PTAD: PROTOTYPE-ORIENTED TABULAR ANOMALY DETECTION VIA MASK MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

Tabular anomaly detection, which aims at identifying deviant samples, has been crucial in a variety of real-world applications, such as medical disease identification, financial fraud detection, intrusion monitoring, etc. Although recent deep learning-based methods have achieved competitive performances, these methods suffer from representation entanglement and the lack of global correlation modeling, which leads to the 'abnormal leakage' issue and hinders anomaly detection performance. To tackle the problem, we incorporate mask modeling and prototype learning into tabular anomaly detection. The core idea is to design learnable masks by disentangled representation learning within a projection space and extracting normal dependencies as explicit global prototypes. Specifically, the overall model involves two parts: (i) During encoding, we perform mask modeling in both the data space and projection space with orthogonal basis vectors for masking out the suspicious abnormal locations; (ii) During decoding, we decode multiple masked representations in parallel for reconstruction and learn association prototypes to extract normal characteristic correlations. Our proposal derives from a distribution-matching perspective, where both projection space learning and association prototype learning are formulated as optimal transport problems, and the calibration distances are utilized to refine the anomaly scores. By conducting both quantitative and qualitative experiments on 20 tabular benchmarks, our model surpasses other competitors and possesses good interpretability.

032

004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

1 INTRODUCTION

033 Tabular data, often structured as tables in relational databases with rows signifying individual data 034 samples and columns representing feature variables, have become indispensable across diverse real-world domains including healthcare (Hernandez et al., 2022), engineering (Ye et al., 2023), 035 finance (Assefa et al., 2020), etc. Tabular anomaly detection (AD), which endeavors to identify samples that diverge from a pre-defined notion of normality, plays a pivotal role in diverse scien-037 tific and industrial contexts, such as medical disease identification (Fernando et al., 2021), financial fraud detection (Al-Hashedi & Magalingam, 2021), cybersecurity intrusion monitoring (Malaiya et al., 2019), and astronomy (Reyes & Estévez, 2020). In practical scenarios, obtaining labeled 040 anomalies is always impractical or prohibitive, necessitating a common implementation of training 041 solely on normal samples. By distilling the inherent characteristic patterns from normal training 042 data, anomalies are expected to be detected with deviations from normal patterns (Ruff et al., 2021). 043 Nevertheless, the intricate, heterogeneous, and unstructured nature of tabular data features (Chang 044 et al., [2023] poses significant challenges in identifying such characteristic patterns.

Recent works (Qiu et al.) [2021; Shenkar & Wolf, [2022) have highlighted the importance of considering the particular characteristics of tabular data. For example, Neutral AD (Qiu et al., [2021) and ICL (Shenkar & Wolf, [2022) employ contrastive learning-based loss functions to create pretext tasks for tabular data, where the characteristic patterns are modeled by the contrastive losses and samples with a high loss value indicate a high possibility of anomaly. Recently, several models adhere to the reconstruction pipeline to capture characteristic patterns during reconstruction, which achieves state-of-the-art (SOTA) performances for tabular anomaly detection. In particular, NPT-AD (Thimonier et al.) [2024) leverages Non-Parametric Transformers (NPT) (Kossen et al.) [2021) to capture both feature-feature and sample-sample dependencies for anomaly detection during reconstructing tabular data. MCM (Yin et al., [2024) designs a learnable masking strategy to capture 054 intrinsic correlations between features in training data and detect anomalies with reconstruction er-055 rors. Typically, the motivation behind these methodologies is that a well-trained model struggles 056 to generate or represent samples that deviate significantly from the normal distribution (Yin et al., 057 2024; Pang et al., 2021). Nevertheless, reconstruction-based AD methods may fall into an 'anomaly 058 leakage' issue, where both normal and anomalous samples can be well recovered, and hence fail to detect outliers (You et al., 2022; Li et al., 2024). The inherent reasons might reside in the representation entanglement, where different features or relations of the learned data representations 060 are highly correlated and entangled with each other, impeding anomaly discriminability and precise 061 anomaly detection. Furthermore, the representations tend to overlook global correlation patterns as 062 each data sample is represented distinctively, which fails to model the shared normal information 063 among distinct normal samples and thus hinders the detection performance (Ye et al., 2024). 064

To tackle the above issues, we introduce PTAD, a prototype-oriented tabular anomaly detection 065 method for tabular AD. The fundamental concepts center on two key aspects: 1) To prevent leaking 066 anomaly information, we propose data-adaptive masking strategies to find suspicious anomaly loca-067 tions and reconstruct them with normal information, thus resulting in large deviations for instructing 068 anomalies. Specifically, a data-space soft masking strategy and a projection-space multiple masking 069 strategy are designed to select optimal masks. Furthermore, to encourage disentangled representation learning, projection space is constructed based on a group of learnable orthogonal basis vectors. 071 Furthermore, to capture various data characteristics and diverse inherent relationships, we introduce 072 a multiple mask strategy in projection space while saving computational consumption. 2) Consider-073 ing the characteristics of tabular data are heterogeneous and complex, we investigate the correlation 074 patterns between features to facilitate modeling of tabular normal patterns and detecting anomalies, 075 termed association prototype learning. The processes of basis vectors learning and association prototypes learning are formulated as optimal transport (OT) problems from a distribution-matching 076 perspective, in which the transport cost can naturally serve as a criterion for anomaly assessment as 077 it detects the deviation degree from the learned normality patterns.

In brief, our main contributions are summarized as follows: (1) We introduce a novel mask modeling
method for relieving the leakage of anomalies, which aligns the distribution over p-space representations and the distribution over disentangled orthogonal basis vectors. (2) We investigate the learning
of global correlation patterns in tabular data via solving an OT problem and explore a novel direction of incorporating association prototypes for tabular AD. (3) Extensive experiments on various
datasets demonstrate the superiority and interpretability of our method for tabular AD.

085

2 RELATED WORK

087 088

Tabular Anomaly Detection. Over the past decades, numerous methods for tabular AD have been developed to identify significant deviations from the majority of data objects, which can be roughly 091 divided into four groups: *i*) Supervised methods. With the availability of both normal and abnormal 092 training samples, supervised methods such as Support Vector Machine (SVM) (Hearst et al., 1998) 093 and deep networks (Gorishniy et al. 2021) developed, however, facing the risk of missing unknown anomalies. *ii*) Semi-supervised methods. Capitalizing the supervision from partial labels, the semi-094 supervised algorithms (Villa-Pérez et al.) [2021; Pang et al., [2023] efficiently use the partially la-095 beled data and facilitate representation learning with the unlabeled data. iii) Unsupervised methods. 096 Without any label information of training data, unsupervised methods aim to find deviations from the majority of data, e.g. deep autoencoders (Kim et al., 2019; Han et al., 2022) and GANs (Schleg) 098 et al., 2017; Sabuhi et al., 2021) suppose abnormality can be indicated with high reconstruction error. iv) Self-Supervised method. Several recent studies have revealed that self-supervised learning 100 facilitates anomaly detection by creating pretext tasks to train neural networks for modeling better 101 characteristics within training data. In particular, NPT-AD (Thimonier et al.) 2024) leverages Non-102 Parametric Transformers for anomaly detection to capture both feature-feature and sample-sample 103 dependencies while reconstructing tabular data. Additionally, MCM (Yin et al., 2024) extends the 104 mask modeling to tabular AD, which generates diverse multiple masks and jointly utilizes its recon-105 structions for anomaly detection. However, reconstruction models usually suffer from the 'anomaly leakage' issue, and the reconstruction error as a general anomaly detection score, is limited for clear 106 and precise anomaly detection. This motivates us to perform mask modeling and prototype learning 107 to relieve anomaly reconstruction and find a new indicator for anomaly scoring.

108 **Prototype Learning.** Prototype learning has been widely studied in different tasks of computer vision (Nauta et al., 2021; Zhou et al., 2022), and natural language processing (Huang et al., 2012; 110 Zalmout & Li, 2022). Typically, prototypes refer to empirical proxies and are computed as the 111 weighted results of latent features of all instances of a particular class, and the distances to pro-112 totypes facilitate classification, recognition, representations, etc. Recently, prototype learning has been introduced to image anomaly detection to facilitate extracting normal feature representations 113 to distinguish anomalous samples. In particular, HVQ-Trans (Lu et al., 2023) preserves the typical 114 normal features as discrete iconic prototypes for image reconstruction via vector quantization. Fur-115 thermore, VPDM (Li et al.) (2024) leverages prototypes as vague information about the target into a 116 conditional diffusion model to incrementally enhance details for reconstruction. However, tabular 117 data exhibits heterogeneous, intricate features devoid of a rigid structure (Chang et al., 2023), posing 118 significant challenges in identifying distinctive characteristic patterns. Simply adopting a straight-119 forward approach to extract feature prototypes is inadequate for tabular data. Consequently, we are 120 motivated to learn the intricate correlation patterns among features, termed association prototypes, 121 rather than focusing solely on the features themselves, to enhance the capabilities of tabular AD. 122

123 124 3 PRELIMINARY

146 147

125 **Problem Formulation.** This paper aims at tabular AD, where the training set only contains normal 126 samples following the one-class classification setting. Denoting the training set of N_{train} in-class normal samples as $D_{\text{train}} = {\mathbf{x}_n}_{n=1}^{N_{train}}$, where each sample is a *d*-dimensional vector. Denoting the testing set of N_{test} samples as $D_{\text{test}} = {\mathbf{x}_n}_{n=1}^{N_{test}}$, which contains both normal and abnormal the testing set of N_{test} samples as $D_{\text{test}} = {\mathbf{x}_n}_{n=1}^{N_{test}}$, which contains both normal and abnormal 127 128 129 samples. The objective of tabular AD is to develop an anomaly scoring function $\mathcal{S}: \mathbb{R}^d \to \mathbb{R}$ that 130 assigns low scores to samples drawn from the same underlying distribution as D_{train} and high scores 131 to the samples not aligned with D_{train} . Typically, standard reconstruction-based approaches (Yin 132 et al., 2024; Thimonier et al., 2024) learn a mapping function $\Phi_{\theta}: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ by minimizing the 133 reconstruction loss, which is often employed as the measurement of anomaly score.

134 Non-Parametric Transformer. Non-Parametric Transformers (NPTs) have shown the priority of 135 reasoning about relationships between both datapoints and features (Kossen et al., 2021; Thimonier 136 et al., 2024) for tabular data. Specifically, each NPT layer involves an attention between datapoints 137 (ABD) layer and an attention between attributes (ABA) layer to capture sample-sample and feature-138 feature dependencies, respectively. NPT receives the data ($\mathbf{X} \in \mathbb{R}^{N \times d}$ and stochastic masking ma-139 trix with the same dimention as input, then maps them through a linear mapping into $\mathbf{H}^0 \in \mathbb{R}^{N \times d \times e}$ by transforming each feature of each sample in data space into an e-dimensional embedding. Next, 140 NPT applies ABD and ABA alternatively. For the l^{th} ABD layer, the embedding is flattened to $\mathbb{R}^{N \times H}$ with $H = d \times e$, and then multi-head self-attention (MHSA) is applied across all samples. For the l^{th} ABA layer, we reshape the embedding as $\mathbb{R}^{N \times d \times e}$ and then apply MHSA independently 141 142 143 to each row (i.e. a single datapoint) across the feature dimension. The ABD and ABA layer can be 144 formulated as follows: 145

$$ABD(\mathbf{H}^{l}) = MHSA(\mathbf{H}^{l}) = \mathbf{H}^{l+1} \in \mathbb{R}^{N \times H},$$

$$ABA(\mathbf{H}^{l}) = \underset{axis=N}{Stack} \left(MHSA(\mathbf{H}^{l}_{1}), ..., MHSA(\mathbf{H}^{l}_{N}) \right) = \mathbf{H}^{l+1} \in \mathbb{R}^{N \times H}.$$
(1)

By alternatively conducting ABD and ABA, NPT is trained to reconstruct the stochastic masked input and model intrinsic dependencies among datapoints and within each datapoint. Motivated by NPT (Kossen et al.) [2021), Thimonier et al. (2024) introduce NPT-AD by incorporating both sample-sample and feature-feature dependencies in tabular AD, which showcases its effectiveness and superiority for tabular data. However, it needs to combine the validation samples and the entire training set for detecting samples during inference, which results in large computation costs and potentially compromising applicability to big datasets.

Optimal Transport. OT has a rich theoretical foundation (Dvurechensky et al., 2018; Chizat et al., 2018; Courty et al., 2016), which measures the minimal cost to transport between two probability distributions. Here, we only focus our discussion on OT for discrete probability distributions and please refer to Peyré et al. (2019) for more details. Denote two discrete probability distributions over an arbitrary space $S \in \mathbb{R}^d$ as $p = \sum_{i=1}^n a_i \delta_{x_i}$ and $q = \sum_{j=1}^m b_j \delta_{y_j}$, where both $a \in \sum^n$ and $b \in \sum^m$ are discrete probabilities summing to 1. The OT distance between p and q is defined as OT $(p,q) = \min_{\mathbf{T} \in \Pi(p,q)} \langle \mathbf{T}, \mathbf{C} \rangle$, (2)

Figure 1: Overall framework: The input data is softly masked in data space and encoded through an NPT layer; Then, multiple masks are generated via discrepancies with P-space basis vectors; Multiple masked features are decoded by an NPT layer, during which the association prototypes are learned for instructing anomalies.

where $\langle \cdot, \cdot \rangle$ is the Frobenius dot-product and $\mathbf{C} \in \mathbb{R}_{\geq 0}^{n \times m}$ is the transport cost matrix where $C_{ij} = \text{Distance}(x_i, y_j)$ reflects the cost between x_i and y_j . The transport probability matrix $\mathbf{T} \in \mathbb{R}_{\geq 0}^{n \times m}$ is subject to $\Pi(p, q) := \{\mathbf{T} | \sum_{i=1}^{n} T_{ij} = b_j, \sum_{j=1}^{m} T_{ij} = a_i\}$. Above optimization often entails substantial computational expenses, and the entropic regularization $H = -\sum_{ij} T_{ij} \ln T_{ij}$ is included to reduce the computational cost while maintaining sufficient smoothness (Cuturi, 2013).

4 Method

189 This work follows a reconstruction pipeline, as shown in Fig. 1, which introduces data-adaptive mask 190 modeling during encoding and association prototypes during decoding for tabular AD. Given input 191 samples, we first generate a data-space mask and embed the masked samples with an encoder. Then, 192 we adaptively produce various masks in the projection space according to the discrepancy between 193 features and orthogonal basis vectors. Afterward, the decoder maps multiple masked representations 194 from latent space to data space for reconstruction, among which we learn the normal association prototypes by aligning its distribution to the distribution over shared correlation patterns. Both the 195 discrepancy in projection space and the alignment in decoding stage are formulated as OT problems 196 and integrated with reconstruction loss for optimization and anomaly scoring. 197

198 199

200

177

178 179

181 182 183

184

185 186 187

188

4.1 MASKING STRATEGY

Inspired by mask modeling in CV and NLP, we aim to incorporate masks for tabular data to capture 201 intrinsic correlations between features, which facilitates modeling the normal characteristic patterns. 202 However, it is challenging to manually discover such optimal masks. In the following, we introduce 203 the learnable masking strategy both within the raw data space and the projected feature space. The 204 model is motivated to restore the masked features solely relying on the unmasked normal features. 205 Compared to straightforward random masking which may leak a large amount of abnormal infor-206 mation, our data-adaptive masking strategy aims to learn the optimal masks like suspicious anomaly 207 locations. In this way, the reconstructed data are prone to be normal as the suspicious parts are 208 already masked, leading to larger reconstruction errors of anomalies. Thus, we can distinguish the 209 anomaly data by large reconstruction errors deviating from normal ones.

Data-Space Mask Generalization. To capture intrinsic correlations existing in the original data space of training data and eliminate redundant information, we produce a learnable soft mask for input data. Given N input samples $\mathbf{X} = \{x_n\}_{n=1}^N \in \mathbb{R}^{N \times d}$, the data-adaptive masking can be implemented as

$$\hat{\mathbf{X}} = \mathbf{X} \odot \mathbf{M}^{ds}, \qquad \mathbf{M}^{ds} = \frac{1}{1 + e^{-\mathbf{W}_3(\operatorname{Relu}(\mathbf{W}_2(\operatorname{Relu}(\mathbf{W}_1\mathbf{X}^T)))))}},\tag{3}$$

where $\mathbf{W}_1 \in \mathbb{R}^{d \times d}$, $\mathbf{W}_2 \in \mathbb{R}^{d \times d}$, $\mathbf{W}_3 \in \mathbb{R}^{d \times d}$ represent linear projections and \odot refers to the element-wise multiplication. Each value of mask matrix $\mathbf{M}^{ds} \in \mathbb{R}^{N \times d}$ is a flexible weight between zero and one, where each row corresponds to the masking degree across different features, and each column represents the masking degree across input samples for a specific feature. This motivates the model to uncover the statistical correlations between masked and unmasked positions across both datapoints and features. However, the data or feature correlations in tabular data space are often highly tangled and lack statistical global structure information, thus we need to further find another disentangled space for mask modeling.

