
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CAN I UNDERSTAND WHAT I CREATE? SELF-
KNOWLEDGE EVALUATION OF LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable progress in linguistic
tasks, necessitating robust evaluation frameworks to understand their capabilities
and limitations. Inspired by Feynman’s principle of understanding through creation,
we introduce a self-knowledge evaluation framework that is easy to implement,
evaluating models on their ability to comprehend and respond to self-generated
questions. Our findings, based on testing multiple models across diverse tasks,
reveal significant gaps in the model’s self-knowledge ability. Further analysis
indicates these gaps may be due to misalignment with human attention mechanisms.
Additionally, fine-tuning on self-generated math task may enhance the model’s
math performance, highlighting the potential of the framework for efficient and
insightful model evaluation and may also contribute to the improvement of LLMs.

1 INTRODUCTION

In recent years, large language models (LLMs) have reached groundbreaking milestones, significantly
advancing in areas such as semantic understanding, sentence translation, and more OpenAI (2023);
Touvron et al. (2023); Anil et al. (2023); Team et al. (2023). These models not only facilitate
enhanced interaction between computers and human language but also drive innovation across
numerous applications. However, as these models become increasingly central to technological
advancements and their applications more widespread, it is crucial to establish robust, systematic
evaluation frameworks. Such frameworks are essential not only for understanding the full spectrum
of capabilities these models possess but also for identifying their limitations and potential biases.

The evaluation of large language models has made significant strides in recent years, with researchers
developing numerous benchmarks aimed at testing various aspects of model performance (Hendrycks
et al., 2020; Li et al., 2023; Zhong et al., 2023). However, the current evaluation methods still have
notable shortcomings. Firstly, most benchmarks require substantial human and material resources
and often necessitate the involvement of domain experts to accurately assess correctness. Secondly,
evaluations that measure a large model’s capability through self-evaluation of its own knowledge is
less explored. This gap highlights the need for developing more efficient and insightful evaluation
techniques that not only reduce the dependency on extensive resources but also enhance the models’
ability to evaluate their own performance and limitations.

Motivated by Richard Feynman’s famous quote: “What I cannot create, I do not understand.” We
would like to evaluate the large language model’s capability through its “reverse version”, i.e. does
the model really understand the questions and solutions created by itself?, which we termed the
self-knowledge of the model. This capability is effectively realized by a truthful human, since the
originator of a question and its corresponding answer should be able to respond consistently and
without difficulty if asked the same question by others if they truly comprehend this knowledge. This
ease comes naturally from being the initial creator of the question, so when evaluated on a benchmark
generated in this way, a self-knowledgable model should receive an accuracy of nearly 100% easily.

In this paper, we provide a novel framework that can evaluate the model’s self-knowledge ability
and is very easy to implement. We conduct an extensive evaluation of 7 popular LLMs across 9
tasks, including counting words, math, theorem proving, etc. We also conduct evaluation on large
multi-modal models (LMMs). We summarize some of our findings as follows:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• We find that modern LLMs and LMMs have unsatisfactory behaviors on self-knowledge evalua-
tions, which is far from perfect.

• By analyzing a designated word counting task, we find that models become much similar to the
human-inspired attention-based mechanisms when the model gets a higher self-knowledge score.
The poor self-knowledge task performance may be explained by additive effect of misalignment
with this attention-based mechanism and the less-concentrates of LLM attention than humans.

• We find only GPT-4 and Gemma achieve 100% accuracy when the question-generating process
is given in context and their accuracy is reduced when the context is added with noisy contents.
GPT-4 has accuracy less reduced than Gemma, making GPT-4 has more similar behaviour like
humans than other models.

• We find that fine-tuning the data generated by the self-knowledge math task may improve the
performance on GSM-8k.

• We find that expert-based prompts may usually improve self-knowledge ability but chain-of-
thought prompting may usually not.

2 RELATED WORKS

Evaluation of large generative models. Recent years have seen significant advancements in the
development of large generative models, including large vision models (LVMs) Radford et al. (2021);
Kirillov et al. (2023), large language models (LLMs) OpenAI (2023); Touvron et al. (2023); Bai et al.
(2023); Team et al. (2024); Jiang et al. (2023a), and their evolution into large multi-modal models
(LMMs) OpenAI (2023); Liu et al. (2023); Zhu et al. (2023); Wei et al. (2023); Koh et al. (2023); Ge
et al. (2023), demonstrating near-human proficiency and even a spark of AGI. Evaluation of these
large generative models is a fast-evolving field across various tasks, datasets, and benchmarks Zhong
et al. (2023); Yue et al. (2023); Fu et al. (2023); Wei et al. (2024); Sun et al. (2024). It encompasses a
wide range of domains, including the generation of language, images, videos, and audio. However,
there is a lack of evaluations that measure a large generative model’s self-knowledge of its own
capabilities. Specifically, we focus on the self-knowledge evaluation of LLMs that can understand
instruction and output responses, as well as LMMs that can both understand images and generate
images.

Evaluation of LLM’s instruction-following ability. Several studies have established benchmarks
for evaluating LLMs’ instruction-following abilities. Jiang et al. (2023b) proposed FollowBench that
sequentially add fine-grained constraints to construct multi-level instructions. Zhou et al. (2023) em-
phasized objective evaluations with verifiable instructions. Meanwhile, Qin et al. (2024) constructed
a benchmark composed of several distinct instructions and decomposed questions for the assessment
of the instruction following. These benchmarks require manually constructing a large number of
instructions and answers. Differently, our work mainly focuses on the large model’s self-knowledge
of its own capabilities, which is also independent of collecting additional annotated answers.

