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Abstract

We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a
vision-centric approach. While stronger language models can enhance multimodal
capabilities, the design choices for vision components are often insufficiently
explored and disconnected from visual representation learning research. This
gap hinders accurate sensory grounding in real-world scenarios. Our study uses
LLMs and visual instruction tuning as an interface to evaluate various visual
representations, offering new insights into different models and architectures—self-
supervised, strongly supervised, or combinations thereof—based on experiments
with over 20 vision encoders. We critically examine existing MLLM benchmarks,
addressing the difficulties involved in consolidating and interpreting results from
various tasks, and introduce a new vision-centric benchmark, CV-Bench. To
further improve visual grounding, we propose the Spatial Vision Aggregator (SVA),
a dynamic and spatially-aware connector that integrates high-resolution vision
features with LLMs while reducing the number of tokens. Additionally, we discuss
the curation of high-quality visual instruction-tuning data from publicly available
sources, emphasizing the importance of data source balancing and distribution
ratio. Collectively, Cambrian-1 not only achieves state-of-the-art performance but
also serves as a comprehensive, open cookbook for instruction-tuned MLLMs. We
provide model weights, code, supporting tools, datasets, and detailed instruction-
tuning and evaluation recipes. We hope our release will inspire and accelerate
advancements in multimodal systems and visual representation learning.

Project page: https://cambrian-mllm.github.io/

1 Introduction

There is a long-standing debate in philosophy about whether understanding and meaning in language
require sensory grounding. Aristotle’s emphasis on acquiring knowledge through sensory experience
and empirical observation was central to his ancient Peripatetic school and remains influential to this
day [8]; Aquinas famously formalized these ideas in the 13th century with the Peripatetic axiom:
“Nihil est in intellectu quod non sit prius in sensu” (Nothing is in the intellect that was not first in
the senses) [7]. Though many philosophers disagree [23], it is evident that having robust and highly
capable sensory grounding is at least beneficial. Consider the Cambrian explosion, during which the
emergence of vision is believed [105] to have been crucial for early animals to not only find food
and avoid predators but also to evolve and improve. In fact, most human knowledge (and nearly
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Figure 1: We draw parallels between traditional protocols and the use of MLLMs for evaluating visual represen-
tations. MLLMs employ visual question answering to address a diverse array of real-world perception tasks.
The bottom section highlights the five key pillars studied in Cambrian-1.

all animal knowledge) is acquired through sensory experiences like sight, hearing, touch, taste, and
smell, through interactions with the physical world [107]. These sensory experiences are fundamental
to understanding the world around us and are crucial for real-world actions and decision-making.

Beyond philosophical debates, recent advances in multimodal large language models (MLLMs) have
brought the topic of visual representation learning vs. language understanding into practical focus.
Language models have shown strong scaling behaviors [55], and recent advancements in multimodal
learning are largely driven by the development of better, larger LLMs [81]. On the other hand, the
design choices for vision components are often insufficiently explored and disconnected from visual
representation learning research. For instance, many pioneering frameworks such as LLaVA [82] use
vision transformer-based CLIP models [109, 145], which are strongly supervised by language‡, as
the vision feature extractor. While other visual representations, such as self-supervised DINO [103],
are being explored [126], there is a lack of comprehensive and systematic study in this domain. This
gap exists primarily because such studies are challenging: MLLMs involve a complex training and
evaluation pipeline with numerous design decisions to consider. In this work, we aim to bridge
the gap by exploring MLLMs from a vision-centric perspective. More specifically, we use MLLM
instruction tuning as an evaluation protocol for various visual representations (illustrated in Fig. 1).

Our motivation for this study also stems from two potential concerns of the current multimodal
learning research: 1) relying too heavily too early on language can act as a shortcut [47, 144], com-
pensating for the deficiencies in learning effective visual representations, and 2) existing benchmarks
may not provide adequate guidance for real-world scenarios—where visual grounding is crucial for
robust multimodal understanding. These concerns are not unfounded, as researchers have started
to notice that visual grounding is becoming a bottleneck for applying MLLMs in some challenging
real-world applications, despite significant progress in improving general capabilities [41, 126, 136].

From another perspective, traditional evaluation protocols for visual representation learning (e.g.,
linear probing and end-to-end fine-tuning on datasets like ImageNet-1K [113], COCO [79], and
ADE20K [154]) are becoming saturated and do not reflect the diverse perception challenges found in
real-world distributions. On the other hand, using language in the form of visual question answering
(VQA) offers a flexible and robust evaluation protocol. Our study aims to explore this new protocol
design, setting it up to gain insights that will guide the development of better visual representations in
the future. Furthermore, to better evaluate visual representations in this integrated setting, we develop
a vision-centric MLLM benchmark, CV-Bench, by transforming traditional vision benchmarks into
VQA format (Section 2.2).

Cambrian-1 is structured around five key pillars, each offering important insights into the design
space of MLLMs:

• Visual Representations: We explore various vision encoders and their combinations. §2.4

‡We emphasize that CLIP training should be considered as strongly supervised, as language provides
significantly richer supervision than class labels.
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Figure 2: Examples of various vision models, objectives, and architectures studied. Image from [48].

• Connector Design: We design a new dynamic and spatially-aware connector that integrates
vision features with LLMs while reducing the number of tokens. §3

• Instruction Tuning Data: We curate high-quality visual instruction-tuning data from public
sources, emphasizing the importance of distribution balancing. §4

• Instruction Tuning Recipes: We discuss instruction tuning strategies and practices. §2.3
• Benchmarking: We analyze existing MLLM benchmarks, cluster them into 4 intuitive

groups, and introduce a new vision-centric benchmark “CV-Bench”. §2.1, §2.2

We defer a detailed review of the fundamental components and methodologies that underpin MLLM
research to Appendix B

2 Evaluating Visual Representations through MLLMs

Current MLLMs predominantly rely on CLIP [109] as the visual encoder due to its pre-alignment
with language and ease of adaptation to the LLM token space. However, strong language priors can
be a double-edged sword—they compensate for deficiencies in learning effective visual represen-
tations [126] and diminish insights gained from extensive visual representation learning research.
In this section, we systematically evaluate how various visual encoder choices (see Fig. 2) impact
the multimodal capabilities of MLLMs. We also advocate for using MLLM evaluation as a robust
framework for assessing visual representation methods, moving beyond traditional protocols like
linear probing and end-to-end fine-tuning to more faithfully reflect the diverse perception challenges
in real-world scenarios and to better guide the development of improved visual representations.
2.1 Analyzing the Benchmarks