224 **Projection-Space Mask Generation.** To stimulate global data correlation learning, we subse-225 quently encode the masked input \mathbf{X} into a disentangled Projection Space (P-space) with an NPT 226 layer composed of an ABD and an ABA layer, denoted as $\mathbf{Z} = \mathbf{\Phi}_E(\hat{\mathbf{X}}; \boldsymbol{\theta}_E) \in \mathbb{R}^{N \times H}$, where $\mathbf{\Phi}_E$ is the encoder parameterized by θ_E , and $\mathbf{Z} = \{\boldsymbol{z}_n\}_{n=1}^N$ where $\boldsymbol{z}_n \in \mathbb{R}^H$ is the representation of *n*-th 227 228 sample. Intuitively, we only possess the normal tabular samples during training and we assume that they share some global intrinsic characteristic patterns in the P-space. These shared patterns serve as basis vectors and are denoted as $\mathcal{B} = \{\beta^1, ..., \beta^K\}_{k=1}^K \in \mathbb{R}^{K \times H}$, where K is the number of basis vectors and $\beta^k \in \mathbb{R}^H$ denotes the k^{th} basis vector. Typically, normal samples are close to the shared 229 230 231 basis vectors, whereas abnormal samples are distinguished by large deviations from these vectors. Thus, we introduce $\mathbf{M} \in \mathbb{R}^{N \times H \times K}$ to mask the suspicious anomaly information in P-space: 232 233

$$\mathbf{H}^{k} = \mathbf{Z} \odot \mathbf{M}^{k}, \quad M_{nh}^{k} = \begin{cases} 1, & (z_{nh} - \beta_{h}^{k})^{2} \le \mu_{n}^{k}, \\ 0, & (z_{nh} - \beta_{h}^{k})^{2} > \mu_{n}^{k}, \end{cases}$$
(4)

237 where $\mathbf{H}^k \in \mathbb{R}^{N \times H}$ denotes the masked representation with k = 1 : K, $\mu_n^k = \frac{1}{H} \sum_{h=1}^{H} (z_{nh} - \beta_h^k)^2$ means a data-related threshold computed by the statistic average along the feature dimension, and 238 239 mask value M_{nh}^k is element-wisely computed by the Euclidean distance between the basis vector 240 β^k and latent representation z_n at the h-th feature. Intuitively, the positions with larger distances to 241 basis vectors are considered with larger probability as anomalies. By masking these positions, the 242 model is motivated to embed these positions with unmasked normal information, leading to normal 243 reconstructions and large deviations for indicating anomalies. Furthermore, the multiple masking 244 strategy encourages the model to reconstruct samples with various masks. Therefore, anomalies 245 are prone to be detected by a comprehensive measurement. In contrast to masking in the original space, it is more disentangled to act within this P-Space consisting of explicitly defined basis vectors. 246 Furthermore, this designation also saves computational consumption as the multiple setting is only 247 needed for the subsequent decoder. 248

249 **Projection Space learning.** In the P-space, we aim to find a group of basis vectors \mathcal{B} to cap-250 ture the normal characteristics of the training data. We mathematically represent the K basis vec-251 tors as a K-dimensional empirical uniform distribution $Q(\mathcal{B}) = \frac{1}{K} \sum_{k=1}^{K} \delta_{\beta^k}$, where δ_{β^k} is Dirac function of k^{th} basis vectors of the discrete distribution. Besides, we view the P-space represen-252 253 tations of N data samples within the training set as another N-dimensional discrete distribution $P(\boldsymbol{\theta}_E) = \frac{1}{N} \sum_{n=1}^{N} \delta_{\boldsymbol{z}_n}$. Since \mathcal{B} is viewed as the global shared characteristics of the training 254 255 normal data, we can enforce the distribution $Q(\mathcal{B})$ to approximate the distribution $P(\theta_E)$ to learn 256 the encoder and basis vectors, where we solve the projection space learning problem via distribution matching. Specifically, we first learn the transport plan by minimizing the regularized distance 257 $OT(P(\boldsymbol{\theta}_E), Q(\mathcal{B}))$ between these two distributions and we design the optimization loss based on 258 the resultant transport plan, stated as 259

260 261

262

234 235 236

$$\min_{\boldsymbol{\theta}_{E},\mathcal{B}} \mathcal{L}_{bv} = \sum_{n=1}^{N} \min_{k \in K} T_{nk}^{\star} C_{nk}, \quad \text{subject to} \quad \mathbf{T}^{\star} = \arg_{\mathbf{T} \in \Pi(P(\boldsymbol{\theta}_{E}), Q(\mathcal{B}))} \langle \mathbf{T}, \mathbf{C} \rangle - \lambda H(\mathbf{T}), \quad (5)$$

where $H(\mathbf{T})$ denotes the regularized entropy in Cuturi (2013), $\lambda > 0$ is the hyper-parameter for the entropy, **C** is the transport cost matrix defined as $C_{nk} = \sqrt{(z_n - \beta^k)^2}$, and **T** is the transport probability matrix satisfying $\Pi(P(\boldsymbol{\theta}_E), Q(\mathcal{B})) := \{\mathbf{T} \in \mathbb{R}^{N \times K} | \sum_{k=1}^{K} T_{nk} = \frac{1}{N}, \sum_{n=1}^{N} T_{nk} = \frac{1}{K}\}$. Notably, during training, we minimize the transport distance from the P-space representation of each sample to its corresponding nearest basis vector based on the learned transport plan. The intuition behind this is normal representations tend to approach specific one of the global basis vectors rather than its fusions, alleviating the potential collapse that anomalous projection representations also exhibit similarity with the fusion version of basis vectors. Since all the training data are normal and thus the learned basis vectors reflect the normal patterns, at the inference stage, anomalies are prone
to deviate from the nominal distributions and thus can be detected by a larger distance even with its
corresponding nearest basis vector. Furthermore, the basis vectors in P-space are expected to maintain orthogonal independence from each other, which can be achieved with the soft orthogonality
constraint under the standard Frobenius norm, formulated as

$$\min_{\mathcal{B}} \mathcal{L}_{orth} = \min ||\mathbf{B}\mathbf{B}^T - \mathbf{I}||_F^2, \text{ where } \mathbf{B} = \{\mathbf{b}_k\}_{k=1}^K \text{ and } \mathbf{b}_k = \frac{\beta^k}{||\beta^k||}, k = 1, ..., K.$$
(6)

276 277 278

279

306 307

275

4.2 Nominal Association Prototype Learning

In this section, we find that learning the typical correlation patterns across features, named association prototypes, facilitates modeling normal characteristic patterns of tabular data. Typically, during training with normal data, we learn the nominal association prototypes from the attention matrix of transformers. During inference, the abnormal associations are different from the nominal association prototypes, which encourages us to incorporate a calibration distance to indicate anomalies. To this end, we learn the association prototypes and the calibration distance by solving a transport distribution matching problem.

Association Prototypes Learning. Given the K masked representations $\{\mathbf{H}^k\}_{k=1}^K$ as discussed above, we use the shared decoder to output the corresponding $\{\mathbf{X}_k^{rec}\}_{k=1}^K$ in the data space, denoted as $\mathbf{X}_k^{rec} = \Phi_D(\mathbf{H}^k; \theta_D)$, where the decoder Φ_D is an NPT layer composed of an ABD and an ABA layer and parameterized by θ_D . To learn the correlation patterns between features in sample \mathbf{x}_n , we investigate its query $\mathbf{Q} \in \mathbb{R}^{d \times h_k}$ and key $\mathbf{K} \in \mathbb{R}^{d \times h_k}$ matrices for computing attribute 287 288 289 290 291 attention of *n*-th sample in the ABA layer, where h_k is the latent dimension and *d* is the feature 292 number of each sample. Note that the query and key matrices can be used to compute the attention 293 matrix in MHSA, denoted as $\mathbf{A} = \operatorname{softmax}(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{h_k}}) \in \mathbb{R}^{d \times d}$, which provides a comprehensive understanding of the across-feature association in the *n*-th sample. Here, we establish the lightweight association vector of data \boldsymbol{x}_n to outline the correlations, stated as $\boldsymbol{\pi}_n = \{\pi_n^1, ..., \pi_n^d\} \in \mathbb{R}^d$ with 295 296 $\pi_n^i = \sum_{j=1}^{h_k} \frac{q_{ij} \cdot k_{ij}}{\sqrt{h_k}}$. Accordingly, we formulate a discrete uniform distribution of all association vectors as $P(\pi) = \sum_{n=1}^{N} \frac{1}{N} \delta_{\pi_n}$. Besides, we denote M to-be-learned association prototypes as $\Upsilon = {\gamma^1, ..., \gamma^M}_{m=1}^M \in \mathbb{R}^{M \times d}$ to extract shared correlation patterns, which form another dis-297 298 299 300 crete uniform distribution $Q(\Upsilon) = \sum_{m=1}^{M} \frac{1}{M} \delta_{\gamma^m}$. Similar to the P-space, we here also enforce the matching between the distribution $P(\pi)$ over the association vectors and the distribution $Q(\Upsilon)$ over 301 302 association prototypes. To this end, we design an OT-based optimization objective by minimizing 303 the transport distance from the association vector to its corresponding nearest association prototype, 304 formulated as 305 N

$$\min_{\boldsymbol{\theta}_{D},\Upsilon} \mathcal{L}_{ap} = \sum_{n=1}^{N} \min_{m \in M} \hat{T}_{nm}^{\star} \hat{C}_{nm}, \quad \text{subject to} \quad \hat{\mathbf{T}}^{\star} = \arg\min_{\hat{\mathbf{T}} \in \Pi(P(\boldsymbol{\pi}), Q(\Upsilon))} \langle \hat{\mathbf{T}}, \hat{\mathbf{C}} \rangle - \lambda H(\hat{\mathbf{T}}), \quad (7)$$

where cost matrix $\hat{\mathbf{C}} \in \mathbb{R}^{N \times M}$ is calculated by Euclidean distance and the transport probability matrix $\hat{\mathbf{T}} \in \mathbb{R}^{N \times M}$ satisfy $\Pi(P(\boldsymbol{\pi}), Q(\Upsilon)) := \{\hat{\mathbf{T}} | \sum_{n=1}^{N} \hat{T}_{nm} = \frac{1}{M}, \sum_{m=1}^{M} \hat{T}_{nm} = \frac{1}{N} \}.$

Anomaly Scoring. The overall algorithm of PTAD is detailed in Appendix A, and the framework 311 follows a reconstruction pipeline which is listed in Appendix B. During inference, the reconstruction 312 loss, typically computed as the point-wise L2 norm, is widely employed as a criterion for anomaly 313 detection. The intuition is that the reconstruction error tends to be higher for anomalous inputs, as 314 the model is solely trained on normal data. In our model, with the K reconstructions recovered 315 corresponding to the multiple P-space masks, we design a more robust and comprehensive recon-316 struction loss by $s_n^{rec} = \frac{1}{K} \sum_{k=1}^{K} \| \boldsymbol{x}_n - \boldsymbol{x}_{n,k}^{rec} \|_2^2$. However, relying solely on the reconstruction loss 317 can be suboptimal due to the 'anomaly leakage' issue. This motivates us to propose a new criterion 318 to enhance the discriminability between normal and abnormal samples. In our model, the P-space 319 representation dissimilarity to basis vectors indicates abnormal characteristics, and the association 320 vector dissimilarity to normal association prototypes shows abnormal dependencies. Thus, we refine 321 the anomaly score with the calibration costs s_n^{ap} and s_n^{bv} , stated as:

322
323
$$s_{n}^{cab} = s_{n}^{rec} + \kappa s_{n}^{bv} + \alpha s_{n}^{ap}, \quad s_{n}^{ap} = \min_{m \in M} \hat{T}_{nm}^{\star} \hat{C}_{nm}, \quad s_{n}^{bv} = \min_{k \in K} T_{nk}^{\star} C_{nk}, \tag{8}$$

where \hat{T}_{nm}^{\star} and T_{nk}^{\star} subject to Eq. 5 and Eq. 7, respectively, and κ and α are weighted coefficients.

324 5 **EXPERIMENTS**

325 326 327

328

Datasets Following previous work (Yin et al., 2024), we use 20 commonly used tabular datasets spanning multiple domains, including environmental studies, satellite remote sensing, healthcare, finance, etc. Specifically, 12 datasets were sourced from OOD (Rayana, 2016) and 8 from ADBench (Han et al.) (2022). Detailed descriptions of these datasets are provided in the appendix C

330 **Evaluation metrics** Following the methodology outlined in the literature (Zong et al., 2018) 331 Bergman & Hoshen, 2020), we randomly selected one-half of the normal samples as the training 332 set. The other half of the normal samples are combined with all the anomalous samples to form the 333 test set. We adopted the Area Under the Receiver Operating Characteristic Curve (AUC-ROC) and 334 the Area Under the Precision-Recall Curve (AUC-PR) as our evaluation metrics.

335 Implementation details Both the encoder and decoder contain an NPT architecture, each consist-336 ing of an ABD layer and an ABA layer with each attention module containing 4 attention heads. 337 Following Kossen et al. (2021), we utilize a Row-wise feed-forward (rFF) network containing one 338 hidden layer, employing a 4x expansion factor and GeLU activation with the dropout rate of 0.1 for 339 both attention weights and hidden layers. For input and output embeddings, the hidden size of the 340 linear layer to encode the feature is set to 16. For each dataset, we use 5 basis vectors and 5 associ-341 ation prototypes. LAMB (You et al., 2019) with β is used as the optimizer including a Lookahead 342 (Zhang et al.) [2019) wrapper with update rate $\alpha = 0.5$ and k = 6 steps between updates. In the 343 first 10 epochs of training, we apply a warm-up strategy (He et al.) 2016; Goyal, 2017) to gradually 344 decrease the learning rate, followed by a cosine annealing strategy (Loshchilov & Hutter, 2016) to adjust the learning rate in subsequent epochs. The whole model is trained end-to-end under the loss 345 $\mathcal{L} = \mathcal{L}_{rec} + \mathcal{L}_{bv} + \mathcal{L}_{ap} + \lambda_{orth} \mathcal{L}_{orth}$, where λ_{orth} is set to 0.1. Unless specified otherwise, we 346 set the hyper-parameter of regularized entropy as $\lambda = 0.1$, and score weights κ and α are set to 347 0.01. More details are provided in the appendix D Meanwhile, the discussions about loss weights 348 are provided in the appendix E. 349

Baseline methods We extensively compare our model with tabular anomaly detection methods in-350 cluding both traditional machine learning and deep learning approaches. The traditional machine 351 learning methods include KNN (Ramaswamy et al., 2000), IForest (Liu et al., 2008), LOF (Breunig 352 et al., 2000), OCSVM (Schölkopf et al., 1999) and GMM (Agarwal, 2007)., and the deep learning 353 methods include LUNAR (Goodge et al., 2022), DeepSVDD (Ruff et al., 2018), GOAD (Bergman & Hoshen, 2020), NeuTralAD (Qiu et al., 2021), ICL (Shenkar & Wolf, 2022), DTE-C (Livernoche 354 355 et al., 2023), NPT-AD (Thimonier et al., 2024), and MCM (Yin et al., 2024). It is noteworthy that 356 the comparison experiments are based on the comprehensive open-source libraries PYOD (Zhao 357 et al., 2019) (reproduction of KNN IForest, LOF, OCSVM, GMM, LUNAR and DeepSVDD) and 358 DeepOD (Xu et al., 2023) 2024) (reproduction of GOAD, NeuTral, and ICL). The remaining base-359 lines were implemented based on the official open-source code. Furthermore, we also compare the MCM model in combination with the NPT model for comparison. In our experiments, all methods 360 were implemented using consistent dataset splits and preprocessing procedures in line with recent 361 research (Qiu et al.) [2021; Shenkar & Wolf, [2022; Yin et al., [2024]). We report the average perfor-362 mance over three runs throughout this paper. 363

5.1 MAIN RESULT 365

366

364

The AUC-PR and AUC-ROC results of our method and the other competitors are respectively shown 367 in Fig. 2 and Fig. 4. The average ranking results are also shown in Fig. 3 and Fig. 5, while detailed 368 results on each datasets are listed in Table 21 and Table 22 in the Appendix M, which shows that 369 our method achieves the competitive performances over all datasets. Notably, our method signifi-370 cantly outperforms other methods on several datasets, such as Optdigits and Wbc, leading to 8.12% 371 and 6.56% improvements respectively. Even in cases where our method slightly falls short of the 372 best-performing method, its performance remains commendable, with performance gaps within ac-373 ceptable ranges. On average, our method achieves around 4% improvement over the second-best 374 comparison method MCM, which demonstrates the effectiveness of our proposed method. The at-375 tempt to incorporate the deviation with normal patterns for tabular anomaly detection is feasible. Due to space limitations, we only present AUC-PR results in this table. Furthermore, the compari-376 son results of AUC-ROC are listed in Table 22, in which the overall trends are consistent with those 377 of AUC-PR. As for average results, our approach outperforms all the others and achieves the best

or second-best performance on 14 out of the 20 datasets on AUC-ROC. These evaluation results demonstrate the effectiveness and the generalizability of our model for tabular anomaly detection. In addition, the statistical experimental variance and F1-score are listed in Appendix F Further experiments on the whole OODs benchmark also demonstrate the effectiveness of our method in the Appendix G Moreover, the convergence loss are shown in Appendix N

Figure 2: AUC-PR of models over 20 datasets ([†]).

Average AUC-ROC over 20 datasets

Figure 3: Ranking of model based on AUC-PR (\downarrow).

Figure 4: AUC-ROC of models over 20 datasets (\uparrow).

Figure 5: Ranking of model based on AUC-ROC(\downarrow).

5.2 ABLATION STUDY

In this section, we explore the effectiveness of different components within PTAD. The average AUC-ROC and AUC-PR across all datasets are reported in Table 1. The variations and observations are listed as follows: i) **Data-space Masking**: Incorporating the data-space mask strategy into the baseline model solely composed of two NPT layers leads to 1.27% improved AUC-PR, demonstrat-ing the effectiveness of soft mask modeling in data space. ii) Single P-space Learnable Masking: We generate a single P-space mask and decode masked representation via a single-branch decoder, which results in 3.4% performance gain on AUC-PR, indicating incorporating learnable masks in P space contributes to relieving the anomaly leakage. iii) Multiple P-space Learnable Masking: Multiple masks and multiple-branch decoding lead to 4.89% AUC-PR improvement, highlighting the necessity of our multiple designations. iv) Random Masking: We randomly generate masks with the same masking rate as our multiple learnable masks. Without the guidance of the basis vec-tors for generating the mask, the performance degrades by 5.02%, which further confirms the impor-tant role of our learnable mask generation method. v) Association Prototypes: Incorporating the association prototypes leads to 5.72%, which facilitates us to evaluate the extent of the abnormality by measuring the deviations. vi) Orthogonality Constrain: We further validate the orthogonality constrain of basis vectors, the performance gap showcases the orthogonality contributes to anomaly detection by forming disentangled features. vii) Overall, the comprehensive version performs best, demonstrating its effectiveness and efficiency as a harmonious combination of its components. The detailed results of the ablation experiments are provided in the Appendix H.