3 THE SELF-KNOWLEDGE EVALUATION FRAMEWORK

To evaluate the self-knowledge of large language models (LLMs), we propose a novel method called
First Generate, Then Evaluate, inspired by the concept of “self-questioning and answering.” This
approach involves a two-step process:

1. The self-generate step: We utilize a question-generating prompt to instruct the LLM to produce
relevant content. The model provides answers that are either specified by the prompt or generated
autonomously.

LLM(question-generating prompt)
generate−−−−→ x;a, (1)

where x is the generated paragraph and a is the corresponding answer specified by the prompt or
generated by the model directly.

2. The self-verify step: It uses a question-verifying prompt to assess the previously generated content
x:

LLM(question-verifying prompt,x)
generate−−−−→ â, (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In the heart of a bustling city, a small, serene park offered an oasis
of calm. Amid towering skyscrapers, it was a place where people
could escape the relentless pace of urban life. With lush greenery, a
gently babbling brook, and benches under the shade of ancient
trees, it was a cherished haven for many city dwellers.

There are 63 words in the paragraph you've provided.

(a) First Generate (b) Then evaluate
How many words are there in the following paragraph?

In the heart of a bustling city, a small, serene park offered an oasis
of calm. Amid towering skyscrapers, it was a place where people
could escape the relentless pace of urban life. With lush greenery, a
gently babbling brook, and benches under the shade of ancient
trees, it was a cherished haven for many city dwellers.

Generate a paragraph with exactly 56 words in total.

Question-generating prompt

Paragraph Answer

Paragraph

Answer

Question-verifying prompt

Figure 1: A case of “first generate, then evaluate”. The model is first asked to generate a paragraph
with 56 words. Then we can ask the model in a separate run and ask how many words are there in the
previously generated paragraph. If the answer is not 56, we will raise an error.

where â is the answer of question x under the verifying prompt. Note the question-generating prompt
and the question-verifying prompt are pairing prompts that are designed to correlate with some
ability of the model, and thus can be seen as evaluating the model’s self-knowledge on a specific task.
Then, the self-knowledge score is calculated by I(a = â). For n pair of question-generating and
question-verifying prompts, denote their respective answers be ai and âi, the self-knowledge score
is calculated by 1

n

∑n
i=1 I(ai = âi). In this paper, we mainly consider the simplest self-evaluation

strategy by directly asking the model to respond with the answer, more sophisticated self-verifying
strategies like (Weng et al., 2022) are left for future work.

We have also presented a schematic view of the pipeline of our method in Figure 1. The question-
generating prompt is depicted in Figure 1(a)’s self-generate process as “Generate a paragraph with
exactly 56 words in total.”. As LLM has strong instruction-following and writing abilities, it will
generate a paragraph x. Note the answer a for this word counting task is already contained in the
prompt, i.e. a = 56. Then Figure 1(b) shows the self-verify step, the question-verifying prompt
is “How many words are there in the following paragraph?” and the model generates an answer
of â = 63. The inconsistency of the answers a = 56 and â = 63 gives rise to a case of not
comprehending the self-knowledge. For more experiments in this manner, please see section 4.2.

One might wonder whether it’s necessary to generate new samples every time we assess self-
knowledge in a task. In other words, can we reuse previously generated samples for new tasks?
The technical part here is that we can only access the generated paragraph x but do not have the
task-specific answer a. Fortunately, one can evaluate this case using the idea of consistency. Suppose
x is generated by a question-generating prompt corresponds to task T ′ and we want to evaluate
the self-knowledge on task T (T ′ ̸= T). Suppose a transformation τ makes the answer to task T
unchanged when applying τ to x, then the self-knowledge score can be calculated via

I(LLM(question-verifying prompt,x) = LLM(question-verifying prompt, τ(x))). (3)

We have also presented a schematic view of a preposition counting task in Figure 2. Given a sample
x, we consider a question-verifying prompt as “How many prepositions appear in the following
paragraph?”. The answer to this question with respect to sample x is 14. Note an easy transformation
τ to x will preserve the total number of prepositions in the paragraph, i.e. move the first sentence
of the paragraph to the end of the paragraph. The inconsistency of the answers a = 56 and â = 63
gives rise to a case of not comprehending the self-knowledge. For a dataset consisting of n samples,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

There are a total of 9 prepositions in the given
paragraph.

(a) Self Verify 1 (b) Self Verify 2

How many prepositions appear in the following
paragraph? Amid towering skyscrapers, it was a
place where people could escape the relentless
pace of urban life. With lush greenery, a gently
babbling brook, and benches under the shade of
ancient trees, it was a cherished haven for many city
dwellers. In the heart of a bustling city, a small,
serene park offered an oasis of calm.

There are a total of 14 prepositions in the given
paragraph.

How many prepositions appear in the following
paragraph? In the heart of a bustling city, a small,
serene park offered an oasis of calm. Amid towering
skyscrapers, it was a place where people could
escape the relentless pace of urban life. With lush
greenery, a gently babbling brook, and benches
under the shade of ancient trees, it was a cherished
haven for many city dwellers.

Figure 2: A case of using existing generated content. The model is first asked about the number
of prepositions in its previously generated content. Then we cut the first sentence in the previous
paragraph and paste it at the last and generate a new paragraph. Then we ask the model in a separate
run about the number of prepositions in the newly generated paragraph. If the answer is not consistent,
we will raise an error.

the self-knowledge score is the average of each sample’s score. For the experiments in this spirit,
please see section 4.4.

