervised SKICSE163

Given an unlabeled input sentence x, SKICSE164

creates a positive example xski for x by obtain-165

ing its SKI. We can constitute a triplet of sen-166

tences (x, x′, xski) as shown in Figure 2(a). Here,167

x and x′ have the same text, but different hidden168

dropout masks. By using the BERTbase encoder169

f , we can get a triplet of sentence embeddings170

(f(x), f(x′), f(xski)) = (h,h′,hski), and objec-171

tive functions can be formulated as:172

Lunsup
simcse = − log

esim(hi,h
′
i)/τ∑N

j=1 e
sim(hi,h′

j)/τ
, (1)173

174

Lunsup
skicse = − log

esim(hi,h
ski
i )/τ∑N

j=1 e
sim(hi,h

ski
j )/τ

, (2)175

where N is the batch size for the input batch176

{xi}Ni=1, τ is a temperature hyperparameter, and177

sim(·, ·) is the cosine similarity function.178

Finally, the final objective function of unsuper-179

vised SKICSE is the weighted summary of the180

aforementioned two objectives:181

Lunsup = (1− λ)Lunsup
simcse + λLunsup

skicse , (3)182

where the weight λ is a balanced hyperparameter183

and reflects the importance of SKI.184

3.2.2 Supervised SKICSE185
In NLI datasets, for each premise x, there are186
its entailment hypothesis x+ and an accompa-187
nying contradiction x−. SKICSE creates a pos-188

itive example xski for x by obtaining its SKI.189
Similarly, we can constitute a quadruplet of sen-190

tences (x, x+, x−, xski) and pass it through the en-191
coder to get a quadruplet of sentence embeddings192

(h,h+,h−,hski) as shown in Figure 2(b). Objec-193
tive functions can be formulated as:194

Lsup
simcse = − log

esim(hi,h
+
i )/τ∑N

j=1

(
esim(hi,h

+
j )/τ + esim(hi,h

−
j )/τ

) ,
(4) 195

Lsup
skicse1

= − log
esim(h

ski
i ,h+

i )/τ∑N
j=1

(
esim(h

ski
i ,h+

j )/τ + esim(h
ski
i ,h−

j )/τ
) ,
(5) 196

Lsup
skicse2

= − log
esim(hi,h

ski
i )/τ∑N

j=1

(
esim(hi,h

+
j )/τ + esim(hi,h

−
j )/τ

) ,
(6) 197

In a similar way, the final objective function of 198
supervised SKICSE becomes: 199

Lsup = (1− λ1 − λ2)Lsup
simcse + λ1Lsup

skicse1
+ λ2Lsup

skicse2
. (7) 200

4 Experiments 201

4.1 Setup 202

Training Details We adapt SimCSE codebase2 203

to our experimental settings and start from the pre- 204

trained checkpoint of bert-base-uncased from the 205

Huggingface model repository3. The LLM we use 206

to generate SKI is LLaMA2-7B. More training de- 207

tails are shown in Appendix A. 208

Datasets We use the source data provided by 209

SimCSE as training data. We train unsupervised 210

SKICSE on 106 randomly sampled sentences from 211

English Wikipedia, and train supervised SKICSE 212

on the combination of MNLI and SNLI datasets. 213

The model with the highest performance on STS- 214

B development set will be chosen. We conduct 215

our experiments on 7 STS tasks, which evaluate 216

2https://github.com/princeton-nlp/SimCSE
3https://huggingface.co/models
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Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Unsupervised Models

ConSERT 64.64 78.49 69.07 79.72 75.95 73.97 67.31 72.74
SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SemCSR 69.63 82.61 76.61 82.67 80.23 80.86 73.66 78.04
ArcCSE 72.08 84.27 76.25 82.32 79.54 79.92 72.39 78.11
ESimCSE 73.40 83.27 77.25 82.66 78.81 80.17 72.30 78.27
DiffCSE 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
PromptBERT 71.56 84.58 76.98 84.47 80.60 81.60 69.87 78.54
SKICSE (Ours) 72.92 84.11 76.81 82.18 80.45 80.69 73.38 78.65
InfoCSE 70.53 84.59 76.40 85.10 81.95 82.00 71.37 78.85

