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ABSTRACT

Creativity has long been considered one of the most difficult aspect of human in-
telligence for AI to mimic. However, the rise of Large Language Models (LLMs),
like ChatGPT, has raised questions about whether AI can match or even surpass
human creativity. We present CREATIVITY INDEX as the first step to quantify the
linguistic creativity of a text by reconstructing it from existing text snippets on
the web. CREATIVITY INDEX is motivated by the hypothesis that the seemingly
remarkable creativity of LLMs may be attributable in large part to the creativ-
ity of human-written texts on the web. To compute CREATIVITY INDEX effi-
ciently, we introduce DJ SEARCH, a novel dynamic programming algorithm that
can search verbatim and near-verbatim matches of text snippets from a given doc-
ument against the web. Experiments reveal that the CREATIVITY INDEX of pro-
fessional human authors is on average 66.2% higher than that of LLMs, and that
alignment reduces the CREATIVITY INDEX of LLMs by an average of 30.1%. In
addition, we explore variations in the CREATIVITY INDEX among different human
authors and discuss the potential factors contributing to these differences. Finally,
we showcase a novel application of CREATIVITY INDEX for zero-shot machine
text detection, where it proves to be surprisingly effective—outperforming the
strong zero-shot system DetectGPT by a substantial margin of 30.2%, and even
surpassing a leading supervised system, GhostBuster, in five out of six domains.

1 INTRODUCTION

Creativity has long been considered one of the most challenging “holy grail” of human intelligence
for AI to mimic (Hasselberger & Lott, 2023). However, Large Language Models (LLMs) such as
ChatGPT have taken the world by storm with their creative power. From generating poetry (Sawicki
et al.; Deng et al., 2024b; Sawicki et al., 2023) and composing music (Ding et al., 2024; Deng et al.,
2024a; Liang et al., 2024) to designing artwork (Makatura et al., 2024; Jignasu et al., 2023; Lim
et al., 2024) and crafting compelling narratives (Yuan et al., 2022; Mirowski et al., 2023a; Ippolito
et al., 2022), LLMs take only seconds to produce outputs that would rival or even surpass the work
of human creators. This proficiency has even sparked a growing trend of using LLMs for content
creation in industrial settings. For example, major studios in Hollywood have integrated LLMs
into production processes such as movie scriptwriting (Carnevale, 2023). While studio executives
are optimistic about using LLMs to streamline production and reduce costs, Hollywood writers are
deeply concerned about being replaced by the rapid integration of LLMs in the industry, leading to
a five-month writers’ strike (Koblin & John, 2023).

While science fiction writer Ted Chiang characterizes LLMs as a blurry JPEG of the web (Hubert
et al., 2024), many others wonder whether AI can indeed match or surpass the creativity of humanity.
After all, LLMs have consumed orders of magnitude more works of writing than any single human
could ever read, thus it may seem possible that LLMs could consequently reach a new level of
literary sophistication and creativity beyond that of humanity at large.

To answer this question, the first step is to assess the level of creativity in machine texts compared
to human texts. Creativity is a complex and ambiguous process that is challenging to define and
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quantify (Csikszentmihalyi, 1997; Glaveanu et al., 2020; Eagleman & Brandt, 2017; Paeth). Several
previous studies have attempted to quantify creativity in writing by developing specific rubrics and
asking human evaluators to score the writing based on these criteria. Vaezi & Rezaei (2018) devel-
oped a comprehensive rubric to assess fiction writing, while Biggs & Collis (1982) used a taxonomy
of structural complexity to categorize creative writing. More recently, Chakrabarty et al. (2024) ap-
plied the Torrance Test of Creative Thinking to evaluate the creativity of short stories generated by
LLMs in terms of fluency, flexibility, originality and elaboration. While these rubric-based methods
are valuable, scaling them up to evaluate large amounts of texts generated by LLMs is impractical
due to the reliance on human evaluators.

In this work, we propose CREATIVITY INDEX, a novel statistical measure of linguistic creativity
in text. The key intuition underlying CREATIVITY INDEX is to quantify the degree of linguistic
creativity of a given text by reconstructing that text via mixing and matching of a vast amount of
existing text snippets on the web (See Figure 1a; 24 additional examples in Appendix Fig. 5 to
Fig. 30). The underlying premise of our work is that the seemingly remarkable creativity of LLMs
may be in large part attributable to the remarkable creativity of human-written texts on the web.
This contrasts with distinguished human authors such as Hemingway, whose original content and
unique writing style cannot be easily replicated by simply assembling snippets from other works. To
test this, we provide a novel computational approach to systematically attribute machine text to web
texts. Specifically, we introduce DJ SEARCH,1 a novel dynamic programming algorithm that can
efficiently search for verbatim and near-verbatim matches of text snippets from a given document
against the web. Here, near-verbatim matches are defined as close paraphrases, characterized by
high semantic similarity. Our algorithm combines strict verbatim matching using Infini-gram (Liu
et al., 2024), which allows for fast retrieval of any existing sequence of words, with near-verbatim
semantic matching achieved through a novel application of Word Mover’s Distance (WMD) (Kusner
et al., 2015) computed on the word embeddings of text snippets.

The contribution of our work is threefold: First, we introduce the CREATIVITY INDEX to reveal
novel insights about machine creativity and human creativity. We find that the CREATIVITY INDEX
of human authors—specifically professional writers and historical figures—is on average 66.2%
higher than that of LLMs. This creativity gap is consistent across various domains—novel snippets,
modern poems, and speech transcripts—at both verbatim and semantic levels. Moreover, we no-
tice that Reinforcement Learning from Human Feedback (RLHF), a widely used alignment method,
dramatically reduces the CREATIVITY INDEX of LLMs, by an average of 30.1%. This reduction is
more significant at the verbatim level than the semantic level, indicating that LLMs may have con-
verged to certain linguistic style preferred by humans during alignment. Furthermore, we explore
variations in CREATIVITY INDEX among different human authors. Famous authors like Heming-
way and Dickens tend to have higher CREATIVITY INDEX, though this should be interpreted with
caution. Beyond inherent differences in creativity, CREATIVITY INDEX can be influenced by factors
such as writing style and the time of composition. For instance, older English writings may exhibit
higher CREATIVITY INDEX, as they are more difficult to reconstruct from web texts.

Second, we introduce DJ SEARCH as an efficient algorithmic tool to trace the usage of existing text
snippets from the web that LLMs incorporate to compose new generations. The power of LLMs
arises from training exhaustively on existing human-written texts on the web, and it is meaningful to
trace back and acknowledge the human writers whose work empowers these models’ outputs—just
as we credit original composers when enjoying a DJ’s remix.

Finally, we demonstrate a novel use of CREATIVITY INDEX as a surprisingly effective criterion for
zero-shot black-box machine text detection. Our method is ready to deploy out-of-the-box, requiring
no training or prior knowledge of the text generator. It not only surpasses the strong zero-shot
baseline, DetectGPT (Mitchell et al., 2023a), by a significant margin of 30.2%, but also outperforms
a leading supervised baseline, GhostBuster (Verma et al., 2024)—which requires expensive data
collection for supervised training—in five out of six domains.