4 EVALUATING THE SELF-KNOWLEDGE OF LLMS

4.1 IMPLEMENTATION DETAILS

In our evaluation of language models, we incorporate seven widely recognized LLMs, each distin-
guished by its unique characteristics and training methodologies: GPT-3.5 (gpt-3.5-turbo-1106),
GPT-4 OpenAI (2023) (gpt-4-0125-preview), Llama3-8B-Instruct, Llama2-7B-Chat Touvron et al.
(2023), Mistral-7B-Instruct-v0.2 Jiang et al. (2023a), Gemma-1.1-7B-Instruct Team et al. (2024)
and Qwen1.5-7B-Chat Bai et al. (2023). For API-based models (GPT-3.5 and GPT-4), we set the
temperature to zero for stable generation. For open-sourced models, we follow their default generation
strategy. We present all the evaluation results in Table 1, the detailed evaluation strategy will be
discussed in the following subsections and the template questions can be found in Table 8 in the
Appendix.

4.2 FIRST GENERATE, THEN EVALUATE

In this case, we mainly consider the answer to the generated question is designed to be known in
advance, we use this way because asking the model to generate both the question and answers may
limit the diversity of answers and sometimes even generate duplicate contents.

4.2.1 COUTING THE TOTAL NUMBER OF WORDS

Currently, the most advanced large language models (LLMs) employ an autoregressive framework,
generating each subsequent token one at a time. Although the tokens used by various tokenizers
do not necessarily correspond directly to English vocabulary, the principle of sequentially counting
each token should be relatively simple for LLMs, given their inherent design to process information
token-by-token. Given this, one would assume that tasks such as total word counting would be

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: The accuracies of different LLMs under various self-knowledge tasks.

Model Total count Designate count Fact ArXiv Math Theorem Code Avg

GPT-4 OpenAI (2023) 0.03 0.46 0.71 0.13 0.24 0.51 0.08 0.31
GPT-3.5 0.00 0.16 0.68 0.09 0.58 0.49 0.51 0.36

Llama3-8B-Instruct 0.00 0.39 0.30 0.00 0.14 0.29 0.68 0.26
Llama2-7B-Chat Touvron et al. (2023) 0.00 0.34 0.65 0.00 0.88 0.83 0.16 0.47

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.00 0.13 0.92 0.00 0.23 0.58 0.07 0.32
Gemma-1.1-7B-Instruct Team et al. (2024) 0.00 0.24 0.15 0.01 0.93 0.71 0.42 0.33

Qwen1.5-7B-Chat Bai et al. (2023) 0.01 0.10 0.77 0.01 0.57 0.58 0.84 0.41

straightforward for these models. We ask the model to generate paragraphs from a length of 50 to
149 and get 100 samples. When we conducted tests to evaluate their capabilities in this regard, we
were surprised to discover that their performance was very poor. A pictorial view can also be found
in Figure 1.

4.2.2 GENERATE PARAGRAPH THAT CONTAINS A SPECIFIC NUMBER OF DESIGNATED WORDS

Theoretically, the task of generating a paragraph that contains a specific number of designated words
should be well within the capabilities of autoregressive large language models (LLMs). Given that
these models generate text sequentially, they inherently have the ability to review their own history,
including tracking the frequency of specified terms as they generate new content. This capability
should enable them to adjust their output to meet predefined criteria, such as incorporating a certain
number of specific words. We ask the model to generate a designated “keyword” a predefined number
of times and get 100 samples. Then in a separate run, we ask the model the appearance time of this
specific keyword and check whether it is the same with our predefined frequency. We only consider
the simplest case of only one keyword and leave the combination of multiple keywords as future work.
The selection of keywords is flexible, one may randomly pick it from a dictionary or ask an LLM to
pick from a summarization of new web content. However, despite these theoretical capabilities, our
empirical tests reveal that the performance of these models remains unsatisfactory in executing this
seemingly straightforward task. This underperformance suggests potential limitations in their current
training or architectural design, which may not fully support dynamic adjustments based on historical
data analysis during text generation.

4.2.3 FACTS

Testing models on their ability to accurately recall important dates related to historical figures is
crucial because it assesses their precision in handling factual information. Remembering key dates,
such as births, deaths, and significant events linked to these individuals, is essential for a reliable
understanding of history. This precision is not just about storing data but also about the ability to
retrieve it accurately when needed. Such tests are particularly important in educational contexts,
where precise historical facts are fundamental for teaching and learning. They help ensure that AI
models can serve as dependable resources for students and researchers who rely on accurate historical
data. We ask the model to name a celebrity that was born on specific dates. Then in a separate run, we
ask the model if the celebrity was born on this day. We generate 100 different days and the evaluation
result shows that models usually show good consistency under this test.

4.2.4 ARXIV

ArXiv dataset is part of the standard pertaining dataset Pile (Gao et al., 2020) and captures the
technical knowledge in many scientific areas. Testing large models on their ability to accurately
retrieve arXiv IDs is important because it assesses their precision and efficiency in handling specific,
detailed queries within academic and scientific contexts. Such testing not only ensures that models
can effectively navigate and extract precise information from vast databases but also highlights their
utility in supporting scholarly work and literature review processes, where accuracy is paramount. We
ask the model to generate the title and IDs of an arXiv paper in a specific month. Then in a separate
run, we ask the model the arXiv ID of the previously generated paper title and check whether it is
consistent with the previously generated ID. We generate 100 different months and the evaluation
result shows that models perform poorly on this task.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2.5 MATH

Testing large models on their ability to solve math problems is crucial for evaluating their performance
because these tasks require a combination of several complex cognitive skills Azerbayev et al. (2023b);
Yu et al. (2023). First, the model must accurately understand the natural language and symbolic
notations used in the problem, recognizing key information and its context. Then, it needs to translate
all linguistic descriptions into a mathematical format, applying the correct operations and formulas.
Finally, the model must manage and manipulate numerical data to reach a solution. This process tests
not only the model’s linguistic comprehension but also its logical reasoning and numerical accuracy,
providing a comprehensive assessment of its capabilities across different domains of intelligence. We
ask the model to generate a math question with typical encountered math question answers like 10cm
or π etc. and we generate 100 different samples. Then in a separate run, we ask the model whether
the predefined answer is consistent with the previously generated question.

