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Abstract

Foundation models have enabled rapid progress across many specialized domains
by leveraging large-scale pre-training on unlabeled data, demonstrating strong
generalization to a variety of downstream tasks. While such models have gained
significant attention in fields like Earth Observation, their application to Mars
science remains limited. A key enabler of progress in other domains has been
the availability of standardized benchmarks that support systematic evaluation.
In contrast, Mars science lacks such benchmarks and standardized evaluation
frameworks, which have limited progress toward developing foundation models for
Martian tasks. To address this gap, we introduce Mars-Bench, the first benchmark
designed to systematically evaluate models across a broad range of Mars-related
tasks using both orbital and surface imagery. Mars-Bench comprises 20 datasets
spanning classification, segmentation, and object detection, focused on key geologic
features such as craters, cones, boulders, and frost. We provide standardized, ready-
to-use datasets and baseline evaluations using models pre-trained on natural images,
Earth satellite data, and state-of-the-art vision-language models. Results from all
analyses suggest that Mars-specific foundation models may offer advantages over
general-domain counterparts, motivating further exploration of domain-adapted pre-
training. Mars-Bench aims to establish a standardized foundation for developing
and comparing machine learning models for Mars science. Our data, models, and
code are available at: https://mars-bench.github.io/.

1 Introduction

Over the past few years, foundation models have revolutionized specialized domains such as medical
imaging [56, 61], Earth Observation (EO) [41, 72, 2], law [14, 16], and astronomy [45, 59, 78]. These
models, pre-trained on large and diverse datasets, offer strong generalization capabilities and enable
efficient fine-tuning on downstream tasks with minimal data. The EO community has embraced
foundation models in the last 3-4 years, with an explosion of methods, datasets, and benchmarks
aimed at improving performance across a wide range of geospatial tasks.

The key driver of progress in these domains has been the development of high-quality, standardized
benchmarks. For example, BigBio [24] and MIMIC-IV [37] have accelerated model advancements
by providing consistent evaluation protocols for medical applications. Benchmarks like Geo-Bench
[43] and PANGAEA [53] have accelerated progress in EO applications by providing a suite of
standardized classification and segmentation tasks for evaluating geospatial foundation models. Geo-

�Corresponding Author: mpurohi3@asu.edu
*Equal Contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://mars-bench.github.io/


mb-domars16k mb-surface_cls

mb-surface_multi_label_clsmb-frost_cls

(a) Classification

mb-dust_devil_det

mb-conequest_det

(b) Object Detection

mb-crater_multi_seg mb-boulder_seg mb-s5mars

(c) Segmentation

Figure 1: Representative samples from selected Mars-Bench datasets, from all three task categories.

Bench enables model developers to assess generalization across diverse data sources and use cases,
creating a pathway for systematic progress.

However, no such benchmark exists for Martian applications. Machine learning research for Mars
science applications thus lags behind other science domains [3]. Although recent studies have
presented machine learning solutions for a range of Martian applications, including crater detection
[51, 100, 17], landmark classification [94, 88], and cone segmentation [63, 97], these solutions and
datasets lack standardization and interoperability. This results in task-specific models or datasets that
cannot be easily evaluated as downstream tasks for foundation models or other machine learning
advances. This results in limited evaluation of proposed Mars foundation model approaches on 1-2
downstream tasks, limiting the ability to assess model generalization or robustness [86, 93, 91, 26, 65].

This gap is particularly surprising given the richness of available Mars data. Orbiters such as the
Mars Reconnaissance Orbiter (MRO) [101] and Mars Odyssey have captured millions of images over
the last 20-25 years, while surface rovers like Curiosity and Perseverance have amassed petabytes
of high-resolution images. These datasets offer immense potential to study critical questions of
planetary science, such as the past presence of water on Mars and the planet’s habitability. Yet, the full
value of these datasets remains untapped by the ML community due to their lack of standardization,
incomplete documentation, and inconsistent formatting for ML workflows.

We introduce Mars-Bench, the first comprehensive benchmark designed to systematically evaluate
machine learning models across a diverse set of Mars-related tasks using both orbital and surface
imagery. To create this benchmark, we curated and revamped existing datasets, performing quality
checks and corrections where necessary and standardizing them in a unified, ML-ready format. The
goal of Mars-Bench is to provide a common framework to assess and compare the performance of
foundation models on Martian data, facilitating reproducibility and accelerating scientific discovery
in planetary science. Our key contributions are as follows:

• Diverse task coverage: Mars-Bench includes 20 datasets, summarized in Table 1, spanning three
task types: classification, segmentation, and object detection. We also provide a few-shot and
partitioned versions of each dataset for evaluation under varying training sample sizes.

• Scientific relevance: Mars-Bench covers a wide range of geologic features commonly studied
in Mars science, including craters, cones, boulders, landslides, dust devils, atmospheric dust, etc.
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These tasks reflect real scientific use cases relevant to planetary scientists and geologists, who
co-developed the Mars-Bench. Samples from few Mars-Bench datasets are shown in Figure 1.

• Comprehensive evaluation: Since no standardized pre-trained model exists for Mars data, we
benchmarked performance using ImageNet-pretrained models under different training settings. We
analyzed model behavior with different training set sizes. We also evaluated Mars-Bench using
pre-trained EO models as well as proprietary vision-language models, including Gemini and GPT.

• Code, reproducibility, and baseline models: We release full code support for all experiments in
this paper, along with tools for dataset handling and results visualization. To facilitate community
adoption and reproducibility, we also provide well-documented guidelines and publicly release all
baseline models evaluated on Mars-Bench. These models can serve as strong starting points for
future applications; for example, generating initial global maps of specific geologic features (e.g.,
cones), which experts can later refine with minimal annotation effort.

2 Related Work

Over the past decade, evaluation benchmarks have played a fundamental role in identifying the
limitations of existing foundation models, steering their progress in natural language processing
(NLP) and computer vision (CV). For instance, general-purpose natural language understanding
(NLU) benchmarks [90, 92, 79] have facilitated the development of large language models (LLMs)
such as GPT [7], LLaMA [84], and Gemini [83]. Even in specialized domains, including medical
[61, 24, 37], legal [23, 27], scientific discovery [50, 11], security [5], and finance [34], various
benchmarks have driven progress in building domain-specific foundation models. Thus, development
of quality evaluation benchmarks is necessary for building better foundation models.

In the remote sensing domain, Geo-Bench [43] has defined standardized evaluation protocols for a
broad set of EO tasks and has quickly become a de facto benchmark. Since its release, Geo-Bench
has been used to evaluate most foundation models proposed for EO over the past two years, enabling
consistent comparisons across models. Other notable efforts include SustainBench [98], which targets
seven sustainable development goals, AiTLAS [18], which aggregates 22 EO datasets focused solely
on classification tasks, and PANGAEA [53], which includes 11 evaluation datasets covering diverse
satellite sensors.

Despite substantial progress in other domains toward foundation models and dataset benchmarks, no
benchmark currently exists for Mars science applications. The absence of a standardized evaluation
framework has hindered the development of foundation models (and machine learning solutions more
generally) for Mars-related tasks. While specialized datasets exist across different applications, most
require significant effort to restructure into an ML-ready format or make interoperable with other
datasets. Furthermore, some datasets are not usable without expert guidance from planetary scientists,
further slowing progress. To address this gap, we introduce Mars-Bench, the first benchmark to
facilitate the development and evaluation of foundation models for Mars science tasks.

3 Mars-Bench

Mars-Bench was created by curating, organizing, restructuring, and correcting existing Mars science
datasets following the design principles explained in Section 3.1. While creating each dataset, our
goal was to ensure accessibility and usability and provide task diversity as described in Section 3.2.

3.1 Design Principles

Ease of Use A key goal was to create an accessible and user-friendly ready-to-use benchmark,
supported by standardized data-loading code. We focused on unifying the data format across all tasks
to reduce the engineering effort for researchers and practitioners using the dataset. We provide all
possible formats in each task if there are multiple common formats. For example, different object
detection models may require COCO, Pascal VOC, or YOLO format, so we provide annotations in
all three formats to ensure it is easily usable in all cases and reduce time for conversion from one
format to another.

Expert-Validated Corrections Given the domain-specific nature of Mars science, ensuring high data
quality is critical. We conducted expert-driven quality analysis and corrections wherever necessary.
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Classification

Name Observation
Source

Geologic
Feature

Image
Size # Classes Train Val Test # Bands Sensor/

Instrument
Published

Year Cite

mb-atmospheric_dust_cls_edr MRO (O) Atmospheric dust 100× 100 2 9817 4969 5214 1 HiRISE 2019 [19]
mb-atmospheric_dust_cls_rdr MRO (O) Atmospheric dust 100× 100 2 9817 4969 5214 1 HiRISE 2019 [19]

mb-change_cls_ctx MRO (O) Surface change 150× 150 2 36 10 10 1 CTX 2019 [40]
mb-change_cls_hirise MRO (O) Surface change 100× 100 2 3103 670 670 1 HiRISE 2019 [40]

mb-domars16k MRO (O) Landmark 200× 200 15 11305 3231 1614 1 CTX 2020 [94]
mb-frost_cls MRO (O) Frost 299× 299 2 30124 11415 12249 1 HiRISE 2024 [20]

mb-landmark_cls MRO (O) Landmark 227× 227 8 6997 2025 1793 1 HiRISE 2021 [88]
mb-surface_cls Curiosity (R) Surface 256× 256 36 6580 1293 1594 3 Mastcam, MAHLI 2018, 2021 [88, 89]

mb-surface_multi_label_cls Opportunity, Spirit (R) Surface 1024× 1024 25 1762 443 739 1 Pancam 2020 [13]

Segmentation

Name Observation
Source

Geologic
Feature

Image
Size # Classes Train Val Test # Bands Sensor/

Instrument
Published

Year Cite

mb-boulder_seg MRO (O) Boulder 500× 500 2 39 6 4 1 HiRISE 2023 [62]
mb-conequest_seg MRO (O) Cone 512× 512 2 2236 319 643 1 CTX 2024 [63]

mb-crater_binary_seg Mars Odyssey (O) Crater 512× 512 2 3600 900 900 1 THEMIS 2012 [74]
mb-crater_multi_seg Mars Odyssey (O) Crater 512× 512 5 3600 900 900 1 THEMIS 2021 [44]

mb-mars_seg_mer Opportunity, Spirit (R) Terrain 1024× 1024 7 744 106 214 1 Navcam, Pancam 2022 [46]
mb-mars_seg_msl Curiosity (R) Terrain 500× 560 7 2893 413 828 3 Mastcam 2022 [46]

mb-mmls MRO (O) Landslide 128× 128 2 275 31 256 7 CTX 2024 [60]
mb-s5mars Curiosity (R) Terrain 1200× 1200 10 4997 200 800 3 Mastcam 2022 [99]

Object Detection

Name Observation
Source

Geologic
Feature

Image
Size # Classes Train Val Test # Bands Sensor/

Instrument
Published

Year Cite

mb-boulder_det MRO (O) Boulder 500× 500 1 39 6 4 1 HiRISE 2023 [62]
mb-conequest_det MRO (O) Cone 512× 512 1 1158 167 333 1 CTX 2024 [63]
mb-dust_devil_det MRO (O) Dust devil ∼ 750× 750 1 1404 201 402 1 CTX 2024 [28]

Table 1: Overview of Mars-Bench datasets across all three task categories. To distinguish the
benchmarked versions from their original sources, all dataset names are prefixed with "mb-", which
indicates Mars-Bench. Observation sources are labeled as O (Orbiter) and R (Rover). Refer to
Appendix B.2 for a detailed description and illustrative examples from each dataset.