This work also faces the following limitations. First, CREATIVITY INDEX is designed to measure
one specific aspect of creativity—linguistic creativity (i.e., the novelty in composing words and
phrases). It might not comprehensively capture other dimensions of creativity, such as rhetorical
complexity or structural flexibility, and is thus complementary to existing creativity measurement

1The name DJ SEARCH is inspired by the way a DJ creates a remix by blending pieces of existing music.
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Please draft an abstract for a paper with the 
following title: “Poetry Will Not Optimize; or, What 
Is Literature to AI?” Reference Corpus

Verbatim Match

Near-Verbatim Match

a

ChatGPT

The advancement of technology has led to the 
integration of artificial intelligence (AI) in various 
fields, including literature. However, the 
question remains: can AI truly understand and 
create poetry? This paper delves into the 
complexities of poetry and the limitations of AI 
in its ability to comprehend and replicate the 
nuanced emotions and intricacies of language. 
Through a critical analysis of the relationship 
between poetry and AI, this paper argues that 
while AI may be able to generate text that 
resembles poetry, it lacks the ability to truly … 

… with Qualcomm for the ZenFone 5Z. 
That partnership led to the integration of 
artificial intelligence (AI) in various apps, 
making them smarter and easier to use …

… Artificial Intelligence (AI), such as chat 
GPT-3 to assist in the process. However, 
the question remains: can AI fully replace 
human recruiters? The answer is no … 

… there has been a significant increase in 
the use of artificial intelligence (AI) in 
various fields, including language 
generation. One such AI language model …

… current generation of people with a 
more intellectual brain. The advancement 
of technology has led to the creation of an 
electronic device which is capable of …

… but there is a more important point here 
about the perception of poetry and the 
limitations that critics and readers impose 
upon it if they understand poetry as …

… but it is too far narrowly limited and 
inflexible in its ability to comprehend and 
apply all the relevant facts in order to serve 
the process of selection, which is better …

Prof. Michele Elam

… maneuvering a billion-piece puzzle of 
psychology and emotion, spirituality and 
intricacies of language. Even though my 
puzzle keeps changing as I change and …

… existing research in the field of family 
migration. Through a critical analysis of the 
relationship between family and (in)security 
the article offers nuanced insight into … 

… examination of the role of human 
creativity in the age of AI. He argues that 
while AI may be able to produce creative 
works on its own, it is ultimately humans … 

…  because the ability of automated 
systems to be able to generate text that 
resembles what a human might say is 
huge. If we can just improve question …

Literature, poetry, and other forms of 
noncommercial creative expression challenge 
the techno-instrumentalist approaches to 
language, the predictive language generation, 
informing NLP (large natural language 
processing models) such as GPT-3 or -4 as well 
as, more generally, generative AI (text to image, 
video, audio). Claims that AI systems automate 
and expedite creativity reflect industry and 
research priorities of speed, scale, optimization, 
and frictionlessness driving much artificial 
intelligence design and application. But … 

…  continue to search for similar examples 
of wisdom in art, literature, poetry, and 
other forms of human discourse. As a 
result, when I ran across the address of …

b
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CREATIVITY INDEX =  

 

b

∑
L=a

L-uniqueness

L-uniqueness = number of words outside of n-grams (n ≥ L) that occur in the reference corpus
number of words in the text

Figure 1: a: Example outputs from DJ SEARCH. We asked ChatGPT to generate an abstract
based on the title of Prof. Michele Elam’s paper, ”Poetry Will Not Optimize; or, What Is Literature
to AI?” (Elam, 2023) The abstract generated by ChatGPT contains significantly more verbatim
and near-verbatim matches with existing texts on the web compared to the original abstract written
by Prof. Elam. b: Definition of CREATIVITY INDEX. CREATIVITY INDEX is mathematically
equivalent to the area under the L-uniqueness curve across a range of minimum n-gram lengths
L. The L-uniqueness of ChatGPT is noticeably lower than that of proficient human writers across
various context granularities (i.e., n-gram lengths) in all domains, leading to a significantly higher
CREATIVITY INDEX for human writers compared to ChatGPT.
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methods. Second, while CREATIVITY INDEX is robust in reflecting statistical differences between
professional human writing and seemingly remarkable outputs from LLMs, it may not fully capture
nuanced differences between human writings. Beyond inherent creativity variations, factors such as
writing style and the time of composition can also influence the metric. Third, CREATIVITY INDEX
assumes that the input text is of sufficient quality, as our study focuses on outputs from recent LLMs
that are already fluent and coherent. For less refined texts, our metric can be complemented with
standard automatic quality measures, such as fluency classifiers or perplexity-based evaluations, to
provide a more comprehensive assessment. Lastly, the computation of CREATIVITY INDEX is con-
strained by the reference corpus used in DJ SEARCH. Without access to and inclusion of the private
training data of closed-source models like ChatGPT in the reference corpus, the CREATIVITY IN-
DEX for these models might be somewhat inflated. However, the research community is making
progress in open-sourcing LLM research. Beyond RedPajama, newer large-scale pretraining cor-
pora, such as DOLMA (Soldaini et al., 2024) and Common Corpus (PleIAs), have become available
since our experiments.

We believe that our study will enhance the understanding of LLMs and guide informed usage of con-
tent created by LLMs, by providing an interoperable and scalable measurement to assess creativity
in machine texts. Additionally, we hope that the out-of-the-box machine text detection enabled by
the CREATIVITY INDEX can empower individuals to discern between human texts and machine
texts, fostering a more informed and critical engagement with information in the digital age.

2 METHOD

CREATIVITY INDEX The key intuition underlying CREATIVITY INDEX is to quantify the degree
of linguistic creativity of a given text by estimating how much of that text can be reconstructed by
mixing and matching a vast amount of existing text snippets on the web, as shown in Figure 1a.
Specifically, CREATIVITY INDEX assesses the extent to which the content of the text can be traced
back to similar or identical contexts found in other existing texts. This metric is grounded in the
notion of originality from creative thinking in psychology literature, which is defined as the statistic
rarity of a response or an idea (Torrance, 1966; Crossley et al., 2016).

Concretely, let x be a text whose creativity we aim to quantify, such as a speech transcript or a poem,
either human written or machine generated. Let an n-gram of x be any contiguous sequence of n
words of x, and let xi:i+n be the n-gram of x starting in the i-th word. Let C be a massive reference
corpus of publicly available texts on the web , and let f be a binary function that determines whether
an n-gram xi:i+n occurs anywhere in the corpus C. We define the L-uniqueness of a text x as
the proportion of words w ∈ x such that none of the n-grams in x that include w occur in the
corpus C for n ≥ L—denoted uniq(x, L). Intuitively, L-uniqueness measures the proportion of
x’s words that are used in novel contexts (here, n-grams), unseen across a vast text collection C.
Thus, a higher L-uniqueness implies a higher level of originality of x. Formally, uniq(x, L) =∑∥x∥

k=1 1{f(xi:i+n, C) = 0 ∀ i ∈ (k − n, k], n ≥ L}/∥x∥, where trivially uniq(x, L) ∈ [0, 1].

Note that when fixing x, the function uniq(x, L) is monotonically increasing as L grows. Its im-
proper integral—

∑
n≥L uniq(x, n)—is an indicator of the overall uniqueness of x across various

context granularities (i.e., n-gram lengths), and because of uniq(x, L)’s monotonicity it indirectly
measures uniqueness growth speed. We thus define CREATIVITY INDEX as

∑
n≥L uniq(x, n), with

higher CREATIVITY INDEX indicating greater linguistic originality with respect to the corpus C, as
shown in Figure 1b.

When a text x is part of the reference corpus C, its CREATIVITY INDEX would trivially become zero.
This issue often arises with works from famous authors, as their writings are widely available online.
To address this, for human texts written before the cutoff date of the reference corpus, we exclude
any document d ∈ C that contains copies, quotations, or citations of x and compute CREATIVITY
INDEX using this filtered corpus, detailed in Appendix A.3.

DJ SEARCH To enable the use of our CREATIVITY INDEX it is vital to compute it efficiently. For
the efficient computation, we introduce DJ SEARCH, a dynamic programming algorithm designed
to radpily identify the set of all x’s n-grams (n ≥ L) that occur in the corpus C.
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Algorithm 5 DJ SEARCH (x, C)

Input: text x, reference corpus C,
n-gram matching function f (xi: j,C)
minimum n-gram length L

Output: set of matched n-gram S
i 0, j L, S ?
while j  ||x|| do

if f (xi: j,C) = 1 then
S S [ {xi: j}
j j +1

else
i i+1
j max(i+L, j)

end if
end while
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Figure 2: An illustration of DJ Search algorithm. A brute force approach would independently
check if every n-gram of x occurs in C, performing a quadratic number of f evaluations with respect
to x’s length (i.e., checking every cell in the grid). DJ SEARCH is a two-pointer method that takes
only a linear number of f evaluations. By progressively analyzing n-grams starting and/or ending
at a later endpoint than before, DJ SEARCH limits the total number of f evaluations to 2||x||. In this
example, the minimum n-gram length L is set to 5.