4.2.6 THEOREM PROVING

Evaluating large models on their ability to solve mathematical proofs is essential because it assesses
more than just their mathematical knowledge—it evaluates their logical thinking and problem-solving
skills Azerbayev et al. (2023a); Yang et al. (2024). Mathematical proofs require understanding
complex concepts and linking them together through a series of logical steps. This type of testing
checks if the model can not only follow these steps but also organize and articulate them clearly and
effectively. By doing so, we can determine how well the model can handle complex, abstract ideas
and if it can apply its knowledge to develop coherent, logical solutions. This insight is crucial for
understanding the depth and breadth of the model’s cognitive abilities, making it a comprehensive
test of its overall intellectual performance. However, verifying the correctness of a proof may be too
challenging. We find that inequalities are a good testbed for this task as many of them can be verified
by computers automatically. We also consider the simplest case of single variables inequalities as
inequalities involving multiple variables are hard to verify their correctness even by humans and we
also generate 100 different samples. Then in a separate run, we ask the model whether the previously
generated inequality is correct or not.

4.2.7 CODE

Testing large models on their ability to write code is crucial for understanding how well they can
apply computer science concepts in real situations Roziere et al. (2023); Guo et al. (2024). This type
of testing goes beyond just knowing programming language rules. It looks at whether the model can
effectively break down problems, think through solutions logically, and turn those ideas into working
code. This helps us evaluate how well the model can handle practical tasks in computing, showing its
potential to work as an effective tool in technology and software development. Such tests are key
for seeing how theoretical knowledge translates into actual, usable applications. In the experiments,
we ask the model to generate a program that has its execution result given, for eg. 10 and we also
generate 100 different samples. Then, in a separate run, we ask the model the executed result of its
generated program and check whether it is consistent.

4.3 VERIFY USING DUAL-GENERATING STRATEGY

We can also make further verify by using the generated content x without direct access to the
generated answer a. We will use the following dual-generating strategy, by designing a dual prompt
that make the model generate a new content based on the existing content x and if the generation is
correct will have the same answer under the question-verifying prompt.

The schematic process works as follows:

LLM(dual-generating prompt,x)
generate−−−−→ x′. (4)

LLM(question-verifying prompt,x′)
generate−−−−→ â′. (5)

The self-knowledge score is calculated by I(â = â′), where â is given by equation (2).

For example, for the total word count task, a possible dual-generating prompt will be “Generate a
paragraph with the same number of words with the following paragraph.” and the grammar task is to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Self-knowledge score using dual-generating strategy.

Model Total count Designate count Fact Grammar Math Code Avg

GPT-4 OpenAI (2023) 0.15 0.27 0.71 0.35 0.11 0.15 0.29
GPT-3.5 0.01 0.24 0.79 0.20 0.44 0.64 0.39

Llama3-8B-Instruct 0.66 0.48 0.80 0.71 0.30 0.73 0.61
Llama2-7B-Chat Touvron et al. (2023) 0.00 0.16 0.54 0.66 0.88 0.61 0.48

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.28 0.06 0.92 0.40 0.26 0.16 0.35
Gemma-1.1-7B-Instruct Team et al. (2024) 0.31 0.68 0.03 0.35 0.67 0.68 0.45

Qwen1.5-7B-Chat Bai et al. (2023) 0.08 0.24 0.20 0.34 0.36 0.58 0.30

ask the model to generate a paragraph with the same number of prepositions as the given text. We
summarize the results in Table 2 and the results are still not very satisfactory, showing the weaknesses
of these LLMs.

4.4 REUSE LLM’S GENERATED CONTENT TO PERFORM OTHER TASK

In this section, we will discuss how to use LLM’s previously generated content to evaluate new tasks.

4.4.1 GRAMMAR

Testing models on their understanding of word parts of speech within sentences is crucial because
it reflects their grasp of grammar. Part of speech (POS) tagging (Gimpel et al., 2011) involves
identifying whether a word functions as a noun, verb, preposition, etc., based on its usage in context.
This understanding is fundamental to processing and generating coherent language, as it affects how
words are combined to form meaningful sentences. A model’s ability to accurately perform POS
tagging indicates its proficiency in syntactic analysis, which is essential for any language-related
task. The model is first asked about the number of prepositions in its previously generated content.
Then we cut the first sentence in the previous paragraph and paste it at the last and generate a new
paragraph, this operation preserves the number of prepositions. Then we ask the model in a separate
run about the number of prepositions in the newly generated paragraph. We test on 100 samples and
the initial paragraph is taken from the total word counting task in section 4.2.1. A schematic view
can be found in Figure 2.

4.4.2 BASIC SQL TYPE OPERATIONS

Testing a model’s ability to perform basic SQL operations based on input sentences not only evaluates
its capacity to understand and manipulate data but also sheds light on its grasp of the finer structural
details of sentences. This type of assessment requires the model to parse complex sentence structures
and understand their relational dynamics to accurately convert natural language instructions into SQL
commands. Successfully managing this translation indicates a deep understanding of syntax and
semantics, reflecting the model’s sophistication in language processing. Thus, proficiency in this area
demonstrates more than just technical capability; it highlights the model’s comprehensive linguistic
competence, essential for any application involving natural language understanding and interaction.
We use the generated texts in section 4.2.2. For each paragraph, we first ask the model to answer what
is its i-th word, where i is a randomly selected small integer. We then design the following tasks:

• Add first word: Add a random word to the beginning of the paragraph and ask the model
what its i + 1-th word is. Then check whether the word is consistent with the previously
answered one.

• Delete first word: Delete the first word of the paragraph and ask the model what its i− 1-th
word is. Then check whether the word is consistent with the previously answered one.

