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ABSTRACT

Large language models (LLMs) have achieved remarkable progress in linguistic
tasks, necessitating robust evaluation frameworks to understand their capabilities
and limitations. Inspired by Feynman’s principle of understanding through creation,
we introduce a self-knowledge evaluation framework that is easy to implement,
evaluating models on their ability to comprehend and respond to self-generated
questions. Our findings, based on testing multiple models across diverse tasks,
reveal significant gaps in the model’s self-knowledge ability. Further analysis
indicates these gaps may be due to misalignment with human attention mechanisms.
Additionally, fine-tuning on self-generated math task may enhance the model’s
math performance, highlighting the potential of the framework for efficient and
insightful model evaluation and may also contribute to the improvement of LLMs.

1 INTRODUCTION

In recent years, large language models (LLMs) have reached groundbreaking milestones, significantly
advancing in areas such as semantic understanding, sentence translation, and more OpenAI (2023);
Touvron et al. (2023); Anil et al. (2023); Team et al. (2023). These models not only facilitate
enhanced interaction between computers and human language but also drive innovation across
numerous applications. However, as these models become increasingly central to technological
advancements and their applications more widespread, it is crucial to establish robust, systematic
evaluation frameworks. Such frameworks are essential not only for understanding the full spectrum
of capabilities these models possess but also for identifying their limitations and potential biases.

The evaluation of large language models has made significant strides in recent years, with researchers
developing numerous benchmarks aimed at testing various aspects of model performance (Hendrycks
et al., 2020; Li et al., 2023; Zhong et al., 2023). However, the current evaluation methods still have
notable shortcomings. Firstly, most benchmarks require substantial human and material resources
and often necessitate the involvement of domain experts to accurately assess correctness. Secondly,
evaluations that measure a large model’s capability through self-evaluation of its own knowledge is
less explored. This gap highlights the need for developing more efficient and insightful evaluation
techniques that not only reduce the dependency on extensive resources but also enhance the models’
ability to evaluate their own performance and limitations.

Motivated by Richard Feynman’s famous quote: “What I cannot create, I do not understand.” We
would like to evaluate the large language model’s capability through its “reverse version”, i.e. does
the model really understand the questions and solutions created by itself?, which we termed the
self-knowledge of the model. This capability is effectively realized by a truthful human, since the
originator of a question and its corresponding answer should be able to respond consistently and
without difficulty if asked the same question by others if they truly comprehend this knowledge. This
ease comes naturally from being the initial creator of the question, so when evaluated on a benchmark
generated in this way, a self-knowledgable model should receive an accuracy of nearly 100% easily.

In this paper, we provide a novel framework that can evaluate the model’s self-knowledge ability
and is very easy to implement. We conduct an extensive evaluation of 7 popular LLMs across 9
tasks, including counting words, math, theorem proving, etc. We also conduct evaluation on large
multi-modal models (LMMs). We summarize some of our findings as follows:
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• We find that modern LLMs and LMMs have unsatisfactory behaviors on self-knowledge evalua-
tions, which is far from perfect.

• By analyzing a designated word counting task, we find that models become much similar to the
human-inspired attention-based mechanisms when the model gets a higher self-knowledge score.
The poor self-knowledge task performance may be explained by additive effect of misalignment
with this attention-based mechanism and the less-concentrates of LLM attention than humans.

• We find only GPT-4 and Gemma achieve 100% accuracy when the question-generating process
is given in context and their accuracy is reduced when the context is added with noisy contents.
GPT-4 has accuracy less reduced than Gemma, making GPT-4 has more similar behaviour like
humans than other models.

• We find that fine-tuning the data generated by the self-knowledge math task may improve the
performance on GSM-8k.

• We find that expert-based prompts may usually improve self-knowledge ability but chain-of-
thought prompting may usually not.

2 RELATED WORKS

Evaluation of large generative models. Recent years have seen significant advancements in the
development of large generative models, including large vision models (LVMs) Radford et al. (2021);
Kirillov et al. (2023), large language models (LLMs) OpenAI (2023); Touvron et al. (2023); Bai et al.
(2023); Team et al. (2024); Jiang et al. (2023a), and their evolution into large multi-modal models
(LMMs) OpenAI (2023); Liu et al. (2023); Zhu et al. (2023); Wei et al. (2023); Koh et al. (2023); Ge
et al. (2023), demonstrating near-human proficiency and even a spark of AGI. Evaluation of these
large generative models is a fast-evolving field across various tasks, datasets, and benchmarks Zhong
et al. (2023); Yue et al. (2023); Fu et al. (2023); Wei et al. (2024); Sun et al. (2024). It encompasses a
wide range of domains, including the generation of language, images, videos, and audio. However,
there is a lack of evaluations that measure a large generative model’s self-knowledge of its own
capabilities. Specifically, we focus on the self-knowledge evaluation of LLMs that can understand
instruction and output responses, as well as LMMs that can both understand images and generate
images.

Evaluation of LLM’s instruction-following ability. Several studies have established benchmarks
for evaluating LLMs’ instruction-following abilities. Jiang et al. (2023b) proposed FollowBench that
sequentially add fine-grained constraints to construct multi-level instructions. Zhou et al. (2023) em-
phasized objective evaluations with verifiable instructions. Meanwhile, Qin et al. (2024) constructed
a benchmark composed of several distinct instructions and decomposed questions for the assessment
of the instruction following. These benchmarks require manually constructing a large number of
instructions and answers. Differently, our work mainly focuses on the large model’s self-knowledge
of its own capabilities, which is also independent of collecting additional annotated answers.