A brute force approach would independently check if every n-gram of x occurs in C, performing a
quadratic number of f evaluations with respect to x’s length, and thus making it too computationally
expensive. Instead, we design a two-pointer method (Laaksonen, 2020) that takes only a linear
number of f evaluations, as illustrated in Figure 2. The key idea is to reduce finding all n-grams
occurring in C to identifying the longest n-gram occurring in C starting at each index i: once
those have been found, it is trivial to deduce all the n-gram occurring in C by computing their
subsequences. Concretely, we progressively analyze the whole document x by iteratively searching
for the longest n-gram that starts at each index i and occurs in C, using f as the assessment. Once
we have found such longest n-gram starting at i, we crucially reuse computations for i+1 by noting
that f(xi:i+n, C) = 1 implies f(xi+1:i+n, C) = 1. Thus, we always analyze n-grams starting
and/or ending at a later endpoint than before, which upper bounds the number of analyzed n-grams
(i.e., the number of f calls) to at most 2∥x∥. The implementation is detailed in Appendix A.1.

In addition to minimizing the number f evaluations, DJ SEARCH optimizes the time complexity of
each evaluation. f determines whether a n-gram xi:i+n occurs in the corpus C either exactly or in
a semantically similar way—e.g., a paraphrase of xi:i+n exists in C. Semantic similarity is often
computed using text embeddings, which are fixed-length vector representations of text meanings.
This reduces measuring text similarity to computing vector distance. Text embeddings, typically
generated by complex models (e.g., BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), Span-
BERT (Joshi et al., 2020)) lack linearity, requiring independent computation for each n-gram in x
and C. To alleviate this issue we use Word Mover’s Distance (WMD) (Kusner et al., 2015), an
optimal transport-inspired metric that measures distance between two n-grams by combining word
embedding distances between each n-gram’s words. WMD enables optimizing f ’s computation, as
pairwise distances between word embeddings can be pre-computed for every pair of words, and then
be reused in every function call of f to identify n-grams in C that are semantically similar to the
ones in x. The implementation is detailed in Appendix A.2.

To further boost efficiency, and given that occurrences of xi:i+n are more likely in texts similar
to x, we estimate f by computing WMD only for the texts in C most similar to x, as identified
by BM25 (Robertson & Walker, 1994). Moreover, exact occurrences of xi:i+n in C represent
a less costly special case in computing f . We further optimize f ’s computation by using Infini-
gram (Liu et al., 2024), which finds exact matches of xi:i+n in C in milliseconds; WMD is com-
puted only if no matches are found by Infini-gram.
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a b c
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Figure 3: a-c: CREATIVITY INDEX in novel writing (a), poetry composition (b) and speech writing
(c) based solely on verbatim matches. d: CREATIVITY INDEX in novel writing considering both
verbatim and semantic matches. e: L-uniqueness in novel writing with respect to the minimum
n-gram length L for humans and OLMo. f-g: CREATIVITY INDEX of LLMs before and after RLHF
in novel writing, based solely on verbatim matches (f) and based on both verbatim and semantic
matches (g). h: L-uniqueness in novel writing with respect to number of documents in the reference
corpus. i: L-uniqueness when search over the top 50 documents in novel writing. j: The number of
reference documents required to keep L-uniqueness below 50% in novel writing. k-l: CREATIVITY
INDEX of GPT-4 compared to humans in novel writing based on verbatim matches, using a machine-
generated reference corpus sourced from the instruction-aligned version of Gemma-7B, Llama3-8B,
and Mixtral-7B, as well as a combination of all three. m: CREATIVITY INDEX of different groups
of human writers. n: Detection AUROC across various domains: our approach sets a new state-of-
the-art for zero-shot detection, even surpassing supervised baselines.
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c d

a b

Figure 4: a-c: CREATIVITY INDEX of ChatGPT in novel writing based on verbatim matches, with
different prompt formats (a), p values in top-p decoding (b) and prompt length (c). d: CREATIVITY
INDEX of LLaMA 2 Chat and Tulu 2 with different model sizes.

3 EVALUATION

How does the creativity of language models compare to humans? We compute the CREATIV-
ITY INDEX for machine texts and human texts across three creative writing tasks: novel writing,
poetry composition, and speech drafting. For human texts, we use book snippets in the Book-
MIA (Shi et al., 2024) dataset, popular modern poems collected by PoemHunter.com, and famous
speeches from the American Rhetoric speech bank. For machine texts, we prompt LLMs to generate
several paragraphs of novels, poems, or speeches, starting with an initial sentence from existing hu-
man writings in each category (see Appendix B.1 for details). We experiment with state-of-the-art
LLMs, including GPT-3 (Brown et al., 2020), ChatGPT (Ouyang et al., 2022), LLaMA 2 Chat (Tou-
vron et al., 2023), Tulu 2 (Ivison et al., 2023), and OLMo Instruct (Groeneveld et al., 2024). For
open-source and open-weight models, we use the largest model size available from each model
family. We use RedPajama (Computer, 2023), a large-scale English corpus with 900 million web
documents, as the reference corpus. The models we analyze are primarily pre-trained on the web
data available before the cutoff date of the reference corpus RedPajama. We will discuss later how
to handle newer models, such as GPT-4 (OpenAI et al., 2023), given that it was largely trained on
more recent web data and third-party private data, both of which fall outside the reference corpus.
We restrict the matching criteria to verbatim matches only in the first experiment. We will ablate the
effect of different matching criteria, prompt formats, decoding strategies, context length, and model
sizes in later experiments.

Our primary finding is that humans consistently exhibit a much higher level of creativity compared
to any LLM across all tasks (Fig. 3a-c). Averaged across all models, the CREATIVITY INDEX of
humans is 52.2% higher2 than LLMs in novel writing (p = 6.9 × 10−27, by Mann-Whitney U test
unless otherwise specified; N = 600), 31.1% higher in poetry composition (p = 1.5× 10−15; N =
600) and 115.3% higher in speech drafting (p = 6.1× 10−31, N = 600). This suggests that human
writings are composed of far more unique combinations of words and phrases compared to model
generations. On the other hand, the differences in model creativity are much smaller and show very
low statistical significance (p = 0.09; N = 1500).

Furthermore, we experiment with different prompt formats on top of ChatGPT, intentionally encour-
aging creativity in the model’s generations by incorporating instructions such as ‘push for creative
ideas, unique emotions, and original twists,’ ‘be bold and creative,’ or ‘you are a creative writer.’
(Fig. 4a) For a full list of the prompts we used, please see Appendix B.1. We found that the
difference in the CREATIVITY INDEX of ChatGPT across different prompts is minimal, with no
statistical significance (p = 0.23; N = 600). We also experimented with different decoding strate-
gies by varying the p value in top-p decoding (Fig. 4b). Although a higher p value resulted in a
marginally higher CREATIVITY INDEX, the difference was minimal and not statistically significant
(p = 0.23; N = 600). Moreover, we ablate the effect of prompt length by varying the number
of sentences from human writings included in the prompt (Fig. 4c). We found that longer prompts
tended to result in a slightly higher CREATIVITY INDEX, likely due to the model copying more from
the longer human text in the prompt. However, the statistical significance of these differences is very
low (p = 0.13; N = 600). Lastly, we analyze the effect of different model sizes for LLaMA 2 Chat
and Tulu 2, but do not observe a consistent trend (p = 0.12; N = 600) (Fig. 4d).

2The percentage difference computed using the formula: CREATIVITY INDEX (human) − CREATIVITY INDEX (model)
CREATIVITY INDEX (model)
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How do different matching criteria affect creativity measurement? We experiment with re-
stricting valid matches to verbatim only, and with allowing both verbatim and semantic matches.
First, the creativity gap between humans and LLMs becomes even larger when considering semantic
matches in addition to verbatim matches (Fig. 3d). Averaged across all models, the CREATIVITY
INDEX of human, based on both verbatim and semantic matches, is 102.5% higher than LLMs in
novel writing (p = 2.6 × 10−12; N = 600), whereas based on verbatim matches alone, the CRE-
ATIVITY INDEX of human is 52.2% higher than LLMs. Second, semantic matches provide more
signal for analyzing the uniqueness of longer n-grams (Fig. 3e). For example, while the gap in
L-uniqueness at L = 11 between human text and machine text from OLMo Instruct is 3.7% based
on verbatim matches alone, this gap widens to 16.3% when considering both verbatim and semantic
matches (p = 3.1 × 10−7; N = 600). This indicates that although some of the longer n-grams in
machine text may appear unique at the verbatim level, they are similar to certain text snippets in the
reference corpus at the content level.