• Change: Change the i-th word of the paragraph to x and ask the model what its i-th word is.
Then check whether the answer is x.

From the results in Table 3, we can see that all models have at least one task that performs badly,
showing that they lag behind humans in these simple but fundamental tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Self-knowledge score using existing content.

Model Grammar Add first word Delete first word Change Avg

GPT-4 OpenAI (2023) 0.30 0.63 0.59 0.40 0.48
GPT-3.5 0.08 0.17 0.15 0.25 0.16

Llama3-8B-Instruct 0.62 0.51 0.68 0.20 0.50
Llama2-7B-Chat Touvron et al. (2023) 0.93 0.99 0.94 0.00 0.72

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.20 0.42 0.53 0.08 0.31
Gemma-1.1-7B-Instruct Team et al. (2024) 0.45 0.55 0.67 0.04 0.43

Qwen1.5-7B-Chat Bai et al. (2023) 0.31 0.34 0.48 0.16 0.32

Table 4: Self-knowledge scores on multimodal tasks.

Model Counting Color Position Avg

Gill Koh et al. (2023) 0.06 0.45 0.46 0.32
SEED-LLaMa Ge et al. (2023) 0.26 0.81 0.53 0.53

5 EVALUATING THE SELF-KNOWLEDGE OF LMMS

5.1 IMPLEMENTATION DETAILS

There are only a few large multimodal models (LMMs) that can both understand and generate images
when given textual instructions. Therefore, we just utilize two well-known LMMs that are trained to
align vision encoder (e.g., ViT Dosovitskiy et al. (2020)), LLM, and vision decoder (e.g., diffusion
model Ho et al. (2020)): Gill Koh et al. (2023) and SEED-LLaMa Ge et al. (2023). We also follow
their default generation strategy in our tasks.

5.2 EXPERIMENTS

Perception is one of the most fundamental capabilities of LMMs, and the lack of perception will
easily lead to the object hallucination problem Fu et al. (2023). Therefore, we consider several
coarse-grained and important perception tasks for the self-knowledge evaluation of LMMs, including
counting, color, and position. In particular, counting measures the LMMs’ ability to determine the
number of objects, color assesses how LMMs perceive specific colors, and position evaluates how
LMMs recognize objects’ spatial location and arrangement. For our experiments, we first prompt the
LMMs to generate specific images, and then use the generated images for further evaluation. The
instructions are shown in Table 9 in the Appendix.

Our experimental results reveal that SEED-LLaMa Ge et al. (2023) exceeds Gill Koh et al. (2023)
on these self-knowledge tasks. SEED-LLaMa also demonstrates satisfactory performance in color
generation and perception with a high score of 0.81. Besides, we notice that both the two LMMs gain
poor performance on the counting task.

6 MORE DISCUSSIONS

6.1 ANALYZE THE BEHAVIOR OF SELF-KNOWLEDGE DESIGNATED WORD COUNTING TASK

Analyzing the underlying reason why LLM performs poorly on self-knowledge tasks is difficult. We
make an attempt to analyze the case of the “designated word counting task”, which has some special
structure. Recall that this task requires the model to generate a keyword x exactly s times. When a
human is asked to perform this task, whenever they generate a new word they will may some of their
focus on whether this word is x and how many times x has appeared. In the context of LLM, we will
use attention score to measure the extent of “focus”. For each token in the generated paragraph, we
extract the attention score of token x. We then sort these scores and only keep the top 15% tokens as a
set τx. Then denote the number of times x appears in the generated paragraph as k = |x ∈ τx|. Then
it is natural to define the attention-based score as min{k,s}

max{k,s} . To alleviate the influence of different
attention heads, we average the attention score of the last layer’s attention heads, we summarize

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Scores of designated word counting tasks.

Model Qwen1.5-7B Mistral-7B Gemma-1.1-7B Llama2-7B Llama3-8B

Initial 0.10 0.13 0.24 0.34 0.39
Attention-based 0.31 0.32 0.16 0.38 0.35

Difference 0.21 0.19 0.08 0.04 0.04

Table 6: Self-knowledge score under different evaluation protocols on the total word counting task.

Model No context eval In-context eval In-context eval with noise

GPT-4 OpenAI (2023) 0.03 1.00 0.95
GPT-3.5 0.00 0.90 0.96

Llama3-8B-Instruct 0.00 0.00 0.00
Llama2-7B-Chat Touvron et al. (2023) 0.00 0.00 0.00

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.00 0.87 0.62
Gemma-1.1-7B-Instruct Team et al. (2024) 0.00 1.00 0.45

Qwen1.5-7B-Chat Bai et al. (2023) 0.01 0.70 0.89

the result in Table 5. We can see the difference between the initial self-knowledge score and the
attention-based score is smaller when the initial self-knowledge score is bigger. This may imply
that models that perform better at the initial self-knowledge task may behave more similarly to
humans. But even the model that performs best still lags behind humans. This may be attributed to
a human’s strong ability to concentrate when asked to perform this task. There may be an additive
effect: When the model’s self-knowledge score is very poor, the poor performance may be mainly
due to misalignment with this attention-based mechanism. When the self-knowledge score gets
larger, it aligns with this attention-based mechanism, the poor performance may be attributed to the
less-concentrates of LLM attention than humans. That is though the mechanism may be similar, the
extent of attention score focusness is less than human.