	Table 1: Ablation study of our method.									
•	Data-space Mask	Single Learnable Mask	Multiple Learnable Masks	Random Mask	Association Prototypes	Orthogonality Constrain	AUC-PR	AUC-ROC		
1	-	-	-	-	-	-	0.6381	0.8457		
	\checkmark	-	-	-	-	-	0.6508	0.8378		
	√	\checkmark	-	-	-	-	0.6848	0.8835		
	\checkmark	-	\checkmark	-	-	\checkmark	0.7337	0.8893		
	√	-	-	\checkmark	-	-	0.6835	0.8766		
	√	-	-	-	\checkmark	-	0.7080	0.8884		
	√	-	\checkmark	-	\checkmark	-	0.7392	0.8982		
	√	-	\checkmark	-	\checkmark	\checkmark	0.7513	0.9064		

432 5.3**ROBUSTNESS TO DIFFERENT TYPES OF ANOMALIES** 433

Although the true distribution of anomalous samples is challenging to capture, previous works (Steinbuss & Böhm, 2021; Han et al., 2022) have identified four common types of anomalies and proposed methods for generating normal and abnormal samples from real datasets. We follow Han et al. (2022) to generate data from the cardiotocography dataset and examine the robustness of our method encountering different anomalous: i) Local anomalies: Deviations from their local neighborhoods, generated by scaling the covariance matrix in a Gaussian Mixture Model (GMM). ii) Global anomalies: Significantly different from normal data, generated using a uniform distribution based on feature boundaries. iii) Dependency anomalies: Samples that violate the dependency structure of normal data, created by enforcing independence among input features. iv) Clustered 442 **anomalies**: Group anomalies with similar characteristics, generated by scaling the mean feature vector of normal samples. More details of anomalies are listed in the Appendix I

Table 2: Results of four types of anomalies generated from the cardiotocography dataset.

				••		e e			U			
Category	Metrics	KNN	IForest	LOF	OCSVM	DeepSVDD	GOAD	NeuTralAD	ICL	NPT-AD	MCM	Ours
Logal	AUC-PR	0.2479	0.2489	0.2611	0.2593	0.3362	0.4797	0.4554	0.3456	0.3326	0.5002	0.5277
Local	AUC-ROC	0.8804	0.8657	0.8888	0.8779	0.7849	0.8809	0.8842	0.7138	0.4855	0.9009	0.8907
Clabal	AUC-PR	0.3075	0.3272	0.3009	0.3168	0.4078	0.4663	0.4749	0.2635	0.4731	0.5775	0.6143
Global	AUC-ROC	0.9087	0.9157	0.9083	0.9120	0.8823	0.9227	0.9211	0.7104	0.9158	0.9441	0.9464
D	AUC-PR	0.1895	0.1131	0.2318	0.1160	0.2361	0.1664	0.3350	0.2799	0.3467	0.4495	0.4879
Dependency	AUC-ROC	0.8567	0.7417	0.8918	0.7432	0.6702	0.6773	0.8628	0.8033	0.8364	0.9171	0.9239
Classification	AUC-PR	0.135	0.3298	0.0718	0.2797	0.1957	0.4748	0.1539	0.1718	0.2021	0.5316	0.5806
Cluster	AUC-ROC	0.7136	0.9136	0.4837	0.9088	0.6806	0.9157	0.5923	0.5266	0.6403	0.9232	0.9391

We list the experimental results across the four types of anomalies in Table 2. It can be seen that our model performs well across all four types of anomalies. Especially for dependency and cluster anomalies, our model significantly outperforms the second-best approach, showcasing our model's ability to distinguish these anomalies from normal samples. This might contribute to our special modeling for the dependencies across datapoints and features by multiple masking strategies and the record of both normal features and association patterns.

5.4 DISCUSSION

434

435

436

437

438

439

440

441

443

444 445

454

455

456

457

458

459 460

461

468

469

470

462 **Computational Cost** Assessing computational cost is crucial for understanding model effi-463 ciency and feasibility in practical applications. 464 We present a comprehensive comparison of the 465 computational costs for our method and several 466 strong competitors, including MCM (Yin et al., 467

Table 3: Computational cost on Campaig	gn dataset	
--	------------	--

			1 0	
	MCM	NPT-AD	Our method	MCM NPT
FLOPS(M)	3.15	3.09	9.36	46.93
Params(M)	0.23	2.97	2.97	2.97
Training Time(ms)	23.35	3384.77	130.20	473.43
Inference Time(ms)	5.87	30904.05	22.58	201.36
AUC-PR	0.5543	0.4770	0.5826	0.4954
AUC-ROC	0.8619	0.7915	0.8693	0.7830

2024), NPT-AD (Thimonier et al., 2024), and a combination of MCM and NPT. Four metrics are reported with the average performance across ten times running. As shown in Table 3, we report the computational cost and performances of different models on the campaign dataset. Our method not only ensures strong performance but also maintains a good balance with computational cost.

480 Different Backbones The proposed masking strategy and association prototype learning is model-481 agnostic and flexible, which could be plug-and-played to the other backbone models, such as MLP 482 and vanilla transformers. For MLP, we show the improvement achieved by the masking strategy. 483 For models containing attention maps, such as vanilla transformer and NPT, we demonstrate the performance improvements brought by the two modules respectively and jointly. As illustrated in 484 Fig. 6 the masking strategy (MS) improves model performance across different backbones. For 485 models with attention, i.e. Transformer and NPT, incorporating the association prototype (AP) of normal samples further enhances the model's ability to distinguish anomalous from normal samples.
 Furthermore, it is validated that jointly performing both strategies leads to the best performance.
 Detailed results can be found in the Appendix J.

489 Different Number of Basis Vectors & Association Prototypes Fig. 7 illustrates the impact of vary-490 ing numbers of basis vectors for masking and association prototypes on four datasets: Campaign, 491 Cardio, WBC, and Thyroid, varying in sample numbers and feature dimensions. It can be seen 492 that as the number of basis vectors increases, the performance across all datasets generally shows 493 an increasing trend. As for the association prototypes, the performance is relatively stable with a 494 slightly increasing trend as the number grows. Therefore, there remains a trade-off between the per-495 formance and the number of basis vectors and association prototypes, as a larger number indicates 496 the increased computational cost. Therefore, to achieve a good balance between computational cost and performance, we set the number of both the basis vectors and the association prototypes as 5 in 497 our experiments, aiming to achieve better performances with relatively low costs. 498

499 Distance Measurement For discussing the distance 500 metric for learning basis vectors and association pro-501 totypes, we report the results utilizing MSE distance or OT distance in Table 4. It can be seen that OT dis-502 503 tance facilitates optimizing both the basis vector and the association prototype, leading to a large improve-504 ment compared to MSE distance. This might contribute 505 to our OT-based method views the points-to-points dis-506

Table 4:	Performances or	AUC-PR/AUC-
ROC with	MSE/OT distance	es to learn basis
vectors (BV	and association	prototypes (AP).

	AP-MSE	AP-OT
BV-MSE	0.6306 / 0.8448	0.6543 / 0.8607
BV-OT	0.6649 / 0.8696	0.7513 / 0.9064

tance between discrete representations as a transport calibration between two distributions, making a smooth transport and appropriate measurement. Detailed results can be found in the Appendix \mathbf{K} .

509 **Visualization of the P-space Masks** To intuitively understand the P-space masking strategy, we calculate the masking rates of each corresponding feature for visual analysis. As shown in Fig. 8 510 we selected normal and anomalous sample masks of the Cardio test data with the same average 511 masking rate, i.e. the rates of zeros in both masks are approximately 32%. It can be observed that 512 in the normal sample masks, a high masking rate is only observed for a subset of features, whereas 513 the majority of features exhibit low masking rates, indicating that most of the normal samples are 514 close to the basis vectors of P-space. In contrast, the masking patterns of abnormal samples are quite 515 different, as most features have high masking rates, which illustrate deviations from the normal basis 516 vectors and indicate anomalous. By masking those positions with higher possibilities of abnormality, 517 the decoder is motivated to reconstruct the anomalous samples as normal outputs, leading to larger 518 reconstruction errors for instructing anomalous. 519

Figure 8: Visualization of P-space masks. The left figure corresponds to the normal sample, and the right figure refers to the abnormal sample, both possessing the same average masking rates.

6 CONCLUSION

520 521

523

524

525 526

527

528 529

530

531 In this paper, we attribute the 'anomaly leakage' issue in tabular anomaly detection to two main 532 challenges, i.e. representation entanglement and lack of global information. To tackle this problem, 533 we explore mask modeling and prototype learning to enhance anomaly detection performance. The 534 masking modeling involves generating data-adaptive soft masks in data space and multiple learnable masks in disentangled projection space with orthogonal basis vectors. The association prototypes 536 are learned to extract normal characteristic correlations to capture the global data dependencies. Our model is derived from a distribution-matching perspective and formulated as two optimal transport problems, where the calibration costs further refine the anomaly scoring function. The experimental 538 results demonstrated our model's effectiveness, robustness, and generalizability. We hope our way of modeling characteristic patterns of tabular data can potentially extend to wider fields of view.

540 REFERENCES

579

586

587

- Kjersti Aas, Claudia Czado, Arnoldo Frigessi, and Henrik Bakken. Pair-copula constructions of
 multiple dependence. *Insurance: Mathematics and economics*, 44(2):182–198, 2009.
- Deepak Agarwal. Detecting anomalies in cross-classified streams: a bayesian approach. *Knowledge* and information systems, 11(1):29–44, 2007.
- 547 Khaled Gubran Al-Hashedi and Pritheega Magalingam. Financial fraud detection applying data
 548 mining techniques: A comprehensive review from 2009 to 2019. *Computer Science Review*, 40:
 549 100402, 2021.
- Samuel A Assefa, Danial Dervovic, Mahmoud Mahfouz, Robert E Tillman, Prashant Reddy, and Manuela Veloso. Generating synthetic data in finance: opportunities, challenges and pitfalls. In *Proceedings of the First ACM International Conference on AI in Finance*, pp. 1–8, 2020.
- Liron Bergman and Yedid Hoshen. Classification-based anomaly detection for general data. *arXiv* preprint arXiv:2005.02359, 2020.
- Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density based local outliers. In *Proceedings of the 2000 ACM SIGMOD international conference on Management of data*, pp. 93–104, 2000.
- Chun-Hao Chang, Jinsung Yoon, Sercan Ö Arik, Madeleine Udell, and Tomas Pfister. Data-efficient and interpretable tabular anomaly detection. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 190–201, 2023.
- Lenaic Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling algorithms
 for unbalanced optimal transport problems. *Mathematics of Computation*, 87(314):2563–2609, 2018.
- Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for do main adaptation. *IEEE transactions on pattern analysis and machine intelligence*, 39(9):1853–
 1865, 2016.
- 570 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems, 26, 2013.
 572
- Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
 Complexity by accelerated gradient descent is better than by sinkhorn's algorithm. In *International conference on machine learning*, pp. 1367–1376. PMLR, 2018.
- Tharindu Fernando, Harshala Gammulle, Simon Denman, Sridha Sridharan, and Clinton Fookes.
 Deep learning for medical anomaly detection–a survey. *ACM Computing Surveys (CSUR)*, 54(7): 1–37, 2021.
- Adam Goodge, Bryan Hooi, See-Kiong Ng, and Wee Siong Ng. Lunar: Unifying local outlier
 detection methods via graph neural networks. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 6737–6745, 2022.
- Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
 models for tabular data. *Advances in Neural Information Processing Systems*, 34:18932–18943, 2021.
 - P Goyal. Accurate, large minibatch sg d: training imagenet in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.
- Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly detection benchmark. Advances in Neural Information Processing Systems, 35:32142–32159, 2022.
- 593 Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. *The elements of statistical learning: data mining, inference, and prediction*, volume 2. Springer, 2009.

594 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-595 nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 596 770–778, 2016. 597 Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard Scholkopf. Support vector 598 machines. IEEE Intelligent Systems and their applications, 13(4):18–28, 1998. 600 Mikel Hernandez, Gorka Epelde, Ane Alberdi, Rodrigo Cilla, and Debbie Rankin. Synthetic data 601 generation for tabular health records: A systematic review. *Neurocomputing*, 493:28–45, 2022. 602 Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y Ng. Improving word rep-603 resentations via global context and multiple word prototypes. In Proceedings of the 50th annual 604 meeting of the association for computational linguistics (Volume 1: Long papers), pp. 873–882, 605 2012. 606 607 Ki Hyun Kim, Sangwoo Shim, Yongsub Lim, Jongseob Jeon, Jeongwoo Choi, Byungchan Kim, 608 and Andre S Yoon. Rapp: Novelty detection with reconstruction along projection pathway. In 609 International Conference on Learning Representations, 2019. 610 Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth, and Yarin Gal. Self-611 attention between datapoints: Going beyond individual input-output pairs in deep learning. Ad-612 vances in Neural Information Processing Systems, 34:28742–28756, 2021. 613 614 Yuxin Li, Yaoxuan Feng, Bo Chen, Wenchao Chen, Yubiao Wang, Xinyue Hu, Chunhui Qu, 615 Mingyuan Zhou, et al. Vague prototype-oriented diffusion model for multi-class anomaly de-616 tection. In International Conference on Machine Learning, 2024. 617 Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international 618 conference on data mining, pp. 413–422. IEEE, 2008. 619 620 Victor Livernoche, Vineet Jain, Yashar Hezaveh, and Siamak Ravanbakhsh. On diffusion modeling 621 for anomaly detection. arXiv preprint arXiv:2305.18593, 2023. 622 Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv 623 preprint arXiv:1608.03983, 2016. 624 625 Ruiying Lu, YuJie Wu, Long Tian, Dongsheng Wang, Bo Chen, Xiyang Liu, and Ruimin Hu. Hier-626 archical vector quantized transformer for multi-class unsupervised anomaly detection. Advances 627 in Neural Information Processing Systems, 36:8487–8500, 2023. 628 Ritesh K Malaiya, Donghwoon Kwon, Sang C Suh, Hyunjoo Kim, Ikkyun Kim, and Jinoh Kim. An 629 empirical evaluation of deep learning for network anomaly detection. IEEE Access, 7:140806-630 140817, 2019. 631 632 Rafael Martinez-Guerra and Juan Luis Mata-Machuca. Fault detection and diagnosis in nonlinear 633 systems. Understanding Complex Systems, Springer International Publishing, Cham, 2014. 634 Glenn W Milligan. An algorithm for generating artificial test clusters. *Psychometrika*, 50:123–127, 635 1985. 636 637 Meike Nauta, Ron Van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-638 grained image recognition. In Proceedings of the IEEE/CVF conference on computer vision and 639 pattern recognition, pp. 14933-14943, 2021. 640 Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for 641 anomaly detection: A review. ACM computing surveys (CSUR), 54(2):1-38, 2021. 642 643 Guansong Pang, Chunhua Shen, Huidong Jin, and Anton van den Hengel. Deep weakly-supervised 644 anomaly detection. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discov-645 ery and Data Mining, pp. 1795–1807, 2023. 646 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data 647 science. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.

648 Chen Qiu, Timo Pfrommer, Marius Kloft, Stephan Mandt, and Maja Rudolph. Neural transformation 649 learning for deep anomaly detection beyond images. In International conference on machine 650 learning, pp. 8703-8714. PMLR, 2021. 651 Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms for mining outliers 652 from large data sets. In Proceedings of the 2000 ACM SIGMOD international conference on 653 Management of data, pp. 427-438, 2000. 654 655 Shebuti Rayana. ODDS library, 2016. URL https://odds.cs.stonybrook.edu. 656 657 Esteban Reyes and Pablo A Estévez. Transformation based deep anomaly detection in astronomical images. In 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE, 658 2020. 659 660 Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-661 der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International 662 conference on machine learning, pp. 4393–4402. PMLR, 2018. 663 664 Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek, 665 Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. A unifying review of deep and shallow anomaly detection. *Proceedings of the IEEE*, 109(5):756–795, 2021. 666 667 Mikael Sabuhi, Ming Zhou, Cor-Paul Bezemer, and Petr Musilek. Applications of generative ad-668 versarial networks in anomaly detection: a systematic literature review. *Ieee Access*, 9:161003-669 161029, 2021. 670 671 Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised anomaly detection with generative adversarial networks to guide marker 672 discovery. In International conference on information processing in medical imaging, pp. 146– 673 157. Springer, 2017. 674 675 Bernhard Schölkopf, Robert C Williamson, Alex Smola, John Shawe-Taylor, and John Platt. Support 676 vector method for novelty detection. Advances in neural information processing systems, 12, 677 1999. 678 Tom Shenkar and Lior Wolf. Anomaly detection for tabular data with internal contrastive learning. 679 In International conference on learning representations, 2022. 680 681 Georg Steinbuss and Klemens Böhm. Benchmarking unsupervised outlier detection with realistic 682 synthetic data. ACM Transactions on Knowledge Discovery from Data (TKDD), 15(4):1–20, 683 2021. 684 685 Hugo Thimonier, Fabrice Popineau, Arpad Rimmel, and Bich-Liên DOAN. Beyond individual input for deep anomaly detection on tabular data. In Forty-first International Conference on Machine 686 Learning, 2024. 687 688 Miryam Elizabeth Villa-Pérez, Miguel A Alvarez-Carmona, Octavio Loyola-González, Miguel An-689 gel Medina-Pérez, Juan Carlos Velazco-Rossell, and Kim-Kwang Raymond Choo. Semi-690 supervised anomaly detection algorithms: A comparative summary and future research directions. 691 *Knowledge-Based Systems*, 218:106878, 2021. 692 Hongzuo Xu, Guansong Pang, Yijie Wang, and Yongjun Wang. Deep isolation forest for anomaly 693 detection. IEEE Transactions on Knowledge and Data Engineering, 35(12):12591–12604, 2023. 694 doi: 10.1109/TKDE.2023.3270293. 696 Hongzuo Xu, Yijie Wang, Songlei Jian, Qing Liao, Yongjun Wang, and Guansong Pang. Calibrated 697 one-class classification for unsupervised time series anomaly detection. IEEE Transactions on 698 Knowledge and Data Engineering, 2024. 699 Hangting Ye, Zhining Liu, Xinyi Shen, Wei Cao, Shun Zheng, Xiaofan Gui, Huishuai Zhang, 700 Yi Chang, and Jiang Bian. Uadb: Unsupervised anomaly detection booster. In 2023 IEEE 39th 701 International Conference on Data Engineering (ICDE), pp. 2593–2606. IEEE, 2023.