3 THE SELF-KNOWLEDGE EVALUATION FRAMEWORK

To evaluate the self-knowledge of large language models (LLMs), we propose a novel method called
First Generate, Then Evaluate, inspired by the concept of “self-questioning and answering.” This
approach involves a two-step process:

1. The self-generate step: We utilize a question-generating prompt to instruct the LLM to produce
relevant content. The model provides answers that are either specified by the prompt or generated
autonomously.

LLM(question-generating prompt)
generate−−−−→ x;a, (1)

where x is the generated paragraph and a is the corresponding answer specified by the prompt or
generated by the model directly.

2. The self-verify step: It uses a question-verifying prompt to assess the previously generated content
x:

LLM(question-verifying prompt,x)
generate−−−−→ â, (2)
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In the heart of a bustling city, a small, serene park offered an oasis 
of calm. Amid towering skyscrapers, it was a place where people 
could escape the relentless pace of urban life. With lush greenery, a 
gently babbling brook, and benches under the shade of ancient 
trees, it was a cherished haven for many city dwellers.

There are 63 words in the paragraph you've provided.

(a) First Generate (b) Then evaluate
How many words are there in the following paragraph?

In the heart of a bustling city, a small, serene park offered an oasis 
of calm. Amid towering skyscrapers, it was a place where people 
could escape the relentless pace of urban life. With lush greenery, a 
gently babbling brook, and benches under the shade of ancient 
trees, it was a cherished haven for many city dwellers.

Generate a paragraph with exactly 56 words in total.

Question-generating prompt

Paragraph Answer

Paragraph

Answer

Question-verifying prompt

Figure 1: A case of “first generate, then evaluate”. The model is first asked to generate a paragraph
with 56 words. Then we can ask the model in a separate run and ask how many words are there in the
previously generated paragraph. If the answer is not 56, we will raise an error.

where â is the answer of question x under the verifying prompt. Note the question-generating prompt
and the question-verifying prompt are pairing prompts that are designed to correlate with some
ability of the model, and thus can be seen as evaluating the model’s self-knowledge on a specific task.
Then, the self-knowledge score is calculated by I(a = â). For n pair of question-generating and
question-verifying prompts, denote their respective answers be ai and âi, the self-knowledge score
is calculated by 1

n

∑n
i=1 I(ai = âi). In this paper, we mainly consider the simplest self-evaluation

strategy by directly asking the model to respond with the answer, more sophisticated self-verifying
strategies like (Weng et al., 2022) are left for future work.

We have also presented a schematic view of the pipeline of our method in Figure 1. The question-
generating prompt is depicted in Figure 1(a)’s self-generate process as “Generate a paragraph with
exactly 56 words in total.”. As LLM has strong instruction-following and writing abilities, it will
generate a paragraph x. Note the answer a for this word counting task is already contained in the
prompt, i.e. a = 56. Then Figure 1(b) shows the self-verify step, the question-verifying prompt
is “How many words are there in the following paragraph?” and the model generates an answer
of â = 63. The inconsistency of the answers a = 56 and â = 63 gives rise to a case of not
comprehending the self-knowledge. For more experiments in this manner, please see section 4.2.

One might wonder whether it’s necessary to generate new samples every time we assess self-
knowledge in a task. In other words, can we reuse previously generated samples for new tasks?
The technical part here is that we can only access the generated paragraph x but do not have the
task-specific answer a. Fortunately, one can evaluate this case using the idea of consistency. Suppose
x is generated by a question-generating prompt corresponds to task T ′ and we want to evaluate
the self-knowledge on task T (T ′ ̸= T ). Suppose a transformation τ makes the answer to task T
unchanged when applying τ to x, then the self-knowledge score can be calculated via

I(LLM(question-verifying prompt,x) = LLM(question-verifying prompt, τ(x))). (3)

We have also presented a schematic view of a preposition counting task in Figure 2. Given a sample
x, we consider a question-verifying prompt as “How many prepositions appear in the following
paragraph?”. The answer to this question with respect to sample x is 14. Note an easy transformation
τ to x will preserve the total number of prepositions in the paragraph, i.e. move the first sentence
of the paragraph to the end of the paragraph. The inconsistency of the answers a = 56 and â = 63
gives rise to a case of not comprehending the self-knowledge. For a dataset consisting of n samples,

3
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There are a total of 9 prepositions in the given 
paragraph.

(a) Self Verify 1 (b) Self Verify 2

How many prepositions appear in the following 
paragraph? Amid towering skyscrapers, it was a 
place where people could escape the relentless 
pace of urban life. With lush greenery, a gently 
babbling brook, and benches under the shade of
ancient trees, it was a cherished haven for many city 
dwellers. In the heart of a bustling city, a small, 
serene park offered an oasis of calm.

There are a total of 14 prepositions in the given 
paragraph.

How many prepositions appear in the following 
paragraph? In the heart of a bustling city, a small, 
serene park offered an oasis of calm. Amid towering 
skyscrapers, it was a place where people could 
escape the relentless pace of urban life. With lush 
greenery, a gently babbling brook, and benches 
under the shade of ancient trees, it was a cherished 
haven for many city dwellers.