6.2 DIFFERENT EVALUATION PROTOCOLS

The evaluation in the previous sections will make the generation process and evaluation process in
separate runs. This evaluation process may become much easier when the generation process is
given in the context, and we will call this evaluation protocol the in-context eval. As the in-context
memory may make the evaluation too simple, recall that humans may starts to forget things when
they are exposed to many irrelevant information. We consider the simplest setting where a short
noise paragraph about 7000 tokens long is inserted between the generation process and the evaluation
process. We call this in-context eval with noise. We summarize the result in Table 6. To our surprise,
only GPT-4 and Gemma achieve 100% accuracy in the in-context eval and their performances are
reduced when exposed to noise, similar to humans. Note some models like GPT-3.5 and Qwen may
even have increased performance when exposed to noise. We conjecture that this weird phenomenon
may be attributed to that some weak association is amplified due to stochastic resonance (Moss et al.,
2004). But the main point here is that adding noise can reduce the performance of a perfect in-context
evaluator, similar to the behavior of humans.

6.3 FINE-TUNING ON THE GENERATED DATA

We are also interested in the following question: What will happen if the model fine-tunes on its
own generated contents? We mainly focus on the mathematics-related aspect as there has a standard
benchmark GSM-8k (Cobbe et al., 2021) and it reflects the reasoning and language understanding of
LLMs.

We conduct supervised fine-tuning for open-sourced LLMs, including Llama3-8B-Instruct, Llama2-
7B-Chat Touvron et al. (2023), and Gemma-1.1-7B-Instruct Team et al. (2024). We train LoRA
adapters Hu et al. (2021) for efficient fine-tuning. We utilize 4 24GB-4090 GPUs for three epoch
training. The AdamW optimizer is used with a 1e-4 learning rate and the LoRA parameters dimension,
alpha, and dropout are set to 64, 16, and 0.1, with a batch size of 16. For close-sourced LLM, we
also use OpenAI API to fine-tune GPT-3.5 (gpt-3.5-turbo-1106) as GPT-4 is not yet available for

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 7: GSM-8k accuracies.

Model Initial Llama3 correct Llama3 wrong GPT-3.5 correct GPT-3.5 wrong Llama2 correct Llama2 wrong

Llama3 76.72 79.80 78.58 78.47 77.90 78.13 77.41
GPT-3.5 71.38 71.08 70.62 71.42 71.23 71.23 71.23
Llama2 24.11 24.41 24.03 25.32 24.26 24.91 25.32

finetuning for the public. We set the epoch to 3, with a batch size of 16 and a learning rate multiplier
of 0.03.

We first consider two types of data, one is the “wrong one” directly generated by LLMs that is not
human-checked and another is the correct one that has its answer human-corrected. We fine-tune
each LLM on the data generated by itself and evaluate it on GSM-8k to get results in Figure 3. The
initial accuracy on GSM-8k is: GPT-3.5: 71.38; Llama3: 76.72; Gemma: 48.07; Llama2: 24.11. We
find models with higher initial accuracy will have higher accuracy when tuned on the correct answer
and vice versa when the accuracy is low. This is similar to humans as people may not distinguish
good and bad when they are not good at something, but when their ability increases, they start to have
their own judgments. Note all models have improved accuracies when tuning on its own data except
GPT-3.5 when tuning on the wrong data. As GPT-3.5’s black-box tuning nature, we attribute this as
an outlier.

Figure 3: GSM-8k accuracy after fine-tuning on different data.

To further see the influence of tuning on other’s generated data. We consider GPT-3.5; Llama3 and
Llama2 that have similar architecture. We consider tuning on both the correct and wrong data and
summarize the results in Table 7. We find that model achieves its highest accuracy when tuning on
its self-generated content and the content generated by models that have higher accuracy may not
guarantee the highest improvements. this may suggest that self-improving is a promising direction to
further enhance model capacity.

7 CONCLUSION

In this paper, we introduce a comprehensive self-knowledge evaluation framework specifically
designed for large language models (LLMs) and large multimodal models (LMMs). This framework
focuses on assessing their capacity to comprehend and effectively respond to questions they generate
themselves. Our extensive findings across a variety of tasks demonstrate that these models still
exhibit significant deficiencies when engaged in self-knowledge tasks. Further analysis suggests that
these shortcomings may be partially attributed to a misalignment with human attention mechanisms
and thus highlight a potential area for improvement. Additionally, we explore the impact of fine-
tuning models on self-generated data, which shows promise in enhancing their overall performance.
Our framework provides a valuable and efficient approach to advancing both the evaluation and
development of LLMs and LMMs. While we primarily consider cases that are straightforward and
easily verified by humans, future work could involve increasing the complexity and automation of the
evaluation challenges.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. Proofnet: Autoformalizing and formally proving undergraduate-level mathematics.
arXiv preprint arXiv:2302.12433, 2023a.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen McAleer, Albert Q
Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. arXiv preprint arXiv:2310.10631, 2023b.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Zhenyu Qiu, Wei Lin,
Jinrui Yang, Xiawu Zheng, et al. Mme: A comprehensive evaluation benchmark for multimodal
large language models. arXiv preprint arXiv:2306.13394, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li, Xintao Wang, and Ying Shan. Making
llama see and draw with seed tokenizer. arXiv preprint arXiv:2310.01218, 2023.

Kevin Gimpel, Nathan Schneider, Brendan O’connor, Dipanjan Das, Daniel P Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan, and Noah A Smith. Part-of-speech tagging
for twitter: Annotation, features, and experiments. In Proceedings of the 49th annual meeting of
the Association for Computational Linguistics: Human Language Technologies, pp. 42–47, 2011.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming–the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023a.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin
Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints following
benchmark for large language models. arXiv preprint arXiv:2310.20410, 2023b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 4015–4026, 2023.