702	Hangting Ve Wei Fan Xiaozhuang Song Shun Zheng He Zhao Dandan Guo and Yi Chang Ptarl
	Thangting Te, Wei Fan, Maozhaung Song, Shan Zheng, Te Zhao, Dandan Guo, and Ti Chang. Fan.
703	Prototype-based tabular representation learning via space calibration. In International Conference
704	on Learning Representations, 2024.

- Jiaxin Yin, Yuanyuan Qiao, Zitang Zhou, Xiangchao Wang, and Jie Yang. Mcm: Masked cell
 modeling for anomaly detection in tabular data. In *The Twelfth International Conference on Learning Representations*, 2024.
- Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
 learning: Training bert in 76 minutes. *arXiv preprint arXiv:1904.00962*, 2019.
- Zhiyuan You, Lei Cui, Yujun Shen, Kai Yang, Xin Lu, Yu Zheng, and Xinyi Le. A unified model for multi-class anomaly detection. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Information Processing Systems*, volume 35, pp. 4571–4584. Curran Associates, Inc., 2022.
- Nasser Zalmout and Xian Li. Prototype-representations for training data filtering in weakly supervised information extraction. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track*, pp. 467–474, 2022.
- Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E Hinton. Lookahead optimizer: k steps forward, 1 step back. *Advances in neural information processing systems*, 32, 2019.
- Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable outlier detection. Journal of Machine Learning Research, 20(96):1–7, 2019. URL http://jmlr.org/papers/v20/19-011.html.
- Tianfei Zhou, Wenguan Wang, Ender Konukoglu, and Luc Van Gool. Rethinking semantic segmentation: A prototype view. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2582–2593, 2022.
 - Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In *International conference on learning representations*, 2018.

756 A PTAD ALGORITHM WORKFLOW

Aigo	prithm I The Algorithm Workflow of our proposed PTAD.
Inpu	It: Training dataset D_{train} ; meters: NPT Encoder $\mathbf{\Phi}_{\mathbf{R}}$ NPT Decoder $\mathbf{\Phi}_{\mathbf{R}}$ basis vectors $\mathcal{B} = \{\mathcal{B}^1 = \mathcal{B}^K\}^K$ associ
tion	prototypes $\Upsilon = \{ \mathbf{v}^1 = \mathbf{v}^M \}^M$, $\{ \mathbf{W}_1, \mathbf{W}_2, \mathbf{W}_3 \}$ of data-space mask generator:
Out	prototypes $1 = \{\gamma,, \gamma \}_{m=1}^{m=1}, \{\forall v_1, \forall v_2, \forall v_3\}$ of data-space mask generator, nut: Reconstructions of input tabular data:
1.	Initialize model parameters \mathcal{B} and Υ randomly
2.	for epoch 1.2 T do
3:	Sample batch of $\mathbf{X} \in \mathbb{R}^{N \times d}$ from input datasets D_{train}
4:	Generate Data-space masked data $\hat{\mathbf{X}}$ by Eq. 3
5:	Encode the $\hat{\mathbf{X}}$ through $\boldsymbol{\Phi}_{F}(\hat{\mathbf{X}};\boldsymbol{\theta}_{F})$ as the P-space representation Z
6:	Build distributions for the P-space representations and basis vectors as $P(\boldsymbol{\theta}_E)$
	$\frac{1}{N}\sum_{k=1}^{N} \delta_{\mathbf{z}_{k}}$ and $Q(\mathcal{B}) = \frac{1}{N}\sum_{k=1}^{K} \delta_{\mathbf{z}_{k}}$
7:	$K \succeq_{n=1}^{N} \mathcal{L}_n$ and $\mathcal{L}_n = \mathcal{L}_n$ Calculate OT-based distribution matching loss in the P-space as \mathcal{L}_{hv} in Eq. 5 and the orthogonal
	onal loss in Eq. 6
8:	Generate Projection-Space mask M by Eq. $\frac{4}{4}$ and mask the P-space representations by \mathbf{H}^{k}
	$\mathbf{M}^k \odot \mathbf{Z}$
9:	Reconstruct the multiple masked representations in parallel as $\mathbf{X}_{k}^{rec} = \boldsymbol{\Phi}_{D}(\mathbf{H}^{k};\boldsymbol{\theta}_{D})$
10:	Build distributions for association vectors π and association prototypes I as $P(\pi)$
	$\sum_{n=1}^{n} \frac{1}{N} \delta_{\pi_n} \text{ and } Q(\Upsilon) = \sum_{m=1}^{m} \frac{1}{M} \delta_{\gamma^m}$
11:	Calculate OI-based distribution matching loss of association prototypes as \mathcal{L}_{ap} in Eq. [] a
	the multiple reconstruction loss by $\mathcal{L}_{rec} = \frac{1}{K} \sum_{k=1}^{K} \ \boldsymbol{x}_n - \boldsymbol{x}_{n,k}^{rec} \ _2^2$
12:	Update model parameters by minimizing $\mathcal{L} = \mathcal{L}_{rec} + \mathcal{L}_{bv} + \mathcal{L}_{ap} + \lambda_{orth} \mathcal{L}_{orth}$
13:	end for

Data-space Masking: Following MCM Yin et al. (2024), for numerical features, we use their original scalar values; for categorical features, we use one-hot encoding to represent categorical features. Both the numerical features and one-hot categorical features are concatenated together as $x \in \mathbf{X} \in \mathbb{R}^d$. Our data-space masks are data-adaptively learned for d features as $m^{ds} \in \mathbb{R}^d$ by Eq. We then mask each feature by directly point-wise multiplicating the mask to its corresponding features as $\hat{x} = x \odot m^{ds}$.

as example, x, m, z, h is referring to each row of the matrix X, M, Z, H):

Encoding with an NPT Layer: The encoded representations of the masked data \hat{x} , are processed through learned linear layers to obtain the embedded representations of individual features. These feature embeddings are then passed into an NPT layer, which consists of an ABD layer followed by an ABA layer, resulting in the output $z \in \mathbb{R}^{H}$. Details can be found in Appendix C3 of NPT Kossen et al. (2021).

Projection-Space Masking: The P-space masks are generated by comparing the representation $z \in \mathbb{R}^{H}$ and each basis vector $\{\beta^{k} \in \mathbb{R}^{H}\}_{k=1}^{K}$ according to Eq. 4 and generate K masks $\{m^{k} \in \mathbb{R}^{H}\}_{k=1}^{K}$. Then we generate K masked P-space representations $\{h^{k} = m^{k} \odot z \in \mathbb{R}^{H}\}_{k=1}^{K}$. Note we compute the OT loss by solving the OT problem between representation z and K basis vectors by Eq. 5 which can be utilized to optimize the basis vectors.

Decoding with an NPT Layer: We parallelly input K masked representations $\{h^k\}_{k=1}^K$ into the decoder (an NPT layer consisting of an ABD and an ABA layer), respectively. The objective of the K branch is the same: reconstructing the original tabular data. The architecture and parameters of the decoder are shared across K branches. During decoding, we obtain the association vector $\pi \in \mathbb{R}^d$ and compute its OT distance with M association prototypes $\{\gamma^m \in \mathbb{R}^d\}_{m=1}^M$ by Eq. 7 which can be utilized to optimize the association prototypes. To obtain the estimated output features, we also use linear layers to transform the representations back into features, which serves as the inverse process of the input stage.

Training Parameters: In this training pipeline, the parameters need to be optimized including: NPT Encoder Φ_E , NPT Decoder Φ_D , basis vectors $\mathcal{B} = {\{\beta^1, ..., \beta^K\}}_{k=1}^K$, association prototypes $\Upsilon = {\{\gamma^1, ..., \gamma^M\}}_{m=1}^M$, and ${\{\mathbf{W}_1, \mathbf{W}_2, \mathbf{W}_3\}}$ of data-space soft mask generator.

C DETAILED DATASETS CHARACTERISTICS

Table shows detailed information about the datasets utilized in our experiments, including the total number of samples, data dimensions, and the number of anomalous samples. These datasets include multiple domains, such as environmental studies, satellite remote sensing, healthcare, and so on, mainly sourced from OOD (Rayana, 2016) and ADBench (Han et al., 2022).

Table 5: Details of 20 Datasets.						
Dataset	Samples	Dims	Anomaly			
Arrhythmia	452	274	66 (14.6%)			
Breastw	683	9	239 (35.0%)			
Campaign	41188	62	4640 (11.3%)			
Cardio	1831	21	176 (9.6%)			
Cardiotocography	2114	21	466 (22.0%)			
Census	299285	500	18568 (6.2%)			
Fraud	284807	29	492 (0.2%)			
Glass	214	9	9 (4.2%)			
Ionosphere	351	33	126 (35.9%)			
Mammography	11183	6	260 (2.3%)			
NSL-KDD	148517	122	77054 (51.8%)			
Optdigits	5216	64	150 (2.9%)			
Pendigits	6870	16	156 (2.3%)			
Pima	768	8	268 (34.9%)			
Satellite	6435	36	2036 (31.7%)			
Satimage-2	5803	36	71 (1.2%)			
Shuttle	49097	9	3511 (7.1%)			
Thyroid	3772	6	93 (2.5%)			
Wbc	278	30	21 (7.6%)			
Wine	129	13	10 (7.8%)			

D MORE DETAILS OF EXPERIMENTAL SETTING

Typically, similar to NPT (Kossen et al., 2021) and NPT-AD (Thimonier et al., 2024), hyper-parameter selection was done to obtain the fastest training loss convergence. We set the batch size to 512 during training for almost all datasets, except for the Census dataset's batch size, which is set as 32 due to the memory limitation caused by its large dimension of features. For the learning rate, we select to achieve the fastest loss convergence for each architecture. To constrain the search space for learning rates, we perform a grid search over the range $\{0.06, 0.04, 0.02, 0.01\}$ and $\{0.005, 0.001,$ 0.0005, 0.0001, 0.00001. The specific hyperparameter settings are summarized in the Table 6, All experiments were conducted on the Ubuntu 20.04.4 LTS operating system, Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz with a single NVIDIA A40 48GB GPU and 512GB of RAM. The framework is implemented with Python 3.8.19 and PyTorch 2.0.1. Other key packages include numpy 1.23.5, pandas 2.0.3, and scipy 1.10.1.

885 886 887

889

890

903

904

905

906

907

908

909

910

911 912 913

914 915

865	Table 6: Datasets hyperparamet	ers. The batch siz	e -1 refers to	the input of the	entire training
866	Dataset	Epoch	Batch size	Learning rate	
867	Arrhythmia	a 200	-1	0.01	
868	Breastw	200	-1	0.001	
869	Campaign	200	512	0.001	
970	Cardio	200	512	0.00001	
070	Cardiotoco	graphy 200	512	0.001	
871	Census	50	32	0.01	
872	Fraud	200	512	0.001	
873	Glass	200	-1	0.0001	
874	Ionosphere	200	-1	0.01	
875	Mammogra	aphy 200	512	0.02	
876	NSL-KDD	200	512	0.01	
877	Optdigits	200	512	0.01	
878	Pima	200	-1	0.01	
070	Pendigits	200	512	0.01	
0/9	Satellite	200	512	0.01	
088	Satimage-2	200	512	0.01	
881	Shuttle	200	512	0.01	
882	Thyroid	200	512	0.01	
883	Wbc	200	-1	0.00001	
884	Wine	200	-1	0.00001	

set.

E DIFFERENT WEIGHTS OF ORTHOGONAL LOSS AND ANOMALY SCORES

To investigate the influence of the orthogonal loss and anomaly scores, we illustrate the impact of different weights on AUC-PR and AUC-ROC across four datasets.

891 For the orthogonal loss, we conduct experiments and illustrate the results in Fig. 9. It can be seen that 892 the performance is stable on WBC and Cardio datasets while sensitive on the other datasets, which 893 might be due to the tradeoff between regularizing the basis vectors to disentangle through orthogonal 894 loss and ensuring an accurate representation of the P-space representation of normal data. To balance 895 two aspects, we choose 0.1 as the weight for the orthogonal loss in our experiments. 896

Regarding the anomaly score, Fig. 10 displays the results over different weights across four datasets, 897 where we set the same coefficients κ and α of calibration distance. It can be seen that the perfor-898 mance is insensitive to the weights of both anomaly scores s^{bv} and s^{ap} . To ensure stability in the 899 anomaly detection, we choose 0.01 as our weighting coefficient. By evaluating the average perfor-900 mance of 20 datasets, the calibration distances complement the anomaly score and further enhance 901 model performance. 902

Figure 9: Comparison Results of different weights of orthogonal constrain

Figure 10: Comparison Results of different weights of calibration distances

F1-SCORE AND MORE STATISTICAL EVALUATIONS F

In Table 7 and Table 8, we list the F1-score of our model compared with other methods. It can be 916 seen that the F1-score of our model is average better than the comparison methods, which ensures a 917 more robust assessment of our method's performance.