Figure 2: A case of using existing generated content. The model is first asked about the number
of prepositions in its previously generated content. Then we cut the first sentence in the previous
paragraph and paste it at the last and generate a new paragraph. Then we ask the model in a separate
run about the number of prepositions in the newly generated paragraph. If the answer is not consistent,
we will raise an error.

the self-knowledge score is the average of each sample’s score. For the experiments in this spirit,
please see section 4.4.

4 EVALUATING THE SELF-KNOWLEDGE OF LLMS

4.1 IMPLEMENTATION DETAILS

In our evaluation of language models, we incorporate seven widely recognized LLMs, each distin-
guished by its unique characteristics and training methodologies: GPT-3.5 (gpt-3.5-turbo-1106),
GPT-4 OpenAI (2023) (gpt-4-0125-preview), Llama3-8B-Instruct, Llama2-7B-Chat Touvron et al.
(2023), Mistral-7B-Instruct-v0.2 Jiang et al. (2023a), Gemma-1.1-7B-Instruct Team et al. (2024)
and Qwen1.5-7B-Chat Bai et al. (2023). For API-based models (GPT-3.5 and GPT-4), we set the
temperature to zero for stable generation. For open-sourced models, we follow their default generation
strategy. We present all the evaluation results in Table 1, the detailed evaluation strategy will be
discussed in the following subsections and the template questions can be found in Table 8 in the
Appendix.

4.2 FIRST GENERATE, THEN EVALUATE

In this case, we mainly consider the answer to the generated question is designed to be known in
advance, we use this way because asking the model to generate both the question and answers may
limit the diversity of answers and sometimes even generate duplicate contents.

4.2.1 COUTING THE TOTAL NUMBER OF WORDS

Currently, the most advanced large language models (LLMs) employ an autoregressive framework,
generating each subsequent token one at a time. Although the tokens used by various tokenizers
do not necessarily correspond directly to English vocabulary, the principle of sequentially counting
each token should be relatively simple for LLMs, given their inherent design to process information
token-by-token. Given this, one would assume that tasks such as total word counting would be
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Table 1: The accuracies of different LLMs under various self-knowledge tasks.

Model Total count Designate count Fact ArXiv Math Theorem Code Avg

GPT-4 OpenAI (2023) 0.03 0.46 0.71 0.13 0.24 0.51 0.08 0.31
GPT-3.5 0.00 0.16 0.68 0.09 0.58 0.49 0.51 0.36

Llama3-8B-Instruct 0.00 0.39 0.30 0.00 0.14 0.29 0.68 0.26
Llama2-7B-Chat Touvron et al. (2023) 0.00 0.34 0.65 0.00 0.88 0.83 0.16 0.47

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.00 0.13 0.92 0.00 0.23 0.58 0.07 0.32
Gemma-1.1-7B-Instruct Team et al. (2024) 0.00 0.24 0.15 0.01 0.93 0.71 0.42 0.33

Qwen1.5-7B-Chat Bai et al. (2023) 0.01 0.10 0.77 0.01 0.57 0.58 0.84 0.41

straightforward for these models. We ask the model to generate paragraphs from a length of 50 to
149 and get 100 samples. When we conducted tests to evaluate their capabilities in this regard, we
were surprised to discover that their performance was very poor. A pictorial view can also be found
in Figure 1.

4.2.2 GENERATE PARAGRAPH THAT CONTAINS A SPECIFIC NUMBER OF DESIGNATED WORDS

Theoretically, the task of generating a paragraph that contains a specific number of designated words
should be well within the capabilities of autoregressive large language models (LLMs). Given that
these models generate text sequentially, they inherently have the ability to review their own history,
including tracking the frequency of specified terms as they generate new content. This capability
should enable them to adjust their output to meet predefined criteria, such as incorporating a certain
number of specific words. We ask the model to generate a designated “keyword” a predefined number
of times and get 100 samples. Then in a separate run, we ask the model the appearance time of this
specific keyword and check whether it is the same with our predefined frequency. We only consider
the simplest case of only one keyword and leave the combination of multiple keywords as future work.
The selection of keywords is flexible, one may randomly pick it from a dictionary or ask an LLM to
pick from a summarization of new web content. However, despite these theoretical capabilities, our
empirical tests reveal that the performance of these models remains unsatisfactory in executing this
seemingly straightforward task. This underperformance suggests potential limitations in their current
training or architectural design, which may not fully support dynamic adjustments based on historical
data analysis during text generation.

4.2.3 FACTS

Testing models on their ability to accurately recall important dates related to historical figures is
crucial because it assesses their precision in handling factual information. Remembering key dates,
such as births, deaths, and significant events linked to these individuals, is essential for a reliable
understanding of history. This precision is not just about storing data but also about the ability to
retrieve it accurately when needed. Such tests are particularly important in educational contexts,
where precise historical facts are fundamental for teaching and learning. They help ensure that AI
models can serve as dependable resources for students and researchers who rely on accurate historical
data. We ask the model to name a celebrity that was born on specific dates. Then in a separate run, we
ask the model if the celebrity was born on this day. We generate 100 different days and the evaluation
result shows that models usually show good consistency under this test.