Jing Yu Koh, Daniel Fried, and Ruslan Salakhutdinov. Generating images with multimodal language
models. NeurIPS, 2023.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

Frank Moss, Lawrence M Ward, and Walter G Sannita. Stochastic resonance and sensory information
processing: a tutorial and review of application. Clinical neurophysiology, 115(2):267–281, 2004.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Yiwei Qin, Kaiqiang Song, Yebowen Hu, Wenlin Yao, Sangwoo Cho, Xiaoyang Wang, Xuansheng
Wu, Fei Liu, Pengfei Liu, and Dong Yu. Infobench: Evaluating instruction following ability in
large language models. arXiv preprint arXiv:2401.03601, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Lichao Sun, Yue Huang, Haoran Wang, Siyuan Wu, Qihui Zhang, Chujie Gao, Yixin Huang, Wenhan
Lyu, Yixuan Zhang, Xiner Li, et al. Trustllm: Trustworthiness in large language models. arXiv
preprint arXiv:2401.05561, 2024.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
arXiv preprint arXiv:2212.10560, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Lai Wei, Zihao Jiang, Weiran Huang, and Lichao Sun. Instructiongpt-4: A 200-instruction paradigm
for fine-tuning minigpt-4. arXiv preprint arXiv:2308.12067, 2023.

Lai Wei, Zhiquan Tan, Chenghai Li, Jindong Wang, and Weiran Huang. Large language model
evaluation via matrix entropy. arXiv preprint arXiv:2401.17139, 2024.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and
Jun Zhao. Large language models are better reasoners with self-verification. arXiv preprint
arXiv:2212.09561, 2022.

12

https://github.com/tatsu-lab/alpaca_eval

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. Leandojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information Processing Systems, 36, 2024.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation models.
arXiv preprint arXiv:2304.06364, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 8: The list of verifiable instructions, with brief descriptions. We use these instructions because
we think they are either easy to verify or common in real-world applications.

Task First Generate Then Evaluate

Total count Generate a paragraph with exactly [num]
words in total.

How many words are there in the follow-
ing paragraph? paragraph

Designate count Generate a paragraph where the [word]
appears exactly [num] times.

How many times does the [word] appear
in the following paragraph? paragraph

Facts Name a celebrity that was born on [year,
month, day].

Is the following statement true? para-
graph

ArXiv Give me a paper with its title and
arXiv ID, which was submitted on [year,
month].

What is the arXiv ID of the paper titled
[title]?

Math Generate a hard high school level math-
ematics question with [answer].

Is [answer] the correct answer to the fol-
lowing question? question

Theorem Generate a hard elementary one vari-
able inequality proving problems rigor-
ously and clearly, no need to generate
the proof.

Is the following inequality true? inequal-
ity

Code Generate a hard coding problem in
Python. The code’s execution result
should be [answer].

What is the execution result of the fol-
lowing code? code

Table 9: The list of verifiable instructions for LMMs.

Instruction Group First Generate Then Evaluate

Counting Generate an image with exactly [num]
[objects].

How many [objects] are there in the im-
age? image

Color Generate an image with a [color] [ob-
ject].

What’s the color of [object] in the im-
age? image

Position Generate an image with a computer [po-
sition relationship] a [object].

Is the computer [position relationship] a
[object] in the image? image

Appendix

A PROMPTS

We summarize some of the used prompts in this Appendix. Please refer to Table 8 and 9.

B MORE EXPERIMENTS

B.1 AGENT

The tasks used in Table 8 are handcrafted by humans, so it remains interesting to see that AI agents
generate questions in this manner. If this is possible, it will make AI autonomously generate questions
beyond human-designed ones and may pave ways to self-verify and self-improvement without human
supervision.

We use two GPT-4 as agents, one as a question generator, and another as a judge. To let the agent
understand our goal, we feed the handcrafted data in Table 8 to the agent and ask it to generate tasks
in this manner. The judge is asked to decide whether the question generated by the previous agent is
clear and has a unique answer that can be easily verified. Interestingly, we can get some template
questions, we summarize some in Table 10. One can further ask the model to generate for example

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 10: Selected template questions generated by AI agents.

Task First Generate Then Evaluate

Specific Mention Write a paragraph mentioning exactly
[num] distinct [countries].

Are there exactly [num] distinct [coun-
tries] mentioned in the following para-
graph? paragraph

Sentiment Analysis Write a paragraph where the overall sen-
timent is positive, with exactly [num]
positive words.

Is the overall sentiment of the following
paragraph positive with exactly [num]
positive words? paragraph

Sports Statistics Provide statistics for a [sport] game
played on [date].

Are the following statistics correct for
the [sport] game played on [date]? statis-
tics

Table 11: Scores on MMLU college cs tasks.

Model Qwen1.5-7B Mistral-7B Gemma-1.1-7B Llama2-7B Llama3-8B GPT-3.5 GPT-4

Initial 0.42 0.51 0.47 0.40 0.50 0.59 0.81
Self-knowledge 0.46 0.45 0.59 0.54 0.42 0.52 0.75

100 instances of questions based on the template question. This shows that agents have the potential
to work without human supervision, we leave the detailed investigation in this direction as future
work.

B.2 EXISTING BENCHMARK BASED SELF-KNOWLEDGE

As our self-knowledge evaluations in previous sections are mostly based on our manually created
template problems, one may wonder if we can leverage the existing human-crafted benchmarks to
perform self-knowledge evaluations. Of course, one may also use the dual-generating framework
in section 4.3. In this section, we introduce another way which may be more efficient. Wang et al.
(2022) introduce the philosophy of augmenting the instruction tuning data using LLMs. Motivated by
this philosophy, we consider showing the LLM the test data from a benchmark and letting it generate
new testing problems with answers and we then let the LLM do these self-generated problems. We
consider the widely adopted benchmark MMLU (Hendrycks et al., 2020) and as it consists of too
many topics, we choose the college cs task for simplicity. We summarize the results in Table 11.
We find that the difference between the initial accuracy and self-knowledge score is small. More
interestingly, it seems that when a model has its initial accuracy greater than 50% it will have its
initial accuracy greater than the self-knowledge accuracy and vice versa. This is similar to Figure 3
where models with higher accuracy may favor the correct answered data.