All segmentation datasets underwent validation by domain experts, and several classification datasets
were reviewed and revised through direct correspondence with the original dataset authors. Details
on which datasets were corrected or modified are provided in Appendix B.4.

Dataset Splits All datasets in Mars-Bench include standardized train, validation, and test splits to
facilitate consistent and reproducible evaluation. For datasets that did not originally include predefined
splits, we generated them following standard practices. When original splits were available, we
preserved them to maintain alignment with prior work. These splits ensure that future methods can
be compared fairly and under consistent evaluation settings.

Cross-Domain Dataset Partitioning In some cases, we partition datasets based on attributes such as
sensor type, data modality, task category, or mission origin. This design choice allows users to analyze
model performance across domain shifts, e.g., evaluating cross-sensor or cross-mission generalization
by isolating specific factors. Rather than aggregating data into a single dataset, separating them
enables experiments in which scientists are often interested, such as how a model trained on one
sensor performs on data from another. A more detailed discussion of these partitioning strategies is
provided in Appendix B.1.

Permissive License All datasets included in Mars-Bench have permissive licenses allowing their
re-use in the benchmark. We release the Mars-Bench version of all datasets with a Creative Commons
Attribution 4.0 (CC BY 4.0) license, permitting open access and use.

3.2 Tasks and Datasets

Mars-Bench offers a diverse collection of 20 datasets spanning three task categories: classification,
segmentation, and object detection. Within these categories, the benchmark supports several subtasks,
i.e., classification includes binary, multi-class, and multi-label settings, while segmentation includes
both binary and multi-class settings. These tasks are constructed from two primary sources of
observation: orbiters (satellites) and surface rovers. In total, the benchmark integrates data from 2
Mars orbiters, 3 rovers, and 6 distinct imaging sensors.

The benchmark covers a wide range of scientifically relevant geologic features that are of high
interest to the planetary science community and have been extensively studied in prior literature.
Mars-Bench was co-developed with expert planetary scientists to ensure its relevance to Mars
science. The datasets include geologic features such as boulders, cones, craters, landslides, dust
devils, frost, and atmospheric dust. Additionally, multi-class datasets have diverse classes, such as
terrain-related classes (e.g., soil, sand, rock, bedrock), landmark-specific features (e.g., Swiss cheese
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terrain, spiders, dark dunes), and surface-related elements (e.g., ground, ridges, rover tracks), as well
as rover components (e.g., inlet, dust removal tool, scoop). This diversity highlights the breadth
of Mars-Bench in terms of task design, sensor modalities, and variety in geologic features. See
Appendix B.2 for a detailed description and illustrative examples from each dataset.

Unlike EO datasets in which many classes, such as airports or farmland, can be annotated at scale
via crowd-sourcing, Mars science datasets often require annotation by domain experts in planetary
science or geology. This process is highly specialized and time-consuming, sometimes taking months
to years for high-quality labeling. As a result, as shown in Table 1, several datasets in Mars-Bench
are relatively small in size. By including these small-data tasks, Mars-Bench provides a valuable
testbed for research on label-limited scenarios.

3.3 Using the Dataset

Availability All datasets included in Mars-Bench will be publicly released through both Hugging
Face Datasets1 and Zenodo2. Each dataset follows a standardized schema and is accompanied by
metadata, documentation, and loading scripts to enable easy integration into ML pipelines.

Target Audience Mars-Bench offers a diverse set of benchmarks designed to evaluate and compare the
performance of foundation models for Mars-related tasks. It serves researchers developing models for
planetary applications as well as those interested in the geologic features and data types represented
in Mars-Bench. Mars-Bench is also designed to support the broader computer vision and machine
learning communities. Researchers studying distribution shift, generalization, or domain adaptation
can benefit from its coverage of underrepresented, real-world geospatial scenarios; similar in spirit
to WILDS [42]. By offering datasets with unique imaging conditions and semantics, Mars-Bench
enables research beyond planetary science.

Baseline Models In addition to datasets and code, we release baseline models for each dataset
included in Mars-Bench. We will release the models that currently achieve the best performance on
their respective datasets. By making these models publicly available, we aim to lower the barrier for
applied research. For example, researchers seeking to generate global maps of features such as cones
or craters can use our pre-trained models to produce initial predictions, which can then be refined by
domain experts with minimal annotation effort.

Software Tools To promote reproducibility and facilitate future research, we release an open-source
toolkit that encapsulates the complete Mars-Bench experimental pipeline 3. The repository includes
configuration files and executable scripts that reproduce every experiment reported in this study,
while permitting users to vary model architectures, hyperparameters, and data partitions with minimal
effort. In addition, the toolkit provides utilities for loading datasets and visualizing both objective
metrics and qualitative results at the task level as well as in aggregate.

4 Experiments

Model Selection For each task category, we select well-established and widely adopted model archi-
tectures representative of current best practices. For classification tasks, we evaluate ResNet101 [29],
SqueezeNet1.1 [32], InceptionV3 [81], Swin Transformer (SwinV2-B) [49], and Vision Transformer
(ViT-L/16) [21] architectures. For segmentation, we use U-Net [75], DeepLabV3+ [8], SegFormer
[96], and Dense Prediction Transformer (DPT) [70]architectures. For object detection, we evaluate
YOLO11 [71], SSD [48], RetinaNet [47], and Faster R-CNN [73].

Training Settings We analyze model performance under three different training strategies: (1)
training from scratch with randomly initialized weights, (2) using a pre-trained model as a frozen
feature extractor, and (3) full fine-tuning of pre-trained models with all weights trainable. As noted in
Section 1, no existing foundation model has been trained specifically for Mars tasks. Therefore, we
use models pre-trained on large-scale datasets such as ImageNet (for classification and segmentation)
or COCO (for detection) as initialization for transfer learning or feature extraction.

1huggingface.co/collections/Mirali33/mars-bench
2zenodo.org/communities/mars-bench/records
3github.com/kerner-lab/Mars-Bench
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Hyperparameter Tuning Since the performance of deep learning models is often sensitive to
hyperparameter choices, we conducted a grid search over several hyperparameter configurations for
each model, task, and training type combination. The best-performing setting was selected based on
early stopping criteria applied to validation metrics. All hyperparameter ranges and selected values
for each configuration are detailed in Appendix C.2 to ensure reproducibility.

4.1 Reporting Results

We adopt an identical methodology to [1] and [43] to present our results derived from thousands of
experiments. Our objective is to report both task-specific outcomes and aggregated results across all
tasks with reliable confidence intervals as recommended by [1]. Specifically, for each combination of
model, dataset, and training strategy, we first conduct hyperparameter tuning to identify the optimal
settings. Subsequently, we retrain each combination using the selected hyperparameters on seven
distinct random seeds, since prior work indicates that results based on only 3–5 random seeds may
not be sufficiently robust [1]. We follow the exact evaluation and reporting methodology as in [1]
and [43], including IQM computation, bootstrapped confidence intervals, and normalization; detailed
reporting setup and metrics are provided in Appendix C.4.

5 Results and Analysis

In this section, we present baseline results for all three tasks. We structure our analysis around key
research questions, which are addressed in the subsections below.

5.1 Which model architecture performs best on Mars science tasks, when pre-trained on
natural images?
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Figure 2: Classification Benchmark under Feature Extraction setting: Normalized F1-score of all
baselines across six datasets (higher the better). Aggregated plot shows the average over all datasets.

aggregated

0.00

0.25

0.50

0.75

1.00

no
rm

al
ize

d 
te

st
 m

et
ric

mb-boulder_seg mb-conequest_seg mb-crater_multi_seg

DeepLabV3+ DPT SegFormer UNet

mb-mars_seg_msl mb-mmls mb-s5mars

Figure 3: Segmentation Benchmark under Feature Extraction setting: Normalized IoU of all
baselines across six datasets (higher the better). Aggregated plot shows the average over all datasets.

Figures 2, 3, and 4 show the bootstrapped IQM of normalized performance metric (as defined in
Section 4.1) across six classification, six segmentation, and all three object detection datasets and
one training strategy (feature extraction with frozen backbone), along with aggregated results. We
report the F1-score for classification tasks, IoU for segmentation tasks, and mAP for object detection
tasks. For classification and segmentation, the datasets are selected in a way that ensures a diverse
set of geologic features. For example, if two datasets cover the same feature type (e.g., landmarks),
we report results for only one of them. Additional results, including those for alternative training
regimes and other datasets, are reported in Appendix D for all datasets spanning the three tasks..
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Figure 4: Object Detection Benchmark under Feature Extraction setting: Normalized mAP of all
baselines across three datasets (higher is better). Aggregated plot shows the average over all datasets.

In classification tasks, SqueezeNet1.1 consistently underperforms relative to other architectures,
likely due to its small parameter count. In contrast, ViT-L/16 and SwinV2-B Transformer exhibit
competitive performance, with both showing strong generalization across datasets. Notably, some
models display narrower confidence intervals than others, suggesting they are more stable and better
suited to specific tasks.

For segmentation, U-Net achieves the highest overall performance despite having a relatively wide
confidence interval in some datasets. It outperforms both transformer-based models (SegFormer and
DPT) on nearly all datasets as well as in aggregate metrics. The DPT model, in particular, shows
highly unstable results with large confidence intervals, making it less reliable. These results suggest
that, despite its simplicity, U-Net remains a strong baseline for segmentation tasks in Mars science
applications.

For object detection, YOLO11 shows the best performance for all three datasets and even in aggregated
results. Detection performance is particularly weak on mb-boulder_det and mb-dust_devil_det.

These challenges are primarily due to several factors:

• The overall dataset size is significantly smaller for all three object detection datasets com-
pared to several classification and segmentation datasets.

• The number of objects per image is low, with many images containing only one or even zero
target objects.

• The grayscale nature of the imagery limits visual cues, and low object–background contrast
(e.g., in dust devil detection) further complicates learning.

5.2 What is the effect of training set size on the performance of each model?
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Figure 5: Classification vs Train size: Normalized F1-score of baselines with a growing size (from
1% to 100%) of the training set. Shaded regions indicate confidence intervals over multiple runs.