4.2.4 ARXIV

ArXiv dataset is part of the standard pertaining dataset Pile (Gao et al., 2020) and captures the
technical knowledge in many scientific areas. Testing large models on their ability to accurately
retrieve arXiv IDs is important because it assesses their precision and efficiency in handling specific,
detailed queries within academic and scientific contexts. Such testing not only ensures that models
can effectively navigate and extract precise information from vast databases but also highlights their
utility in supporting scholarly work and literature review processes, where accuracy is paramount. We
ask the model to generate the title and IDs of an arXiv paper in a specific month. Then in a separate
run, we ask the model the arXiv ID of the previously generated paper title and check whether it is
consistent with the previously generated ID. We generate 100 different months and the evaluation
result shows that models perform poorly on this task.
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4.2.5 MATH

Testing large models on their ability to solve math problems is crucial for evaluating their performance
because these tasks require a combination of several complex cognitive skills Azerbayev et al. (2023b);
Yu et al. (2023). First, the model must accurately understand the natural language and symbolic
notations used in the problem, recognizing key information and its context. Then, it needs to translate
all linguistic descriptions into a mathematical format, applying the correct operations and formulas.
Finally, the model must manage and manipulate numerical data to reach a solution. This process tests
not only the model’s linguistic comprehension but also its logical reasoning and numerical accuracy,
providing a comprehensive assessment of its capabilities across different domains of intelligence. We
ask the model to generate a math question with typical encountered math question answers like 10cm
or π etc. and we generate 100 different samples. Then in a separate run, we ask the model whether
the predefined answer is consistent with the previously generated question.

4.2.6 THEOREM PROVING

Evaluating large models on their ability to solve mathematical proofs is essential because it assesses
more than just their mathematical knowledge—it evaluates their logical thinking and problem-solving
skills Azerbayev et al. (2023a); Yang et al. (2024). Mathematical proofs require understanding
complex concepts and linking them together through a series of logical steps. This type of testing
checks if the model can not only follow these steps but also organize and articulate them clearly and
effectively. By doing so, we can determine how well the model can handle complex, abstract ideas
and if it can apply its knowledge to develop coherent, logical solutions. This insight is crucial for
understanding the depth and breadth of the model’s cognitive abilities, making it a comprehensive
test of its overall intellectual performance. However, verifying the correctness of a proof may be too
challenging. We find that inequalities are a good testbed for this task as many of them can be verified
by computers automatically. We also consider the simplest case of single variables inequalities as
inequalities involving multiple variables are hard to verify their correctness even by humans and we
also generate 100 different samples. Then in a separate run, we ask the model whether the previously
generated inequality is correct or not.

4.2.7 CODE

Testing large models on their ability to write code is crucial for understanding how well they can
apply computer science concepts in real situations Roziere et al. (2023); Guo et al. (2024). This type
of testing goes beyond just knowing programming language rules. It looks at whether the model can
effectively break down problems, think through solutions logically, and turn those ideas into working
code. This helps us evaluate how well the model can handle practical tasks in computing, showing its
potential to work as an effective tool in technology and software development. Such tests are key
for seeing how theoretical knowledge translates into actual, usable applications. In the experiments,
we ask the model to generate a program that has its execution result given, for eg. 10 and we also
generate 100 different samples. Then, in a separate run, we ask the model the executed result of its
generated program and check whether it is consistent.

4.3 VERIFY USING DUAL-GENERATING STRATEGY

We can also make further verify by using the generated content x without direct access to the
generated answer a. We will use the following dual-generating strategy, by designing a dual prompt
that make the model generate a new content based on the existing content x and if the generation is
correct will have the same answer under the question-verifying prompt.

The schematic process works as follows:

LLM(dual-generating prompt,x)
generate−−−−→ x′. (4)

LLM(question-verifying prompt,x′)
generate−−−−→ â′. (5)

The self-knowledge score is calculated by I(â = â′), where â is given by equation (2).

For example, for the total word count task, a possible dual-generating prompt will be “Generate a
paragraph with the same number of words with the following paragraph.” and the grammar task is to

6
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Table 2: Self-knowledge score using dual-generating strategy.

Model Total count Designate count Fact Grammar Math Code Avg

GPT-4 OpenAI (2023) 0.15 0.27 0.71 0.35 0.11 0.15 0.29
GPT-3.5 0.01 0.24 0.79 0.20 0.44 0.64 0.39

Llama3-8B-Instruct 0.66 0.48 0.80 0.71 0.30 0.73 0.61
Llama2-7B-Chat Touvron et al. (2023) 0.00 0.16 0.54 0.66 0.88 0.61 0.48

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.28 0.06 0.92 0.40 0.26 0.16 0.35
Gemma-1.1-7B-Instruct Team et al. (2024) 0.31 0.68 0.03 0.35 0.67 0.68 0.45

Qwen1.5-7B-Chat Bai et al. (2023) 0.08 0.24 0.20 0.34 0.36 0.58 0.30

ask the model to generate a paragraph with the same number of prepositions as the given text. We
summarize the results in Table 2 and the results are still not very satisfactory, showing the weaknesses
of these LLMs.

4.4 REUSE LLM’S GENERATED CONTENT TO PERFORM OTHER TASK

In this section, we will discuss how to use LLM’s previously generated content to evaluate new tasks.