What impact does RLHF have on model creativity? RLHF aims to align model’s outputs with
human preferences, enhancing LLMs’ ability to follow instructions and improving their safety and
adaptability. To understand the impact of RLHF on model creativity, we compare the CREATIVITY
INDEX of the LLMs before and after RLHF alignment. Specifically, we experiment with GPT
Base (Brown et al., 2020), LLaMA 2 Base (Touvron et al., 2023), and OLMo Base (Groeneveld
et al., 2024) and compare their creativity with their counterparts post-RLHF alignment. Our main
finding is that the CREATIVITY INDEX of models after RLHF alignment is much lower than those
before RLHF (Fig. 3f-g). Based on verbatim match alone, the CREATIVITY INDEX of LLMs reduces
by an average of 30.1% after RLHF (p = 1.3 × 10−12; N = 600). Based on both verbatim
and semantic matches, the CREATIVITY INDEX of LLMs decreases by an average of 8.9% after
RLHF (p = 0.01; N = 600). We notice that the reduction of CREATIVITY INDEX after RLHF is
noticeably larger when considering verbatim matches alone. We speculate that models might have
learned certain linguistic styles preferred by humans during RLHF, leading to a decreased surface
form diversity in its outputs.

How do overlapped n-grams distribute in the reference corpus? In addition to measuring the
amount of matched n-grams in a given text, we also investigate the distribution of these n-grams in
the reference corpus. We aim to understand whether these matched n-grams are spread across many
documents or concentrated in a few. Specifically, we identify the top N documents that contain
the highest amount of matched n-grams and result in the minimum L-uniqueness for a given text.
This problem can be reduced to the maximum coverage problem (Nemhauser et al., 1978) and
approximated using a greedy algorithm. Here, we consider both verbatim and semantic matches.
Our main finding is that the matched n-grams in machine texts are concentrated in fewer documents
compared to human texts (Fig. 3h-j). When searching over the top 50 documents, the averaged
L-uniqueness (L = 5) for machine texts is 32.8%, which is 73.4% lower than human texts (mean:
56.6%; p = 3.9 × 10−19; N = 600). Conversely, keeping L-uniqueness below 50% requires
searching through an average of 41.2 documents for human texts, which is 213.7% more than for
machine texts (mean: 13.4; p = 1.6 × 10−22; N = 600). This implies that it’s more likely to find
some existing documents resemble models’ generations than human writings.

How to measure creativity in LLMs trained on data outside of the reference corpus? The
CREATIVITY INDEX of GPT-4 would be significantly inflated if computed using the RedPajama
corpus, as RedPajama’s cutoff date is two years earlier than GPT-4’s knowledge cutoff, and GPT-
4 is additionally trained on third-party private data that we don’t have access to. We hypothesize
that LLMs pre-trained on similar web data are likely to memorize and replicate similar patterns.
As a result, when comparing the generations of these models, we expect them to be more similar
to each other than to human texts, which often contain long-tail patterns. Therefore, to compare
the creativity level of GPT-4 with humans, we use a model-generated reference corpus from newer
open-weight models with knowledge cutoff dates similar to GPT-4, including the instruction-aligned
versions of Gemma-7B (Team et al., 2024), Llama3-8B (AI@Meta, 2024), and Mixtral-7B (Jiang
et al., 2023). Specifically, we randomly sample 150k sentences from the RedPajama corpus and
prompt these models to generate document-level continuations. Based on the model-generated ref-
erence corpus, the average CREATIVITY INDEX of humans is 30.3% higher than GPT-4 in novel
writing (p = 2.3× 10−12; N = 600) (Fig. 3k-l). This suggests that while newer LLMs like GPT-4
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may appear more creative when compared to public data, they still learn common patterns from their
private training data and tend to emit similar patterns as other LLMs trained on comparable data.

How does the creativity vary among different groups of human? Human populations are di-
verse and complex, we aim to explore whether writings from different human authors exhibit varying
levels of linguistic creativity. Specifically, we compare the linguistic creativity among three cate-
gories of writings: books published in 2023 from the BookMIA (Shi et al., 2024) dataset, classic
literature by famous authors, and popular young adult fictions, both sampled from Goodreads’ book
lists. We first observe that the variation in CREATIVITY INDEX among human authors is relatively
smaller compared to the difference between LLMs and humans. Additionally, we found that clas-
sic literature tends to exhibit higher linguistic creativity. On average, the CREATIVITY INDEX of
classic literature is 21.6% higher than young adult fictions (p = 2.7 × 10−90; N = 3000), and
13.8% higher than books published in 2023 (p = 4.3× 10−120; N = 3000). These findings should
be interpreted with a grain of salt. We experimented with only a small set of writings from each
category, so the results may not generalize broadly. Additionally, beyond inherent differences in
creativity, CREATIVITY INDEX can be influenced by factors such as writing style and the time of
composition. For instance, some classic literature are written in older English, which may result in
a higher CREATIVITY INDEX because such writings are harder to reconstruct from web texts that
primarily use modern English. In addition to the differences across categories, we also observed
noticeable variance in creativity within each category. For example, the CREATIVITY INDEX of
‘The Hunger Games’ is 35.4% higher than ‘Twilight’ (p = 1.5 × 10−19; N = 200), even though
both books belong to the category of popular young adult fiction.

Can we leverage differences in creativity for detecting machine-generated text? Based on the
creativity difference between humans and LLMs, we explore a novel use case of CREATIVITY IN-
DEX for zero-shot black-box machine text detection Texts with higher creativity are more likely
to be written by human. Our approach is ready to deploy out-of-the-box, requiring no training
or prior knowledge of the text generator. In addition to creative writing tasks, we also test our
method on detecting machine-generated fake news and theorem proofs. Detecting fake news is
crucial for protecting the public from misinformation, while identifying model-generated solutions
is important for regulating students’ use of LLMs in their coursework. To obtain additional test
data, we prompt LLMs to generate news articles based on the fake news headlines from the Mis-
info Reaction Frames (Gabriel et al., 2022) and compare them with the real news articles from the
XSum (Narayan et al., 2018) dataset. Meanwhile, we prompt LLMs to generate proofs for theorems
from the NaturalProofs (Welleck et al., 2022) benchmark, and compare them with the ground-truth
human-written proofs. The baselines we compare against includes a widely adopted strong zero-
shot detector, DetectGPT (Mitchell et al., 2023a), which uses the curvature of log probability as
the detection criterion, as well as several supervised methods. These include OpenAI’s RoBERTa-
based detector, fine-tuned on millions of generations from various GPT-2 sized models, as well as
a more recent strong supervised detector, Ghostbuster (Verma et al., 2024), fine-tuned on thousands
of generations from ChatGPT. We measure performance using the area under the receiver operating
characteristic curve (AUROC), which represents the probability that a classifier correctly ranks a
randomly-selected human-written example higher than a randomly selected machine-generated ex-
ample. We found CREATIVITY INDEX is surprisingly effective for zero-shot machine text detection:
it consistently surpasses DetectGPT and OpenAI’s detector across all domains, with significant im-
provements in AUROC—30.2% and 26.9%, respectively. It also outperforms the strong supervised
baseline, Ghostbuster—which requires expensive training and data collection—in five out of six
domains, achieving an average AUROC improvement of 3.5% (Fig. 3n).

4 DISCUSSION

This work investigates the level of linguistic creativity in texts generated by LLMs and written by
humans. Our findings suggest that the content and writing style of machine-generated texts may
be less original and unique, as they contain significantly more semantic and verbatim matches with
existing web texts compared to high-quality human writings. We hypothesize that this limited cre-
ativity in models may result from the current data-driven paradigm used to train LLMs. In this
paradigm, models are trained to mimic human-written texts during the pre-training stage, and to
produce outputs aligned with human preferences during the RLHF stage. As a result, models learn
to generate fluent and coherent texts by absorbing and replicating common patterns observed in their
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training data. This reliance on existing text patterns can restrict their originality, as their outputs are
inherently shaped by previously seen examples. In contrast, accomplished authors such as Hem-
ingway go beyond simply mimicking the great writings of others; they craft their own narratives to
express their unique opinions, perspectives, and insights, drawing from their personal experiences,
emotions, and backgrounds, which translates to the more creative compositions of words and phrases
that our method detects. Just as a DJ remixes existing tracks while a composer creates original mu-
sic, we speculate that LLMs behave more like DJs, blending existing texts to produce impressive
new outputs, while skilled human authors, similar to music composers, craft original works.