To effectively evaluate visual representations and MLLMs, we first need to select benchmarks that
accurately assess the multimodal capabilities of these models. We use a suite of commonly used
benchmarks [24, 45, 54, 57, 83, 84, 91, 92, 96, 97, 120, 126, 137, 143], which is the intersection
of those used in recent MLLM research [75, 77, 137]. To help interpret our results, we begin by
analyzing the benchmarks themselves. Here, we train MLLMs with 23 different vision backbones
(see Table 6) from a variety of model families (see Fig. 2) using a 2-stage instruction tuning process
initially proposed in [82]: first training connector on 1.2M adapter data from ShareGPT-4V [27]
followed by fine-tuning both the connector and LLM on 737K instruction tuning data (see more
details in Appendices G.5 and H). Full benchmark results in Table 9.

Who’s answering the question: the LLM or MLLM? Determining whether a benchmark truly
needs visual input to be solved has been a persistent challenge in vision-language research [2, 26,
50, 94]. In this study, we compare the performance of MLLMs with and without visual input§, and
also calculate the expected score via randomly guessing. These three conditions are visualized in
Fig. 3-left, with benchmarks sorted by the difference between the average score with vision enabled
and disabled. SQA-I¶, MMMU, MathVista, and AI2D display less than a 5% gap between vision
enabled and disabled, suggesting that these benchmarks may not significantly depend on visual input
and rather heavily rely on the base LLM. TextVQA and GQA both demonstrate a nearly 40% positive
gap between random guessing and vision-disabled scores, implying a strong language bias in these
benchmarks. On the other hand, the vision-disabled performance on benchmarks like MMVP is
notably worse than random guessing, suggesting that strong visual grounding is particularly crucial.

Clustering the Benchmarks To better understand the different aspects of MLLM performance,
we analyze the correlations between the performance of our 23 MLLMs on each benchmark. A

§We note that our instruction-tuning data includes text-only data, so text-only questions are not OOD.
¶The subset of SQA [91] with images.

3



Figure 3: Left: Performance comparison of MLLMs with visual input enabled and disabled across various
benchmarks. Benchmarks are sorted by the difference between the average score with vision enabled and
disabled. Right: Principal component analysis displaying clusters of benchmarks based on performance metrics,
with bubble size corresponding to benchmark size. We label the clusters as “General” in green, “Knowledge” in
yellow, “Chart & OCR” in red, and “Vision-Centric” in blue.

confusion matrix (Fig. 10) reveals that certain benchmarks, such as MMMU, are largely uncorrelated
with the others. We perform principal component analysis on the benchmark scores and observe the
formation of clusters corresponding to “General,” “Knowledge,” “Chart & OCR,” and “Vision-Centric”
categories (Fig. 3-right). We assign MMMU to the knowledge category based on the types of questions
it includes (see Appendix D). We also find that existing vision-centric benchmarks [126, 137] are of
insufficient size (see Fig. 3-right), challenging the robustness of evaluating such capabilities. These
benchmarks do not cover crucial visual elements such as depth and spatial awareness.

Finding 1: Most benchmarks do not properly measure vision-centric capabilities, and the
ones that do have very few samples.

2.2 Cambrian Vision-Centric Benchmark (CV-Bench)

To address the limitations of existing vision-centric benchmarks, we introduce the Cambrian Vision-
Centric Benchmark (CV-Bench). With 2638 manually-inspected examples, CV-Bench provides
significantly more examples than other vision-centric MLLM benchmarks—3.5× more than Real-
WorldQA [137] and 8.8× more than MMVP [126]. By repurposing standard vision benchmarks [18,
79, 154]||, we can assess models at classic vision tasks within a multimodal context. Leveraging the
rich ground truth annotations from the benchmarks, we formulate natural language questions that
probe the fundamental 2D and 3D understanding of the models.

As visualized in Fig. 11, CV-Bench evaluates 2D understanding via spatial relationships & object
counting, and 3D understanding via depth order & relative distance. We refer details to Appendix E.

Finding 2: Existing vision benchmarks can be effectively repurposed into VQA questions,
enabling the assessment of vision-centric MLLM capabilities.

2.3 Instruction Tuning Recipes

MLLMs start with pre-trained LLM and vision backbones, connecting these modules with a connector
such as a projector (MLP). The original LLaVA [80, 82] proposes a 2-stage frozen training process:
first, pre-training a connector between frozen LLM and vision backbones using adapter data, and
then fine-tuning both the connector and LLM with instruction tuning data while leaving the vision
encoder frozen. Various studies [27, 63, 81, 98] have drawn different conclusions regarding the
optimal training methodology for MLLMs. Here, we revisit this topic with extensive experiments.

For our experiments, we tune a set of MLLMs using Vicuna-1.5-7B as the LLM backbone and
each of our 23 vision models (Table 6) as the visual encoder. We use a 737K instruction tuning
data mix for all experiments here (see Appendix H). All hyperparameters are matched across each
experimental setting—highlighting the impact of different tuning strategies with each visual encoder.
All experimental settings and results are tabulated in Appendix F.2.

||Omni3D assets are sourced from [3, 13, 20, 46, 111, 121].
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Figure 4: Effect of Training Recipe on Model Performance. Boxplots display the distribution of benchmark
scores across benchmark categories for different training recipes and types of visual encoders. The four training
recipes include freezing the visual encoder with various amounts of adapter data (0M , 0.5M , 1.2M ) as
well as unfreezing it with 1.2M adapter data. Amount of Adapter Data: All model types show increased
performance on general and vision-centric benchmarks; knowledge benchmarks show mixed results; OCR &
chart benchmarks benefit from more data for language-supervised models. Unfreezing: Unfreezing the visual
encoder with 1.2M adapter data generally benefits all categories.