4.4.1 GRAMMAR

Testing models on their understanding of word parts of speech within sentences is crucial because
it reflects their grasp of grammar. Part of speech (POS) tagging (Gimpel et al., 2011) involves
identifying whether a word functions as a noun, verb, preposition, etc., based on its usage in context.
This understanding is fundamental to processing and generating coherent language, as it affects how
words are combined to form meaningful sentences. A model’s ability to accurately perform POS
tagging indicates its proficiency in syntactic analysis, which is essential for any language-related
task. The model is first asked about the number of prepositions in its previously generated content.
Then we cut the first sentence in the previous paragraph and paste it at the last and generate a new
paragraph, this operation preserves the number of prepositions. Then we ask the model in a separate
run about the number of prepositions in the newly generated paragraph. We test on 100 samples and
the initial paragraph is taken from the total word counting task in section 4.2.1. A schematic view
can be found in Figure 2.

4.4.2 BASIC SQL TYPE OPERATIONS

Testing a model’s ability to perform basic SQL operations based on input sentences not only evaluates
its capacity to understand and manipulate data but also sheds light on its grasp of the finer structural
details of sentences. This type of assessment requires the model to parse complex sentence structures
and understand their relational dynamics to accurately convert natural language instructions into SQL
commands. Successfully managing this translation indicates a deep understanding of syntax and
semantics, reflecting the model’s sophistication in language processing. Thus, proficiency in this area
demonstrates more than just technical capability; it highlights the model’s comprehensive linguistic
competence, essential for any application involving natural language understanding and interaction.
We use the generated texts in section 4.2.2. For each paragraph, we first ask the model to answer what
is its i-th word, where i is a randomly selected small integer. We then design the following tasks:

• Add first word: Add a random word to the beginning of the paragraph and ask the model
what its i + 1-th word is. Then check whether the word is consistent with the previously
answered one.

• Delete first word: Delete the first word of the paragraph and ask the model what its i− 1-th
word is. Then check whether the word is consistent with the previously answered one.

• Change: Change the i-th word of the paragraph to x and ask the model what its i-th word is.
Then check whether the answer is x.

From the results in Table 3, we can see that all models have at least one task that performs badly,
showing that they lag behind humans in these simple but fundamental tasks.

7
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Table 3: Self-knowledge score using existing content.

Model Grammar Add first word Delete first word Change Avg

GPT-4 OpenAI (2023) 0.30 0.63 0.59 0.40 0.48
GPT-3.5 0.08 0.17 0.15 0.25 0.16

Llama3-8B-Instruct 0.62 0.51 0.68 0.20 0.50
Llama2-7B-Chat Touvron et al. (2023) 0.93 0.99 0.94 0.00 0.72

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.20 0.42 0.53 0.08 0.31
Gemma-1.1-7B-Instruct Team et al. (2024) 0.45 0.55 0.67 0.04 0.43

Qwen1.5-7B-Chat Bai et al. (2023) 0.31 0.34 0.48 0.16 0.32

Table 4: Self-knowledge scores on multimodal tasks.

Model Counting Color Position Avg

Gill Koh et al. (2023) 0.06 0.45 0.46 0.32
SEED-LLaMa Ge et al. (2023) 0.26 0.81 0.53 0.53

5 EVALUATING THE SELF-KNOWLEDGE OF LMMS

5.1 IMPLEMENTATION DETAILS

There are only a few large multimodal models (LMMs) that can both understand and generate images
when given textual instructions. Therefore, we just utilize two well-known LMMs that are trained to
align vision encoder (e.g., ViT Dosovitskiy et al. (2020)), LLM, and vision decoder (e.g., diffusion
model Ho et al. (2020)): Gill Koh et al. (2023) and SEED-LLaMa Ge et al. (2023). We also follow
their default generation strategy in our tasks.

5.2 EXPERIMENTS

Perception is one of the most fundamental capabilities of LMMs, and the lack of perception will
easily lead to the object hallucination problem Fu et al. (2023). Therefore, we consider several
coarse-grained and important perception tasks for the self-knowledge evaluation of LMMs, including
counting, color, and position. In particular, counting measures the LMMs’ ability to determine the
number of objects, color assesses how LMMs perceive specific colors, and position evaluates how
LMMs recognize objects’ spatial location and arrangement. For our experiments, we first prompt the
LMMs to generate specific images, and then use the generated images for further evaluation. The
instructions are shown in Table 9 in the Appendix.

Our experimental results reveal that SEED-LLaMa Ge et al. (2023) exceeds Gill Koh et al. (2023)
on these self-knowledge tasks. SEED-LLaMa also demonstrates satisfactory performance in color
generation and perception with a high score of 0.81. Besides, we notice that both the two LMMs gain
poor performance on the counting task.

6 MORE DISCUSSIONS

6.1 ANALYZE THE BEHAVIOR OF SELF-KNOWLEDGE DESIGNATED WORD COUNTING TASK

Analyzing the underlying reason why LLM performs poorly on self-knowledge tasks is difficult. We
make an attempt to analyze the case of the “designated word counting task”, which has some special
structure. Recall that this task requires the model to generate a keyword x exactly s times. When a
human is asked to perform this task, whenever they generate a new word they will may some of their
focus on whether this word is x and how many times x has appeared. In the context of LLM, we will
use attention score to measure the extent of “focus”. For each token in the generated paragraph, we
extract the attention score of token x. We then sort these scores and only keep the top 15% tokens as a
set τx. Then denote the number of times x appears in the generated paragraph as k = |x ∈ τx|. Then
it is natural to define the attention-based score as min{k,s}

max{k,s} . To alleviate the influence of different
attention heads, we average the attention score of the last layer’s attention heads, we summarize
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Table 5: Scores of designated word counting tasks.