This work also faces the following limitations. First, CREATIVITY INDEX is designed to measure
one specific aspect of creativity—linguistic creativity (i.e., the novelty in composing words and
phrases). It might not comprehensively capture other dimensions of creativity such as rhetorical
complexity or structural flexibility. Therefore, while CREATIVITY INDEX is an effective tool for
understanding seemingly remarkable machine texts, it is insufficient on its own to draw definitive
conclusions about overall creativity differences across various writings, particularly when distin-
guishing nuanced variations among human authors. Second, the computation of the CREATIVITY
INDEX is constrained by the reference corpus used for DJ SEARCH. While open-source LLMs such
as OLMo rely on publicly available texts from the internet for their training data, major companies
like OpenAI additionally curate private data to train their closed-source LLMs such as ChatGPT.
Without incorporating these private data into the reference corpus of DJ SEARCH, the CREATIVITY
INDEX of closed-source LLMs may be somewhat inflated. In addition, since the reference corpus
primarily consists of more recent Internet texts, it may introduce an implicit bias favoring writings
from older periods, as these texts are underrepresented in modern web data and are therefore harder
to reconstruct. Third, the overlap with existing texts identified by DJ SEARCH in models’ gener-
ations may not conclusively indicate memorization of a specific document. It’s possible that these
text fragments, or their variations, appear in multiple documents that the model has been trained
on, including those outside the reference corpus of DJ SEARCH. Forth, the human authors that this
work focuses on are those with relatively high-quality writings available in existing public datasets.
While some human writings can be mediocre, tedious and unoriginal, we aim to assess how the
creativity levels in impressive LLM outputs compare against the high-quality writings produced by
professional human authors. Lastly, we acknowledge that the discussion surrounding the use of
LLMs in social and industrial settings is highly complex, and our work here speaks only to a part
of it. Besides the creativity of machine-generated content, other considerations in this discussion
include socioeconomic factors and ethical implications, which fall beyond the scope of this paper.

5 RELATED WORK

Measuring Creativity in Ideas: Measuring creative thinking and problem solving takes root in
early work in psychology (Torrance, 1966), where researchers defined four pillars for creative think-
ing: fluency, flexibility, originality and elaboration. Crossley et al. (2016) later on developed this
notion and built on it to expand this to measuring creative writing in students, where they also
adopted n-gram novelty for a measure of originality. However, these prior work focus on creativity
in humans, and they also do not introduce any automated metrics or measurements.

Measuring Creativity in Machine-generated Text Using Expert Annotators: Closely related to
CREATIVITY INDEX is a recent line of work in the generative AI literature comparing the creativity
of human writers to that of large language models in different domains such as story telling and
journalism (Chakrabarty et al., 2023; 2024; Anonymous, 2024). Similar to us, the approach in this
direction often involves prompting an LLM to write an original story or news article, based on some
existing premise or press release, and then comparing the machine-generated text to the human-
written counterparts. These works, however, take a rather subjective approach, where they define
and measure creativity based on human expert annotations and whether people perceive the text to
be more creative, rather than an objective quantification of novelty that we provide.

Measuring Novelty of N -grams: Finally, closely related to our work in terms of techniques is
Nguyen (2024) and Merrill et al. (2024). The former attempts at finding n-gram rules that would
cover and predict generations from transformer models, showing that more than 70% of the times
transformers follow some pre-set patterns and rules. The latter is more similar to our work as they
also measure the novelty of generated n-grams and compare it to human-written text, however they
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differ from us in tow major ways: (1) they only find verbatim matches, whereas we also match to
approximate, semantically similar blocks of text and (2) they compute the percentage of n-grams of
a certain length in a text that can be found in the reference corpus, whereas we measure how much
of the text can be reconstructed by mixing and matching a vast amount of existing text snippets of
varying lengths from the web.

Machine Text Detection: Detecting machine-generated text has been explored for several years
using a variety of methods (Jawahar et al., 2020; Uchendu et al., 2021). Gehrmann et al. (2019)
and Dugan et al. (2023) demonstrate that even humans tend to struggle to differentiate between
text written by humans and machines, highlighting the need for automated detection solutions.
Some approaches involve training a classifier in a supervised manner to identify machine-generated
text (Bakhtin et al., 2019; Uchendu et al., 2020), while others use a zero-shot detection method (So-
laiman et al., 2019; Ippolito et al., 2020). Additionally, there is research on bot detection through
question answering (Wang et al., 2023; Chew & Baird, 2003). Recently, Mitchell et al. (2023b)
introduced DetectGPT, a zero-shot method based on the hypothesis that texts produced by a large
language model (LLM) are located at local maxima, and thus exhibit negative curvature, in the
model’s probability distribution. Follow-up work build on DetectGPT by making it faster (Bao
et al., 2024) and proposing to use cross-detection when the target model is unknown (Mireshghallah
et al., 2024).

6 CONCLUSION

We introduce CREATIVITY INDEX, an interoperable and scalable metric designed to quantify the
linguistic creativity of a given text by estimating how much of that text can be reconstructed by
mixing and matching a vast amount of existing text snippets on the web. To efficiently compute
the CREATIVITY INDEX, we developed DJ SEARCH, a novel dynamic programming algorithm that
can search verbatim and near-verbatim matches of text snippets from a given document against the
web. We find that the creativity index of professional human writers is, on average, 66.2% higher
than that of LLMs. Notably, RLHF dramatically reduces the creativity index of LLMs by an average
of 30.1%. Furthermore, we demonstrate that CREATIVITY INDEX can be used as a surprisingly
effective criterion for zero-shot black-box machine text detection. Our method not only surpasses
the strongest zero-shot baseline, DetectGPT, by a significant margin of 30.2%, but also outperforms
the strongest supervised baseline, GhostBuster, in five out of six domains. We hope that this study
enhances the understanding of LLMs through the lens of linguistic creativity, and fosters informed
usage of content created by LLMs in real-world applications.
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A METHOD DETAILS

A.1 IMPLEMENTATION DETAILS OF DJ SEARCH

As discussed in the main text, the deployment of the CREATIVITY INDEX relies on efficiently deter-
mining whether each n-gram xi+i+n ∈ x can be found anywhere in the massive reference corpus C
of publicly available texts. The function f(xi+i+n, C) is a binary indicator that determines whether
an n-gram xi:i+n occurs in C. In line with the definition of CREATIVITY INDEX, we only consider
the n-grams xi+i+n such that n ≥ L for some fixed constant L.

While a naive approach to checking whether xi+i+n appears in C for every n-gram xi+i+n ∈ x
would take O(|x|2) calls3 to f (see Algorithm 1), using a two-pointer approach we can radically
reduce this to O(|x|) calls (see Algorithm 2). Note that a two-pointer approach does O(|x|) calls to
f since in each iteration we advance at least one of the two pointers i and j by 1, and 0 ≤ i, j ≤ |x|.

Algorithm 1 Naive Computation

NGramsFoundi,j ← False ∀ i ∈ [0..|x|) and j ∈ [0..|x|) ▷ matrix to store n-gram occurrence
for i ∈ [0, 1, ..., |x| − L) do

for j ∈ [i+ L, ..., |x|) do
NGramsFound(i, j)← f(xi:j , C)

end for
end for
return NGramsFound

Algorithm 2 Efficient computation of DJ SEARCH(x, C)

NGramsFoundi,j ← False ∀ i ∈ [0..|x|) and j ∈ [0..|x|) ▷ matrix to store n-gram occurrence
i← 0, j ← L
while j < |x| do

NGramsFound(i, j) = f(xi:j , C)
if NGramsFound(i, j) then

j ← j + 1 ▷ we will search for xi:j+1 next
else

i← i+ 1 ▷ since xi:j was not found, xi:j+k will not be found for all k > 0
j ← max(i+ L, j) ▷ we only explore L-grams and beyond

end if
end while
return NGramsFound

A.2 IMPLEMENTATION DETAILS OF WORD MOVER’S DISTANCE

Let w be an n-gram. Let f(w,C) be the function that determines whether w appears in any text
d ∈ C, either exactly or as a phrase that is highly similar in meaning to w (e.g., a paraphrase of w).
Trivially, f(w,C) :=

⋃
d∈C f(w,d), and here on we will only discuss how to compute f(w,d).