To assess how training set size impacts model performance, we conducted experiments by varying
the amount of labeled training data. Specifically, we trained each model using 1%, 2%, 5%, 10%,
20%, 25%, 50%, and 100% of the available training data, while keeping the validation and test sets
fixed. For each configuration, we performed multiple runs and report the average normalized test
metric, as shown in Figures 5 and 6.
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Figure 6: Segmentation vs Train size: Normalized IoU of baselines with a growing size (from 1%
to 100%) of the training set. Shaded regions indicate confidence intervals over multiple runs.

From the aggregated results, we observe a consistent trend: increasing the training set size generally
leads to improved performance in both classification and segmentation tasks. However, dataset-level
analysis reveals that the rate of improvement and error margins vary significantly depending on
the model and dataset. This shows the differing levels of difficulty among datasets in Mars-Bench,
highlighting the benchmark’s overall challenge.

In classification, transformer-based models such as SwinV2-B and ViT-L/16 consistently outperform
smaller convolutional models like SqueezeNet1.1. In contrast, for segmentation tasks, U-Net out-
performs transformer-based models such as DPT and SegFormer across most training sizes. DPT
not only shows lower overall performance but also exhibits high variance across runs, as reflected in
wide confidence intervals.

5.3 How do models that are trained for EO tasks perform on Mars-Bench?

Although there are no published foundation models for Mars orbital or surface imagery, there are
many foundation models for Earth orbital imagery. To assess cross-domain generalization, we
evaluated foundation models pre-trained on EO data. Specifically, SatMAE [72], CROMA [25],
and Prithvi [35] on selected Mars-Bench classification tasks (see Appendix C.1 for experimental
details). These models were originally trained on Earth satellite data that vary in geography, scale,
and semantics but share the overhead imaging perspective found in many Mars datasets. We compare
them to a ViT-L/16 model pre-trained on ImageNet to establish a general-domain baseline (Figure 7).
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Figure 7: Classification vs Train size for EO baselines: Normalized
F1-score with a growing size (from 1% to 100%) of the training set.
Shaded regions indicate confidence intervals over multiple runs.

Although EO pre-trained
models performed well on
all datasets, the ImageNet
pre-trained ViT performed
better. One possible expla-
nation is that although ViT
is pre-trained on natural im-
ages and EO models are
pre-trained on satellite data,
ViT is pre-trained on 14
million images, while Sat-
MAE, CROMA, and Prithvi
are pre-trained on 1 million
or less than 1 million im-
ages. Additionally, diver-
sity in ImageNet, because
as discussed in the litera-
ture, diversity and/or geo-
graphical coverage of pre-training data can affect the performance of the model [22, 58, 64, 68].
Among EO foundation models, the Prithvi model in particular consistently showed low performance
and large error bars. All these results show that, despite EO models pre-trained on satellite data,
Earth and Mars orbital imagery differ significantly in ways that likely impact model transferability.
For instance, Martian imagery lacks vegetation, water bodies, and human-made structures, which are
common in EO datasets. Additionally, Mars exhibits unique geological formations, color distributions,
and atmospheric conditions that are totally different than Earth imagery. These domain gaps suggest
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that while EO-pretrained models can offer a reasonable starting point, foundation models specifically
trained on Mars data are likely to yield more robust and generalizable performance for Martian tasks.

5.4 How do proprietary VLMs, such as Gemini and GPT, perform on Mars-Bench?

With the rapid advancement of vision-language models (VLMs), such as Gemini [83] and GPT [7],
there is increasing interest in evaluating their effectiveness beyond general-purpose tasks. These
models, trained on diverse multimodal datasets, have demonstrated strong performance on various
open-domain vision benchmarks with minimal supervision. However, their applicability to Mars
science, has not been explored. Evaluating VLMs on Mars-Bench provides valuable insight into their
ability to generalize to planetary science tasks without domain-specific fine-tuning.

We focused on evaluating the reasoning capabilities of these models by explicitly prompting them
with context-rich instructions, rather than relying solely on direct answer generation. We used the
Gemini 2.0 Flash and GPT-4o Mini models, both from their May 2025 checkpoints.

Task Gemini GPT
Accuracy F1-score Accuracy F1-score

mb-domars16k 0.34 0.32 0.36 0.30
mb-surface_cls 0.43 0.44 0.42 0.41

mb-frost_cls 0.50 0.55 0.43 0.54
mb-atmospheric_dust_cls_edr 0.43 0.50 0.68 0.56

mb-crater_multi_seg 0.37 0.41 0.49 0.51
mb-mars_seg_msl 0.86 0.84 0.79 0.70

Table 2: Performance of Gemini and GPT on Mars-Bench.

We selected six Mars-Bench
datasets spanning classification and
segmentation tasks. The selected
tasks cover a range of geologic
features to evaluate how well the
models generalize across different
scientific concepts. From each
dataset, we randomly sampled 500
test images, ensuring the label
distribution in the sampled subset
matched that of the original dataset.
This sample size was chosen to balance evaluation fidelity with the computational cost associated
with API-based model usage, particularly for GPT. We reformulated segmentation as a multi-label
classification task. For both classification and segmentation, we provided system instructions defining
each class and prompted the models to predict the relevant classes for each image. Full prompts and
system instructions for all tasks are included in Appendix E.

Both Gemini and GPT achieved reasonable performance on some tasks, but their results are inconsis-
tent across datasets (Table 2). Notably, both models perform well on the mb-mars_seg_msl dataset,
achieving an F1-score of 0.84 (Gemini) and 0.70 (GPT). This dataset involves terrain segmenta-
tion with classes such as sand, rock, and sky, classes that are also common in natural images and
likely well-represented in the models’ pre-training data. In contrast, performance drops significantly
on datasets such as mb-crater_multi_seg and mb-domars16k, which require identification of
fine-grained geologic structures like crater types and Martian landmarks.

With this, we also conducted experiments on smaller vision-language models (CLIP [67], SigLIP
[85], and SmolVLM [52]), and these models also show similar trends observed for Gemini and
GPT (see Appendix F for details). Our results suggest that current VLMs lack sufficient specialized
knowledge for accurate interpretation. As noted in Section 3.2, many of these tasks demand domain
expertise. These findings highlight the gap between general-purpose vision-language capabilities and
the needs of Mars science, further reinforcing the importance of domain-specific model development.

6 Research opportunities

Mars-Bench provides valuable research opportunities, not only for the planetary science and remote
sensing communities but also for the broader machine learning and computer vision community.
Mars-Bench creates the following key research opportunities:

• Mars-Bench will accelerate the development of foundation models specifically tailored to Mars
orbital and surface-related tasks by facilitating a systematic evaluation of model performance. It
provides essential infrastructure for benchmarking diverse models within a unified framework,
mirroring the influential role benchmarks have historically played in other specialized domains.

• The benchmark comprises several challenging datasets that introduce unique complexities to
computer vision tasks. For instance, dust devil detection is particularly challenging due to the subtle
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contrast differences between dust devils and the Martian terrain. ConeQuest presents difficulties
stemming from significant visual variability among cones collected from various Martian regions,
challenging models to generalize across high intra-class variance. In addition, many datasets
included in Mars-Bench are small-scale and highly imbalanced, i.e., mb-change_cls_ctx, mb-
boulder_seg, and mb-boulder_det.

• Mars-Bench significantly expands research opportunities focused on addressing distribution shifts
and out-of-distribution generalization. These challenges are closely aligned with contemporary
methodological advancements such as those proposed by [33, 95, 42, 87, 12, 69, 22, 54, 66, 82, 9,
31, 77, 57], which emphasize robust model evaluation across diverse domains to enhance real-world
applicability and to advance understanding of model robustness, generalization, and failure modes
when exposed to out-of-distribution (OOD) data.

7 Conclusion

We introduced the first benchmark for evaluating models on a wide range of Mars science tasks
using both orbital and surface imagery. Mars-Bench standardizes diverse datasets into a unified,
machine-learning-ready format and provides code for fine-tuning and evaluating across classification,
segmentation, and object detection tasks. Datasets in Mars-Bench also include a wide variety of
geologic features that have been extensively studied in the literature and remain of high interest to
the scientific community. We believe that Mars-Bench will drive the development of Mars-specific
foundation models, improve generalization across planetary tasks, and open new research directions
in planetary science and beyond.

Limitations A key limitation of Mars-Bench is the absence of georeferencing for most datasets.
This arises from the fact that the original sources of these datasets do not provide spatial metadata
(e.g., latitude and longitude coordinates), mapping the samples to the Martian surface. As a result, it
is currently not possible to assess the spatial distribution or coverage of Mars-Bench across different
regions of Mars. Lack of georeferencing is a known challenge in remote sensing benchmarks, as it
restricts the ability to conduct spatial analysis or regional generalization studies. There are a few
exceptions within the Mars-Bench collection that include geolocation information. For instance,
the ConeQuest dataset already provides georeferenced samples, and we retain this metadata in our
release. Additionally, both crater segmentation datasets (binary and multi-class) were prepared by us
from scratch, and therefore also include geolocation metadata. Both crater datasets are derived from
the THEMIS sensor; however, the current version is based on an older THEMIS release from 2010.
A newer version of the THEMIS dataset (released in 2017) [30] is now available and can be utilized
in the future to generate updated versions of these two crater segmentation datasets.
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A Mars-Bench Resources

• Project Page - mars-bench.github.io/
• HuggingFace - huggingface.co/collections/Mirali33/mars-bench
• Zenodo - zenodo.org/communities/mars-bench/records
• Github - github.com/kerner-lab/Mars-Bench
• LeaderBoard - huggingface.co/spaces/Mirali33/Mars-Bench
• Baseline Models - huggingface.co/collections/Mirali33/mars-bench-models

B Mars-Bench Details

This appendix provides detailed documentation of the Mars-Bench benchmark. We describe the
dataset naming conventions used (B.1), task details of each of the 20 datasets included (B.2), our
process for preparing few-shot and partitioned versions (B.3), corrections and improvements made to
original datasets with expert input (B.4), and finally, a list of relevant datasets that were excluded
from this release and the reasons for their exclusion (B.5).

B.1 Dataset Naming Convention

For datasets with well-established names in the original literature (which are DoMars16k, ConeQuest,
MMLS, Mars-Seg, S5Mars), we retain the original names and prepend the prefix “mb-”. For other
datasets, we adopt a consistent naming scheme based on geologic feature (e.g., atmospheric_dust),
followed by task type (e.g., cls for classification), and optionally by sensor or data source (e.g., edr)
as defined in Section 3.1. The suffixes cls, seg, and det indicate classification, segmentation, and
object detection tasks, respectively. This naming scheme allows for easy categorization and filtering
within the benchmark.