One Stage vs Two Stage Training Recent work [63] advocates for skipping connector pre-training,
claiming this “reduces compute cost without harming downstream performance.” To explore whether
this claim holds—especially when using non-language-supervised visual encoders—we conduct
experiments using 0, 0.5M, and 1.2M adapter data. Following LLaVA’s recipe [82], we tune only
the connector on the adapter data during this first phase, before unfreezing the LLM and connector
during instruction tuning on the 737K mix. Fig. 4 shows that pre-training the connector first enhances
model performance and that more adapter data further improves performance across all domains.
Thus, we subsequently adopt 2-stage training with 1.2M adapter data as our standard setup.

Finding 3: Two-stage training is beneficial; more adapter data further improves results.

Freeze vs Unfreeze Vision Encoder There are also mixed practices in freezing [63, 80, 82] or
unfreezing [44, 81] vision backbones during fine-tuning. Some argue that unfreezing the vision
backbone significantly degrades performance [63]. Our experiments demonstrate that unfreezing
benefits performance across all benchmarks except for a marginal change in knowledge benchmarks
(Fig. 4). We suspect this is due to the composition of the 737K instruction tuning data and the LLM-
heavy focus of these benchmarks (see Section 2.1). We note that unfreezing the vision backbone
introduces additional computational overhead, which prohibits testing on some larger vision models
under current sharding strategies (see more details in Appendix H).

Finding 4: Unfreezing the vision encoder is widely beneficial. Language-supervised
models always benefit; SSL models particularly benefit on vision-centric benchmarks.

2.4 MLLMs as a Visual Representation Evaluator

As discussed in earlier sections, MLLMs provide a new interface to explore aspects of vision models
beyond traditional benchmarks like ImageNet-1k linear probing. We study the 2-stage instruction
tuning setting using 1.2M adapter data, 737K fine-tuning data, and frozen visual encoders to allow
comparison of the widest range of models.
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Figure 6: Continued Fine-Tuning Narrows the Gap Between CLIP and DINOv2. Performance is compared
with 0.7M and 5M instruction tuning data in both frozen ( ) and unfrozen ( ) settings. DINOv2 shows
significant performance improvement with increased data and unfreezing—surpassing the 0.7M CLIP model
in several benchmarks and narrowing the gap to the 5M model in knowledge and vision-centric tasks.

We evaluate on benchmarks detailed in Section 2.1, calculating the average performance** for each
category and visualize the results in Fig. 5 (full results in Appendix F). Our findings highlight the
advantages of language-supervised models over non-CLIP models across all benchmark categories,
with significantly better performance on chart and OCR-related benchmarks. We hypothesize that
this is due to CLIP’s training data, such as LAION [115], containing abundant OCR and text-heavy
data, whereas SSL and other vision models primarily train on natural images with significantly less
text content. It is also noteworthy that language-supervised models are typically trained with a very
large pool of data, ranging from 400 million [109] to 10 billion [28] samples, whereas the largest
vision self-supervised training dataset, like DINOv2, consists of only 142 million samples [103].

Additionally, we observe that higher-resolution models particularly enhance performance on chart
and vision-centric benchmarks while remaining neutral on general VQA and knowledge-based
VQAs. While the majority of the backbones we examine are ViT-based [39], ConvNet-based
architectures (such as OpenCLIP ConvNeXt [86]) are inherently well-suited for high-resolution
image processing [130] and can produce superior results on OCR & Chart and Vision-Centric
benchmarks. In vision-centric benchmarks, the gap between language-supervised and other types
of vision models is smaller, with a well-trained self-supervised DINOv2 model even outperforming
some language-supervised models.

Finding 5: High-res encoders greatly enhance performance on chart & vision-centric
benchmarks, and ConvNet-based architectures are inherently well-suited for such tasks.

Narrowing the gap between Language- and Self-Supervised models Above, we observe that
DINOv2 stands midway between SSL models and language-supervised models on general and
knowledge benchmarks, even outperforming some language-supervised models on vision-centric
benchmarks. Here, we study whether the continued finetuning of an MLLM based on a SSL model

**Before averaging, we divide the MME Perception score by 20 to have the same scale as other benchmarks.
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can achieve performance similar to that of a language-supervised model. Specifically, we scale up the
instruction tuning data from 737K to 5M (see more details in Appendix G.5), and instruction tune
MLLMs with DINOv2 ViT-L/14@336 and OpenAI CLIP ViT-L/14@336 encoders in both frozen and
unfrozen settings. In Fig. 6, we observe that by unfreezing the vision backbone, the DINOv2-based
MLLM fine-tuned with 5M data surpasses the MLLM trained with a CLIP model on 0.7M data.
Additionally, the gap between DINOv2 and the CLIP models is reduced under the 5M setting.

Finding 6: Language supervision offers strong advantages, but the performance gap can be
narrowed with SSL methods given enough data and proper tuning.

2.5 Combining Multiple Vision Encoders

As observed in Fig. 5, different vision encoders excel in different aspects of MLLM performance. In
this study, we explore the potential of combining multiple vision encoders to leverage their distinctive
representations, aiming to build a more capable MLLM. Given that different vision encoders use
varying architectures and image resolutions, we interpolate to a fixed number of visual tokens (576)
in this subsection (see details in Appendix F.3). We then concatenate these tokens along the feature
dimension, following a method similar to A-MoF proposed in [126].

Our study indicates that adding a non-language-supervised model (DINOv2) can improve bench-
mark performance, especially in vision-centric tasks. Notably, even OCR benchmarks benefit from
incorporating DINOv2. This highlights the importance of self-supervised learning models in comple-
menting language-supervised models to achieve robust multimodal understanding. Detailed results
and configurations are available in Appendix F.3.

However, this naive strategy has two limitations: 1) it employs interpolation, which can lead to
information loss, especially with vision encoders with high-resolution feature maps, and 2) it treats
each model equally via simple concatenation. Therefore, we seek a more effective strategy that can
more flexibly leverage model combinations with less information loss.

Finding 7: Combining multiple vision encoders, including SSL models, can enhance
MLLM performance across various benchmarks, particularly in vision-centric tasks.

3 Spatial Vision Aggregator (SVA): A New Connector Design

To effectively aggregate features from multiple vision encoders and prevent the information loss
introduced by interpolation, we use a set of learnable latent queries that interact with multiple
vision features via cross-attention layers [37]. In particular, our approach incorporates two new
vision-centric design principles:

1. We introduce spatial inductive bias by explicitly defining the aggregation space for each
token in the query.

2. We aggregate vision features multiple times across the LLM layers, enabling the model to
repeatedly access and integrate necessary visual information.