An established approach for finding semantically similar phrases to a given n-gram w is to compute
its embedding—embedding(w)—and then independently compute its similarity to the embeddings
of all other n-grams to be analyzed. An embedding of a n-gram is a vector that represents the mean-
ing of such n-gram in an k-th dimensional space of fixed size, enabling the comparison of similarity
between concepts expressed in different surface forms. This comparison is typically done using
cosine similarity, the scaled dot product between the two embeddings being compared. Text embed-
dings are generated by models specifically trained to this effect (e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), SpanBERT (Joshi et al., 2020)) making their computation expensive at
a large scale. Notably, text embeddings usually do not possess linearity, i.e. the embedding of con-
catenating n-grams w and v cannot be deduced from knowing embedding(w) and embedding(v),
and instead needs to be computed from scratch.

3There are (|x| −L)(|x| −L+3)/2 spans to analyze if L is the minimum n-gram length to be considered.
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Since our goal is to find the n-grams of d that are highly similar to w, using the traditional approach
would entail comparing embedding(w) with the embeddings of all n-grams in C, which are approx-
imately

∑
d∈C |d|2 in number. Note that this also implies independently computing ≈ ∑

d∈C |d|2
embeddings, which increases the computation costs significantly. Instead we use Word Mover’s
Distance (Kusner et al., 2015) (WMD), a method to estimate similarity between two n-grams by
combining comparisons between pairs of word embeddings. This enables lifting the requirement
to independently computing the embedding for each n-gram in C. Concretely, the Word Movers’
Distance between two n-grams w and v is defined as follows:

Dw→v :=
1

|w|
∑

i∈[0..|w|)

min
j∈[0..|v|)

1− cosine similarity(embedding(vj), embedding(wi))

= 1− 1

|w|
∑

i∈[0..|w|)

max
j∈[0..|v|)

cosine similarity(embedding(vj), embedding(wi))

WMD(w, v) := max(Dw→v,Dv→w)

WMD also pre-filters the words considered in w and v to only include the content words in the
analysis (i.e, discards stop-words, such as the, a, an, it, on, ...).

Note that Dw→v’s definition is asymmetric (Dw→v ̸= Dv→w). Thus, we consider the Word Movers’
Distance of two n-grams w and v as the maximum of Dw→v and Dv→w: w and v are highly similar
if their distance is below a threshold δ for both Dw→v and Dv→w (See Algorithm 3):

WMD(w, v) = max(Dw→v,Dv→w) < δ

Algorithm 3 Conceptual writeup of f(w,d) using Word Mover Distance (WMD) to find the n-
grams of a single text d ∈ C that are highly similar to the n-gram w and are of length ≥ L.

procedure DIRECTIONALWMD(w, v)
return 1 - 1

|v|
∑

j∈[0..|v|) maxi∈[0..|w|) cosine similarity(embedding(wi), embedding(vj))
end procedure
for a ∈ [0, 1, ..., |d|) do

for b ∈ [a+ L, ..., |d|] do
symmetricWMD← max(directionalWMD(d[a : b), w), directionalWMD(w,d[a : b)))
if symmetricWMD < δ then

return True
end if

end for
end for
return False

Avid readers may notice that Algorithm 3 repeatedly computes the maximum over the same set,
and sums of contiguous similarity scores; these can be pre-computed. Algorithm 4 shows these
optimizations, resulting in an algorithm of time complexity O(|d| · |w| + |d|2|w|) = O(|d|2|w|),
assuming already computed word embeddings. Note that because there is a fixed vocabulary, all
word embeddings as well as cosine similarities of word embedding pairs can be pre-computed.

We described how to compute f(w,d) for a single document d ∈ C, as we have already established
that f(w,C) =

⋃
d∈C f(w,d). To accelerate computation, and given that similar n-grams to xi:i+n

are more likely to occur in texts similar to x, we select C’s top most likely documents to contain
w using a BM25Robertson & Walker (1994) index, denoted C ′. We then approximate f(w,C) ≈⋃

d∈C′ f(w,d).

As a final optimization, we note that it is unnecessary to compute the costly f(w,C) for finding
semantically similar matches for w in the case where w appears exactly in C. To check if w appears
exactly in C, we can leverage the existing, less expensive approach Infini-Gram (Liu et al., 2024)
and search for the semantic similar matches only if Infini-Gram could not find any exact matches.
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Algorithm 4 Efficient Computation of f(w,d) (optimization of Algorithm 3)

token similarityi,j ← cosine similarity(embedding(wi), embedding(dj)) ∀ i ∈ [0..|w|) and j ∈
[0..|d|)
for j ∈ [1, ..., |d|] do

doc prefix similarityj ← doc prefix similarityj−1 +maxi∈[0..|w|) token similarityi,j−1
end for

for a ∈ [0, 1, ..., |d|) do
for b ∈ [a+ L, ..., |d|] do

computed WMD(d[a : b), w) ← 1 − (doc prefix similarityb −
doc prefix similaritya)/(b− a)

computed WMD(w,d[a : b))← 1− 1
|w|

∑
i∈[0..|w|) maxj∈[a..b) token similarityi,j

symmetric WMD← max(computed WMD(d[a : b), w), computed WMD(w,d[a : b)))
if symmetric WMD < δ then

return True
end if

end for
end for
return False

A.3 DEDUPLICATION OF THE REFERENCE CORPUS

When a text x is part of the reference corpus C, its CREATIVITY INDEX would trivially become
zero. This issue often arises when analyzing the works of famous authors, as their writings are
frequently copied, quoted, or cited online. To address this, when analyzing human texts written
before the cutoff date of the reference corpus, we exclude any document d ∈ C that contains copies,
quotations, or citations of the text x from the reference corpus C, and compute CREATIVITY INDEX
of x using this filtered reference corpus.

Specifically, we measure the degree of overlap between x and d by calculating the length of the
longest common subsequence (LCS) between them, normalized by the length of x. Formally,
S(x,d) = ||LCS(x,d)||

||x|| . If x and d have a high degree of overlap (i.e., S(x,d) ≥ α), it’s very likely that
d contains an exact copy of x. If x and d show a moderate amount of overlap (i.e., β ≤ S(x,d) < α),
we prompt a LLM to determine whether d contains copies or quotations of x using in-context exam-
ples provided below. Additionally, if d includes the author name or title of x, it is highly likely that
d contains a citation of x. In practice, we set the values of α and β to 0.9 and 0.3, respectively, and
use LLaMA 2 Chat as the LLM to check for copies and quotations.
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Please check if paragraph A contains any copies or quotations from
paragraph B.

Here are some examples:
Paragraph A: In the end though, I did the required reading, complained
bitterly about being bored, wrote the requisite essay, and promptly
forgot all about it. "He was an old man who fished alone in a skiff
in the Gulf Stream and he had gone eighty-four days now without taking
a fish. In the first forty days ...
Paragraph B: He was an old man who fished alone in a skiff in the Gulf
Stream and he had gone eighty-four days now without taking a fish. In
the first forty days a boy had been with him. But after forty days
without a fish the boy’s parents had told him that the old man was now
definitely and finally salao ...
Answer: Yes

Paragraph A: He was an old man who fished alone in a lobster boat off the
Maine coast and he had gone 117 days without taking a crustacean. His
luck was not bad, rather his judgment was good (don’t fish the Atlantic
in winter). Then he met us and for all I know his luck changed. El
Campion is due for a change of luck ...
Paragraph B: He was an old man who fished alone in a skiff in the Gulf
Stream and he had gone eighty-four days now without taking a fish. In
the first forty days a boy had been with him. But after forty days
without a fish the boy’s parents had told him that the old man was now
definitely and finally salao ...
Answer: No