B.2 Dataset Descriptions

This section provides brief descriptions of the 20 datasets included in Mars-Bench, including their
task type, targeted geologic features, class structure, and observation modality.

B.2.1 Classification

In all classification datasets, the data is organized in a structured format. Each split, train, validation,
and test contains subfolders corresponding to each class specific to that dataset. Additionally, we
provide an annotation.csv file containing metadata for every sample, including the following fields:
file_id (a unique identifier for each sample), split (indicating the data partition), feature_name
(a 3-letter acronym representing the class), and label (the numerical class ID). To aid interpretability,
each dataset also includes a mapping.json file that maps both the class IDs and acronyms to their
corresponding full feature names.

mb-change_cls_ctx and mb-change_cls_hirise These datasets are designed for binary classifica-
tion of surface changes using temporal image pairs; specifically, one image taken before and another
after some time period, from the same Martian location. The task involves identifying whether mean-
ingful surface change has occurred and classifying between “Change” and “No change”. The dataset
includes two versions based on different sensors: CTX and HiRISE. Unlike standard single-image
classification, this task requires forming a composite input from two grayscale images (Figure 8 and
9). Following the approach outlined by Kerner et. al. [40], we adopt the composite grayscale method:
the blue channel encodes the “before” image, the green channel encodes the “after” image, and the
red channel is set to zero. mb-change_cls_ctx is the smallest dataset included in Mars-Bench,
in terms of the number of samples. Since the original datasets do not provide standard splits, we
generated consistent train, validation, and test sets for both CTX and HiRISE versions.
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(a) Change (b) No change

Figure 8: mb-change_cls_ctx

(a) Change (b) No change

Figure 9: mb-change_cls_hirise

mb-atmospheric_dust_cls_edr & mb-atmospheric_dust_cls_rdr These are binary classification
tasks focused on classifying between “Dusty” and “Non dusty” (Figure 10) regions in Mars surface
imagery captured by the HiRISE camera on the Mars Reconnaissance Orbiter. The EDR (Experimental
Data Record) refers to raw images from the instrument that have not been calibrated or stitched
together; while the RDR (Reduced Data Record) is a downsampled or processed version of the EDR,
typically used for quick viewing or initial analysis. Both versions are balanced in terms of class
distribution and come with predefined train, validation, and test splits.

(a) mb-atmospheric_dust_cls_edr (b) mb-atmospheric_dust_cls_rdr

Figure 10: mb-atmospheric_dust_cls datasets

mb-domars16k This is a multi-class classification dataset designed for geomorphologic feature
recognition on Mars using imagery from the CTX sensor. It consists of 15 classes (Figure 11)
grouped into five thematic categories: (1) Aeolian Bedforms: Aeolian Curved, Aeolian Straight;
(2) Topographic Landforms: Channel, Cliff, Mounds, Ridge; (3) Slope Features: Gullies, Mass
Wasting, Slope Streaks; (4) Impact Landforms: Crater, Crater Field; and (5) Basic Terrain: Mixed
Terrain, Rough Terrain, Smooth Terrain, Textured Terrain. This is one of the largest and diverse
orbital datasets in terms of a number of classes. Hence, the dataset presents a unique challenge
due to its class granularity, significant variability within classes, and subtle differences between
classes, making it valuable for evaluating models on fine-grained classification and generalization.
The original version includes train, validation, and test splits; and the dataset is balanced in terms of
class distribution.
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Figure 11: mb-domars16k

mb-frost_cls This is a binary classification dataset designed to detect the presence or absence of
surface frost in Mars satellite imagery. The dataset consists of HiRISE image patches labeled as
either “Frost” or “Non Frost” (Figure 12). Among all datasets in Mars-Bench, this is the largest
in terms of the number of samples. The dataset is well-balanced in terms of class distribution and
includes predefined train, validation, and test splits, as provided by the original authors.

Figure 12: mb-frost_cls

mb-surface_cls This is a multi-class classification dataset consisting of surface imagery captured
by the Mastcam and MAHLI instruments aboard the Curiosity rover. It comprises 36 classes (Figure
13), making it the largest and most diverse surface imagery dataset included in Mars-Bench. The
dataset was created by combining two previously released versions of the surface classification
dataset, following consultation with the original authors (see Section B.4 for details).

The classes span a wide range of surface elements, including rover components, scientific instru-
ments, geologic features, and environmental elements. The full list includes: Alpha Particle X-Ray
Spectrometer (APXS), APXS Calibration Target, Arm Cover, Artifact, ChemCam Calibration Target,
CheMin Inlet Open, Close-Up Rock, Distant Landscape, Drill, Drill Holes, Dust Removal Tool
(DRT), DRT Spot, Float Rock, Ground, Horizon, Inlet, Layered Rock, Light-Toned Veins, MAHLI,
MAHLI Calibration Target, Mastcam, Mastcam Calibration Target, Night Sky, Observation Tray,
Portion Box, Portion Tube, Portion Tube Opening, REMS-UV, Rover Rear Deck, Sand, Scoop, Sun,
Turret, Wheel, Wheel Joint, Wheel Tracks.

Images were labeled using the IDAR tool, incorporating annotations from both domain experts
and volunteers. For ambiguous samples, class prioritization rules were applied to assign the most
representative label. One part of the dataset ([88]) includes predefined train, validation, and test splits
based on Mars sol ranges. For the earlier version [89], which did not include original splits, we
created consistent splits before merging with the newer version. As with many real-world planetary
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datasets, mb-surface_cls is highly imbalanced, with a large proportion of samples belonging to
the Ground class.

Figure 13: mb-surface_cls

mb-surface_multi_label_cls This is the only multi-label classification dataset in Mars-Bench,
based on imagery captured by the Pancam instruments aboard the Opportunity and Spirit rovers.
Hence, each image in this dataset can be associated with one or multiple labels (Figure 14). It includes
25 unique classes encompassing a broad range of surface, environmental, and rover-related features.
The class list covers geologic and contextual elements such as: RAT Hole, Clasts, Dunes/Ripples,
Soil, Rock Outcrops, Close-Up Rock, RAT Brushed Target, Distant Vista, Rover Deck, Bright Soil,
Float Rocks, Artifacts, Pancam Calibration Target, Arm Hardware, Round Rock Features, Spherules,
Other Hardware, Astronomy, Nearby Surface, Miscellaneous Rocks, Rover Tracks, Sky, Rover Parts,
Linear Rock Features, and Soil Trench. The dataset includes pre-defined train, validation, and test
splits.

Figure 14: mb-surface_multi_label_cls
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mb-landmark_cls This is a multi-class classification dataset derived from orbital HiRISE imagery.
It classifies into 8 surface feature classes: Bright Dune, Crater, Dark Dune, Impact Ejecta,
Slope Streak, Spider, Swiss Cheese, and Other (Figure 15). The class distribution is highly
imbalanced, with “Other” comprising the majority of samples and Impact Ejecta being the minority
class. Landmarks were extracted using a dynamic salience-based method. Labels were generated
via a mix of volunteer crowdsourcing and expert validation, with additional calibration techniques
applied to improve reliability. The dataset includes predefined train, validation, and test splits.

Figure 15: mb-landmark_cls

B.2.2 Segmentation

All segmentation datasets in Mars-Bench are provided as image–mask pairs, where each mask
represents the ground truth labels for semantic segmentation. The masks are encoded as single-
channel images, with each pixel assigned a discrete class ID. Across all datasets, the class ID 0
consistently denotes the background. Additionally, we include a mapping.json file with each
dataset that specifies the mapping between class IDs and their corresponding semantic class names,
ensuring clarity and ease of use for downstream tasks.

mb-boulder_seg This is a binary segmentation dataset focused on segmenting boulders on the
Martian surface using high-resolution orbital imagery from the HiRISE camera. The dataset comprises
manually annotated binary masks indicating the presence or absence of boulders within each image
(Figure 16). Boulders were annotated by planetary scientists using precise polygon outlines, ensuring
high-quality labels. The dataset originally provides train, validation, and test splits. This is one of
the smallest datasets in Mars-Bench with only tens of samples, and that makes it challenging for the
computer vision community.

Figure 16: mb-boulder_seg

mb-conequest_seg This is a binary segmentation dataset focused on identifying volcanic cones on
the Martian surface using CTX imagery. It was developed to support global mapping and morphologic
analysis of small-scale volcanic landforms. The dataset spans six geographically diverse regions on
Mars, capturing substantial variation in cone shape, size, and appearance, making it a challenging
benchmark for model generalization. Each sample consists of an image and its corresponding binary
mask (Figure 17), with all annotations created and validated by expert geologists to ensure scientific
accuracy.
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Notably, the dataset includes negative samples (images without any cones), which introduces addi-
tional complexity by requiring models to correctly predict true negatives rather than detecting cones
in every image. We provide metadata indicating which samples are negative, allowing users the
flexibility to include or exclude them during training. This information can also be verified using
simple image processing techniques. The dataset comes with pre-defined train, validation, and test
splits.

Figure 17: mb-conequest_seg

mb-mmls This is a binary segmentation dataset designed to identify landslides on the Martian
surface, with a focus on the Valles Marineris region from the CTX sensor. All annotations were
manually created by expert geologists, ensuring high-quality, scientifically accurate labels. Each
image sample includes multi-modal satellite data comprising 7 channels: RGB (3), Digital Elevation
Model (DEM), thermal inertia, slope, and grayscale intensity (in Figure 18, we have visualized
grayscale channels). This rich set of modalities captures the complex geomorphology of landslide-
prone regions, making the dataset especially valuable for developing and benchmarking robust
segmentation models in planetary science. All experiments in this paper utilize only the RGB
channels for training and evaluation. The dataset includes predefined train, validation, and test splits
to support standardized evaluation.

Figure 18: mb-mmls

mb-crater_binary_seg & mb-crater_multi_seg These two datasets focus on crater segmentation
using THEMIS imagery. mb-crater_binary_seg is a binary segmentation dataset that distin-
guishes crater vs. non-crater regions, while mb-crater_multi_seg is a multi-class segmentation
dataset with four crater types: Other, Layered, Buried, and Secondary (Figure 19). Craters are crucial
for understanding the geological history, surface age, and impact processes of planetary bodies [74].
Moreover, classifying craters into distinct morphological types enables researchers to assess which
crater types are more informative for scientific analysis [44].

Although craters are often described as bowl-shaped, they are not always perfectly circular. To
address this, we provide annotations in elliptical form, marking the first known release of crater
segmentation using elliptical geometry, in contrast to the circular annotations commonly used in
prior datasets [51, 17, 4]. As the original release consisted only of metadata, we generated the full
image-mask dataset using open-source THEMIS data4. Due to significant missing pixels near the
poles, we restricted the dataset to within approximately ±30◦ latitude of the Martian equator.