To facilitate information aggregation via cross-attention, we create a C-dimension learnable latent
token x ∈ RC that is repeated L×L times to form a 2D grid, serving as the query X ∈ RL2×C . The
set of visual features F from N vision encoders serve as the context (i.e., key and value). We ensure
the output resolution of every vision encoder is a multiple of L. Formally, the feature map of the k-th
vision encoder (Fk) has a resolution of mkL×mkL× C, where mk is a positive integer multiplier,
and L is the height/width of the learnable 2D grid with hidden dimension C.

Spatial inductive bias To maintain the spatial structure during cross-attention, we align each token
in the query with a specific sub-region of the feature maps in all vision encoders. Formally, a token at
row i and column j in the query xi,j corresponds to the sub-region

Fk[mk · i : mk · (i+ 1),mk · j : mk · (j + 1)] ∈ Rm2
k×C

of the k-th vision feature map. As a result, a token xi,j aggregates a total of
∑

k m
2
k features from N

vision encoders through cross-attention (see Fig. 7-left).

Specifically, the updated query vector q∗
i,j ∈ R1×C at position (i, j) is computed as

7



Transformer Block 1

Text TokensLatent Tokens !

L!	×	C
SVA

Transformer Block k

SVA

•••

•••

G
× D

Enc 1

• • •

• • •

Enc N

Enc k

Cross 
Attention!

Visu
al 

Token
s

Spatial Vision 
Aggregator

%%

%&

"',)

LLM Transformer

Figure 7: Spatial Vision Aggregator (SVA). We propose SVA, a dynamic and spatially-aware connector that
integrates multiple vision features with LLMs while reducing the number of tokens.9

q
∗
i,j = softmax

(
qi,j · [ki,j,1,ki,j,2, . . . ,ki,j,N ]⊤

√
C

)
[vi,j,1,vi,j,2, . . . ,vi,j,N ] , (1)

where

qi,j = W
Q
xi,j ∈ R1×C

,

ki,j,k = W
K
k Fk[mk · i : mk · (i + 1), mk · j : mk · (j + 1)] ∈ Rm2

k×C
,

vi,j,k = W
V
k Fk[mk · i : mk · (i + 1), mk · j : mk · (j + 1)] ∈ Rm2

k×C
.

Here, qi,j is the query vector at position (i, j), calculated using the query projection matrix WQ ∈
RC×C . The key vectors ki,j,k and value vectors vi,j,k are computed for each vision encoder k using
their respective key and value projection matrices WK

k ∈ RC×C and WV
k ∈ RC×C . Since

∑
k m

2
k

features are aggregated into a single token, we effectively reduce the number of tokens.

Multi-layer vision aggregation Although our proposal effectively aggregates features from multiple
vision encoders, there is still potential information loss with high-resolution input (large mk) or
multiple vision encoders (large N ). Here, a single token would have to handle a larger amount of
context information during aggregation. To prevent this, we allow cross-attention to occur multiple
times by inserting our proposal throughout the LLM layers—allowing consistent access to the
uncompressed visual information (see Fig. 7-right).

Hyperparameters To flexibly modulate capacity, we introduce two hyperparameters D and G,
which indicate the number of cross-attention layers and distinct groups of learnable queries used
between the vision models and the LLM, respectively. D and G are always set to 1 for cross-attention
layers within LLM layers. We provide ablation studies on the selection of D and G in Appendix H.

Connector General Knowledge OCR & Chart Vision-Centric

Concat. [126] 67.2 48.9 50.1 52.6
Resampler [58] 63.1 46.5 27.1 42.6
SVA-no-multi-agg 68.0 49.5 55.2 52.6
SVA 68.5 49.7 55.5 53.2

Table 1: Comparison between our SVA and other aggregation approaches. The SVA module consistently
outperforms other baselines and excels in aggregating high-resolution vision information.

We demonstrate the efficacy of SVA module using the best vision model combination results from
the previous section and a Vicuna-1.5-7B base LLM. Specifically, we employ a combination of
four vision encoders: OpenAI CLIP ViT-L/14@336, SigLIP ViT-SO400M/14@384, OpenCLIP
ConvNeXt-XXL@1024, and DINOv2 ViT-L/14@518. We compare our method with two strong
baselines: 1) concatenation-based [126] and 2) Re-sampler [11, 72]. Here, we include two variants of
our SVA module. The standard one, “SVA”, uses D = 3, G = 1, and inserts cross-attention blocks
inside the LLM with a layer stride of 3. To isolate the advantages of spatial inductive biases, we
include another SVA variant, “SVA-no-multi-agg”, that does not add cross-attention blocks inside
the LLM and sets D = 3 and G = 3. Table 1 shows that SVA outperforms both baselines, with
a significant improvement in the OCR & chart category. In contrast, the Resampler—which lacks
spatial inductive biases—struggles to condense concatenated tokens from various vision towers into
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WIkiSQL [153] (74.0 K) ALLaVA [25] (700.0 K) OODVQA [129] (8.0 K) Math (3.2%)
Low-Level Vision [27] (50.0 K) Q-Instruct [135] (400.0 K) SketchyVQA [129] (8.0 K) Geo170K [42] (170.0 K)
DocVQA [97] (39.0 K) LNQA [108] (302.0 K) Visualmrc [123] (3.0 K) RAVEN [148] (42.0 K)
WTQ [106] (38.0 K) LVIS-Instruct4V [131] (220.0 K) Language (23.8%) GeomVerse [64] (9.0 K)
ChartQA [96] (28.0 K) LLaVA150K [82] (150.0 K) OpenOrca [78] (994.0 K) MathVision [132] (3.0 K)
IconQA [89] (27.0 K) VisualGenome [69] (86.0 K) MathInstruct [142] (262.0 K) Inter-GPS [90] (1.0 K)
Chart2Text [62] (26.0 K) VQAv2 [50] (83.0 K) OrcaMath [99] (200.0 K) TQA [5] (1.0 K)
TabMWP [88] (23.0 K) GPT4V Rewritten (77.0 K) WizardCoder [93] (143.0 K) Science (2.9%)
TextCaps [119] (22.0 K) GQA [57] (72.0 K) OpenCodeInterpreter [152] (66.0 K) Data Engine (161.0 K)
LLAVAR [149] (20.0 K) A-OKVQA [116] (50.0 K) Dolly [36] (11.0 K) PathVQA [53] (32.0 K)
ST-VQA [17] (17.0 K) AlfWorld [146] (45.0 K) Counting (8.5%) ScienceQA [91] (12.0 K)
AI2D [65] (15.0 K) ShareGPT [27] (40.0 K) Filtered CLEVR (350.0 K)