	Table 7: F1-so	core with 5% T-te	<u>est in 3 runs over</u>	20 ualasets
	Dataset	ICL	NPT-AD	PTAD
	Arrhythmia	0.5556±0.0071	0.5116±0.0011	0.6010±0.0214
	Breastw	0.9066 ± 0.0099	0.9581±0.0011	0.9749±0.0000
	Campaign	0.4535 ± 0.0226	0.5159±0.0033	0.5806±0.0439
	Cardio	0.7708±0.0219	0.7800 ± 0.0099	0.7891±0.0080
	Cardiotocography	0.5551±0.0307	0.5902±0.0049	0.6652±0.0228
	Census	0.1843±0.0039	0.2185±0.0134	0.3879±0.0127
	Fraud	0.6375 ± 0.0340	0.4924±0.0372	0.5659±0.0114
	Glass	0.1481 ± 0.0524	0.3112±0.0336	0.3333±0.0533
	Ionosphere	0.9339 ± 0.0099	0.9459 ± 0.0050	0.9133±0.0072
	Mammography	0.1481±0.0765	0.4643 ± 0.0045	0.4546±0.0054
	NSL-KDD	0.6084 ± 0.0492	0.7979 ± 0.0408	0.8410±0.1005
	Optdigits	0.5222 ± 0.0974	0.5200 ± 0.0757	0.7133±0.0565
	Pima	0.6057 ± 0.0307	0.7369 ± 0.0052	0.6778±0.0162
	Pendigits	0.4979 ± 0.1282	0.8907±0.0217	0.8462±0.0388
	Satellite	0.7698 ± 0.0121	0.7640 ± 0.0060	0.7205±0.0080
	Satimage-2	0.7934±0.0266	0.9614±0.0039	0.9343±0.0150
	Shuttle	0.9804 ± 0.0009	0.9836±0.0013	0.9658±0.0030
	Thyroid	0.6953±0.0623	0.7249 ± 0.0038	0.7092±0.0150
	Wbc	0.4667 ± 0.0943	0.7523±0.0036	0.7424±0.0539
	Wine	0.1333±0.1247	0.8172±0.0154	0.9091±0.0000
	Average	0.5683±0.0447	0.6868±0.0145	0.7162±0.0246
	Dataset	ore with 5% 1-te ICL	st in 20 runs over NPT-AD	r 16 datasets
	Arrhythmia	0.5650+0.0226	0.50(0:0.0010	LIAD
	i ini j tinina	U.)0)9+U.U///0	0.5069 ± 0.0018	0.5811+0.0119
	Breastw	0.3039 ± 0.0220 0.9042 ± 0.0234	0.5069 ± 0.0018 0.9584 ± 0.0006	0.5811±0.0119
	Breastw Campaign	0.3039 ± 0.0220 0.9042 ± 0.0234 0.4485 ± 0.0159	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218
	Breastw Campaign Cardio	0.3039 ± 0.0220 0.9042 ± 0.0234 0.4485 ± 0.0159 0.7560 ± 0.0342	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112
	Breastw Campaign Cardio Cardiotocography	0.3639 ± 0.0220 0.9042 ± 0.0234 0.4485 ± 0.0159 0.7560 ± 0.0342 0.5476 ± 0.0353	0.5069 ± 0.0018 0.9584 ± 0.0006 0.5178 ± 0.0025 0.7849 ± 0.0026 0.5854 ± 0.0033	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160
	Breastw Campaign Cardio Cardiotocography Glass	0.3039±0.0220 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere	0.3039±0.0220 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0019
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography	0.3639±0.0226 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187 0.2067±0.0774	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016 0.4634±0.0029	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0019 0.4507±0.0078
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits	0.3639±0.0226 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187 0.2067±0.0774 0.4823±0.1261	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016 0.4634±0.0029 0.2546±0.0055	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0019 0.4507±0.0078 0.6233±0.0274
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima	0.3639±0.0226 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187 0.2067±0.0774 0.4823±0.1261 0.6093±0.0223	0.5069 ± 0.0018 0.9584 ± 0.0006 0.5178 ± 0.0025 0.7849 ± 0.0026 0.5854 ± 0.0033 0.3081 ± 0.0134 0.9470 ± 0.0016 0.4634 ± 0.0029 0.2546 ± 0.0055 0.7371 ± 0.0015	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0019 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits	0.3639±0.0226 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187 0.2067±0.0774 0.4823±0.1261 0.6093±0.0223 0.4971±0.1320	0.5069 ± 0.0018 0.9584 ± 0.0006 0.5178 ± 0.0025 0.7849 ± 0.0026 0.5854 ± 0.0033 0.3081 ± 0.0134 0.9470 ± 0.0016 0.4634 ± 0.0029 0.2546 ± 0.0055 0.7371 ± 0.0015 0.8983 ± 0.0062	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0019 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100 0.8522±0.0127
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits Satellite	0.3639±0.0226 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187 0.2067±0.0774 0.4823±0.1261 0.6093±0.0223 0.4971±0.1320 0.7659±0.0164	0.5069 ± 0.0018 0.9584 ± 0.0006 0.5178 ± 0.0025 0.7849 ± 0.0026 0.5854 ± 0.0033 0.3081 ± 0.0134 0.9470 ± 0.0016 0.4634 ± 0.0029 0.2546 ± 0.0055 0.7371 ± 0.0015 0.8983 ± 0.0062 0.7668 ± 0.0031	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0019 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100 0.8522±0.0127 0.7129±0.0047
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits Satellite Satimage-2	0.3639±0.0226 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187 0.2067±0.0774 0.4823±0.1261 0.6093±0.0223 0.4971±0.1320 0.7659±0.0164 0.8007±0.0725	0.5069 ± 0.0018 0.9584 ± 0.0006 0.5178 ± 0.0025 0.7849 ± 0.0026 0.5854 ± 0.0033 0.3081 ± 0.0134 0.9470 ± 0.0016 0.4634 ± 0.0029 0.2546 ± 0.0055 0.7371 ± 0.0015 0.8983 ± 0.0062 0.7668 ± 0.0031 0.9609 ± 0.0020	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0018 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100 0.8522±0.0127 0.7129±0.0047 0.9331±0.0047
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits Satellite Satimage-2 Thyroid	0.3639 ± 0.0226 0.9042 ± 0.0224 0.4485 ± 0.0159 0.7560 ± 0.0342 0.5476 ± 0.0353 0.1278 ± 0.0530 0.9139 ± 0.0187 0.2067 ± 0.0774 0.4823 ± 0.1261 0.6093 ± 0.0223 0.4971 ± 0.1320 0.7659 ± 0.0164 0.8007 ± 0.0725 0.7054 ± 0.0516	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016 0.4634±0.0029 0.2546±0.0055 0.7371±0.0015 0.8983±0.0062 0.7668±0.0031 0.9609±0.0020 0.7271±0.0022	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0018 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100 0.8522±0.0127 0.7129±0.0047 0.9331±0.0047 0.7026±0.0068
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits Satellite Satimage-2 Thyroid Wbc	0.3639 ± 0.0226 0.9042 ± 0.0224 0.4485 ± 0.0159 0.7560 ± 0.0342 0.5476 ± 0.0353 0.1278 ± 0.0530 0.9139 ± 0.0187 0.2067 ± 0.0774 0.4823 ± 0.1261 0.6093 ± 0.0223 0.4971 ± 0.1320 0.7659 ± 0.0164 0.8007 ± 0.0725 0.7054 ± 0.0516 0.4900 ± 0.1091	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016 0.4634±0.0029 0.2546±0.0055 0.7371±0.0015 0.8983±0.0062 0.7668±0.0031 0.9609±0.0020 0.7271±0.0022 0.7476±0.0044	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0019 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100 0.8522±0.0127 0.7129±0.0047 0.9331±0.0047 0.7026±0.0068 0.7197±0.0228
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits Satellite Satimage-2 Thyroid Wbc Wine	0.3639 ± 0.0226 0.9042 ± 0.0224 0.4485 ± 0.0159 0.7560 ± 0.0342 0.5476 ± 0.0353 0.1278 ± 0.0530 0.9139 ± 0.0187 0.2067 ± 0.0774 0.4823 ± 0.1261 0.6093 ± 0.0223 0.4971 ± 0.1320 0.7659 ± 0.0164 0.8007 ± 0.0725 0.7054 ± 0.0516 0.4900 ± 0.1091 0.3250 ± 0.1894	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016 0.4634±0.0029 0.2546±0.0055 0.7371±0.0015 0.8983±0.0062 0.7668±0.0031 0.9609±0.0020 0.7271±0.0022 0.7476±0.0044 0.8222±0.0153	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0019 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100 0.8522±0.0127 0.7129±0.0047 0.9331±0.0047 0.7026±0.0068 0.7197±0.0228 0.8954±0.0190
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits Satellite Satimage-2 Thyroid Wbc Wine Average	$\begin{array}{c} 0.3639 \pm 0.0226\\ 0.9042 \pm 0.0224\\ 0.4485 \pm 0.0159\\ 0.7560 \pm 0.0342\\ 0.5476 \pm 0.0353\\ 0.1278 \pm 0.0530\\ 0.9139 \pm 0.0187\\ 0.2067 \pm 0.0774\\ 0.4823 \pm 0.1261\\ 0.6093 \pm 0.0223\\ 0.4971 \pm 0.1320\\ 0.7659 \pm 0.0164\\ 0.8007 \pm 0.0725\\ 0.7054 \pm 0.0516\\ 0.4900 \pm 0.1091\\ 0.3250 \pm 0.1894\\ \hline \end{array}$	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016 0.4634±0.0029 0.2546±0.0055 0.7371±0.0015 0.8983±0.0062 0.7668±0.0031 0.9609±0.0020 0.7271±0.0022 0.7476±0.0044 0.8222±0.0153 0.6866±0.0043	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0160 0.2750±0.0235 0.9078±0.0019 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100 0.8522±0.0127 0.7129±0.0047 0.7026±0.0068 0.7197±0.0228 0.8954±0.0190 0.7076±0.0126
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits Satellite Satimage-2 Thyroid Wbc Wine Average	0.3639±0.0226 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187 0.2067±0.0774 0.4823±0.1261 0.6093±0.0223 0.4971±0.1320 0.7659±0.0164 0.8007±0.0725 0.7054±0.0516 0.4900±0.1091 0.3250±0.1894 0.5716±0.0624	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016 0.4634±0.0029 0.2546±0.0055 0.7371±0.0015 0.8983±0.0062 0.7668±0.0031 0.9609±0.0020 0.7271±0.0022 0.7476±0.0044 0.8222±0.0153 0.6866±0.0043	0.5811±0.0119 0.9749±0.0000 0.5781±0.0213 0.7855±0.0112 0.6601±0.0166 0.2750±0.0233 0.9078±0.0019 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100 0.8522±0.0127 0.7129±0.0047 0.7129±0.0047 0.7129±0.0047 0.7026±0.0068 0.7197±0.0228 0.8954±0.0190 0.7076±0.0120
	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits Satellite Satimage-2 Thyroid Wbc Wine Average	0.3639±0.0226 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187 0.2067±0.0774 0.4823±0.1261 0.6093±0.0223 0.4971±0.1320 0.7659±0.0164 0.8007±0.0725 0.7054±0.0516 0.4900±0.1091 0.3250±0.1894 0.5716±0.0624	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016 0.4634±0.0029 0.2546±0.0055 0.7371±0.0015 0.8983±0.0062 0.7668±0.0031 0.9609±0.0020 0.7271±0.0022 0.7476±0.0044 0.8222±0.0153 0.6866±0.0043	0.5811±0.0119 0.9749±0.0000 0.5781±0.0218 0.7855±0.0112 0.6601±0.0166 0.2750±0.0235 0.9078±0.0015 0.4507±0.0078 0.6233±0.0274 0.6688±0.0100 0.8522±0.0127 0.7129±0.0047 0.7026±0.0068 0.7197±0.0228 0.8954±0.0190 0.7076±0.0126
In Table	Breastw Campaign Cardio Cardiotocography Glass Ionosphere Mammography Optdigits Pima Pendigits Satellite Satimage-2 Thyroid Wbc Wine Average	0.3639±0.0226 0.9042±0.0234 0.4485±0.0159 0.7560±0.0342 0.5476±0.0353 0.1278±0.0530 0.9139±0.0187 0.2067±0.0774 0.4823±0.1261 0.6093±0.0223 0.4971±0.1320 0.7659±0.0164 0.8007±0.0725 0.7054±0.0516 0.4900±0.1091 0.3250±0.1894 0.5716±0.0624 Table[12] we list	0.5069±0.0018 0.9584±0.0006 0.5178±0.0025 0.7849±0.0026 0.5854±0.0033 0.3081±0.0134 0.9470±0.0016 0.4634±0.0029 0.2546±0.0055 0.7371±0.0015 0.8983±0.0062 0.7668±0.0031 0.9609±0.0020 0.7271±0.0022 0.7476±0.0044 0.8222±0.0153 0.6866±0.0043 the statistical ev	0.5811±0.011 0.9749±0.000 0.5781±0.021 0.7855±0.011 0.6601±0.016 0.2750±0.023 0.9078±0.001 0.4507±0.007 0.6233±0.027 0.6688±0.010 0.8522±0.012 0.7129±0.004 0.7026±0.006 0.7197±0.022 0.8954±0.019 0.7076±0.012 aluations of AI

In Table 9, Table 10, Table 11, and Table 12, we list the statistical evaluations of AUC-PR and AUR-ROC over 3 and 20 runs. It can be seen that the variance of multiple runs of our model is comparable with the comparison methods, which showcases that our model is robust and stable across multiple runs.

974				
975				
976	Table 9: AUC	-PR with 5% T-te	est in 3 runs over	20 datasets
977	Dataset	ICL	NPT-AD	PTAD
078	Arrhythmia	0.5773±0.0008	0.4779±0.0078	0.6164±0.0074
970	Breastw	0.9459±0.0071	0.9815±0.0016	0.9973±0.0001
979	Campaign	0.4291±0.0241	0.4852±0.0118	0.5826±0.0313
980	Cardio	0.8054 ± 0.0185	0.8216±0.0057	0.8445±0.0063
981	Cardiotocography	0.6443±0.0183	0.6443 ± 0.0046	0.6962±0.0429
982	Census	0.1850±0.0046	0.2363 ± 0.0274	0.2970±0.0162
983	Fraud	0.5909±0.0213	0.3972 ± 0.0440	0.5377±0.0087
984	Glass	0.2296 ± 0.0239	0.2235 ± 0.0215	0.3880 ± 0.0456
985	Ionosphere	0.9771±0.0055	0.9875±0.0031	0.9813±0.0006
986	Mammography	0.1792±0.0394	0.4133±0.0024	0.4398±0.0036
0.87	NSL-KDD	0.5621±0.0280	0.8603 ± 0.0154	0.8823 ± 0.0413
907	Optdigits	0.4400 ± 0.0977	0.1251 ± 0.0026	0.7957 ± 0.0852
988	Pima Dan di aita	0.6462 ± 0.0187	0.6858 ± 0.0037	0.7308 ± 0.0071
989	Setellite	0.4003 ± 0.1289	0.9388 ± 0.0233	0.9200 ± 0.0200
990	Satemare 2	$0.89/0\pm0.0098$ 0.8500 ±0.0547	0.8340 ± 0.0073 0.0850±0.0005	0.8433 ± 0.0010 0.0844 ± 0.0003
991	Satimage-2 Shuttle	0.8399 ± 0.0347 0.0766+0.0020	0.9839 ± 0.0003	0.9844 ± 0.0003 0.9377+0.0086
992	Thyroid	0.9700 ± 0.0029 0.6834 \pm 0.0713	0.9050 ± 0.0005 0.7851 ±0.0029	0.9377 ± 0.0080 0.7685±0.0033
993	Whe	0.0034 ± 0.0713 0.7795+0.1255	0.7691 ± 0.0029 0.7497+0.0045	0.7003 ± 0.0033 0.8451+0.0198
994	Wine	0.3631 ± 0.1255	0.7635+0.0108	0.9323+0.0012
334	Average	0.6086+0.0363	0.6691+0.0144	0.7513+0.0175
995	11,01480	0100002010202	0100712010111	01101020101110
996				
997				
998				
999				
1000				
1001				
1002				
1003				
1003	Table 10: AUC-	ROC with 5% T	-test in 3 runs ove	er 20 datasets
1004	Dataset	ICL	NPT-AD	PTAD
1005	Arrhythmia	0.7937±0.0022	0.7103±0.0055	0.8147±0.0089
1006	Breastw	0.9622 ± 0.0064	0.9834 ± 0.0010	0.9973±0.0001
1007	Campaign	0.7032 ± 0.0316	0.7778 ± 0.0008	0.8693 ± 0.0281
1008	Cardio	0.9140±0.0101	0.9211±0.0032	0.9653±0.0019
1009	Cardiotocography	0.6840 ± 0.0140	0.6840±0.0071	0.8210±0.0305
1010	Census	0.6725±0.0097	0.7008 ± 0.0469	0.7622 ± 0.0097
1011	Fraud	0.9143 ± 0.0016	0.9304 ± 0.0031	0.9331 ± 0.0093
1012	Glass	0.8190 ± 0.0280	0.7843 ± 0.0310	0.8333 ± 0.0303
1012	Mammography	0.9741±0.0043 0 5653±0 0577	0.9003±0.0029	0.9730±0.0008 0.8882+0.0024
1013	NSL_KDD	0.3033 ± 0.0377 0.2665±0.0905	0.8928 ± 0.0013 0.8126±0.0468	0.8882 ± 0.0024 0.8513 ± 0.0082
1014	Optdigits	0.2003 ± 0.0903 0.9552 ± 0.0257	0.8120 ± 0.0400 0.8084 ±0.0307	0.0313 ± 0.0982 0.9825 ±0.0038
1015	Pima	0.932 ± 0.0237 0.6231+0.0247	0.0004 ± 0.0007 0.7161+0.0044	0.7023 ± 0.0030 0.7234+0.0177
1016	Pendigits	0.8334+0.0771	0.9983+0.0009	0.9961 ± 0.0014
1017	Satellite	0.8805 ± 0.0123	0.7914 ± 0.0154	0.7992 ± 0.0038
1018	Satimage-2	0.9828±0.0121	0.9995±0.0000	0.9995 ± 0.0001
1019	Shuttle	0.9889±0.0019	0.9986±0.0000	0.9965 ± 0.0002
1013	Thyroid	0.9223±0.0225	0.9762±0.0010	0.9750±0.0039
1020	Wbc	0.9087±0.0214	0.9577±0.0033	0.9737±0.0126
1021	Wine	0.7927±0.0205	0.9567±0.0032	0.9507±0.0038
1022	Average	0.8078±0.0237	0.8779±0.0104	0.9064±0.0133
1023				

Table 11: AUC-PR with 5% T-test in 20 runs over 16 datasets

Dataset	ICL	NPT-AD	PTAD
Arrhythmia	0.5877±0.0163	0.4270±0.0027	0.5929±0.0060
Breastw	0.9429±0.0235	0.9841±0.0006	0.9972±0.0001
Campaign	0.4281±0.0172	0.4861±0.0035	0.5595 ± 0.0255
Cardio	0.8172±0.0273	0.7928 ± 0.0018	0.8425 ± 0.0099
Cardiotocography	0.6554±0.0320	0.6430 ± 0.0034	0.6927±0.0163
Glass	0.2277±0.0293	0.2688 ± 0.0065	0.3147±0.0274
Ionosphere	0.9750±0.0061	0.9759±0.0011	0.9783±0.0009
Mammography	0.1902±0.0542	0.4043±0.0021	0.4642 ± 0.0062
Optdigits	0.4237±0.1205	0.2103±0.0713	0.6305 ± 0.0334
Pima	0.6559±0.0239	0.6885 ± 0.0012	0.7125 ± 0.0106
Pendigits	0.4534±0.1342	0.9451±0.0072	0.9198±0.0091
Satellite	0.8925±0.0134	0.8563±0.0026	0.8401±0.0039
Satimage-2	0.8371±0.0949	0.9862 ± 0.0003	0.9730 ± 0.0026
Thyroid	0.6729±0.0635	0.7902±0.012	0.7460 ± 0.0048
Wbc	0.5171±0.1103	0.7826±0.0031	0.8234±0.0145
Wine	0.3776±0.1212	0.8812±0.0111	0.9257 ± 0.0068
Average	0.6034±0.0554	0.6951±0.0081	0.7508±0.0111

Table 12: AUC-	ROC with 5% T-	test in 20 runs or	ver 16 datasets
Dataset	ICL	NPT-AD	PTAD
Arrhythmia	0.8040±0.0133	0.7110±0.0014	0.7915±0.006
Breastw	0.9566±0.0156	0.9853±0.0004	0.9971±0.000
Campaign	0.7032±0.0173	0.7935±0.0028	0.8428±0.021
Cardio	0.9178±0.0156	0.9488±0.0011	0.9637±0.003
Cardiotocography	0.6934±0.0382	0.7184±0.0043	0.8140±0.012
Glass	0.8266±0.0197	0.7681±0.0134	0.7559±0.024
Ionosphere	0.9719±0.0072	0.9687±0.0011	0.9696 ± 0.001
Mammography	0.5705±0.0824	0.8891±0.0012	0.8901±0.002
Optdigits	0.9412±0.0295	0.7729±0.0631	0.9758±0.002
Pima	0.6248±0.0217	0.7215±0.0011	0.7013±0.011
Pendigits	0.8887±0.0691	0.9976±0.0003	0.9945±0.001
Satellite	0.8754±0.0161	0.8042±0.0051	0.7897±0.008
Satimage-2	0.9805±0.0107	0.9995±0.0000	0.9973±0.000
Thyroid	0.9245±0.0245	0.9704±0.0003	0.9691±0.001
Wbc	0.9323±0.0247	0.9531±0.0014	0.9557±0.005
Wine	0.8159 ± 0.0661	0.9758 ± 0.0025	0.9455±0.005
Average	0.8392±0.0294	0.8736±0.0062	0.8971±0.000

1080 COMPARE ON OODS BENCHMARK G

1081 1082 1083

1084

1085

We have conducted additional experiments on the full set of 30 ODDS datasets to provide a more comprehensive evaluation of our method. Detailed results are listed in Table 13 and Table 14 by reporting the AUC-PR and AUC-ROC, which consistently showcase our superiority compared to other methods.