Paragraph A: Santiago, the "old man who fished alone," in Hemingway’s
"The Old Man and the Sea" appears as one who has an undefeatable
character, a loving, cheerful character, and very humble. The writer
describes him in this way: "Everything about him was old except his
eyes, and they were the same color as the sea ...
Paragraph B: He was an old man who fished alone in a skiff in the Gulf
Stream and he had gone eighty-four days now without taking a fish. In
the first forty days a boy had been with him. But after forty days
without a fish the boy’s parents had told him that the old man was now
definitely and finally salao ...
Answer: Yes

Paragraph A: He was an old man who could see the form of his god, and
a monk, moreover. Izzie had limited ability to communicate directly with
her own deity. Much of her life she had proceeded by vague impressions
and only glimpsed the great god’s image briefly in the depths of
meditation ...
Paragraph B: He was an old man who fished alone in a skiff in the Gulf
Stream and he had gone eighty-four days now without taking a fish. In
the first forty days a boy had been with him. But after forty days
without a fish the boy’s parents had told him that the old man was now
definitely and finally salao ...
Answer: No

Here is the test example:
Paragraph A: [A]
Paragraph B: [B]
Answer:
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B EVALUATION

B.1 MACHINE TEXT GENERATION

We experiment with state-of-the-art LLMs: GPT-3 (Brown et al., 2020) (text-davinci-003),
ChatGPT (Ouyang et al., 2022) (gpt-3.5-turbo), LLaMA 2 Chat (Touvron et al., 2023), Tulu
2 (Ivison et al., 2023) and OLMo Instruct (Groeneveld et al., 2024) along with their base model
before RLHF: GPT Base (Brown et al., 2020) (davinci-002), LLaMA 2 Base (Touvron et al.,
2023) and OLMo Base (Groeneveld et al., 2024). These models are primarily pre-trained on the
web data available before the cutoff date of the reference corpus RedPajama (Computer, 2023). We
additionally discuss how to handle newer models, such as GPT-4 (OpenAI et al., 2023), which are
largely trained on more recent web data and third-party private data, both of which fall outside the
reference corpus RedPajama.

To obtain machine texts, we prompt LLMs to generate several paragraphs of novels, poems, or
speeches, starting with an initial sentence taken from existing human writings in each category. To
construct test data for machine text detection, we further prompt LLMs to generate news articles
based on the fake news headlines from the Misinfo Reaction Frames (Gabriel et al., 2022) and to
generate theorem proofs for questions from the NaturalProofs (Welleck et al., 2022) benchmark.
The prompts used for each task are illustrated below. For all generations, we use nucleus sampling
with p = 0.9 and set the maximum length of the generated texts to 288 tokens.

Please write a few paragraphs for a novel starting with the following
prompt: [PROMPT SENTENCE]

Please write a poem starting with the following line: [PROMPT LINE]

Please write a speech starting with the following sentence: [PROMPT
SENTENCE]

Please write a news article based on the given headline: [NEWS
HEADLINE]

Please provide a proof for the following theorem: [THEOREM QUESTION]

To obtain model-generated reference corpus to compare the CREATIVITY INDEX of GPT-4 with
humans, we randomly sample 150k sentences from the RedPajama corpus and prompt open-
weight LLMs with knowledge cutoff dates similar to GPT-4 to generate document-level contin-
uations. The models we use are the instruction-aligned versions of Gemma-7B (Team et al.,
2024) (gemma-7b-it), Llama3-8B (Meta-Llama-3-8B) (AI@Meta, 2024), and Mixtral-7B
(Mistral-7B-v0.1) (Jiang et al., 2023). The prompt used to generate continuations is illustrated
below. We use nucleus sampling with p = 0.9 and set the maximum length of the generated texts to
2048 tokens.

Please generate a continuation for the following sentence: [PROMPT
SENTENCE]

We additionally experiment with different prompt formats, intentionally encouraging creativity in
models’ generations by incorporating instructions such as ‘push for creative ideas, unique emotions,
and original twists,’ ‘be bold and creative,’ or ‘you are a creative writer.’ Please see blow for a full
list of the prompts we tried.

Write a few paragraphs for a novel from the following prompt, pushing
for creative ideas, unique emotions, and original twists.
Prompt: [PROMPT SENTENCE]
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Use the following prompt to write a few paragraphs for a novel with
creative, unqiue perspectives or twists. Let your originality shine.
Prompt: [PROMPT SENTENCE]

Create a few paragraphs from the following prompt for a novel, focusing
on novel ideas, emotions, or perspectives. Be as creative as possible.
Prompt: [PROMPT SENTENCE]

Write a few paragraphs for a novel based on the following prompt,
exploring unexpected twists, emotions, or unique perspectives. Be bold
and creative.
Prompt: [PROMPT SENTENCE]

Based on the following prompt, and write a few paragraphs for a novel
that explore unexpected twists, deep emotions, or unique perspectives.
Let your creativity flow, and don’t be afraid to experiment with
unconventional ideas or characters
Prompt: [PROMPT SENTENCE]

As a creative agent, write a few paragraphs for a novel based on the
following prompt, bringing your novel ideas and original emotions to
life.
Prompt: [PROMPT SENTENCE]

You are a creative writer, write a few paragraphs for a novel based
on the following prompt. Explore unique perspectives and unexpected
twists, and let your creativity guide you.
Prompt: [PROMPT SENTENCE]

You are a creative agent, free to shape this story in any direction.
Write a few paragraphs for a novel based on the following prompt, using
your imagination to uncover surprises and depth.
Prompt: [PROMPT SENTENCE]

As a creative writer, your task is to write a few paragraphs for a
novel based on the following prompt. Dive into original ideas, explore
emotions, and surprise yourself.
Prompt: [PROMPT SENTENCE]

You are a creative writer who brings stories to life. Write a few
paragraphs for a novel based on the following prompt, letting your
imagination take bold, unexpected turns.
Prompt: [PROMPT SENTENCE]

B.2 DATASET DETAILS

Reference Corpus: We use RedPajama (Computer, 2023), the largest web data collection avail-
able at the time of this study, as our reference corpus. RedPajama contains 100 billion text docu-
ments with 100+ trillion raw tokens from 84 CommonCrawl dumps.

Novel: For human-written novels, we use book snippets from the BookMIA (Shi et al., 2024)
dataset. The BookMIA dataset contains approximately 10k book snippets, with an average length of
around 650 words per snippet. We randomly sample 100 book snippets from the BookMIA dataset
and select the first K sentences of each snippet such that their total length exceeds 256 words, to
use as human text. Since novels we use were published after the cutoff date of RedPajama, there’s
no need for deduplication before DJ SEARCH.
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Speech: For the transcripts of human speeches, we randomly sample 100 speeches from the fa-
mous speeches available in the American Rhetoric speech bank. For each speech, we randomly
sample continuous K sentences such that their total length exceeds 256 words, to use as human
text. Since these speeches were made before the cutoff date of RedPajama, deduplication is needed
before DJ SEARCH.

Poem: For human-written poems, we randomly sample 100 poems from the popular modern po-
ems collected by PoemHunter.com. Since these poems were published before the cutoff date of
RedPajama, deduplication is needed before DJ SEARCH.

News Article: We use news articles from the XSum (Narayan et al., 2018) dataset as the human
text for the machine text detection task. The Xsum dataset contains around 200k new articles, with
an average length of around 380 words per article. We randomly sample 500 articles to use as human
text. Since these news articles were released before the cutoff date of RedPajama, deduplication is
needed before DJ SEARCH. For machine-generated fake news, we randomly sample 500 fake news
headlines from the Misinfo Reaction Frames (Gabriel et al., 2022), and based on these headlines,
LLMs are asked to generate corresponding news articles.

Theorem Proof: We use the ground-truth human-written proofs from the NaturalProofs (Welleck
et al., 2022) dataset as the human text for the machine text detection task. The NaturalProofs
dataset contains approximately 24k theorems and their corresponding proofs. We randomly sam-
ple 500 theorem-proof pairs and use the ground-truth proofs as human text. Since the NaturalProofs
dataset was curated after the cutoff date of RedPajama, there’s no need for deduplication before
DJ SEARCH. For machine-generated math proofs, we prompt LLMs to write proofs for the 500
theorems we sampled.