Figure 8: Cambrian-7M: A Large-Scale Curated Instruction Tuning Dataset for MLLM. Left: The inner
circle shows the original distribution of Cambrian-10M. The outer circle shows the curated Cambrian-7M. Right:
All the data sources in the Cambrian dataset as well as the ones filtered in data curation.
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150k 53.7 68.0 51.3 45.2 50.5

250k 54.3 68.1 51.5 45.3 52.2

350k 54.3 67.4 51.4 46.0 52.3
450k 54.2 68.0 52.2 45.5 50.7

Table 2: t value between 250k and
350k obtains better performance.
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LLaVA-665K 40.7 64.7 45.2 20.8 32.0

Cambrian-10M 54.8 68.7 51.6 47.3 51.4

Cambrian-7M 55.9 69.6 52.6 47.3 54.1

Table 3: Performance improves with
better instruction tuning data curation.

a limited number of learnable queries via global cross-attention. We also compare SVA with other
connectors in Appendix H and show clear advantages.

Finding 8: Spatial inductive bias and deep interaction between LLM and vision feature
help to better aggregate and condense vision features.

4 Instruction Tuning Data for Training MLLMs
4.1 Data Collection

Collecting Instruction Tuning Data from existing data sources Unlike language data, multimodal
(visual) instruction-tuning data is much rarer and harder to collect. To address this, we use existing
multimodal benchmarks and datasets involving visual interaction data, such as Visual Question
Answering (VQA) and OCR data. To help maintain conversational abilities [147], we also collect
a small volume of high-quality language-only instruction-following data. We categorize data into
General conversation, OCR, Counting, Code, Math, Science, and Language-only data. We list the
data sources in Fig. 8, and the details of data preparation in Appendix G.

Targeted Internet Data Collection Engine As observed in Fig. 8, there is an unbalanced distribution
of data. Some categories, such as science, have very few data sources, and each source has limited
samples. Inspired by previous works [73], we introduce a data engine to create large-scale, reliable,
high-quality knowledge-based instruction tuning data (see Fig. 15). Details are in Appendix G.3. Our
data engine produces a large volume of reliable scientific data, increasing the diversity in the data
pool. We generate 161k science-related data points—400% more than the previous combined data
sources.

Cambrian-10M We create a large pool of instruction tuning data, which we refer to as Cambrian-
10M. This pool contains approximately 9784k data points, offering a diverse range of data for our
work and future research. We visualize its composition in Fig. 8.

4.2 Data Curation

Cambrian-10M is a large pool of instruction tuning data sourced from a variety of data sources, with
an unbalanced data ratio between categories. Here, we take a preliminary step to study data curation
by improving data balancing and adjusting data ratios.
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GPT-4V UNK. 63.0 1409.4 75.8 69.1 36.8 65.2 75.7 56.8 49.9 78.2 77.4 78.5 64.5 78.0 88.4 62.4 50.0 61.4 64.3 73.8
Gemini-1.0 Pro UNK. - 1496.6 73.6 70.7 - - 79.5 47.9 45.2 - - - 65.9 - - - - - - -
Gemini-1.5 Pro UNK. - - - - - - - 58.5 52.1 80.3 - 81.3 - 73.5 86.5 - - 67.5 - -

Grok-1.5 UNK. - - - - - - - 53.6 52.8 88.3 - 76.1 - 78.1 85.6 - - 68.7 - -
MM-1-8B 144 - 1529.3 72.3 69.9 - - 72.6 37.0 35.9 - - - - - - - - - - -

MM-1-30B 144 - 1637.6 75.1 72.1 - - 81.0 44.7 39.4 - - - - - - - - - - -
Base LLM: Llama-3-Ins-8B

Mini-Gemini-HD-8B 2880 72.7 1606.0 72.7 73.2 64.5 55.7 75.1 37.3 37.0 73.5 62.9 59.1 47.7 70.2 74.6 51.5 18.7 62.1 62.2 63.0
LLaVA-NeXT-8B 2880 72.5 1603.7 72.1 72.7 65.2 55.6 72.8 41.7 36.3 71.6 63.9 69.5 49.0 64.6 72.6 56.6 38.7 60.1 62.2 65.3

Cambrian-1-8B 576 73.1 1,547.1 75.9 74.7 64.6 61.3 80.4 42.7 49.0 73.0 71.3 73.3 62.4 71.7 77.8 65.0 51.3 64.2 72.3 72.0
Base LLM: Vicuna-1.5-13B
Mini-Gemini-HD-13B 2880 70.7 1597.0 68.6 70.6 63.7 54.1 71.9 37.3 37.0 70.1 60.8 56.6 46.6 70.2 69.8 49.4 19.3 57.5 53.6 67.3

LLaVA-NeXT-13B 2880 69.9 1575.0 70.0 65.6 65.4 53.7 73.5 36.2 35.1 70.0 62.9 62.2 51.4 67.1 70.9 55.9 36.0 59.1 62.7 65.7
Cambrian-1-13B 576 73.7 1,610.4 75.7 74.4 64.3 60.2 79.3 40.0 48.0 73.6 71.3 73.8 61.9 72.8 76.8 62.2 41.3 63.0 72.5 71.8

Base LLM: Hermes2-Yi-34B
Mini-Gemini-HD-34B 2880 76.2 1659.0 80.6 75.3 65.8 62.4 77.7 48.0 43.4 80.5 68.1 67.6 51.8 74.1 78.9 63.8 37.3 67.2 71.5 79.2

LLaVA-NeXT-34B 2880 76.0 1633.2 79.3 75.9 67.1 62.5 81.8 46.7 46.5 74.9 67.7 68.7 54.5 69.5 78.1 64.0 47.3 61.0 73.0 74.8
Cambrian-1-34B 576 76.8 1689.3 81.4 75.3 65.8 67.0 85.6 49.7 53.2 79.7 71.9 75.6 60.0 76.7 75.5 68.5 52.7 67.8 74.0 79.7

Table 4: Comparison of Cambrian-1 with other leading MLLMs. Cambrian-1 outperforms other open-source
models and achieves competitive performance, compared to proprietary models such as GPT-4V, Gemini, and
Grok-1.5. Despite using only 576 visual tokens, Cambrian-1 performs better on OCR & Chart and Vision-Centric
benchmarks compared to Mini-Gemini-HD and LLaVA-NeXT, which use 2880 tokens.