1086 1087

1088	Table 13: C	Compare	e with o	ther base	elines in	n AUC-	PR on (OODS
1089	Dataset	GMM	LUNAR	NPT-AD	DDPM	DTE-IG	DTE-C	PTAD
1090	Annthyroid	0.1414	0.1685	0.6457	0.4689	0.3873	0.8314	0.5464
1091	Breastw	0.3071	0.3602	0.4779	0.5660	0.6252	0.6609	0.0164
1002	Cardio	0.3373	0.1733	0.8216	0.5667	0.6239	0.7125	0.8445
1092	Ecoli Forest	0.6532	0.3749	0.8013	0.3932	0.3668	0.7136	0.7187
1093	Glass	0.0586	0.1146	0.2235	0.3102	0.7224	0.5002	0.3880
1094	Http	0.2604	0.0031	0.9371	0.9941	0.9837	0.8967	0.7095
1095	Letter	0.9589	0.9511 0.2805	0.9875	0.9557	0.9821 0.1576	0.9801	0.9813
1096	Lympho	0.6625	0.7917	0.9920	0.6272	0.8129	0.7314	0.7843
1097	Mammography Mnist	0.1941	0.1396	0.4133	0.1268	0.1450	0.4045	0.4398
1098	Mulcross	0.9259	0.0516	1.0000	0.9967	1.0000	1.0000	1.0000
1000	Musk	0.8940	0.1432	1.0000	0.9964	1.0000	1.0000	0.9989
1099	Pendigits	0.0517	0.0521	0.1231	0.0807	0.5380	0.1463	0.7947
1100	Pima	0.4873	0.5044	0.6858	0.5980	0.6243	0.6075	0.7308
1101	Satellite	0.5092	0.4513	0.8540	0.8302	0.8857	0.8496	0.8433
1102	Seismic	0.4028	0.2742	0.2042	0.1480	0.1141	0.1247	0.2419
1103	Shuttle	0.8623	0.1816	0.9656	0.9754	0.9981	0.9430	0.9337
1104	Smtp Speech	0.1728	0.0242	0.5135	0.3538	0.0089	0.51/1	0.6203
1105	Thyroid	0.1779	0.1474	0.7851	0.7653	0.3223	0.8338	0.7685
1105	Vertebral	0.1012	0.0949	0.2278	0.2432	0.2688	0.3125	0.7458
1106	Wbc	0.2558	0.6230	0.9195	0.6543	0.4059	0.5497 0.6453	0.4665
1107	Wine	0.1095	0.0585	0.7635	0.4677	1.0000	0.8573	0.9323
1108	Average	0.3139	0.3184	0.2239	0.4917	0.5184	0.5021	0.5353
1109		0.0070	0.2710	0.0012	0.0172	0.090	0.0221	
1110								
1111								
1111 1112	Table 14: C	mnora	with of	har basal	inos in		20 C on	0005
1111 1112 1113	Table 14: Co	ompare	with ot	her basel	lines in	AUC-R	COC on	OODS
1111 1112 1113	Table 14: Co	GMM 0.6292	with otl LUNAR	her basel	DDPM	AUC-R DTE-IG	OC on DTE-C	OODS PTAD 0.8596
1111 1112 1113 1114	Table 14: Co Datasets Annthyroid Arrhythmia	Ompare GMM 0.6292 0.7564	with ot LUNAR 0.7346 0.8297	her basel NPT-AD 0.8783 0.7103	DDPM 0.7474 0.7331	AUC-R DTE-IG 0.7081 0.7782	OC on DTE-C 0.9761 0.8816	OODS PTAD 0.8596 0.8147
1111 1112 1113 1114 1115	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio	GMM 0.6292 0.7564 0.9690 0.8703	with ot LUNAR 0.7346 0.8297 0.9711 0.5236	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211	DDPM 0.7474 0.7331 0.9687 0.7437	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751	OC on DTE-C 0.9761 0.8816 0.9360 0.8880	OODS PTAD 0.8596 0.8147 0.9973 0.9653
1111 1112 1113 1114 1115 1116	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio Ecoli	GMM 0.6292 0.7564 0.9690 0.8703 0.9177	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.7774	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.6957	OC on DTE-C 0.9761 0.8816 0.9360 0.8889 0.8897	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791
1111 1112 1113 1114 1115 1116 1117	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio Ecoli Forest	Compare GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.9327	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.7774 0.7467 0.9467	NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.6957 0.9859	OC on DTE-C 0.9761 0.8816 0.9360 0.8889 0.8897 0.9742	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.9522
1111 1112 1113 1114 1115 1116 1117 1118	Table 14: Co Datasets Arnhybroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.5064 0.9927	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.7774 0.7467 0.8462 0.1823	NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.9969	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.6957 0.9859 0.9564 0.9999	CC on DTE-C 0.9761 0.8816 0.9360 0.8889 0.8897 0.9742 0.9390 0.9993	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986
1111 1112 1113 1114 1115 1116 1117 1118 1119	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9961 0.9741	with ot LUNAR 0.7346 0.8297 0.9711 0.5236 0.7774 0.7467 0.8462 0.1823 0.9642	NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805	DDPM 0.7474 0.7331 0.9687 0.7437 0.7012 0.7298 0.7434 0.9969 0.9357	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.6957 0.9859 0.9564 0.9999 0.9713	OC on DTE-C 0.9761 0.8816 0.9360 0.8889 0.8897 0.9742 0.9390 0.9993 0.9993 0.9713	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120	Table 14: Co Datasets Arnhybroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter	Ompare GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.5064 0.9927 0.5064 0.9961 0.8304 0.9741 0.8304	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.7774 0.8462 0.1823 0.9642 0.8778 0.9642	NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.9969 0.9357 0.3913 0.8570	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.6957 0.9554 0.9564 0.9999 0.9713 0.5079 0.9510	DTE-C 0.9761 0.8816 0.9360 0.8889 0.8899 0.9742 0.9390 0.9993 0.9713 0.3749 0.9637	PTAD 0.8596 0.8147 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9755
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120	Table 14: Co Datasets Arnthyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography	Compare GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9961 0.9741 0.8704 0.9792 0.8671	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.7774 0.8462 0.8462 0.8462 0.8462 0.8462 0.8462 0.8462 0.8233	NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9992 0.8928	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7437 0.7437 0.7437 0.7437 0.7437 0.7437 0.7437 0.7437 0.7357	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.9554 0.9999 0.9713 0.5079 0.9510 0.7937	CC on DTE-C 0.9761 0.9360 0.9360 0.9360 0.9380 0.9712 0.9390 0.9993 0.9713 0.3749 0.9637 0.8680	PTAD 0.8596 0.8147 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121	Table 14: Co Datasets Arnhyhroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist	CMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9961 0.9741 0.8704 0.9792 0.8671 0.8491 0.9027	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.7774 0.7467 0.8462 0.9642 0.8778 0.9642 0.8778 0.9642 0.8778 0.9357 0.8323	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9805 0.9597 0.9992 0.8928 0.9464	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7437 0.7437 0.7437 0.7437 0.7437 0.7437 0.7437 0.7357 0.3913 0.8570 0.7367 0.7948 0.90202	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.9554 0.9999 0.9713 0.5079 0.9510 0.7937 0.8518	CC on DTE-C 0.9761 0.9360 0.9360 0.9360 0.9360 0.9712 0.9390 0.9993 0.9713 0.3749 0.9637 0.8680 0.8680 0.8631 1.9095 0.8680 0.8731 1.9095 0.8680 0.8731 0.9095 0.8680 0.8731 0.9095 0.8680 0.8731 0.9095 0.8680 0.9655 0.9655 0.9765 0.9755	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.9765 0.8361 0.9209
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122	Table 14: Cc Datasets Arnhyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9931 0.9941 0.8701 0.8671 0.8491 0.9977 0.9977	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.7744 0.7467 0.8462 0.9642 0.8778 0.9642 0.8778 0.9623 0.3577 0.0012 0.6020	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9992 0.8928 0.9464 1.0000	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.9969 0.9357 0.3913 0.8570 0.7367 0.7348 0.9992 0.9992	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.9557 0.9554 0.9999 0.9713 0.5079 0.9510 0.7937 0.8518 1.0000	CC on DTE-C 0.9761 0.9360 0.9360 0.9360 0.9360 0.9390 0.9712 0.9390 0.9993 0.9713 0.3749 0.9637 0.8680 0.8731 1.0000	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9961 0.9741 0.8304 0.9771 0.8491 0.9977 0.9954 0.5478	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.77467 0.8462 0.9642 0.8778 0.9642 0.8778 0.9931 0.8323 0.7357 0.0012 0.6020 0.4530	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9802 0.8928 0.9464 1.0000 1.0000 0.8084	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.99687 0.3913 0.8570 0.7367 0.7367 0.7367 0.7367 0.7948 0.9992 0.6552	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.9857 0.9857 0.9564 0.9999 0.9713 0.5079 0.9510 0.9510 0.9511 0.0951 0.9518 1.0000 1.0000	C on DTE-C 0.9761 0.9360 0.9360 0.9360 0.9300 0.9390 0.9993 0.9713 0.3749 0.9637 0.9637 0.8680 0.8731 1.0000 1.0000 0.8254	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124	Table 14: Co Datasets Arnhyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits Pendigits Pendigits	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9961 0.8701 0.8711 0.8491 0.9977 0.9954 0.5478 0.5478 0.5546	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.77467 0.8462 0.9642 0.8778 0.9642 0.8778 0.9642 0.8778 0.9012 0.6020 0.6020 0.4530 0.6635 0.6755	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9805 0.9597 0.9802 0.8928 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.99687 0.3913 0.8570 0.7367 0.7367 0.7367 0.7367 0.7948 0.9992 0.6552 0.85520 0.5552	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.9657 0.9859 0.9564 0.9999 0.9713 0.5079 0.9510 0.9510 0.9510 0.9511 0.0900 0.9513 0.09193 0.09193 0.9157	C on DTE-C 0.9761 0.9360 0.9360 0.9360 0.9300 0.9390 0.9993 0.9713 0.3749 0.9637 0.8680 0.8731 1.0000 0.8254 0.9769 0.6124	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.734
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits Pendigits Pima Satellite	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9941 0.8304 0.9971 0.5478 0.5478 0.5478 0.6394	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.77467 0.8462 0.9742 0.8778 0.9642 0.8778 0.9931 0.6823 0.7357 0.0012 0.6230 0.4530 0.4530 0.6835 0.6213	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9802 0.8928 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161 0.7914	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.99687 0.3913 0.8570 0.7357 0.3913 0.8570 0.7367 0.7948 0.9992 0.6552 0.6552 0.6552 0.6552 0.6552	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.9859 0.9564 0.9999 0.9713 0.5079 0.9713 0.5079 0.9713 0.7937 0.8518 1.0000 1.0000 0.9193 0.9759 0.6167	CC on DTE-C 0.9761 0.8816 0.9360 0.8889 0.9742 0.9390 0.9713 0.3749 0.9637 0.8680 0.8731 1.0000 1.0000 0.8254 0.8254 0.8254 0.9769 0.6124	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.7234 0.7234
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126	Table 14: Co Datasets Arnhythyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits Pendigits Pima Satellite Satimage-2	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9961 0.8701 0.8711 0.5448 0.9977 0.9951 0.5478 0.5478 0.6394 0.6394 0.6394 0.6394 0.6394 0.6394 0.6394 0.6394 0.6394	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.7774 0.7467 0.8462 0.9642 0.8778 0.9642 0.8778 0.9012 0.6323 0.6020 0.4530 0.6835 0.6213 0.8245 0.6113 0.611	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9805 0.9597 0.9805 0.9597 0.9805 0.9597 0.9805 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161 0.7914 0.9995 0.612	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.99687 0.3913 0.8570 0.7367 0.7948 0.9992 0.6552 0.8522 0.5526 0.7777 0.9876 0.7777	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.8751 0.9657 0.9859 0.9713 0.5079 0.9510 0.9559 0.6518 0.0000 0.9510 0.9559 0.6518 0.0000 0.9519 0.9559 0.6518 0.0000 0.9519 0.9559 0.6518 0.0000 0.9519 0.0510 0.9559 0.9559 0.9559 0.9559 0.9559 0.8518 0.0000 0.9519 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.0579 0.8518 0.9579 0.8518 0.9579 0.8518 0.9759 0.8518 0.9759 0.8518 0.9759 0.8518 0.9759 0.8518 0.9759 0.8518 0.9759 0.8518 0.9759 0.8518 0.9759 0.8518 0.9756 0.9556	CC on DTE-C 0.9761 0.9360 0.8889 0.8897 0.9742 0.9390 0.9993 0.9713 0.9637 0.9637 0.8680 0.8731 1.0000 0.8254 0.9769 0.6124 0.7932 0.9951 0.4752 0.9751	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.7234 0.7234 0.7992 0.9995 0.6555
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127	Table 14: Co Datasets Arnhyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits Pendigits Pima Satellite Satimage-2 Seismic Shuttle	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9991 0.8711 0.8491 0.9977 0.9954 0.5478 0.6294 0.6394 0.6394 0.6320 0.9853 0.6320 0.9803	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.77467 0.8462 0.97467 0.8462 0.9642 0.8778 0.9642 0.8778 0.9012 0.6823 0.6623 0.6623 0.6213 0.6213 0.6214 0.6234 0.6214 0.6314 0.6	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9802 0.8928 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161 0.7914 0.9995 0.6943 0.9886	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.9968 0.9357 0.3913 0.8570 0.7367 0.7948 0.9992 0.6552 0.8522 0.5556 0.7777 0.9876 0.5100 0.9980	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.9859 0.9564 0.9999 0.9713 0.5079 0.9713 0.5079 0.9713 0.0793 0.9710 0.7937 0.8518 1.0000 1.0000 0.9193 0.9759 0.6167 0.8618 0.9796 0.4862 0.9999	CC on DTE-C 0.9761 0.8816 0.9360 0.8889 0.9742 0.9390 0.9713 0.3749 0.9637 0.8680 0.8731 1.0000 1.0000 0.8254 0.8254 0.8254 0.9769 0.6124 0.7932 0.7951 0.4701 0.99951	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.7234 0.7992 0.9995 0.6558 0.9965
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits Pendigits Pima Satellite Satimage-2 Seismic Shuttle Smtp	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9941 0.8304 0.9971 0.5478 0.5478 0.6324 0.6322 0.9803 0.7800	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.77467 0.8462 0.9742 0.8728 0.9642 0.8778 0.9012 0.6823 0.6623 0.6623 0.6213 0.6213 0.6214 0.6351 0.6215 0.6213 0.8245 0.6191 0.8357	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9805 0.9597 0.9805 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161 0.7914 0.9995 0.6943 0.9986 0.8351	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.9968 0.9357 0.3913 0.8570 0.7367 0.7948 0.9992 0.6552 0.8522 0.5566 0.7777 0.9876 0.5100 0.9982	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.9859 0.9564 0.9999 0.9713 0.5079 0.9713 0.5079 0.9713 0.5079 0.9510 0.0793 1.0000 1.0000 1.0000 0.9193 0.9193 0.9193 0.9759 0.6167 0.8618 0.9796 0.4862 0.9999 0.8003	CC on DTE-C 0.9761 0.8816 0.9360 0.8889 0.9742 0.9390 0.9713 0.3749 0.9637 0.8680 0.8731 1.0000 1.0000 0.8254 0.9769 0.6124 0.7932 0.7951 0.7932 0.9951	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.7234 0.7992 0.9995 0.6558 0.9965 0.8486
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits Pendigits Pima Satellite Satimage-2 Seismic Shuttle Shuttle	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9941 0.8304 0.9971 0.5478 0.5478 0.6324 0.6323 0.6324 0.9809 0.7280 0.7280 0.5452 0.9267	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.77467 0.8462 0.9742 0.8778 0.9642 0.8778 0.9012 0.6020 0.4530 0.6213 0.6215 0.6213 0.8245 0.6191 0.8357 0.8857 0.8957 0.8957 0.8957 0.8957 0.8857 0.8857 0.8957 0.99	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9805 0.9597 0.9805 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161 0.7914 0.9995 0.6943 0.9986 0.8351 0.5872 0.9762	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.99687 0.3913 0.8570 0.7357 0.3913 0.8570 0.7367 0.7948 0.9992 0.6552 0.8522 0.5556 0.5777 0.9876 0.5100 0.9980 0.9980 0.9992 0.4748 0.9922 0.4748 0.9952 0.4748 0.9952 0.4748 0.9952 0.4748 0.9952 0.4748 0.9952 0.4748 0.9952 0.4748 0.9952 0.4748 0.9552 0.5552 0.5552 0.5552 0.5552 0.5552 0.5552 0.5552 0.7777 0.9876 0.5980 0.9992 0.4748 0.9952 0.4748 0.9952 0.9952 0.4748 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9952 0.9954 0.9952 0.9956 0.9957 0.9957 0.9972 0.9972 0.9972 0.9972 0.9972 0.9972 0.9974 0.9972 0.9974 0.9972 0.9974 0.9976 0.9974 0.9950 0.9974 0.9976 0.9974 0.9950 0.9974 0.9977 0.9876 0.9992 0.9974 0.9974 0.9974 0.9974 0.9977 0.9876 0.9992 0.9974 0.9974 0.9974 0.9974 0.9974 0.9977 0.9876 0.9974 0.9974 0.9974 0.9974 0.9974 0.9977 0.9876 0.9974 0.9974 0.9974 0.9974 0.9974 0.9974 0.9974 0.9974 0.9977 0.9976 0.9974 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9975 0.9777 0.9975 0.9777 0.9975 0.9777 0.9975 0.9777 0.9975 0.9777 0.9775 0.9777 0.9775	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.9859 0.9564 0.9999 0.9713 0.5079 0.9713 0.5079 0.9713 0.5079 0.9510 0.0793 1.0000 1.0000 1.0000 0.9193 0.9193 0.9193 0.9759 0.6167 0.8618 0.9796 0.4862 0.9999 0.8003 0.4048	CC on DTE-C 0.9761 0.8816 0.9360 0.8899 0.9742 0.9390 0.9713 0.3749 0.9637 0.8680 0.8731 1.0000 1.0000 0.8254 0.9769 0.6124 0.7932 0.9951 0.4701 0.9951 0.4701 0.99588 0.3888 0.3888	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.7234 0.7992 0.9995 0.6558 0.9965 0.8486 0.4398 0.9750
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129	Table 14: Co Datasets Arnthyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits Pendigits Pima Satellite Satimage-2 Seismic Shuttle Shuttle Shuttle Shuttle	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9991 0.8711 0.8304 0.9971 0.9954 0.5478 0.5478 0.6394 0.6393 0.632 0.9809 0.7280 0.5472 0.9265 0.9265 0.4368	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.77467 0.8462 0.9742 0.8778 0.9642 0.8778 0.9931 0.6823 0.7357 0.0012 0.6623 0.6623 0.6213 0.8245 0.6213 0.8245 0.6191 0.8357 0.5755 0.8825 0.3825 0.3825	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9805 0.9597 0.9805 0.9597 0.9805 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161 0.7914 0.9995 0.6943 0.9986 0.8351 0.5872 0.9762 0.5038	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.99687 0.3913 0.8570 0.7357 0.3913 0.8570 0.7367 0.7948 0.9992 0.6552 0.8522 0.5506 0.7777 0.9876 0.5102 0.9292	AUC-R DTE-IG 0.7081 0.7782 0.7530 0.9859 0.9564 0.9999 0.9713 0.5079 0.9713 0.5079 0.9713 0.0793 0.9713 0.0793 0.9759 0.6167 0.8518 1.0000 1.0000 1.0000 0.9193 0.9759 0.6167 0.8618 0.9796 0.8618 0.9796 0.8033 0.4048 0.9215 0.5298	CC on DTE-C 0.9761 0.8816 0.9360 0.8899 0.9742 0.9390 0.9713 0.3749 0.9637 0.8680 0.8731 1.0000 1.0000 0.8254 0.9769 0.6124 0.7932 0.9951 0.4701 0.9951 0.4701 0.99588 0.3898 0.3898 0.9888	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.7234 0.7992 0.9995 0.6558 0.9965 0.8486 0.4398 0.9750 0.9079
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits Pendigits Pima Satellite Satimage-2 Seismic Shuttle Shutt	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9991 0.8711 0.8304 0.9977 0.9954 0.5478 0.5478 0.6324 0.6325 0.6326 0.7580 0.7436 0.4368 0.9038	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.77467 0.8462 0.9742 0.8778 0.9642 0.8778 0.9642 0.8778 0.9642 0.8733 0.0642 0.8353 0.6623 0.6625 0.6213 0.8245 0.6191 0.8357 0.8245 0.6331 0.8857 0.5755 0.8825 0.3822 0.9502	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9992 0.8928 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161 0.7914 0.9995 0.6943 0.9986 0.8351 0.5872 0.9762 0.5038 0.9938	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.99687 0.3913 0.8570 0.7367 0.7948 0.9992 0.7367 0.7948 0.9992 0.6552 0.8522 0.5506 0.7777 0.9876 0.5100 0.9292 0.4748 0.9920 0.4748 0.9292 0.4748 0.5012 0.6879	AUC-R DTE-IG 0.7081 0.7782 0.77530 0.9859 0.9564 0.9999 0.9713 0.5079 0.9713 0.5079 0.9713 0.5079 0.9510 0.0793 1.0000 1.0000 1.0000 0.9193 0.9193 0.9193 0.9193 0.9759 0.6167 0.8618 0.9796 0.4862 0.9999 0.8003 0.4048 0.9215 0.5298 0.8771	CC on DTE-C 0.9761 0.8816 0.9360 0.8899 0.9742 0.9390 0.9713 0.9713 0.9713 0.9713 0.9713 0.8780 0.8731 1.0000 1.0000 0.8254 0.8254 0.9769 0.6124 0.7932 0.9951 0.4701 0.9958 0.3898 0.3898 0.9956 0.6426 0.6426 0.6426	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.7234 0.7992 0.9995 0.6558 0.9965 0.8486 0.4398 0.9750 0.9079 0.8654
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130	Table 14: Co Datasets Annthyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Mulcross Musk Optdigits Pendigits Pima Satellite Satimage-2 Seismic Shuttle Shut	Ompare GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9941 0.8304 0.9971 0.9954 0.5478 0.5478 0.6324 0.9853 0.632 0.9207 0.4368 0.9038 0.9038 0.9038	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.7774 0.7467 0.8462 0.9742 0.8778 0.9642 0.8778 0.9642 0.8778 0.9931 0.6823 0.6623 0.6623 0.6625 0.6213 0.8245 0.6191 0.6351 0.8857 0.5755 0.8825 0.5755 0.8825 0.5755 0.8825 0.5755 0.8222 0.9502 0.9418 0.3820 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.38202 0.9502 0.9418 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.3820 0.9502 0.9418 0.9502 0.9502 0.9418 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9502 0.9502 0.9418 0.9502 0.9502 0.9418 0.9502 0.9502 0.9418 0.9502 0.9502 0.9418 0.9502 0.9502 0.9418 0.9502 0.9502 0.9502 0.9418 0.9502 0.95	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9992 0.8928 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161 0.7914 0.9995 0.6943 0.9986 0.8351 0.5872 0.9762 0.5038 0.9938 0.9577 0.9557	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.9968 0.9357 0.3913 0.8570 0.7367 0.7948 0.9992 0.6552 0.6552 0.6552 0.8522 0.5506 0.7777 0.9876 0.5100 0.9987 0.99876 0.5102 0.6879 0.9048 0.5012 0.6879 0.9048 0.7778 0.9770 0.9780 0.9770 0.9780 0.9770 0.9780 0.9770 0.9780 0.9770 0.9780 0.9770 0.9780 0.9770 0.9780 0.9770 0.9780 0.9770 0.9780 0.9780 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9992 0.9987 0.9987 0.9992 0.9987 0.9992 0.9987 0.9987 0.9992 0.9987 0.9992 0.9987 0.9987 0.9992 0.9997 0.9987 0.9987 0.9992 0.9997 0.9987 0.9987 0.9992 0.9987 0.9987 0.9987 0.9992 0.9987 0.9992 0.9987 0.9987 0.9992 0.9987 0.9992 0.9987 0.9987 0.9992 0.9987 0.9987 0.9987 0.9987 0.9992 0.9992 0.9987 0.9992 0.9992 0.9987 0.9992 0.9992 0.9992 0.9987 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9994 0.90748 0.90748 0.90748 0.90748 0.90948 0.9777 0.9787 0.9787 0.9777 0.9876 0.5012 0.	AUC-R DTE-IG 0.7081 0.7782 0.77530 0.9859 0.9959 0.9564 0.9999 0.9713 0.5079 0.9713 0.5079 0.9510 0.0793 1.0000 1.0000 1.0000 0.9193 0.9759 0.6167 0.8618 0.9796 0.4862 0.9999 0.8003 0.4048 0.9215 0.5298 0.8771 0.9832 1.0000	CC on DTE-C 0.9761 0.8816 0.8816 0.9360 0.8899 0.9742 0.9390 0.9713 0.9713 0.9713 0.9713 0.9713 0.9713 0.9713 0.9713 0.9737 0.8680 0.8731 1.0000 1.0000 0.8254 0.8254 0.9769 0.6124 0.7932 0.9951 0.4701 0.9958 0.3898 0.3898 0.3898 0.6426 0.6426 0.6426	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.7234 0.7992 0.9995 0.6558 0.9965 0.8486 0.4398 0.9750 0.9079 0.8654 0.9077
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131	Table 14: Co Datasets Arnhyroid Arrhythmia Breastw Cardio Ecoli Forest Glass Http Ionosphere Letter Lympho Mammography Mnist Musk Optdigits Pendigits Pima Satellite Satimage-2 Seismic Shuttle Shuttle Simp Speech Thyroid Vertebral Vowels Wbc Wine Yeast	GMM 0.6292 0.7564 0.9690 0.8703 0.9177 0.9327 0.5064 0.9941 0.8304 0.9971 0.5478 0.5478 0.5478 0.6324 0.9853 0.632 0.9207 0.4368 0.9038 0.4461	with otl LUNAR 0.7346 0.8297 0.9711 0.5236 0.77467 0.8462 0.7467 0.8462 0.9742 0.8778 0.9931 0.9642 0.8778 0.9931 0.6423 0.7357 0.0012 0.6623 0.6455 0.6213 0.8245 0.6191 0.6331 0.8825 0.3822 0.3822 0.9502 0.4382	her basel NPT-AD 0.8783 0.7103 0.9834 0.9211 0.8647 0.5392 0.7843 0.9997 0.9805 0.9597 0.9992 0.8928 0.9464 1.0000 1.0000 0.8084 0.9983 0.7161 0.7914 0.9995 0.6943 0.9986 0.8351 0.5872 0.9762 0.5038 0.9938 0.9577 0.9567 0.5038	DDPM 0.7474 0.7331 0.9687 0.7437 0.9012 0.7298 0.7434 0.99687 0.3913 0.8570 0.7357 0.3913 0.8570 0.7948 0.9992 0.6552 0.8522 0.5506 0.5100 0.99876 0.5100 0.99876 0.5102 0.6879 0.5012 0.6879 0.9048 0.7770	AUC-R DTE-IG 0.7081 0.7782 0.77530 0.9859 0.9564 0.9999 0.9713 0.5079 0.9713 0.5079 0.9713 0.5079 0.9510 0.0793 1.0000 0.9193 0.9759 0.6167 0.8618 0.9796 0.4862 0.9999 0.8003 0.4048 0.9215 0.5298 0.8771 0.95215	CC on DTE-C 0.9761 0.8816 0.8816 0.9360 0.9742 0.9390 0.9713 0.9713 0.9713 0.9713 0.9713 0.9713 0.9713 0.8580 0.8731 1.0000 1.0000 0.8254 0.9769 0.6124 0.9769 0.6124 0.9769 0.6258 0.3898 0.3898 0.98951 0.4701 0.9861 0.6426	OODS PTAD 0.8596 0.8147 0.9973 0.9653 0.8791 0.6625 0.8353 0.9986 0.9738 0.6568 0.9765 0.8361 0.9209 1.0000 0.9999 0.9825 0.9961 0.7234 0.7992 0.9995 0.6558 0.9965 0.8486 0.4398 0.9750 0.9079 0.8654 0.9077 0.9507 0.5294