To prevent spatial data leakage, we created geographically disjoint train, validation, and test splits.
Specifically, images from longitudes −180◦ to 60◦ are assigned to the training set, 60◦ to 120◦ to the
test set, and 120◦ to 180◦ to the validation set.

4https://www.mars.asu.edu/data/thm_dir_100m/
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(a) mb-crater_binary_seg

(b) mb-crater_multi_seg

Figure 19: mb-crater_seg datasets

mb-mars_seg_mer & mb-mars_seg_msl These are multi-class segmentation datasets designed
to support terrain understanding on Mars using imagery from two distinct rover missions. The
MSL dataset corresponds to the Mars Science Laboratory (Curiosity) mission and includes imagery
captured by Mastcam, while the MER dataset is sourced from the Mars Exploration Rover missions
(Opportunity and Spirit), using Navcam and Pancam sensors. Both datasets are annotated with six
terrain-related classes: Bedrock, Gravel/Sand/Soil, Rock, Shadow, Sky/Distant Mountains, and Track,
representing typical surface elements observed during rover operations (Figure 20).

While the original datasets were annotated by planetary science experts, we applied additional
refinement in Mars-Bench by consolidating visually similar or ambiguous categories, such as different
granular terrain types, based on expert consultation, aiming to reduce annotation inconsistencies and
improve evaluation reliability (see Section B.4). Since the original datasets do not provide standard
splits, we generated consistent train, validation, and test sets for both MER and MSL versions.

(a) mb-mars_seg_mer

(b) mb-mars_seg_msl

Figure 20: mb-mars_seg datasets

mb-s5mars This is a multi-class segmentation dataset developed to enable semantic understanding
of Martian surface terrain using imagery captured by the Mastcam camera aboard the Curiosity rover.
It contains 8 classes: Bedrock, Hole, Ridge, Rock, Rover, Sand/Soil, Sky, and Track, representing
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features commonly encountered during rover-based navigation and scientific exploration (Figure
21). Although the original dataset is reported to be annotated by domain experts, in Mars-Bench we
further refine it by merging visually ambiguous classes based on expert analysis to reduce label noise
and enhance the robustness of model evaluation (see Section B.4 for details). The dataset includes
predefined train, validation, and test splits.

Figure 21: mb-s5mars

B.2.3 Object Detection

As described in Section 4, all object detection datasets in Mars-Bench are provided in multiple
annotation formats to support a broad range of models and frameworks. Specifically, we include
annotations in COCO, Pascal VOC, and YOLO formats. This ensures compatibility with most object
detection pipelines and reduces the effort and time required for format conversion by end users.

mb-boulder_det This is the object detection version of the Boulder dataset, designed to localize
boulders on the Martian surface using high-resolution orbital imagery from the HiRISE camera. Each
image is annotated with manually curated bounding boxes that delineate individual boulders (Figure
22), with annotations created by planetary scientists to ensure high-quality and scientifically accurate
labels. The dataset includes predefined train, validation, and test splits. This is one of the smallest
datasets in Mars-Bench with only tens of samples. Given the small-object nature of the task, this
dataset presents a valuable benchmark for evaluating object detection models in low-data regimes, a
setting of growing interest in the computer vision community.

Figure 22: mb-boulder_det

mb-conequest_det This is the object detection version of the ConeQuest dataset, formulated to
localize cones on the Martian surface using CTX imagery. It was developed to support global mapping
and morphologic analysis of small-scale volcanic landforms. The dataset spans six geographically
diverse regions on Mars, capturing substantial variation in cone shape, size, and appearance, making
it a challenging benchmark for model generalization. Each sample consists of an image and its
bounding boxes (Figure 23), with all annotations created by expert geologists to ensure scientific
accuracy.

As the original ConeQuest contains negative samples, we have removed it from this version of the
dataset as many detection models do not support training with image samples that do not have any
objects. The dataset comes with pre-defined train, validation, and test splits.
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Figure 23: mb-conequest_det

mb-dust_devil_det This task focuses on identifying dust devils in Martian orbital imagery. Dust
devils are small-scale, short-lived whirlwinds that play a significant role in Martian atmospheric
dynamics, surface modification, and dust transport (Figure 24). The dataset consists of CTX images
with manually annotated bounding boxes around visible dust devils. Detecting dust devils presents
a considerable challenge due to their faint visibility, small size, and the similarity in texture to
surrounding terrain. It includes predefined training, validation, and test splits.

Figure 24: mb-dust_devil_det

B.3 Few-Shot and Partitioned Data Preparation

To facilitate benchmarking and enable analysis of model performance across varying data regimes,
we release both partitioned and few-shot versions of the datasets. These versions are particularly
useful for studying how different methods perform with respect to training dataset size and how
quickly they reach performance saturation. Importantly, only the training sets are modified in these
variants; the validation and test sets remain unchanged across all versions to ensure fair comparisons.

Partitioned Datasets We provide partitioned training sets for all datasets across all task types
in Mars-Bench. Specifically, we generate pre-defined subsets using the following proportions of
the original training data: 1%, 2%, 5%, 10%, 20%, 25%, and 50%. This results in a total of 131
partitioned datasets. These subsets enable systematic evaluation of how models scale with increasing
amounts of data.

Few-Shot Datasets Few-shot versions are provided for all classification tasks (except mb-
change_cls_ctx) in Mars-Bench. We include the following few-shot configurations: 1-shot, 2-shot,
5-shot, 10-shot, 15-shot, and 20-shot, totaling 54 additional datasets.

For the multi-label classification dataset (mb-surface_multi_label_cls), special care is taken to ensure
that each class appears at least the specified number of times in the few-shot setting. For example, in
the 2-shot version, every class is represented by at least two instances across the dataset.

Special Cases and Exceptions

• For mb-change_cls_ctx, we do not provide few-shot versions, as the original dataset is
already very small.

• For mb-boulder_seg, mb-boulder_det, and mb-change_cls_ctx; partitioned datasets are only
provided starting from 10%, as smaller subsets resulted in empty or unusable training splits.
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These curated few-shot and partitioned datasets are designed to support robust, reproducible research
in data-scarce scenarios and facilitate the development and comparison of new methods.

B.4 Expert-Driven Corrections and Refinements

To ensure the quality, usability, and consistency of the released datasets, we made several corrections
and modifications. These changes are aimed at improving clarity, removing redundancies, and
aligning the datasets with modern machine learning practices:

• Removal of Augmented Samples: For datasets such as mb-landmark_cls and mb-
surface_multi_label_cls, we removed pre-augmented versions of samples that were originally
included. We believe it is more appropriate to provide only the raw samples, allowing users
to apply their own augmentation strategies using state-of-the-art computer vision techniques.
Pre-included augmentations can often be redundant or incompatible with newer workflows.

• Harmonization of Surface and Landmark Classification Datasets: Wagstaff et al. released
two versions of the surface and landmark classification datasets [89, 88]. After consulting
the authors, we merged the surface classification datasets (released as mb-surface_cls) by:

– Combining identical classes (e.g., wheel present in both versions).
– Merging semantically similar classes (e.g., nearby surface and ground).
– Removing duplicate samples (keeping only one if identical samples existed).
– Eliminating the ambiguous class Other rover part, which originally served as a catch-all

category. The merged dataset now includes a broader and more clearly defined set of
surface-related classes.

For the landmark classification datasets, we retained only the newer version, as recommended
by the authors.

• Balancing in ConeQuest Dataset: The original ConeQuest dataset [63] included a significant
class imbalance, with only ∼ 12% of samples containing cones (positive samples), and the
rest being negative. While the intent was to include broad geographic coverage and true
negative learning, we found this imbalance suboptimal for general use.

– In mb-conequest_seg, we balanced the positive and negative samples across each
region while preserving the geographic diversity. We followed the exact methodology
described in the original experimental setup.

– In mb-conequest_det, we excluded all negative samples, as many object detection
models do not support samples without any annotated objects.

• Correction of Ambiguous Annotations in Terrain Segmentation Datasets: We performed
expert reviews of the terrain segmentation datasets [46, 99] after observing inconsistencies.
Experts identified several annotation ambiguities, especially between visually similar classes
such as soil, sand, and gravel. These challenges are common in pixel-level annotation tasks
due to the fine granularity and visual overlap.

– In mb-s5mars, we merged the classes sand, soil, and gravel into a single category.
– In mb-mars_seg_mer and mb-mars_seg_msl, we merged sand and soil.

These refinements aim to provide cleaner, more consistent datasets that are easier to use,
compare, and extend for downstream machine learning tasks in planetary exploration.

B.5 Excluded Datasets

While our paper includes a carefully curated selection of datasets, there are several others in the
literature that we chose not to include for various reasons, detailed below:

• AI4MARS [80]: Upon expert review, we identified annotation errors in this dataset. Since
the annotations were produced via crowdsourcing, we found them unsuitable for a highly
specialized domain like planetary science, where expert validation is crucial. Consequently,
we excluded this dataset.

• Cone Detection (Mills et. al.) [55]: The authors did not release the actual training data.
Instead, they shared outputs generated by their own pipeline, global mappings of cones
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as bounding boxes with latitude and longitude coordinates. This data is not validated by
experts and cannot directly support downstream machine learning tasks.

• Cone Detection (Chen et. al.) [10]: The dataset was not released in a format suitable for
machine learning applications. Additionally, no instructions were provided to preprocess or
structure the data for ML pipelines, making its use impractical.

• Cone Detection and Segmentation [97]: Although the authors indicated the dataset would
be available upon request, we reached out and never received a response, leaving us unable
to include the data.

• Novelty Detection [39] and Outlier Detection [38]: These datasets do not fall into the
task categories we currently support, i.e., classification, segmentation, or object detection.
Furthermore, significant preprocessing would be required. We may consider including them
in a future extended version of Mars-Bench.

• Rockfall Detection [6]: Our analysis of the training and test sets revealed a significant
number of false negatives (FNs). Although the paper acknowledges this possibility, such
inconsistencies hinder reliable model evaluation, especially when FNs are present in the test
set, so we excluded this dataset.

• SPOC [76]: The dataset link was not provided in the paper. Upon contacting the authors, we
learned that SPOC is an earlier and slightly different version of the AI4MARS dataset [80],
and that it is significantly smaller. The authors recommended using AI4MARS instead.

C Experiments Details

C.1 Details of Earth Observation Baselines

For Earth Observation (EO) baselines, we follow the same experimental protocol used for models
pre-trained on natural images. Specifically, we perform hyperparameter tuning for each EO model
and then train and evaluate the models across all dataset partitions as well as the full training set,
using seven random seeds to ensure robust evaluation.