Data Balancing We follow previous work [109, 138] to set thresholds t for the number of data
points from a single data source. We choose t = 150k, 250k, 350k, and 450k in this section and
observe an elbow effect in Table 2—finding that a threshold between 250k and 350k work the best
for Cambrian-10M. We also plot in Appendix G.4 the cumulative sum of counts for entries sorted by
counts from tail to head and we see this intermediate threshold prevents explosive heavy tail.

Data Ratio Cambrian-10M is designed for visual instruction tuning. Given the various capabilities
of different types of data, it is essential to balance the ratio of these data types. We conduct pilot
experiments with a fixed dataset size of 1350k, examining the impact of different data ratios. We
visualize the results in Fig. 9 and summarize our findings as follows: (i) Balancing General, OCR and
Language data is crucial. (ii) Performance on knowledge-intensive tasks is influenced by multiple
factors, often requiring a mix of OCR, chart, reasoning, and general perception.

Cambrian-7M By applying data filtering to Cambrian-10M with our identified data ratio, we create
a smaller but higher-quality dataset called Cambrian-7M. Table 3 showcases the benefits of a well-
balanced and carefully curated dataset. Despite having fewer samples, Cambrian-7M demonstrates
improved performance. We additionally apply system prompts in Cambrian-7M to avoid the "answer
machine phenomenon", see more details in Appendix G.2.

5 State of the Art Performance

Finally, we leverage the insights from all our previous studies to train a family of MLLMs we call
Cambrian-1. We train models using LLM backbones of various scales: LLaMA-3-Instruct-8B [4],
Vicuna-1.5-13B [151], and Hermes-2-Yi-34B [139]. Our vision component combines four models—
OpenAI CLIP ViT-L/14@336, SigLIP ViT-SO400M/14@384, OpenCLIP ConvNeXt-XXL@1024,
and DINOv2 ViT-L/14@518 (Section 2.5)—via the Spatial Vision Aggregator (Section 3). We
pre-train the connector using 2.5M adapter data and instruction tune using our Cambrian-7M data
mix (Section 4.2). Our models are evaluated on the benchmarks categorized in Section 2.1, with
results presented in Table 4.††.

Cambrian-1 surpasses open-source models like LLaVA-NeXT and Mini-Gemini. Thanks to the SVA,
Cambrian-1 excels in tasks requiring high-resolution image processing, even with only 576 image
tokens—about 1/5 of the tokens used by LLaVA-NeXT and Mini-Gemini. Cambrian-1 also achieves
comparable performance to the best proprietary models, such as GPT-4V, Gemini-Pro, and MM-1, on
several benchmarks. We provide model weights, open-source code, datasets, and detailed recipes for
model training and evaluation. We hope our work will strengthen the open research community and
accelerate research in both visual representation learning and multimodal systems.

††For the General Average, we note that GPT-4’s performance on the GQA test set is low, possibly because
other models are trained on the GQA training set, whereas the training set used for GPT-4 is unclear.
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A Broader Discussion

We advocate for using MLLMs as an interface to evaluate visual representations, as previous bench-
marks are becoming saturated and do not adequately reflect the diverse and complex perception
challenges of the real world. Our work highlights the current gap between language-supervised
models and self-supervised learning models and demonstrates the potential of bridging this gap. How-
ever, it is known that features of language-supervised models behave like a bag-of-words [125, 144],
underscoring the need for advancements in vision-only models to ensure better visual understanding.
We hope to inspire future research into developing better vision-only models intended to be adapted
into the MLLM setting, that more effectively leverage large-scale datasets [85] and preserve the
advantages in visual grounding [126].

As we observe in Table 4, a well-trained open-source model such as Cambrian-1 can match or even
outperform proprietary models on many existing benchmarks. However, the use and evaluation of
MLLMs extend far beyond the current scope of benchmarks—to conversational ability, creativity,
reliability, and overall user experience. Developing models solely based on benchmark results can
result in an “answer machine”, over-optimized for benchmarks but lacking in practical interaction
capabilities. Therefore, the development of MLLMs that better align with human and societal needs
is a continuously evolving process, both in terms of evaluation and model development.

Our current Cambrian-1 model uses a moderate number of visual tokens and does not adopt the any-
resolution strategy [30, 77, 81] to handle ultra high-resolution images or those with extreme aspect
ratios, which require a larger number of visual tokens. For specialized tasks like V*Bench [136],
which require processing ultra high-resolution images, increasing the resolution and number of visual
tokens could lead to an HD version of the Cambrian-1 model.

One promising direction for post-training alignment is through reinforcement learning rather than
supervised fine-tuning. Many MLLM studies, including Cambrian, primarily focus on supervised
fine-tuning. Yet, recent advancements in LLMs [38, 104, 110, 156] and some in MLLMs [141, 146]
suggest that reinforcement learning from human or environmental feedback can further improve
models, potentially surpassing the limits of supervised fine-tuning, especially in decision-making
abilities.

Cambrian-10M (Fig. 8 and Section 4) provides a rich pool of data for studying data curation in
fine-tuning MLLMs. Our work takes an initial step in curating higher-quality data to enable more
efficient and effective instruction tuning. We believe there is room for further improvement in the
data curation pipeline, and we hope this work can serve as a foundation for future research.

Additionally, training large-scale models requires careful design of model sharding, data sharding,
and infrastructure adaptations. In this work, we train our model on TPU-V4 [60] with FSDP [150]
using TorchXLA. We share our experiences, technical challenges, and solutions in Appendix C.
We also open-source our implementation and provide tutorials to help the community undertake
large-scale training more efficiently.