Η DETAILED RESULTS OF ABLATION STUDY

Table 15 and Table 16 show the detailed AUC-PR and AUC-ROC results of the ablation study of our method, including different variations of our model: The two-NPT-layer Baseline, i) Data-space Masking, ii) Single P-space Learnable Masking, iii) Multiple P-space Learnable Masking, iv) Random Masking, v) Association Prototypes, vi) Orthogonality Constrain, and vii) Overall perfor-mance. Each component is critical for enhancing anomaly detection, and the comprehensive version performs best, demonstrating its effectiveness as a harmonious combination of its components.

Table 15: Detailed Comparison Results of AUC-PR for Ablation Study

1145	Table													
1146	Dataset	Baseline	i	ii	iii	iv	v	vi	vii					
11/7	Arrhythmia	0.5999	0.6113	0.6063	0.6183	0.6005	0.6240	0.6149	0.6164					
1147	Breastw	0.9974	0.9977	0.9977	0.9977	0.9977	0.9975	0.9973	0.9973					
1148	Campaign	0.3803	0.4458	0.4609	0.6280	0.5429	0.5048	0.5297	0.5826					
1149	Cardio	0.5272	0.8216	0.8326	0.8424	0.7350	0.8318	0.8450	0.8445					
1150	Cardiotocography	0.5857	0.7103	0.7035	0.6923	0.6752	0.7318	0.7112	0.6962					
1151	Census	0.1990	0.2592	0.1737	0.2315	0.2145	0.3193	0.2918	0.2970					
1151	Fraud	0.6088	0.4483	0.5297	0.5538	0.4814	0.5012	0.4869	0.5377					
1152	Glass	0.1249	0.1496	0.3343	0.3084	0.1263	0.2141	0.3816	0.3880					
1153	Ionosphere	0.9740	0.9822	0.9759	0.9818	0.9790	0.9746	0.9806	0.9813					
1154	Mammography	0.2587	0.1700	0.2714	0.4175	0.3455	0.3821	0.4401	0.4398					
1155	NSL-KDD	0.8738	0.8517	0.8837	0.8767	0.9142	0.8572	0.8813	0.8823					
1450	Optdigits	0.1283	0.1476	0.5787	0.6654	0.4383	0.5548	0.7477	0.7957					
1150	Pima	0.7047	0.6997	0.6980	0.7005	0.6720	0.7620	0.7287	0.7308					
1157	Pendigits	0.5096	0.4889	0.6296	0.9259	0.8242	0.7394	0.9295	0.9260					
1158	Satellite	0.8410	0.8349	0.8794	0.8351	0.8317	0.8490	0.8222	0.8433					
1159	Satimage-2	0.9841	0.9830	0.9782	0.9817	0.9880	0.8593	0.9831	0.9844					
1160	Shuttle	0.9119	0.9035	0.9143	0.9195	0.9175	0.9085	0.9324	0.9377					
1100	Thyroid	0.8026	0.7922	0.5036	0.7490	0.6922	0.8175	0.7616	0.7685					
1161	Wbc	0.8233	0.7879	0.8013	0.8172	0.7628	0.8001	0.8397	0.8451					
1162	Wine	0.9276	0.9308	0.9424	0.9308	0.9313	0.9308	0.8784	0.9323					
1163	Average	0.6381	0.6508	0.6848	0.7337	0.6835	0.7080	0.7392	0.7513					

Table 16: Detailed Comparison Results of AUC-ROC for Ablation Study

9	Dataset	baseline	i	ii	iii	iv	v	vi	vii
	Arrhythmia	0.8073	0.8130	0.7998	0.8195	0.8062	0.8281	0.8145	0.8147
	Breastw	0.9975	0.9977	0.9977	0.9977	0.9977	0.9975	0.9973	0.9973
	Campaign	0.7005	0.7245	0.7791	0.8827	0.8503	0.7936	0.8270	0.8693
	Cardio	0.8095	0.9552	0.9603	0.9465	0.8893	0.9609	0.9627	0.9653
	Cardiotocography	0.6986	0.7936	0.7861	0.8122	0.8094	0.8420	0.8298	0.8210
	Census	0.7185	0.7112	0.6849	0.6494	0.7200	0.7864	0.7287	0.7622
	Fraud	0.8438	0.9239	0.9276	0.9316	0.9011	0.9389	0.9271	0.9531
	Glass	0.6294	0.4392	0.7637	0.7500	0.6147	0.6461	0.7755	0.8353
	Ionosphere	0.9624	0.9759	0.9677	0.9750	0.9703	0.9620	0.9729	0.9738
	Mammography	0.8232	0.6813	0.8088	0.8764	0.8669	0.8354	0.8885	0.8882
	NSL-KDD	0.8695	0.8239	0.8267	0.8525	0.8883	0.8437	0.8698	0.8513
	Optdigits	0.7569	0.8222	0.9757	0.9805	0.9444	0.9699	0.9800	0.9825
	Pima	0.7161	0.6627	0.7122	0.6598	0.6566	0.7352	0.7726	0.7234
	Pendigits	0.9400	0.7822	0.9835	0.9962	0.9921	0.9716	0.9963	0.9961
	Satellite	0.7892	0.7940	0.8558	0.7889	0.7705	0.7947	0.7636	0.7992
	Satimage-2	0.9994	0.9992	0.9987	0.9989	0.9955	0.9961	0.9994	0.9995
	Shuttle	0.9955	0.9951	0.9952	0.9969	0.9971	0.9940	0.9963	0.9965
	Thyroid	0.9651	0.9677	0.9117	0.9636	0.9615	0.9770	0.9619	0.9750
	Wbc	0.9579	0.9479	0.9632	0.9620	0.9515	0.9492	0.9530	0.9737
	Wine	0.9337	0.9461	0.9707	0.9461	0.9476	0.9461	0.9461	0.9507
	Average	0.8457	0.8378	0.8835	0.8893	0.8766	0.8884	0.8982	0.9064

¹¹⁸⁸ I MORE DETAILS OF PROCESSING FOUR TYPES ANOMALIES

Here, we provide additional details on the generation process of the four types of anomalies, following Han et al. (2022).

- Local anomalies: The classic GMM procedure (Milligan 1985; Steinbuss & Böhm 2021) is used to generate normal samples, after which a covariance scaling parameter $\alpha = 5$ is used to generate anomalous samples.
- Global anomalies: The global anomalies are generated from a uniform distribution $Unif(\alpha \cdot \min(\mathbf{X}^k), \alpha \cdot \max(\mathbf{X}^k))$, where the boundaries are defined as the min and max of an input feature, such as k-th feature \mathbf{X}^k . The hyperparameter α is established at 1.1, influencing the level of deviation exhibited by the anomalies.
- **Dependency anomalies:** For generating independent types of anomalies, Vine Copula method (Aas et al., 2009) is utilized to model the dependency structure of the original data, whereby the probability density function of the generated anomalies is established as completely independent by eliminating the modeled dependencies, which could refer to (Martinez-Guerra & Mata-Machuca, 2014). We use Kernel Density Estimation(KDE) (Hastie et al., 2009) to estimate the probability density function of features and generate normal samples.

• Clustered anomalies: We scale the mean feature vector of normal samples by $\alpha = 5$, such as $\hat{\mu} = \alpha \hat{\mu}$. The hyperparameter α scales GMM, controlling the distance between anomaly clusters and the normal for generating anomalies.

1211 J DETAILED RESULTS OF DIFFERENT BACKBONES

We present the performances by adding our multiple strategy and association prototype to different backbone models, specifically including a comparison of the performance of MLP with/without the mask strategy, Transformer with/without the mask strategy or association prototype. Table 17 and Table 18 show the AUC-PR and AUC-ROC. The results show that our proposed masking strategy and association prototype learning is model-agnostic and flexible, and can act as a plug-and-play framework and possess good generalizability to other models.