Among the four datasets evaluated with EO-based models, mb-surface_cls is an RGB dataset,
while the others are grayscale. EO foundation models such as SatMAE, CROMA, and Prithvi are
pre-trained on multi-spectral inputs and thus expect input images with multiple channels, often
significantly more than standard RGB data. For example, CROMA requires 12 channels for its
optical encoder and 2 channels for its radar encoder. As there are multiple versions of these models
available, we selected ViT-L from all of them. Since CROMA offers two encoder options, we
selected the optical encoder because all the datasets used in our evaluation are from optical sensors.
Similarly, for SatMAE, which provides multiple pre-trained encoder choices, we chose the encoder
that was pre-trained on the non-temporal subset of the fMoW dataset, as it aligns best with our data
characteristics instead of the multi-spectral encoder.

To adapt single-channel or RGB Mars datasets for these multi-spectral models, we replicate the
available channels as needed. For grayscale images, the single channel is duplicated to match the
required number of input channels. This is a standard practice suggested in prior works and consistent
with recommendations in the timm library documentation and repositories such as TorchSeg [15].
While this approach does not introduce new spectral information, it allows for compatibility with the
pre-trained architecture without retraining encoders from scratch.
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C.2 Pipeline and Hyperparameters

config value
seed 0, 1, 10, 42, 123, 1000, 1234
learning rate schedule w/o, cosine, plateau, step
base learning rate 1e-3, 1e-4, 1e-5
weight decay 0.05
batch size 16, 32, 64
optimizer Adam, AdamW, SGD
max training epochs 50, 100, 200
patience 5, 10

Table 3: Training hyperparameters

We provide a user-friendly and scal-
able training and inference pipeline
for classification, segmentation, and
object detection tasks. The pipeline
supports running experiments via
command-line arguments, allowing
easy configuration of core parame-
ters such as dataset, model architec-
ture, training type, and hyperparam-
eters.

It includes modular support for log-
ging with options for Weights &
Biases (Wandb), TensorBoard, and
CSV; model checkpointing; early
stopping; and other PyTorch Lightning-compatible callbacks. For reproducibility, we fix the random
seed across all relevant libraries and save Hydra configuration files and logs locally. Since Mars-
Bench is released on both Hugging Face and Zenodo, the pipeline supports loading data from either
platform.

Classification
config value

criterion cross entropy, binary cross entropy
(only for binary classification)

Segmentation
config value

criterion generalized_dice (square, simple,
linear), cross entropy, combined

smoothing value 1e-5 (only for generalized_dice)

Table 4: Configuration for loss function

As described in Section 4, for each com-
bination of model, dataset, and training
strategy, we first perform hyperparam-
eter tuning. We tune the learning rate,
learning rate scheduler, weight decay,
batch size, optimizer, and maximum
number of training epochs. The full
search space is listed in Table 3.

We also experiment with different loss
functions, summarized in Table 4. For
binary classification, we try both a one-
node output with binary cross-entropy
and a two-node output with standard
cross-entropy. For segmentation, we
evaluate three loss types: generalized
Dice loss, cross-entropy, and a weighted
combination of both. We also explore three different weighting schemes. For object detection, we
use the default loss returned by each model implementation.

C.3 Number of Experiments

Due to the large number of models, datasets, training strategies, and data splits involved in our
benchmark, we summarize here the scale of experiments conducted.

As described in Section 4, we begin by performing hyperparameter tuning for every unique com-
bination of model, dataset, and training type. This includes 13 models, 20 datasets, and 3 training
strategies, resulting in 780 hyperparameter tuning runs. Each of these runs was repeated multiple
times, depending on the number of configurations in the search space. Once the best hyperparameters
were selected, we retrained each configuration using 7 different random seeds to ensure robust and
stable performance reporting.

Classification We evaluated 5 models across 9 datasets, under 3 training types and 7 random seeds,
totaling 945 classification experiments. In addition, we evaluated all of these combinations on 7
partitioned versions of each dataset, resulting in 6,615 runs. However, for the mb-change_cls_ctx
dataset, we excluded 1%, 2%, and 5% partitions due to insufficient training samples, which led to
the exclusion of 315 experiments. The final count for partitioned classification experiments is 6,300.
We also included few-shot evaluation, using 6 different configurations (1-shot to 20-shot) across all
classification datasets except mb-change_cls_ctx, which adds 5,040 few-shot experiments.

33



Segmentation We evaluated 4 models on 8 datasets using 3 training strategies and 7 random seeds,
resulting in 672 standard segmentation experiments. We also performed partitioned experiments using
7 training set splits. However, for mb-boulder_seg, we excluded the 1%, 2%, and 5% partitions
due to extremely limited data, resulting in 252 experiments being skipped. This leads to a total of
4,452 partitioned segmentation runs.

Object detection We ran experiments using 4 models across 3 datasets, again under 3 training
strategies and 7 random seeds, totaling 252 standard experiments. We did not perform partition
experiments in object detection due to lower performance on the full dataset (more details in Section
D.3).

In addition, for EO baselines, we conducted experiments on 4 datasets using 3 EO-pretrained models,
evaluated over 7 random seeds and 8 training sizes (7 partitions plus the full dataset), resulting in a
total of 672 additional runs.

In summary, we conducted over 19,000 total model runs, making Mars-Bench one of the most
comprehensively evaluated benchmarks for Mars science and planetary vision research. All the
experiments were conducted on NVIDIA A100-SXM4 and NVIDIA A30 based on availability on the
ASU Sol supercomputer [36].

C.4 Reporting Results

As mentioned in Section 4.1 and inspired by the methodologies in [1] and [43], we follow a consistent
procedure to report results across thousands of experiments. We report outcomes separately for each
training setting (random initialization, frozen pre-trained feature extractor, and pre-training with full
fine-tuning), which allows for direct performance comparisons across different training settings.

First, we perform hyperparameter tuning for each model–dataset combination, selecting the best
configuration based on validation loss using early stopping. Once the optimal hyperparameters are
determined, we train and evaluate each model–dataset combination for 7 times with different random
seeds, as recommended in prior work [1, 43]. For each combination, we compute the InterQuartile
Mean (IQM) by discarding the top and bottom 25% of scores and averaging the remaining values.
This approach helps reduce both bias and variance in the reported performance. Before aggregating
results across tasks, we normalize the scores within each task to account for differences in scale.

To quantify uncertainty, we perform 1,000 rounds of stratified bootstrapping. In each round, we
sample (with replacement) one trial from each dataset, recompute the IQM across all datasets, and
build a distribution of IQM values. From this distribution, we calculate 95% confidence intervals. In
our final results, we present per-task baselines and overall model performance (aggregated across all
tasks) via violin plots. This process is repeated independently for each training setting, and results
are reported separately to maintain clarity and consistency.

The results shown in Figures 2, 3, 4, and 5 in the main paper are normalized only, without any
aggregation. While the main paper and the appendix report both normalized and aggregated results
for the feature extraction setting, we also include the corresponding raw results: F1-score for
classification, IoU for segmentation, and mAP for object detection. For all other training types, we
report only the raw results without normalization or aggregation.
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D Extended Results

In this section, we present key observations derived from the full set of experiments conducted in this
study.

D.1 Classification Results

Figures 26, 27, and 28 present the classification results (F1-score) for all datasets under feature
extraction, transfer learning, and training from scratch settings, respectively. We exclude results for
mb-change_cls_ctx as it shows negligible variation across different models and training strategies.
Overall, feature extraction consistently achieves the highest F1-scores across all models and datasets,
followed by transfer learning. Training from scratch performs the worst, with noticeably higher
variance. The performance gap between transfer learning and feature extraction is generally smaller
than that between transfer learning and scratch, particularly for larger models like SwinV2-B and
ViT-L/16.
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Figure 25: Classification Benchmark under Feature Extraction setting: Normalized F1-score of
various baselines (higher is better). Violin plots are obtained from bootstrap samples of normalized
IQM (Section C.4). The left plot reports the average across all tasks.
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Figure 26: Classification Benchmark under Feature Extraction setting: Raw F1-score of various
baselines (higher is better). Violin plots represent the distribution of seeds.
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Figure 27: Classification Benchmark under Transfer Learning setting: Raw F1-score of various
baselines (higher is better). Violin plots represent the distribution of seeds.
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Figure 28: Classification benchmark with models trained from scratch: Raw F1-score of various
baselines (higher is better). Violin plots represent the distribution of seeds.

D.1.1 Addressing Data Imbalance

Several datasets in Mars-Bench have significant class imbalance, which can negatively impact model
performance, especially for minority classes. In this section, we evaluate the effectiveness of three
common strategies; under-sampling, over-sampling, and loss weighting to mitigate data imbalance
and assess their impact on classification performance. All experiments are conducted under the
feature extraction setting.

• Under-sampling: For each dataset, we identify the class with the fewest samples (the
minority class) and randomly sample an equal number of instances from all other classes to
match this count. This results in a balanced dataset with uniform class distribution, though
with a reduced overall training size.

• Over-sampling: Rather than directly upsampling all minority classes to match the largest
class, which can lead to excessive duplication, we first modestly down-sample the majority
class and then apply data augmentation to upsample the minority classes. This approach
helps avoid extreme repetition (e.g., scaling a minority class 200×) while still achieving a
more balanced class distribution.

• Loss weighting: Instead of modifying the dataset directly, we adjust the loss function to
give higher weight to minority classes. Class weights are computed inversely proportional
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to class frequencies and incorporated into the loss calculation, encouraging the model to pay
more attention to underrepresented classes during training.

We applied these techniques across four highly imbalanced datasets from Mars-Bench: (1) mb-
landmark_cls, (2) mb-surface_cls, (3) mb-change_cls_ctx, and (4) mb-change_cls_hirise. Experi-
ments were conducted under feature extraction settings using all 5 classification models: SqueezeNet,
ResNet, Inception, Vision Transformer (ViT), and Swin Transformer (SwinT). We compare these
three balancing strategies against the baseline (standard training without any data manipulation).
Results demonstrate how each technique affects overall model performance and performance on
minority classes.

mb-landmark_cls mb-surface_cls mb-change_cls_ctx mb-change_cls_hirise
Standard 0.84 0.77 0.78 0.86
Oversampling 0.60 0.54 0.54 0.76
Undersampling 0.41 0.34 0.58 0.79
Loss weighting 0.68 0.58 0.68 0.81

Table 5: Comparison of class imbalance handling strategies against the standard baseline training,
based on weighted F1-score.

• Overall performance: From the table 5, it can be observed that while data manipulation
techniques help balance classes, they often result in a decrease in overall accuracy compared
to the standard setup. Among the techniques, loss weighting generally maintains better
performance, but even it does not consistently outperform the standard baseline across all
scenarios.

However, the aggregated results do not provide a complete picture of how each technique impacts
the performance of the minority and majority classes individually. To interpret these results better,
we analyzed the class-wise performance by comparing each data manipulation technique with the
baseline (standard setup):

• Loss weighting: Same as aggregated results, loss weighting is the most consistent tech-
nique in improving minority class performance across all datasets and models, while also
maintaining relatively stable performance for the majority class.