Model Qwen1.5-7B Mistral-7B Gemma-1.1-7B Llama2-7B Llama3-8B

Initial 0.10 0.13 0.24 0.34 0.39
Attention-based 0.31 0.32 0.16 0.38 0.35

Difference 0.21 0.19 0.08 0.04 0.04

Table 6: Self-knowledge score under different evaluation protocols on the total word counting task.

Model No context eval In-context eval In-context eval with noise

GPT-4 OpenAI (2023) 0.03 1.00 0.95
GPT-3.5 0.00 0.90 0.96

Llama3-8B-Instruct 0.00 0.00 0.00
Llama2-7B-Chat Touvron et al. (2023) 0.00 0.00 0.00

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.00 0.87 0.62
Gemma-1.1-7B-Instruct Team et al. (2024) 0.00 1.00 0.45

Qwen1.5-7B-Chat Bai et al. (2023) 0.01 0.70 0.89

the result in Table 5. We can see the difference between the initial self-knowledge score and the
attention-based score is smaller when the initial self-knowledge score is bigger. This may imply
that models that perform better at the initial self-knowledge task may behave more similarly to
humans. But even the model that performs best still lags behind humans. This may be attributed to
a human’s strong ability to concentrate when asked to perform this task. There may be an additive
effect: When the model’s self-knowledge score is very poor, the poor performance may be mainly
due to misalignment with this attention-based mechanism. When the self-knowledge score gets
larger, it aligns with this attention-based mechanism, the poor performance may be attributed to the
less-concentrates of LLM attention than humans. That is though the mechanism may be similar, the
extent of attention score focusness is less than human.

6.2 DIFFERENT EVALUATION PROTOCOLS

The evaluation in the previous sections will make the generation process and evaluation process in
separate runs. This evaluation process may become much easier when the generation process is
given in the context, and we will call this evaluation protocol the in-context eval. As the in-context
memory may make the evaluation too simple, recall that humans may starts to forget things when
they are exposed to many irrelevant information. We consider the simplest setting where a short
noise paragraph about 7000 tokens long is inserted between the generation process and the evaluation
process. We call this in-context eval with noise. We summarize the result in Table 6. To our surprise,
only GPT-4 and Gemma achieve 100% accuracy in the in-context eval and their performances are
reduced when exposed to noise, similar to humans. Note some models like GPT-3.5 and Qwen may
even have increased performance when exposed to noise. We conjecture that this weird phenomenon
may be attributed to that some weak association is amplified due to stochastic resonance (Moss et al.,
2004). But the main point here is that adding noise can reduce the performance of a perfect in-context
evaluator, similar to the behavior of humans.

6.3 FINE-TUNING ON THE GENERATED DATA

We are also interested in the following question: What will happen if the model fine-tunes on its
own generated contents? We mainly focus on the mathematics-related aspect as there has a standard
benchmark GSM-8k (Cobbe et al., 2021) and it reflects the reasoning and language understanding of
LLMs.

We conduct supervised fine-tuning for open-sourced LLMs, including Llama3-8B-Instruct, Llama2-
7B-Chat Touvron et al. (2023), and Gemma-1.1-7B-Instruct Team et al. (2024). We train LoRA
adapters Hu et al. (2021) for efficient fine-tuning. We utilize 4 24GB-4090 GPUs for three epoch
training. The AdamW optimizer is used with a 1e-4 learning rate and the LoRA parameters dimension,
alpha, and dropout are set to 64, 16, and 0.1, with a batch size of 16. For close-sourced LLM, we
also use OpenAI API to fine-tune GPT-3.5 (gpt-3.5-turbo-1106) as GPT-4 is not yet available for

9
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Table 7: GSM-8k accuracies.

Model Initial Llama3 correct Llama3 wrong GPT-3.5 correct GPT-3.5 wrong Llama2 correct Llama2 wrong

Llama3 76.72 79.80 78.58 78.47 77.90 78.13 77.41
GPT-3.5 71.38 71.08 70.62 71.42 71.23 71.23 71.23
Llama2 24.11 24.41 24.03 25.32 24.26 24.91 25.32

finetuning for the public. We set the epoch to 3, with a batch size of 16 and a learning rate multiplier
of 0.03.

We first consider two types of data, one is the “wrong one” directly generated by LLMs that is not
human-checked and another is the correct one that has its answer human-corrected. We fine-tune
each LLM on the data generated by itself and evaluate it on GSM-8k to get results in Figure 3. The
initial accuracy on GSM-8k is: GPT-3.5: 71.38; Llama3: 76.72; Gemma: 48.07; Llama2: 24.11. We
find models with higher initial accuracy will have higher accuracy when tuned on the correct answer
and vice versa when the accuracy is low. This is similar to humans as people may not distinguish
good and bad when they are not good at something, but when their ability increases, they start to have
their own judgments. Note all models have improved accuracies when tuning on its own data except
GPT-3.5 when tuning on the wrong data. As GPT-3.5’s black-box tuning nature, we attribute this as
an outlier.