To conclude, Cambrian-1 introduces a family of state-of-the-art MLLM models that achieve top
performance across diverse benchmarks and excel in visual-centric tasks. We provide model weights,
open-source code, datasets, and detailed recipes for model training and evaluation. We hope our
work will strengthen the open research community and accelerate future advancements in both visual
representation learning and multimodal systems.

B Multimodal LLMs: Preliminaries and Related Work

The key components of MLLM research include the Large Language Model, Visual Encoder,
Multimodal Connector, Data Curation Pipeline, Instruction Tuning Strategy, and Evaluation &
Benchmarking. Each component has its intricacies, and understanding their interactions presents
significant challenges. Our study investigates these aspects from a vision-centric perspective.

Large Language Model Advanced LLMs [4, 101, 127, 128] are the foundation of an MLLM. After
instruction-tuning on multimodal data, these models can be prompted to solve a variety of complex
tasks and generate free-form responses leveraging input from a visual encoder. Recent MLLM
research focuses on enhancing the LLM backbone [10, 75, 81], resulting in improved performance
on benchmarks like MMMU [143] and AI2D [54]. However, this improvement raises the concern
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that our current multimodal evaluation is biased by the development of LLMs, neglecting a true
assessment of visual perception. For example, some benchmarks such as MMMU [143] are dominated
by LLM capabilities, underscoring the need for evaluations that genuinely assess multimodality (see
Section 2.1).

Visual Encoder Most MLLMs utilize language-supervised models like CLIP [109, 122, 145], which
benefit from the massive scale of noisy web image-text data. However, there is a much broader
pool of visual models that learn representations using only visual signals—such as self-supervised
models [9, 103], segmentation [68], depth-supervised [15], and diffusion models [74, 112] (see Fig. 2).
Recent work [87, 126] advocates for incorporating these diverse vision models into MLLMs. In this
study, we systematically examine the impact of various vision backbones on MLLM performance
(Section 1) and explore the benefits of model ensembles (Section 2.5).

Multimodal Connector Representations from a visual encoder cannot be natively processed by
an LLM—they must be mapped into the LLM token space by a connector. There are three primary
approaches to connector design: Resamplers [6], Q-Formers [11, 37], and MLP Projectors [43, 80,
82, 157]. We begin our exploration using an MLP projector, which is highly effective but presents
challenges: the visual token count grows quadratically with image resolution, inhibiting scaling
context length input resolution. For example, LLaVA-Next [81] requires 2880 visual tokens to
process one 672px image. To address this, we explore new vision connector designs that process
high-resolution images while maintaining a smaller number of visual tokens (Section 3).

Instruction Tuning Data Visual instruction tuning data is crucial but hard to collect, as it rarely
naturally exists on the internet. Previous work [37, 80, 98] transforms existing VQA benchmarks [50,
69] into instruction tuning data, showing marked MLLM performance improvements. With this
inspiration, we collect all VQA benchmarks and visual interaction data that we can find (Fig. 8),
study data balancing and category mixtures (Section 4.2), and develop an internet data collection
engine to fill in the gaps (Section 4.1).

Instruction Tuning Most current MLLMs leverage pre-trained LLMs and visual encoders, fine-
tuning the LLM and connector using visual instruction tuning data. Some aspects of the tuning recipe
are up for debate, including whether to pre-train the connector before joint fine-tuning with the LLM ,
and whether to freeze or unfreeze the vision encoder during fine-tuning [63, 98]. Additionally, some
recent proprietary models explore end-to-end training from scratch [49, 102]. In this work, we use
pre-trained models and revisit the debated recipe aspects with extensive studies, providing more
insights for future MLLM research (Section 2.3).

Evaluation & Benchmarking There is an extensive set of benchmarks that evaluate various aspects
of MLLMs, such as perception [45, 83], knowledge [91, 92], chart interpretation [84, 96], and
visual capabilities [126, 136]. Instead of over-optimizing for specific benchmarks, we advocate for
examining aggregates of benchmarks that focus on specific capabilities. To achieve this, we analyze
existing benchmarks, categorize them, and assess the extent to which they measure multimodality
(Section 2.1). Additionally, we find there are currently few benchmarks focused on vision-centric
evaluation, and those that do exist contain relatively few images, leading to higher variance during
evaluation. To address this issue, we propose a new vision-centric benchmark by reformulating
classic vision tasks (Section 2.2).

C Training, Infrastructure, and Implementation

All models in this paper were trained using TPU-V4 pods [60]; we evaluate using NVIDIA A6000,
A100, and H100 cards. The experiments in Section 2.4 require less than 24 hours on a TPU-V4-128,
while our final Cambrian-1 models are trained in less than 4 days on a TPU-V4-512.

To enable and facilitate large-scale parallel training on TPUs, we employ TorchXLA with FSDP [150]
to handle training sharding and parallelism. Training a large-scale multimodal model with TorchXLA
on TPU is a challenging journey, as there are no open-source codebases and many critical features
are not supported in the TorchXLA or TorchXLA FSDP libraries. To provide a brief taste of the
difficulties: TPUs require a static graph throughout the program, which requires ground-up rewrites
of dynamically-written open-source PyTorch codebases; model resuming is not implemented in
TorchXLA, which is especially crucial when training on preemptable TPUs; existing TorchXLA
FSDP tutorials fail to compile due to version changes in TorchXLA, updates in Hugging Face
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Transformers & Accelerate, or simply inherent issues with the tutorial; loading very large models
(over 30 billion parameters) with the TorchXLA FSDP library is natively impossible due to the
100GB memory constraints of TPU-V4s, and requires extensive workarounds.

To this end, we have rewritten or developed many new functions to make this research possible. For
instance, we rewrote the TorchXLA FSDP Sharding API to load very large models; we implemented
model resuming on TorchXLA; we rewrote parts of the Hugging Face Transformers FSDP and
gradient checkpointing implementations to enable large-scale FSDP training. We are committed
to open-sourcing our codebase and publishing a comprehensive tutorial to share our insights, with
the hope of inspiring and supporting future research and open-source contributions to the TPU and
TorchXLA ecosystem.