– Example: In the mb-change_cls_hirise dataset using ResNet, the minority class
(Change) accuracy improved from 0.17 to 0.48, while the majority class (No change)
performance dropped only slightly from 0.96 to 0.94. Similarly, in the mb-surface_cls
dataset, the minority class (Arm Cover) improved from 0.00 to 0.50 with ResNet.

• Undersampling: Although balancing data, a decreased number of training samples shows a
negative effect on performance. Performance for the minority class does not show significant
improvement and significantly degrades the performance of the majority class, particularly
for transformer-based models, which typically require more data to converge.

– Example: In mb-landmark_cls, the minority class (Impact Ejecta) improved marginally
from 0.00 to 0.03 with Inception, while the majority class (Others) accuracy dropped
from 0.93 to 0.35. A similar trend was observed in mb-surface_cls, where the minority
class (Arm Cover) improved only from 0.00 to 0.01, while the majority class (Ground)
performance dropped from 0.72 to 0.03.

• Oversampling: Oversampling shows mixed results. It shows significant effectiveness in
transformer-based models but is less consistent in convolutional models.

– Example: In the mb-change_cls_hirise dataset, ViT showed improvement in the mi-
nority class from 0.39 to 0.52, while the majority class remained almost unaffected
(0.96 to 0.95). SwinT shows similarly stable behavior across datasets. In contrast,
ResNet benefited from oversampling in some datasets (e.g., from 0.00 to 0.62 in mb-
surface_cls and 0.17 to 0.35 in mb-change_hirise). However, in SqueezeNet, although
it retains the performance of the minority class, it shows performance degradation in
the majority class, dropping from 0.84 to 0.51 in mb-surface_cls and from 0.32 to 0.18
in mb-change_cls_hirise.
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Figure 29: Classification vs Train size under Feature Extraction setting: Raw F1-score of
baselines with a growing size (from 1% to 100%) of the training set. Shaded regions indicate
confidence intervals over multiple runs. Note: Partitions in mb-change_cls_ctx start at 10%.

In summary, all these results indicate that there is no single data manipulation technique that is
universally effective across all models and dataset combinations for handling class imbalance. This
suggests that the choice of technique depends heavily on the specific characteristics of the dataset
and the model being used. We believe this presents a significant opportunity for the community
to develop more specialized solutions for imbalanced data in niche domains like planetary science,
where class distributions can be highly diverse.

Figures 29, 30, and 31 illustrate how classification performance varies with training set size across
the three training strategies. Feature extraction shows rapid performance gains with increasing data
and tends to saturate earlier. Transfer learning improves more gradually and typically requires more
data to catch up. Training from scratch exhibits slower improvement and higher variability, especially
on small datasets like mb-change_cls_ctx, where it often fails to generalize.

Figures 32, 33, and 34 show few-shot learning results across the same training strategies. Consistent
with earlier findings, feature extraction significantly outperforms the other approaches across all
shot counts, demonstrating strong performance even with as few as 1–2 examples. Transfer learning
performs moderately but remains inconsistent across datasets. Training from scratch struggles with
very limited data and only starts to improve at 10+ shots, typically lagging far behind the other
methods. Note that mb-change_cls_ctx does not have few-shot data due to its already limited dataset
size.

D.2 Segmentation Results

Figures 36, 37, and 38 present segmentation results (IoU scores) across all datasets under feature
extraction, transfer learning, and training from scratch settings, respectively. Feature extraction
consistently achieves the highest IoU scores across models, with UNet and SegFormer performing
particularly well. Transfer learning performs moderately but remains behind feature extraction, while
training from scratch shows the lowest performance and highest instability, especially on challenging
datasets like mb-conequest_seg and mb-mmls.

Figures 39, 40, and 41 show the impact of training set size on segmentation performance (IoU) for
feature extraction, transfer learning, and training from scratch, respectively. As training size increases,
feature extraction consistently yields higher and more stable performance across datasets. Transfer
learning shows moderate gains but generally lags behind feature extraction. Training from scratch
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Figure 30: Classification vs Train size under Transfer Learning setting: Raw F1-score of baselines
with a growing size (from 1% to 100%) of the training set. Shaded regions indicate confidence
intervals over multiple runs. Note: Partitions in mb-change_cls_ctx start at 10%.
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Figure 31: Classification vs Train size with models trained from scratch: Raw F1-score of
baselines with a growing size (from 1% to 100%) of the training set. Shaded regions indicate
confidence intervals over multiple runs. Note: Partitions in mb-change_cls_ctx start at 10%.
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Figure 32: Classification vs Few-shot under Feature Extraction setting: Raw F1-score of baselines
on few-shot setting. Shaded regions indicate confidence intervals over multiple runs.
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Figure 33: Classification vs Few-shot under Transfer Learning setting: Raw F1-score of baselines
on few-shot setting. Shaded regions indicate confidence intervals over multiple runs.
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Figure 34: Classification vs Few-shot with models trained from scratch: Raw F1-score of baselines
on few-shot setting. Shaded regions indicate confidence intervals over multiple runs.
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Figure 35: Segmentation Benchmark under Feature Extraction setting: Normalized IoU of
various baselines (higher is better). Violin plots are obtained from bootstrap samples of normalized
IQM (Section C.4). The left plot reports the average across all tasks.
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Figure 36: Segmentation Benchmark under Feature Extraction setting: Raw IoU of various
baselines (higher is better). Violin plots represent the distribution of seeds.
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Figure 37: Segmentation Benchmark under Transfer Learning setting: Raw IoU of various
baselines (higher is better). Violin plots represent the distribution of seeds.
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Figure 38: Segmentation benchmark with models trained from scratch: Raw IoU of various
baselines (higher is better). Violin plots represent the distribution of seeds.
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Figure 39: Segmentation vs Train size under Feature Extraction setting: Raw IoU of baselines
with a growing size (from 1% to 100%) of the training set. Shaded regions indicate confidence
intervals over multiple runs.
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Figure 40: Segmentation vs Train size under Transfer Learning setting: Raw IoU of baselines
with a growing size (from 1% to 100%) of the training set. Shaded regions indicate confidence
intervals over multiple runs.

exhibits the lowest performance and highest variability, particularly on datasets with complex terrain
or limited data availability, i.e., mb-mars_seg_mer, mb-mars_seg_msl, and mb-s5mars.

D.3 Object Detection Results

Figures 42, 43, and 44 present object detection results (mAP) across all datasets under feature
extraction, transfer learning, and training from scratch settings, respectively. Feature Extraction
achieves the best and most consistent mAP scores across all three detection datasets. Transfer learning
performs slightly better than training from scratch, but both show high variability and generally low
performance.
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Figure 41: Segmentation vs Train size with models trained from scratch: Raw IoU of baselines
with a growing size (from 1% to 100%) of the training set. Shaded regions indicate confidence
intervals over multiple runs.
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Figure 42: Object Detection Benchmark under Feature Extraction setting: Raw mAP of various
baselines (higher is better). Violin plots represent the distribution of seeds.

As noted in Section 5.1, due to the consistently poor performance even on the full datasets, we did
not perform partition-based experiments for object detection. We leave this open for the community
to explore methods that improve detection under such constrained, low-data conditions.
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Figure 43: Object Detection Benchmark under Transfer Learning setting: Raw mAP of various
baselines (higher is better). Violin plots represent the distribution of seeds.
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Figure 44: Object Detection benchmark with models trained from scratch: Raw mAP of various
baselines (higher is better). Violin plots represent the distribution of seeds.

E Prompts for VLM Evaluation

In this section, we provide the system instructions and prompts used for all six datasets evaluated on
vision-language models (VLMs) in Section 5.4.

mb-domars16k

System Instructions

You are an expert Martian geologist AI. Your task is to classify Martian surface landform
images. You will be provided with an image of a Martian surface landform.
You must respond with ONLY the three-letter abbreviation of the most prominent landform
class present in the image.
Here are the possible landform classes, their abbreviations, and definitions:

Aeolian Bedforms:
• (ael) Aeolian Curved: Wind-formed bedforms with a curved, dune-like, or rippled

appearance.
• (aec) Aeolian Straight: Wind-formed bedforms with a straight, linear, or elongated

ridge-like appearance.
Topographic Landforms:

• (cli) Cliff: A steep, near-vertical, or very abrupt rock exposure or slope.
• (rid) Ridge: An elongated, narrow elevation or crest of land.
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• (fsf) Channel: A depression, groove, or trough, often suggesting past fluid flow (e.g.,
water or lava).

• (sfe) Mounds: Distinct, rounded, or irregularly shaped raised landforms or protuber-
ances.

Slope Feature Landforms:
• (fsg) Gullies: Small, incised channels or ravines, typically found on slopes, potentially

formed by fluid or debris flows.
• (fse) Slope Streaks: Dark or light markings that appear on slopes, often attributed to

dry granular flows or small avalanches.
• (fss) Mass Wasting: Features resulting from the downslope movement of rock, regolith,

and soil under gravity (e.g., landslides, slumps).
Impact Landforms:

• (cra) Crater: A bowl-shaped depression, typically circular or sub-circular, formed by
an impact event.

• (sfx) Crater Field: An area characterized by a significant concentration or cluster of
impact craters.

Basic Terrain Landforms:
• (mix) Mixed Terrain: An area exhibiting a combination of characteristics from multiple

distinct landform types, without one single dominant type.
• (rou) Rough Terrain: An area characterized by irregular, uneven, broken, or difficult-

to-traverse surfaces.
• (smo) Smooth Terrain: An area characterized by relatively even, regular surfaces with

little to no significant relief or texture.
• (tex) Textured Terrain: An area exhibiting a distinct or noticeable surface pattern,

fabric, or texture that is not clearly one of the more specific landforms.

Analyze the provided image and output only the three-letter abbreviation for the dominant
landform.

Prompt

Classify the Martian surface landform in the following image.
Strictly use this format:
Reasoning: [step-by-step reasoning]
Answer: [Provide only the three-letter abbreviation for the dominant landform type]

mb-surface_cls

System Instructions

You are an expert Martian surface classification AI. Your task is to classify Mars rover images
into one of the scientific or engineering categories. You will be provided with an image
captured by the Curiosity Rover’s Mastcam or MAHLI instruments.
Your job is to visually analyze the image and identify the dominant object or surface class
that best describes the main content shown.
You must respond with ONLY the three-letter abbreviation of the most appropriate class.
Here are the possible classes, their abbreviations, and their descriptions:

• (apx) Alpha Particle X-Ray Spectrometer (APXS): Element analysis instrument
mounted on the rover’s robotic arm.