Figure 3: GSM-8k accuracy after fine-tuning on different data.

To further see the influence of tuning on other’s generated data. We consider GPT-3.5; Llama3 and
Llama2 that have similar architecture. We consider tuning on both the correct and wrong data and
summarize the results in Table 7. We find that model achieves its highest accuracy when tuning on
its self-generated content and the content generated by models that have higher accuracy may not
guarantee the highest improvements. this may suggest that self-improving is a promising direction to
further enhance model capacity.

7 CONCLUSION

In this paper, we introduce a comprehensive self-knowledge evaluation framework specifically
designed for large language models (LLMs) and large multimodal models (LMMs). This framework
focuses on assessing their capacity to comprehend and effectively respond to questions they generate
themselves. Our extensive findings across a variety of tasks demonstrate that these models still
exhibit significant deficiencies when engaged in self-knowledge tasks. Further analysis suggests that
these shortcomings may be partially attributed to a misalignment with human attention mechanisms
and thus highlight a potential area for improvement. Additionally, we explore the impact of fine-
tuning models on self-generated data, which shows promise in enhancing their overall performance.
Our framework provides a valuable and efficient approach to advancing both the evaluation and
development of LLMs and LMMs. While we primarily consider cases that are straightforward and
easily verified by humans, future work could involve increasing the complexity and automation of the
evaluation challenges.
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Table 8: The list of verifiable instructions, with brief descriptions. We use these instructions because
we think they are either easy to verify or common in real-world applications.

Task First Generate Then Evaluate

Total count Generate a paragraph with exactly [num]
words in total.

How many words are there in the follow-
ing paragraph? paragraph

Designate count Generate a paragraph where the [word]
appears exactly [num] times.

How many times does the [word] appear
in the following paragraph? paragraph

Facts Name a celebrity that was born on [year,
month, day].

Is the following statement true? para-
graph

ArXiv Give me a paper with its title and
arXiv ID, which was submitted on [year,
month].

What is the arXiv ID of the paper titled
[title]?

Math Generate a hard high school level math-
ematics question with [answer].

Is [answer] the correct answer to the fol-
lowing question? question

Theorem Generate a hard elementary one vari-
able inequality proving problems rigor-
ously and clearly, no need to generate
the proof.

Is the following inequality true? inequal-
ity

Code Generate a hard coding problem in
Python. The code’s execution result
should be [answer].

What is the execution result of the fol-
lowing code? code

Table 9: The list of verifiable instructions for LMMs.

Instruction Group First Generate Then Evaluate

Counting Generate an image with exactly [num]
[objects].

How many [objects] are there in the im-
age? image

Color Generate an image with a [color] [ob-
ject].

What’s the color of [object] in the im-
age? image

Position Generate an image with a computer [po-
sition relationship] a [object].

Is the computer [position relationship] a
[object] in the image? image

Appendix

A PROMPTS

We summarize some of the used prompts in this Appendix. Please refer to Table 8 and 9.

B MORE EXPERIMENTS

B.1 AGENT

The tasks used in Table 8 are handcrafted by humans, so it remains interesting to see that AI agents
generate questions in this manner. If this is possible, it will make AI autonomously generate questions
beyond human-designed ones and may pave ways to self-verify and self-improvement without human
supervision.

We use two GPT-4 as agents, one as a question generator, and another as a judge. To let the agent
understand our goal, we feed the handcrafted data in Table 8 to the agent and ask it to generate tasks
in this manner. The judge is asked to decide whether the question generated by the previous agent is
clear and has a unique answer that can be easily verified. Interestingly, we can get some template
questions, we summarize some in Table 10. One can further ask the model to generate for example
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Table 10: Selected template questions generated by AI agents.

Task First Generate Then Evaluate

Specific Mention Write a paragraph mentioning exactly
[num] distinct [countries].

Are there exactly [num] distinct [coun-
tries] mentioned in the following para-
graph? paragraph

Sentiment Analysis Write a paragraph where the overall sen-
timent is positive, with exactly [num]
positive words.

Is the overall sentiment of the following
paragraph positive with exactly [num]
positive words? paragraph

Sports Statistics Provide statistics for a [sport] game
played on [date].

Are the following statistics correct for
the [sport] game played on [date]? statis-
tics

Table 11: Scores on MMLU college cs tasks.

Model Qwen1.5-7B Mistral-7B Gemma-1.1-7B Llama2-7B Llama3-8B GPT-3.5 GPT-4

Initial 0.42 0.51 0.47 0.40 0.50 0.59 0.81
Self-knowledge 0.46 0.45 0.59 0.54 0.42 0.52 0.75

100 instances of questions based on the template question. This shows that agents have the potential
to work without human supervision, we leave the detailed investigation in this direction as future
work.