B.3 PARAMETERS OF DJ SEARCH

We set the minimum n-gram length L in DJ SEARCH to 5, and set the threshold for Word Mover’s
Distance to 0.95 for semantic matches. We observe that the L-uniqueness is close to zero for most
human and machine texts when L ≤ 5 and close to one when L ≥ 12. Therefore, in practice, we
sum up the L-uniqueness for 5 ≤ L ≤ 12 when computing CREATIVITY INDEX.

The only experiment with slightly different parameters is to compare the creativity of GPT-4 with
humans. We observed that the L-uniqueness is close to one when L ≥ 7 based on the model-
generated reference corpus. Therefore, we sum up the L-uniqueness for 5 ≤ L ≤ 7 when computing
CREATIVITY INDEX.

C RELATED WORK

Measuring Creativity in Ideas: Measuring creative thinking and problem solving takes root in
early work in psychology (Torrance, 1966), where researchers defined four pillars for creative think-
ing: fluency, flexibility, originality and elaboration. Crossley et al. (2016) later on developed this
notion and built on it to expand this to measuring creative writing in students, where they also
adopted n-gram novelty for a measure of originality. However, these prior work focus on creativity
in humans, and they also do not introduce any automated metrics or measurements.

Measuring Creativity in Machine-generated Text Using Expert Annotators: Closely related to
CREATIVITY INDEX is a recent line of work in the generative AI literature comparing the creativity
of human writers to that of large language models in different domains such as story telling and
journalism (Chakrabarty et al., 2023; 2024; Anonymous, 2024). Similar to us, the approach in this
direction often involves prompting an LLM to write an original story or news article, based on some
existing premise or press release, and then comparing the machine-generated text to the human-
written counterparts. These works, however, take a rather subjective approach, where they define
and measure creativity based on human expert annotations and whether people perceive the text to
be more creative, rather than an objective quantification of novelty that we provide.
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Measuring Novelty of N -grams: Finally, closely related to our work in terms of techniques is
Nguyen (2024) and Merrill et al. (2024). The former attempts at finding n-gram rules that would
cover and predict generations from transformer models, showing that more than 70% of the times
transformers follow some pre-set patterns and rules. The latter is more similar to our work as they
also measure the novelty of generated n-grams and compare it to human-written text, however they
differ from us in tow major ways: (1) they only find verbatim matches, whereas we also match to
approximate, semantically similar blocks of text and (2) they compute the percentage of n-grams of
a certain length in a text that can be found in the reference corpus, whereas we measure how much
of the text can be reconstructed by mixing and matching a vast amount of existing text snippets of
varying lengths from the web.

Machine Text Detection: Detecting machine-generated text has been explored for several years
using a variety of methods (Jawahar et al., 2020; Uchendu et al., 2021). Gehrmann et al. (2019)
and Dugan et al. (2023) demonstrate that even humans tend to struggle to differentiate between
text written by humans and machines, highlighting the need for automated detection solutions.
Some approaches involve training a classifier in a supervised manner to identify machine-generated
text (Bakhtin et al., 2019; Uchendu et al., 2020), while others use a zero-shot detection method (So-
laiman et al., 2019; Ippolito et al., 2020). Additionally, there is research on bot detection through
question answering (Wang et al., 2023; Chew & Baird, 2003). Recently, Mitchell et al. (2023b)
introduced DetectGPT, a zero-shot method based on the hypothesis that texts produced by a large
language model (LLM) are located at local maxima, and thus exhibit negative curvature, in the
model’s probability distribution. Follow-up work build on DetectGPT by making it faster (Bao
et al., 2024) and proposing to use cross-detection when the target model is unknown (Mireshghallah
et al., 2024).

Various strategies have been developed to detect machine-generated text in real-world settings. One
notable approach is watermarking, which embeds algorithmically detectable patterns into the gen-
erated text while maintaining the quality and diversity of the language model’s outputs. Initial
watermarking techniques for natural language were proposed by Atallah et al. (2001) and have been
adapted for neural language model outputs (Fang et al., 2017; Ziegler et al., 2019). Recent advance-
ments include Abdelnabi & Fritz (2021) work on an adversarial watermarking transformer (AWT)
for transformer-based language models. Unlike methods dependent on specific model architectures,
Kirchenbauer et al. (2023) introduce a watermarking technique applicable to texts generated by any
common autoregressive language model.

Application of LLMs in Creative Writing: Recent advancements have highlighted the potential
of LLMs in supporting various creative writing endeavors, ranging from short stories (Yang et al.,
2022) to screenplays (Mirowski et al., 2023b). Enhancing LLMs to produce text that aligns more
closely with human preferences has made them adept at following user instructions, thereby turn-
ing them into valuable tools for individuals without technical expertise. This progress has boosted
the commercial viability of LLMs as writing aids, which can continue a narrative, describe scenes,
or offer feedback. Chung et al. (2021) conducted a review of literature on creativity support tools
across various arts, leading to the development of a taxonomy that includes roles, interactions, and
technologies. In contrast, Frich et al. (2019) and Palani et al. (2022) focused on how creative prac-
titioners select new tools, highlighting their emphasis on functionality, workflow integration, and
performance, and noting that personal recommendations often guide their choices. Additionally,
Gero et al. (2022) created a space based on the cognitive process model of writing, influencing inter-
face design decisions. Gero et al. (2023) further explored the social dynamics of AI in creative tasks,
revealing a disconnect between writers’ objectives and the support provided by computer tools.
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Figure 5: Example outputs from DJ SEARCH based on both verbatim and semantic matches. We
prompt LLMs to generate a few paragraphs of a novel, beginning with a first sentence taken from a
human-written novel snippet.
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Figure 6: Example outputs from DJ SEARCH based on both verbatim and semantic matches. We
prompt LLMs to generate a few paragraphs of a novel, beginning with a first sentence taken from a
human-written novel snippet.
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Figure 7: Example outputs from DJ SEARCH based on both verbatim and semantic matches. We
prompt LLMs to generate a few paragraphs of a novel, beginning with a first sentence taken from a
human-written novel snippet.
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Figure 8: Example outputs from DJ SEARCH based on both verbatim and semantic matches. We
prompt LLMs to generate a few paragraphs of a novel, beginning with a first sentence taken from a
human-written novel snippet.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Figure 9: Example outputs from DJ SEARCH based on both verbatim and semantic matches. We
prompt LLMs to generate a few paragraphs of a novel, beginning with a first sentence taken from a
human-written novel snippet.
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Figure 10: Example outputs from DJ SEARCH based on both verbatim and semantic matches. We
prompt LLMs to generate a few paragraphs of a novel, beginning with a first sentence taken from a
human-written novel snippet.
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Figure 11: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a few paragraphs of a novel, beginning with a first sentence taken from a human-written
novel snippet.
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Figure 12: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a few paragraphs of a novel, beginning with a first sentence taken from a human-written
novel snippet.
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Figure 13: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a few paragraphs of a novel, beginning with a first sentence taken from a human-written
novel snippet.
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Figure 14: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a few paragraphs of a novel, beginning with a first sentence taken from a human-written
novel snippet.
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Figure 15: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a few paragraphs of a novel, beginning with a first sentence taken from a human-written
novel snippet.
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Figure 16: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a few paragraphs of a novel, beginning with a first sentence taken from a human-written
novel snippet.
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Figure 17: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a speech starting with the opening sentence of a human speech transcript.
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Figure 18: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a speech starting with the opening sentence of a human speech transcript.

Figure 19: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a speech starting with the opening sentence of a human speech transcript.
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Figure 20: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a speech starting with the opening sentence of a human speech transcript.

Figure 21: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a speech starting with the opening sentence of a human speech transcript.
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Figure 22: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a speech starting with the opening sentence of a human speech transcript.
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Figure 23: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a speech starting with the opening sentence of a human speech transcript.
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Figure 24: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a speech starting with the opening sentence of a human speech transcript.
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Figure 25: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a poem starting with the first line of a human-written poem.
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Figure 26: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a poem starting with the first line of a human-written poem.
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Figure 27: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a poem starting with the first line of a human-written poem.
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Figure 28: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a poem starting with the first line of a human-written poem.
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Figure 29: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a poem starting with the first line of a human-written poem.
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Figure 30: Example outputs from DJ SEARCH based on verbatim matches. We prompt LLMs to
generate a poem starting with the first line of a human-written poem.
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