Table 17: Detailed Comparison Results of AUC-PR with different backbones

1220	Tuble 17. Detailed comparison results of ride 11t with different backbones									
1220	Dataset	MLP	MLP MS	Transformer	Transformer MS	Transformer AP	Transformer MS&AP			
1221	Arrhythmia	0.5821	0.5689	0.5454	0.5614	0.5878	0.5850			
1222	Breastw	0.9977	0.9977	0.9969	0.9970	0.9980	0.9974			
1000	Campaign	0.5627	0.5096	0.4869	0.5622	0.4552	0.5163			
1223	Cardio	0.8516	0.8521	0.8043	0.8389	0.7134	0.8506			
1224	Cardiotocography	0.6919	0.7044	0.6304	0.5928	0.7257	0.7289			
1005	Census	0.2050	0.2120	0.1626	0.2191	0.1595	0.1146			
1225	Fraud	0.7404	0.6512	0.2942	0.3535	0.3850	0.4359			
1226	Glass	0.3175	0.3180	0.2742	0.4862	0.2141	0.2198			
1007	Ionosphere	0.8776	0.8354	0.9429	0.8955	0.9661	0.9660			
1227	Mammography	0.3056	0.4239	0.4295	0.4290	0.4430	0.4007			
1228	NSL-KDD	0.8750	0.8885	0.7973	0.7809	0.8301	0.8217			
1000	Optdigits	0.2000	0.4433	0.1274	0.0791	0.2588	0.2732			
1229	Pima	0.6622	0.6982	0.6912	0.7533	0.7382	0.7672			
1230	Pendigits	0.8293	0.8740	0.2942	0.4656	0.7394	0.4501			
1001	Satellite	0.8483	0.8352	0.8211	0.7604	0.8199	0.8270			
1231	Satimage-2	0.7626	0.9746	0.9707	0.9714	0.9774	0.9769			
1232	Shuttle	0.9955	0.9922	0.9612	0.9392	0.9584	0.9517			
1000	Thyroid	0.8284	0.7872	0.7003	0.6819	0.5509	0.7325			
1233	Wbc	0.7622	0.7326	0.8144	0.8115	0.7628	0.8075			
1234	Wine	0.9308	0.9304	0.9313	0.9299	0.9246	0.9313			
1025	Average	0.6913	0.7115	0.6338	0.6554	0.6604	0.6677			
1233										

1243	Table 18: Detailed Comparison Results of AUC-ROC with different backbones											
1244	Dataset	MLP	MLP MS	Transformer	Transformer MS	Transformer AP	Transformer MS&AP					
10/5	Arrhythmia	0.7876	0.7732	0.7506	0.7726	0.7826	0.7701					
1240	Breastw	0.9977	0.9977	0.9969	0.9972	0.9980	0.9974					
1246	Campaign	0.8339	0.7557	0.7528	0.8579	0.7569	0.8125					
10/17	Cardio	0.9677	0.9677	0.9519	0.9651	0.8945	0.9669					
1241	Cardiotocography	0.7400	0.7756	0.7682	0.6796	0.7849	0.8381					
1248	Census	0.7228	0.7249	0.6694	0.7012	0.6196	0.4215					
19/10	Fraud	0.9139	0.9252	0.9331	0.9272	0.9334	0.9331					
1249	Glass	0.7216	0.7235	0.7304	0.8373	0.6686	0.6559					
1250	Ionosphere	0.8514	0.8133	0.9287	0.8736	0.9546	0.9499					
1251	Mammography	0.8242	0.8682	0.8240	0.8804	0.7876	0.8791					
1201	NSL-KDD	0.8645	0.8697	0.7510	0.7168	0.8113	0.7850					
1252	Optdigits	0.8586	0.9591	0.7718	0.6720	0.8981	0.8615					
1253	Pima	0.6496	0.6909	0.6791	0.7381	0.7252	0.7353					
1200	Pendigits	0.9929	0.9937	0.9064	0.9514	0.9716	0.9479					
1254	Satellite	0.7945	0.7862	0.7650	0.6779	0.7472	0.8063					
1255	Satimage-2	0.9939	0.9984	0.9977	0.9977	0.9970	0.9984					
1200	Shuttle	0.9997	0.9995	0.9959	0.9973	0.9973	0.9978					
1256	Thyroid	0.9809	0.9732	0.9642	0.9595	0.9411	0.9690					
1257	Wbc	0.9533	0.9436	0.9471	0.9694	0.9461	0.9627					
1201	Wine	0.9461	0.9445	0.9476	0.9430	0.9507	0.9476					
1258	Average	0.8697	0.8742	0.8516	0.8558	0.8583	0.8618					
1259												

10 F 1.0 • • . -

DETAILED RESULTS OF DISTANCE MEASUREMENT Κ

We present the detailed performances of AUC-PR and AUC-ROC by utilizing MSE or OT to mea-sure the distance between the basis vector and association prototype in Table 19 and Table 20. Com-pared to the MSE distance, the OT-based measurement could yield better performance served as the distance metric, demonstrating it is effective for us to formulate both the basis vector and association prototype learning as OT problems and calculate the transport distances between distributions.

Table 19: Detailed Comparison Results of AUC-PR for OT/MSE distance to learn basis vectors (BV) and association prototypes (AP)

1271	Dataset	MSE-BV MSE-AP	MSE-BV OT-AP	OT-BV MSE-AP	OT-BV OT-AP
1272	Arrhythmia	0.5608	0.5618	0.6013	0.6164
1273	Breastw	0.9974	0.9975	0.9973	0.9973
107/	Campaign	0.4424	0.3325	0.5320	0.5826
1274	Cardio	0.8400	0.8391	0.8396	0.8445
1275	Cardiotocography	0.5576	0.6060	0.6722	0.6962
1276	Census	0.1533	0.1240	0.1478	0.2970
1277	Fraud	0.4881	0.3452	0.4852	0.5377
1070	Glass	0.2922	0.3286	0.3685	0.3880
1270	Ionosphere	0.9221	0.9812	0.9569	0.9813
1279	Mammography	0.3295	0.2594	0.3290	0.4398
1280	NSL-KDD	0.7981	0.8689	0.7678	0.8823
1281	Optdigits	0.5621	0.5785	0.5080	0.7957
1282	Pima	0.7192	0.7227	0.6724	0.7308
1202	Pendigits	0.2777	0.6776	0.7355	0.9260
1283	Satellite	0.8474	0.8116	0.8357	0.8433
1284	Satimage-2	0.9746	0.9195	0.9811	0.9844
1285	Shuttle	0.9173	0.9341	0.9129	0.9337
1286	Thyroid	0.2104	0.4379	0.2516	0.7685
1200	Wbc	0.7913	0.8307	0.7718	0.8451
1287	Wine	0.9304	0.9304	0.9308	0.9323
1288	Average	0.6306	0.6543	0.6649	0.7513
1289					

Table 20: Detailed Comparison Results of AUC-ROC for OT/MSE distance to learn basis vectors (BV) and association prototypes (AP)

1230	(_ ·)) F ()			
1299	Dataset	MSE-BV MSE-AP	MSE-BV OT-AP	OT-BV MSE-AP	OT-BV OT-AP
1300	Arrhythmia	0.7537	0.7501	0.8022	0.8147
1301	Breastw	0.9974	0.9974	0.9973	0.9973
1000	Campaign	0.7030	0.6791	0.8078	0.8693
1302	Cardio	0.9628	0.9628	0.9624	0.9653
1303	Cardiotocography	0.6909	0.7290	0.8036	0.8210
1304	Census	0.6265	0.5427	0.6442	0.7622
1305	Fraud	0.9399	0.9231	0.9391	0.9531
1206	Glass	0.7049	0.7588	0.7843	0.8353
1300	Ionosphere	0.9061	0.9734	0.9447	0.9738
1307	Mammography	0.8840	0.8093	0.8834	0.8882
1308	NSL-KDD	0.6381	0.8243	0.7205	0.8513
1309	Optdigits	0.9727	0.9719	0.9602	0.9825
1210	Pima	0.7436	0.7177	0.6412	0.7234
1310	Pendigits	0.8477	0.9701	0.9881	0.9961
1311	Satellite	0.8162	0.7763	0.7852	0.7992
1312	Satimage-2	0.9983	0.9912	0.9989	0.9995
1313	Shuttle	0.9960	0.9956	0.9925	0.9965
1314	Thyroid	0.8114	0.9305	0.8386	0.9750
1017	Wbc	0.9576	0.9668	0.9525	0.9737
1315	Wine	0.9445	0.9445	0.9461	0.9507
1316	Average	0.8448	0.8607	0.8696	0.9064
1317					

1318 1319 1320

L SOFT MASK VISUALIZATION

The purpose of soft masking is to capture intrinsic correlations in normal data by finding which
unmasked features can reconstruct the masked features well. In the following, we give a detailed
discussion about the soft masking strategy in the raw data space in response to your question:

1324 1) Compared to the regular binary mask with a mask value of either 0 or 1, we apply the soft mask 1325 in raw data space with values between 0 and 1, providing a more flexible degree of information 1326 blocking and avoiding the complete lost of some features. When applying soft masks, the model 1327 can not only choose which features to mask, but also the degree of masking. 2) Note that the relationships across features are relatively regular in each dataset. The data-space masks try to find and 1328 automatically learn such regular patterns of relationships across features and embed them into the 1329 input. Specifically, some features are more critical for indicating anomalies while others are incon-1330 sequential. The soft masks could perform data-adaptive information bias to different features. As 1331 shown in Fig. Π of Appendix \Box , the soft masks are regular across different features. The data-space 1332 masks could uncover the statistical correlations between masked and unmasked positions across 1333 data points. 3) The soft masking strategy is not only learnable but also data-related, i.e. assign-1334 ing different masks for different data, which contributes to finding salient correlations for a specific 1335 normal sample. This brings more flexibility to the model and is conducive to learning diverse and 1336 optimal masks under which the masked normal data can be reconstructed better than anomalies. 4) 1337 Soft masking is more appropriate for tabular data. Compared to the random masking strategy which 1338 produces meaningless masks, our learnable masking strategy can not only choose which features to mask but also the degree of masking, generating optimal masks for our purpose. By reconstruct-1339 ing masked positions by capturing their correlations between unmasked positions, we train the soft 1340 masks to capture intrinsic correlations existing in the raw data space, and anomalies can be judged 1341 by whether deviating from such correlations. 1342

DETAILED RESULTS ON DIFFERENT DATASETS Μ

In Table 21 and Table 22, we listed the detailed results of Figure 2, Figure 3, Figure 4, and Figure 5, It can be seen that our method shows consistently good performances on various datasets.

Dataset	KNN	IForest	LOF	OCSVM	GMM	LUNAR	DeepSVDD	GOAD	NeuTralAD	ICL	DTE-C	NPT-AD	MCM	MCM + NP
Arrhythmia	0.3282	0.5965	0.3134	0.3399	0.3071	0.3602	0.5515	0.5988	0.5817	0.5773	0.6609	0.4779	0.5765	0.5956
Breastw	0.9600	0.9685	0.3214	0.9582	0.9490	0.9047	0.9024	0.9782	0.6866	0.9459	0.9207	0.9815	0.9902	0.9976
Campaign	0.2736	0.3300	0.2055	0.2736	0.3139	0.2453	0.3302	0.4518	0.3867	0.4291	0.4877	0.4852	0.5543	0.4954
Cardio	0.3159	0.5368	0.1914	0.4619	0.3373	0.1733	0.7269	0.8405	0.8570	0.8054	0.7125	0.8216	0.8432	0.8352
Cardiotocogra	phy 0.3387	0.4616	0.2647	0.4101	0.3381	0.2400	0.5976	0.6840	0.6238	0.6443	0.5462	0.6443	0.7007	0.7108
Census	0.0920	0.0728	0.0704	0.0848	0.0853	0.0809	0.0756	0.1148	0.1206	0.1850	0.1758	0.2363	0.2337	0.2121
Fraud	0.0595	0.1396	0.0017	0.0873	0.1088	0.0648	0.7627	0.5076	0.4730	0.5909	0.6343	0.3972	0.5884	0.6389
Glass	0.0764	0.0508	0.1013	0.0421	0.0586	0.1146	0.1637	0.1205	0.1873	0.2296	0.5002	0.2235	0.1752	0.2414
Ionosphere	0.9028	0.8125	0.8256	0.8094	0.9589	0.9511	0.8636	0.9484	0.9818	0.9771	0.9801	0.9875	0.9740	0.9803
Mammograph	y 0.2088	0.2289	0.1317	0.2213	0.1941	0.1396	0.0429	0.1614	0.0387	0.1792	0.4045	0.4133	0.3173	0.4778
NSL-KDD	0.5355	0.3787	0.5556	0.3509	0.3685	0.5387	0.4876	0.8536	0.8676	0.5621	0.8932	0.8603	0.8572	0.8237
Optdigits	0.0245	0.0669	0.0296	0.0300	0.0317	0.0321	0.1103	0.0847	0.1736	0.4400	0.1465	0.1251	0.7135	0.3577
Pima	0.4893	0.4999	0.4185	0.4341	0.4873	0.5044	0.6409	0.6618	0.6081	0.6462	0.6075	0.6858	0.6759	0.7205
Pendigits	0.0702	0.4362	0.0371	0.2279	0.0508	0.0557	0.2161	0.3319	0.5777	0.4003	0.4712	0.9388	0.7338	0.7663
Satellite	0.5381	0.6164	0.4125	0.6496	0.5092	0.4513	0.8401	0.8077	0.8654	0.8976	0.8496	0.8540	0.8502	0.8356
Satimage-2	0.2861	0.9412	0.4125	0.9637	0.4028	0.2742	0.7106	0.8625	0.8367	0.8599	0.7473	0.9859	0.9792	0.9642
Shuttle	0.1797	0.9776	0.1293	0.8938	0.8623	0.1816	0.9875	0.9765	0.9804	0.9766	0.9430	0.9656	0.9666	0.9165
Thyroid	0.3626	0.6016	0.1482	0.3254	0.1779	0.1474	0.5502	0.7292	0.8095	0.6834	0.8338	0.7851	0.8188	0.5385
Wbc	0.5641	0.6305	0.5914	0.5439	0.4581	0.5623	0.7535	0.7292	0.2130	0.7795	0.6453	0.7497	0.7466	<u>0.7973</u>
Wine	0.2981	0.3044	0.3637	0.1692	0.1095	0.0585	0.9021	0.4608	0.2425	0.3631	0.8573	0.7635	0.9269	0.9260
Average	0.3452	0.4826	0.2763	0.4139	0.3555	0.3040	0.5608	0.5952	0.5556	0.6086	0.6509	0.6691	0.7111	0.6916

Table 22: Comparison results of AUC-ROC on 20 datasets. The best are bold and the second best are underlined.

meu.															
Dataset	KNN	IForest	LOF	OCSVM	GMM	LUNAR	DeepSVDD	GOAD	NeuTralAD	ICL	DTE-C	NPT-AD	MCM	MCM + NPT	Ours
Arrhythmia	0.7843	0.8615	0.7835	0.7978	0.7564	0.8297	0.7502	0.8146	0.8192	0.7937	0.8816	0.7103	0.7826	0.8012	0.8147
Breastw	0.9806	0.9843	0.4761	0.9643	0.9690	0.9711	0.7700	0.9766	0.7987	0.9622	0.9360	0.9834	0.9911	0.9977	0.9973
Campaign	0.7447	0.7320	0.6348	0.7368	0.7676	0.6932	0.3951	0.7201	0.6353	0.7032	0.7995	0.7778	0.8619	0.7830	0.8693
Cardio	0.7282	0.9247	0.6458	0.9228	0.8703	0.5236	0.7508	0.9639	0.9601	0.9140	0.8889	0.9211	0.9635	0.9543	0.9653
Cardiotocography	0.5044	0.6822	0.5217	0.6706	0.5746	0.4932	0.6432	0.7670	0.6799	0.6840	0.6181	0.6840	0.8024	0.8207	0.8210
Census	0.6729	0.6081	0.5716	0.6555	0.6586	0.6410	0.5431	0.5330	0.4986	0.6725	0.6834	0.7008	0.7515	0.7212	0.7622
Fraud	0.9520	0.9533	0.4922	0.9562	0.9451	0.9209	0.8846	0.9356	0.8892	0.9143	0.9413	0.9564	0.9025	0.8840	0.9531
Glass	0.7840	0.6748	0.8447	0.4927	0.5064	0.8462	0.6375	0.6257	0.7907	0.8196	0.9390	0.7843	0.7480	0.7118	0.8353
onosphere	0.9177	0.8197	0.8562	0.8395	0.9741	0.9642	0.9105	0.9366	0.9776	0.9741	0.9713	0.9805	0.9621	0.9724	0.9738
Mammography	0.8510	0.8505	0.7398	0.8741	0.8671	0.8323	0.4807	0.4527	0.4604	0.5653	0.8680	0.8928	0.8660	0.9078	0.8882
NSL-KDD	0.4638	0.2289	0.5259	0.1482	0.2046	0.4535	0.4953	0.8524	0.7521	0.2665	0.8509	0.8126	0.9606	0.6785	0.8513
Optdigits	0.4022	0.7469	0.4527	0.5176	0.5478	0.4530	0.6052	0.6936	0.7743	0.9552	0.8254	0.8084	0.9837	0.9537	0.9825
Pima	0.6913	0.6568	0.6105	0.5904	0.6529	0.6755	0.5861	0.6816	0.6238	0.6231	0.6124	0.7161	0.6503	0.7368	0.7234
Pendigits	0.7539	0.9454	0.5073	0.9259	0.7546	0.6835	0.3064	0.9297	0.9720	0.8334	0.9769	0.9983	0.9906	0.9750	0.9961
Satellite	0.6784	0.6868	0.5472	0.6609	0.6394	0.6213	0.5848	0.7356	0.8204	0.8805	0.7932	0.7914	0.7949	0.7827	0.7992
Satimage-2	0.9466	0.9874	0.3026	0.9947	0.9853	0.8245	0.7068	0.9881	0.9954	0.9828	0.9951	0.9995	0.9987	0.9989	0.9995
Shuttle	0.6582	0.9959	0.5289	0.9909	0.9809	0.6331	0.9995	0.9931	0.9950	0.9889	0.9976	0.9986	0.9986	0.9940	0.9965
Thyroid	0.9658	0.9829	0.8385	0.9599	0.9207	0.8825	0.9476	0.9680	0.9881	0.9223	0.9896	0.9762	0.9636	0.9310	0.9750
Wbc	0.9392	0.9065	0.9413	0.9408	0.9448	0.9418	0.9340	0.9154	0.7364	0.9087	0.9681	0.9577	0.9510	0.9617	0.9737
Wine	0.6633	0.7200	0.9367	0.5400	0.6867	0.3800	0.9833	0.7883	0.7383	0.7927	0.9864	0.9567	0.9037	0.9260	0.9507
Average	0.7541	0.7974	0.6379	0.7590	0.7603	0.7132	0.6957	0.8136	0.7953	0.8079	0.8761	0.8779	0.8914	0.8746	0.9064

LOSS CONVERGENCE Ν

The convergence trend of MSE loss, orthogonal loss \mathcal{L}_{orth} , feature loss \mathcal{L}_{bv} , and attention loss \mathcal{L}_{ap} are visualized in Fig. 12, Fig. 13, and Fig. 14. It can be seen these losses could converge and effectively optimize the parameters.