• (act) Alpha Particle X-Ray Spectrometer Calibration Target (APXS CT): Standard
target for APXS instrument calibration.
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• (arm) Arm Cover: Structural component covering parts of the robotic arm.
• (art) Artifact: Unusual or foreign features not naturally occurring on Mars.
• (cct) ChemCam Calibration Target: Laser calibration target used by ChemCam.
• (cio) CheMin Inlet Open: The inlet area of the CheMin instrument in open position.
• (clr) Close-Up Rock: Rock surfaces captured at close proximity to reveal texture.
• (dls) Distant Landscape: Martian terrain visible far from the rover’s immediate loca-

tion.
• (dri) Drill: The rover’s drill tool, used to bore into Martian rock.
• (drh) Drill Holes: Resulting holes left after drilling into the Martian surface.
• (drp) Dust Removal Tool Spot: Brushed area exposed by the DRT cleaning tool.
• (drt) Dust Removal Tool: The brushing tool mounted on the arm to remove surface

dust.
• (flr) Float Rock: Detached rocks lying loosely on the surface.
• (gro) Ground: Flat, featureless terrain directly surrounding the rover.
• (hor) Horizon: Distant skyline visible in landscape images.
• (inl) Inlet: Sample intake ports for rover’s internal instruments.
• (lar) Layered Rock: Rock formations showing visible sedimentary layers.
• (ltv) Light-Toned Veins: Bright mineral veins possibly formed by fluid activity.
• (mah) MAHLI: The Mars Hand Lens Imager camera itself.
• (mct) MAHLI Calibration Target: Calibration board for the MAHLI camera.
• (mas) Mastcam: The main mast-mounted camera used for panoramic imaging.
• (mca) Mastcam Calibration Target: Target board for Mastcam image calibration.
• (nsk) Night Sky: The Martian sky captured during night or low light.
• (obt) Observation Tray: Platform used for holding or inspecting sampled material.
• (pbo) Portion Box: Compartment for storing soil or rock samples.
• (ptu) Portion Tube: Tube system used in handling and measuring material portions.
• (pto) Portion Tube Opening: The visible end of a portioning tube.
• (rem) REMS-UV Sensor (REMS-UV): The UV radiation sensor from the environ-

mental monitoring suite.
• (rrd) Rover Rear Deck: The back platform of the rover, often showing structural parts.
• (san) Sand: Fine-grained Martian soil, often seen in dunes or ripples.
• (sco) Scoop: Tool used to collect loose surface material.
• (sun) Sun: The solar disk, typically visible in calibration or sky images.
• (tur) Turret: The rotating tool assembly at the end of the robotic arm.
• (whe) Wheel: One of the rover’s mobility wheels.
• (whj) Wheel Joint: The mechanical joint connecting the wheel to the suspension.
• (wht) Wheel Tracks: Imprints left by the wheels in the Martian soil.

Analyze the provided image and respond with only the three-letter abbreviation of the
dominant class.

Prompt

Classify the primary subject in the following image from the Curiosity Rover.
Strictly use this format:
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Reasoning: [step-by-step reasoning]
Answer: [Provide only the three-letter abbreviation of the class]

mb-mars_seg_msl

System Instructions

You are an expert Martian geologist AI. Your task is to identify all relevant terrain classes
present in Martian surface images. You will be provided with an image of the Martian surface.
You must respond with the corresponding integers for all applicable classes. Note: A single
image may contain multiple classes.
Below are the possible classes, their corresponding integer labels, and definitions:

• 0: Background
Areas that do not contain relevant terrain features or objects of interest; typically
undefined or used as a default label.

• 1: Bedrock
Exposed, solid rock surfaces that are generally flat or massive, forming the foundational
layer of the terrain with minimal loose material.

• 2: Gravel / Sand / Soil
Loose surface materials such as gravel (small rocks), sand (fine particles), and soil
(organic or inorganic matter), typically covering natural ground surfaces.

• 3: Rock
Isolated or clustered rock fragments distinguishable from continuous bedrock; often
angular and scattered across the surface.

• 4: Shadow
Darkened regions caused by obstructions blocking direct light. These are not terrain
features themselves but affect the visual appearance of the surface.

• 5: Sky / Distant Mountains
The upper portion of the scene representing the sky or far-off mountainous terrain;
often hazy or blue in appearance.

• 6: Track
Visible marks or paths created by vehicle wheels or movement, usually appearing as
grooves or parallel lines in soil, sand, or gravel.

Analyze the provided image and return a list of integers representing all terrain classes visible
in the image.

Prompt

Classify the Martian surface features in the following image.
Strictly use the format below:
Reasoning: [Step-by-step explanation of how you identified the classes]
Answer: [List of integers corresponding to the identified classes]

mb-atmospheric_dust_cls_edr

System Instructions

You are an expert Martian atmospheric science AI. Your task is to analyze image patches
captured by the HiRISE instrument on the Mars Reconnaissance Orbiter (MRO) and determine
whether the surface view is obscured by atmospheric dust.
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You will be provided with a HiRISE image patch of the Martian surface. Your job is to
visually analyze the image and identify whether it appears dusty or not.
Respond with only the class name that best describes the image content: dusty or
not_dusty.
Here are the possible classes and their descriptions:

• dusty: The image is heavily obscured by atmospheric dust, making surface details
difficult or impossible to see.

• not_dusty: The image is clear, and surface features are unobstructed by dust in the
atmosphere.

Analyze the provided image and respond with only one of the two class labels.
You must respond with exactly one of the following two lowercase class names: dusty or
not_dusty.

Prompt

Classify the following high-resolution image of the Martian surface.
Strictly use this format:
Reasoning: [step-by-step reasoning]
Answer: [Provide only one of the two class names: dusty or not_dusty]

mb-crater_multi_seg

System Instructions

You are an expert Martian geologist AI. Your task is to identify all relevant terrain classes
present in Martian surface images. You will be provided with an image of the Martian surface.
Your job is to visually analyze the image and determine which morphological classes are
present.
You must respond with the corresponding integers for all applicable classes. Note: A single
image may contain multiple classes.
Below are the possible classes, their corresponding integer labels, and definitions:

• 0: Background
Generic regions that do not contain any crater or relevant morphological features.

• 1: Other
Craters or terrain that do not fall under the predefined morphological categories; may
include ambiguous or undefined features.

• 2: Layered
Crater ejecta with clearly layered or rampart-like deposits, such as LERS (Layered
Ejecta Rampart Sinuous) or LARLE (Low-Aspect-Ratio Layered Ejecta).

• 3: Buried
Craters that are partially or mostly covered by overlying material or erosion, making
their full structure less visible.

• 4: Secondary
Smaller craters formed by debris ejected from a larger primary impact crater; usually
appear in clusters or chains.

Analyze the provided image and return a list of integers representing all terrain classes visible
in the image.
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Prompt

Classify the morphological crater types present in the following image of the Martian surface.
Strictly use the format below:
Reasoning: [Step-by-step explanation of how you identified the classes]
Answer: [List of integers corresponding to the identified classes]

mb-frost_cls

System Instructions

You are an expert Martian climate science AI. Your task is to analyze high-resolution visible
imagery from the HiRISE instrument on the Mars Reconnaissance Orbiter (MRO) and
determine the presence or absence of seasonal frost.
You will be provided with an image of the Martian surface. Your job is to visually analyze the
image and identify whether frost is present or not.
Respond with only the class name that best describes the image content: “frost” or
“non_frost”.
Here are the possible classes and their descriptions:

• frost: The image contains visible signs of seasonal surface frost, such as bright or
whitish patches consistent with CO2 or H2O frost.

• non_frost: The image does not contain any visible signs of surface frost; typical
terrain or landform features are exposed without seasonal coverage.

Analyze the provided image and respond with only one of the two class labels.
You must respond with exactly one of the following two lowercase class names: frost or
non_frost.

Prompt

Classify the following high-resolution image of the Martian surface.
Strictly use this format:
Reasoning: [step-by-step reasoning]
Answer: [Provide only one of the two class names: frost or non_frost]

F Evaluation on Vision-Language Models

mb-domars16k mb-surface_cls mb-frost_cls mb-atmospheric_dust_cls_edr
clip-vit-base-patch16 0.53 0.39 0.96 0.96
siglip-base-patch16-224 0.49 0.30 0.95 0.96
SmolVLM-256M 0.45 0.27 0.99 0.99

Table 6: Performance of Vision-Language Models (VLMS) on selected classification datasets.

Recent advances in multimodal foundation models have demonstrated strong generalization capa-
bilities across diverse visual and textual domains. To assess how such models perform within the
Mars-Bench benchmark, we extend our evaluation to three representative vision-language models
(VLMs): CLIP [67], SigLIP [85], and SmolVLM [52]. Due to time constraints, we currently report
fine-tuning results for classification tasks, and plan to include evaluations on other task types in future
revisions.

We fine-tune the models on four representative classification datasets: (1) mb-domars16k, (2) mb-
surface_cls, (3) mb-frost_cls, and (4) mb-atmospheric_dust_cls_edr. These datasets encompass a
diverse set of geologic and atmospheric phenomena: ranging from landmark recognition (15 classes)
and surface type classification (36 classes) to binary detection of frost and atmospheric dust, enabling
a comprehensive evaluation of the models’ generalization capabilities.
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Table 6 presents the fine-tuned results in terms of weighted F1-score. All three VLMs exhibit
strong performance on the binary classification tasks mb-frost_cls and mb-atmospheric_dust_cls_edr,
achieving F1-scores of approximately 0.96 for CLIP and SigLIP, and up to 0.99 for SmolVLM. These
results indicate that the models effectively differentiate between visually distinct binary categories
(e.g., frost vs. non-frost and dusty vs. non-dusty).

Performance declines on multi-class datasets, with mb-domars16k yielding moderate performance
(average F1-score of 0.49) and mb-surface_cls performing the worst (average F1-score of 0.32). The
reduced performance in mb-surface_cls is largely due to the high intra-class visual similarity among
its 36 surface categories, making the task substantially more challenging for VLMs.

As discussed in Section 5.4 (main paper), we also evaluated GPT and Gemini models in zero-shot
settings. Both models follow similar trends: high performance on binary tasks and lower scores
on multi-class datasets, further validating the difficulty distribution and generalization spectrum of
MarsBench.

G Societal Impact

This work introduces Mars-Bench, a standardized benchmark aimed at advancing the development
and evaluation of foundation models for Martian orbital and surface imagery. As a contribution
to fundamental research in planetary science, it does not present any direct or immediate societal
risks. The primary beneficiaries are planetary scientists and computer vision researchers focused
on accelerating geological discovery on Mars and exploring domain adaptation in machine learning
across specialized, low-resource domains.

Moreover, Mars-Bench draws on expert-annotated, small-scale datasets which may reflect biases in
geographical sampling (e.g., over-representation of certain landing sites or terrains). While these
biases do not impact human groups directly, they could influence model performance unevenly across
different Martian regions. We therefore urge future work to expand dataset diversity, report perfor-
mance across partitions, and explore techniques for addressing data imbalance (e.g., re-sampling,
domain adaptation).
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