Supervised Models
SBERT 70.97 76.53 73.19 79.09 74.30 77.03 72.91 74.89
ConSERT 74.07 83.93 77.05 83.66 78.76 81.36 76.77 79.37
SimCSE 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
PromptBERT 75.48 85.59 80.57 85.99 81.08 84.56 80.52 81.97
AnglE 75.09 85.56 80.66 86.44 82.47 85.16 81.23 82.37
SKICSE (Ours) 75.79 86.14 81.47 86.13 82.05 85.08 80.48 82.45

Table 1: Sentence embedding performance on STS tasks. All models use BERTbase as the backbone and results are
from their own papers.

whether the semantic similarity between two sen-217

tences predicted by a model is relevant to human218

judgments. And Spearman’s correlation coefficient219

is used to report the model performance.220

Baselines We compare unsupervised and super-221

vised SKICSE to previous state-of-the-art sentence222

embedding methods on STS tasks. These strong223

baselines include SBERT (Reimers and Gurevych,224

2019), ConSERT (Yan et al., 2021), SimCSE (Gao225

et al., 2021), ESimCSE (Wu et al., 2021), Prompt-226

BERT (Jiang et al., 2022), DiffCSE (Chuang et al.,227

2022), InfoCSE (Wu et al., 2022), ArcCSE (Zhang228

et al., 2022), SemCSR (Wang et al., 2023), An-229

glE (Li and Li, 2023).230

4.2 Results231

The experimental results of STS tasks are shown232

in Table 1. It can be seen that few variants of Sim-233

CSE can adapt to both unsupervised and supervised234

scenarios. However, our SKICSE is not only suit-235

able for both scenarios but also achieves great im-236

provement, obtaining a 2.40% and 0.88% absolute237

increase compared to SimCSE on average Spear-238

man’s correlation. It is worth mentioning that such239

performance is rare, and previously only Prompt-240

BERT has come close to reaching our results in241

both scenarios. To the best of our knowledge, we242

yield a new state-of-the-art performance in super-243

vised setting with BERTbase as the backbone.244

SemCSR also makes use of LLMs. But what 245

it does is to generate the entailment and contra- 246

diction of a given sentence to obtain pseudo-NLI 247

triplets. Our unsupervised results exceed SemCSR 248

by 0.61% absolute point, even though it is actu- 249

ally performing weakly supervised training with 250

pseudo-NLI data. According to SemCSR’s paper, 251

the result will drop significantly to 75.59% if the 252

generated pseudo-NLI data is not evaluated and 253

filtered. In contrast, our generated SKI requires 254

no additional processing for the model to produce 255

satisfactory results. 256

5 Conclusion 257

In this paper, we propose a novel concept called 258

sentence knowable information (SKI). It is an ex- 259

cellent complement to positive pairs constructed by 260

minimal data augmentation and entailment relation. 261

Owing to the powerful generation capabilities of 262

LLMs and our effectively handcrafted prompt tem- 263

plate, we mine SKI whose main content is external 264

knowledge, semantic analysis, and grammatical de- 265

scription. SKI is injected into the model through 266

an additional standard contrastive learning objec- 267

tive to better optimize the sentence vector space. 268

Experimental results on STS tasks show that our 269

method can achieve better performance than almost 270

all sentence embedding strong baselines. 271
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A Training Details423

For both unsupervised and supervised SKICSE, we424

set the batch size as 512, learning rate as 1e-4, max425

sequence length as 128. We keep these parameter426

settings unchanged and search for weight coeffi-427

cients. Empirically, we find that λ = 0.15 for the428

unsupervised SKICSE and λ1 = 0.1, λ2 = 0.3 for429

the supervised SKICSE work well. There are two430

weight coefficients in supervised setting and we431

carry out grid-search of λ1, λ2 ∈ {0.1, 0.2, 0.3} on432

STS-B development set as shown in Table 2.433

λ1
λ2

0.1 0.2 0.3
0.1 86.3196 86.3368 86.3412
0.2 86.2750 86.3102 86.3189
0.3 86.2640 86.3302 86.3384

Table 2: STS-B development results (Spearman’s cor-
relation) with different combinations of λ1 and λ2.

We run the experiments on a server with 434

60 vCPU AMD EPYC 7543 32-Core Processor 435

and 4 NVIDIA A40 GPUs. The system oper- 436

ates on Ubuntu 18.04 with Python 3.8, PyTorch 437

torch1.7.1+cu110, and Transformers 4.2.1. The 438

training of unsupervised and supervised SKICSE 439

take approximately 35 and 30 minutes respectively. 440
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