B.2 EXISTING BENCHMARK BASED SELF-KNOWLEDGE

As our self-knowledge evaluations in previous sections are mostly based on our manually created
template problems, one may wonder if we can leverage the existing human-crafted benchmarks to
perform self-knowledge evaluations. Of course, one may also use the dual-generating framework
in section 4.3. In this section, we introduce another way which may be more efficient. Wang et al.
(2022) introduce the philosophy of augmenting the instruction tuning data using LLMs. Motivated by
this philosophy, we consider showing the LLM the test data from a benchmark and letting it generate
new testing problems with answers and we then let the LLM do these self-generated problems. We
consider the widely adopted benchmark MMLU (Hendrycks et al., 2020) and as it consists of too
many topics, we choose the college cs task for simplicity. We summarize the results in Table 11.
We find that the difference between the initial accuracy and self-knowledge score is small. More
interestingly, it seems that when a model has its initial accuracy greater than 50% it will have its
initial accuracy greater than the self-knowledge accuracy and vice versa. This is similar to Figure 3
where models with higher accuracy may favor the correct answered data.

C ABLATION STUDIES

C.1 ABLATION STUDY ON INCONSISTENCY

Recall that equation (3) depicts a way to assess the self-knowledge ability through consistency.
Similarly, if a transformation τ̂ will always make the answer to task T changed when applying τ̂ to
x, then the self-knowledge score can be calculated via the inconsistency.

I(LLM(question-verifying prompt,x) ̸= LLM(question-verifying prompt, τ̂(x))). (6)

We consider the Math and Fact tasks, where the operation τ̂ is easy to construct. For example, reduce
the generated date by one day. From the results in Table 12, we can see that all models cannot perform
well on both the consistency-based and inconsistency-based self-knowledge checks. This further
supports our conclusion that the model does not really understand its generated content.
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Table 12: Self-knowledge score under consistency and inconsistency.

Model Fact (Consistency) Fact (Inconsistency) Math (Consistency) Math (Inconsistency)

GPT-4 OpenAI (2023) 0.71 0.35 0.24 0.99
GPT-3.5 0.68 0.25 0.58 0.72

Llama3-8B-Instruct 0.30 0.70 0.14 0.99
Llama2-7B-Chat Touvron et al. (2023) 0.65 0.43 0.88 0.52

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.92 0.04 0.23 0.88
Gemma-1.1-7B-Instruct Team et al. (2024) 0.15 0.84 0.93 0.75

Qwen1.5-7B-Chat Bai et al. (2023) 0.77 0.26 0.57 0.97

Table 13: Detailed accuracies on generation and verification.

Model Initial Gen Verify True Initial (Expert) Gen (Expert) Verify (Expert) True (Expert)

GPT-4 0.03 0.08 0.00 0.00 0.19 0.01 0.00 0.00
GPT-3.5 0.00 0.06 0.00 0.00 0.05 0.05 0.01 0.00
Llama3 0.00 0.02 0.00 0.00 0.03 0.06 0.01 0.00
Llama2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Mistral 0.00 0.01 0.00 0.00 0.63 0.00 0.00 0.00
Gemma 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00
Qwen 0.01 0.01 0.00 0.00 0.12 0.00 0.01 0.00

C.2 ABLATION STUDY ON PROMPT

C.2.1 EXPERT PROMPT

To evaluate the influence of role-modeling prompts on the experiments, we conduct similar exper-
iments to those in section 4.2.1 by changing the question-generating prompt to “Assume you are
an expert in counting numbers. Generate a paragraph with exactly [num] words in total.” and the
question-verifying prompt to “Assume you are an expert in counting numbers. How many words
are there in the following paragraph?”. In Figure 4, we can see adding the expert prompt indeed
improves the self-knowledge score showing that expert role modeling has some positive influence.
Note the drastic improvement of Mistral is due to similar reasons of in-context eval in Table 6. The
model encodes a “cheat sheet” like “This paragraph, my friends, consists of precisely 58 words.” to
help the self-verifying process.

To investigate further the impact of the prompt, we will the true answer into account. Specifically, we
calculate the ground-truth number of words in the generated paragraph and calculate the following
three accuracies: Gen: The accuracy that the generated content has the required number of words.
Ver: The accuracy that the verify answer from the model on the generated content is equal to the real
number of words in the generated content. True: The accuracy that the verify answer from the model
on the generated content is equal to the real number of words in the generated content and also equal
to the required number of words when generating it. We summarize the results in Table 13. We found
that none of the real generative accuracy or verifying accuracy is improved when using the expert
prompt, showing a deep underlying reason behind the improvements in self-knowledge score, we
leave the investigation of the underlying reasons as future work.

Figure 4: The effect of expert prompt.
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Table 14: Self-knowledge score with and without CoT.

Model Code (w/o CoT) Code (w CoT) Math (w/o CoT) Math (w CoT)

GPT-4 OpenAI (2023) 0.08 0.11 0.24 0.15
GPT-3.5 0.51 0.46 0.58 0.35

Llama3-8B-Instruct 0.68 0.79 0.14 0.02
Llama2-7B-Chat Touvron et al. (2023) 0.16 0.14 0.88 0.94

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.07 0.11 0.23 0.15
Gemma-1.1-7B-Instruct Team et al. (2024) 0.42 0.43 0.93 0.85

Qwen1.5-7B-Chat Bai et al. (2023) 0.84 0.90 0.57 0.34

C.2.2 CHAIN-OF-THOUGHT PROMPTING

We also test the influence of another popular prompting strategy chain-of-thought (CoT) prompt-
ing Wei et al. (2022). We use CoT in both generative and verify processes just as Section C.2.1 and
we summarize the results in Table 14. We find that CoT does not always improve the self-knowledge
score unlike the expert prompt.
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