C ABLATION STUDIES

C.1 ABLATION STUDY ON INCONSISTENCY

Recall that equation (3) depicts a way to assess the self-knowledge ability through consistency.
Similarly, if a transformation τ̂ will always make the answer to task T changed when applying τ̂ to
x, then the self-knowledge score can be calculated via the inconsistency.

I(LLM(question-verifying prompt,x) ̸= LLM(question-verifying prompt, τ̂(x))). (6)

We consider the Math and Fact tasks, where the operation τ̂ is easy to construct. For example, reduce
the generated date by one day. From the results in Table 12, we can see that all models cannot perform
well on both the consistency-based and inconsistency-based self-knowledge checks. This further
supports our conclusion that the model does not really understand its generated content.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 12: Self-knowledge score under consistency and inconsistency.

Model Fact (Consistency) Fact (Inconsistency) Math (Consistency) Math (Inconsistency)

GPT-4 OpenAI (2023) 0.71 0.35 0.24 0.99
GPT-3.5 0.68 0.25 0.58 0.72

Llama3-8B-Instruct 0.30 0.70 0.14 0.99
Llama2-7B-Chat Touvron et al. (2023) 0.65 0.43 0.88 0.52

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.92 0.04 0.23 0.88
Gemma-1.1-7B-Instruct Team et al. (2024) 0.15 0.84 0.93 0.75

Qwen1.5-7B-Chat Bai et al. (2023) 0.77 0.26 0.57 0.97

Table 13: Detailed accuracies on generation and verification.

Model Initial Gen Verify True Initial (Expert) Gen (Expert) Verify (Expert) True (Expert)

GPT-4 0.03 0.08 0.00 0.00 0.19 0.01 0.00 0.00
GPT-3.5 0.00 0.06 0.00 0.00 0.05 0.05 0.01 0.00
Llama3 0.00 0.02 0.00 0.00 0.03 0.06 0.01 0.00
Llama2 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Mistral 0.00 0.01 0.00 0.00 0.63 0.00 0.00 0.00
Gemma 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.00
Qwen 0.01 0.01 0.00 0.00 0.12 0.00 0.01 0.00

C.2 ABLATION STUDY ON PROMPT

C.2.1 EXPERT PROMPT

To evaluate the influence of role-modeling prompts on the experiments, we conduct similar exper-
iments to those in section 4.2.1 by changing the question-generating prompt to “Assume you are
an expert in counting numbers. Generate a paragraph with exactly [num] words in total.” and the
question-verifying prompt to “Assume you are an expert in counting numbers. How many words
are there in the following paragraph?”. In Figure 4, we can see adding the expert prompt indeed
improves the self-knowledge score showing that expert role modeling has some positive influence.
Note the drastic improvement of Mistral is due to similar reasons of in-context eval in Table 6. The
model encodes a “cheat sheet” like “This paragraph, my friends, consists of precisely 58 words.” to
help the self-verifying process.

To investigate further the impact of the prompt, we will the true answer into account. Specifically, we
calculate the ground-truth number of words in the generated paragraph and calculate the following
three accuracies: Gen: The accuracy that the generated content has the required number of words.
Ver: The accuracy that the verify answer from the model on the generated content is equal to the real
number of words in the generated content. True: The accuracy that the verify answer from the model
on the generated content is equal to the real number of words in the generated content and also equal
to the required number of words when generating it. We summarize the results in Table 13. We found
that none of the real generative accuracy or verifying accuracy is improved when using the expert
prompt, showing a deep underlying reason behind the improvements in self-knowledge score, we
leave the investigation of the underlying reasons as future work.

Figure 4: The effect of expert prompt.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 14: Self-knowledge score with and without CoT.

Model Code (w/o CoT) Code (w CoT) Math (w/o CoT) Math (w CoT)

GPT-4 OpenAI (2023) 0.08 0.11 0.24 0.15
GPT-3.5 0.51 0.46 0.58 0.35

Llama3-8B-Instruct 0.68 0.79 0.14 0.02
Llama2-7B-Chat Touvron et al. (2023) 0.16 0.14 0.88 0.94

Mistral-7B-Instruct-v0.2 Jiang et al. (2023a) 0.07 0.11 0.23 0.15
Gemma-1.1-7B-Instruct Team et al. (2024) 0.42 0.43 0.93 0.85

Qwen1.5-7B-Chat Bai et al. (2023) 0.84 0.90 0.57 0.34

C.2.2 CHAIN-OF-THOUGHT PROMPTING

We also test the influence of another popular prompting strategy chain-of-thought (CoT) prompt-
ing Wei et al. (2022). We use CoT in both generative and verify processes just as Section C.2.1 and
we summarize the results in Table 14. We find that CoT does not always improve the self-knowledge
score unlike the expert prompt.

17

	Introduction
	Related Works
	The self-knowledge evaluation framework
	Evaluating the self-knowledge of LLMs
	Implementation details
	First generate, then evaluate
	Couting the total number of words
	Generate paragraph that contains a specific number of designated words
	Facts
	ArXiv
	Math
	Theorem proving
	Code

	Verify using dual-generating strategy
	Reuse LLM's generated content to perform other task
	Grammar
	Basic SQL type operations

	Evaluating the self-knowledge of LMMs
	Implementation details
	Experiments

	More discussions
	Analyze the behavior of self-knowledge designated word counting task
	Different evaluation protocols
	Fine-tuning on the generated data

	Conclusion
	Prompts
	More experiments
	Agent
	Existing benchmark based self-knowledge

	Ablation studies
	Ablation study on inconsistency
	Ablation study on prompt
	Expert prompt
	Chain-of-thought prompting