D Analyzing the Benchmarks

MLLM Benchmark Performance Confusion Matrix

We evaluate the benchmark scores for our one-stage, two-stage finetune-only and hybrid models, and
then plot the correlation matrix for the pool of MLLM benchmarks. The correlation plot displays in
Fig. 10. The result demonstrates that MMMU is less correlated in measuring model performance
to other benchmarks. Nonetheless, we acknowledge it is widely used and therefore cluster it into
knowledge-based QAs based on the nature of their questions.
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Figure 10: Correlation matrix for MLLM benchmarks. The correlation matrix for MLLM benchmarks with
respect to different vision backbones. The correlation matrix helps us to analysis and group benchmarks.

E Cambrian Vision-Centric Benchmark (CV-Bench)

CV-Bench Curation Below we describe the procedure for programmatically constructing questions
for each task. To ensure reliability, we also manually inspect each question, removing those that are
unclear, ambiguous, or erroneous.

Spatial Relationship (2D). We consider images with two distinct ground-truth object categories and
use visual prompts (bounding boxes) to avoid ambiguity when multiple instances are present. In
these questions, we designate an anchor object, and the question asks for the direction of the other
object relative to this anchor.

Object Counting (2D). This tests the model’s ability to count objects. When generating options
for these questions, we construct multiple-choice options that are similar to the correct answer. For
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Spatial Relationship

Where is the cave located with 
respect to the trees?

How many cars 
are in the image? 

Object Count

Which is closer to the camera, sink
or pillow?

Depth Order Relative Distance

Which is closer to the chair, 
refrigerator or door?

Source benchmark: ADE20K [154] and COCO [79] Source benchmark: Omni3D [18]

Figure 11: Cambrian Vision-Centric Benchmark (CV-Bench). We repurpose standard vision benchmarks to
evaluate the fundamental 2D and 3D visual understanding of MLLMs. See Section 2.2 for more details.

Type Task Description Sources # Samples

2D Spatial
Relationship

Determine the relative position of an object w.r.t.
the anchor object. Consider left-right or top-
bottom relationship.

ADE20K
COCO

650

Object
Count

Determine the number of instances present in the
image.

ADE20K
COCO

788

3D Depth
Order

Determine which of the two distinct objects is
closer to the camera.

Omni3D 600

Relative
Distance

Determine which of the two distinct objects is
closer to the anchor object.

Omni3D 600

Table 5: Breakdown of the 2D and 3D tasks evaluated in the Cambrian Vision-Centric Benchmark (CV-Bench).
The examples are sourced from ADE20K [154], COCO [79], and Omni3D [18].

example, if the correct answer is 4, the options might be 2, 3, 4, 5, & 6. We also include existence
check examples where the correct count is 0.

Depth Order (3D). We consider images with two distinct categories (i.e., object A and object B) and
use visual prompts (e.g., bounding boxes with two different colors) to avoid ambiguity. We define
“closer” as follows: object A is closer to the camera than object B only if the farthest vertex of object
A is closer‡‡ to the camera than the nearest vertex of object B by a specified offset.

Relative Distance (3D). We consider images with three distinct categories (i.e., anchor, object A,
and object B), and use visual prompts (e.g., bounding boxes with three different colors) to avoid
ambiguity. Object A is closer than object B only if the farthest distance from A’s vertices is shorter
than the shortest distance from B’s vertices to the anchor object by a certain offset.

Curation Procedure We provide an overview of the data curation process in Fig. 12, which is
conducted in a semi-automatic manner. The procedure consists of two main steps:

First, using the original benchmarks and their associated ground truth annotations, we generate
query and answer pairs. These pairs are tailored to specific tasks: 2D-related tasks with COCO and
ADE20K datasets, and 3D-related tasks with Omni3D.

Second, after generating the query and answer pairs, we engage human experts to manually filter
out any incorrect or ambiguous queries to enhance the quality of benchmark. Each query is assigned
one of three statuses: accepted (used as is), modified (where the incorrect answer is modified), and
rejected (queries that are ambiguous, such as those too small or difficult to discern, even for human
experts).

Following this two-stage process, we finalize the benchmark, which results in a total of 2638 image
queries with improved accuracy and reliability. Subsequently, we will discuss the methods of human
verification and the evaluation metrics used in this process.

Human verification

‡‡We use the Euclidean distance.
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Figure 12: CV-CB Benchmark Filtering. We reformulate classic 2D and 3D CV benchmarks into Q&A
questions to evaluate MLLM’s visual capabilities.

There are multiple reasons for the above generated data to be inaccurate. One of the main reasons is
sparse annotations, but occasionally there could be wrong annotations as well.

Thus, we need manual inspection to change/remove these examples generated. Here are a few criteria
we followed while manually filtering COCO and ADE20k data.

For Counting question types, if all instances of a category are not annotated, the ground truth would
have lower count than the actual number of instances appearing in the image. In a few cases where
the image distinctly has different countable instances of the object, we change the options/answer. In
case the count is ambiguous, we reject the data sample altogether.

For Relative Distance question types without annotation, if the question is asked about two objects
A and B and if there are two instances of a specific category (say A), the relative location of A w.r.t B
can be have multiple correct answers. We reject the sample in this case. We also reject cases with
clear incorrect annotations.

Benchmark Evaluation To ensure that equal importance is given to both 2D and 3D tasks, we use
an evaluation metric that is the average of the accuracies obtained from these tasks. Specifically, the
overall performance is calculated as follows:

Accuracy2D =
(AccuracyCOCO + AccuracyADE20k

2

)

Overall Accuracy =
(Accuracy2D + Accuracy3D

2

)
F Vision Models in MLLMs

As mentioned in Section 2.4, we use MLLM as an interface to evaluate vision model’s different
capabilities. Here, we list details in terms of the model selection, full results, and data split.

F.1 Details of Vision Models

In our exploration of versatile vision models, we select thirteen models and group them into four
categories: language-supervised models (i.e., OpenAI CLIP [109], SigLIP [145], DFN-CLIP [40],
EVA-CLIP [122] and OpenCLIP [33]), self-supervised models (i.e., DINOv2 [103], I-JEPA [9],
MAE [52], MoCo v3 [29]), class-supervised models (ImagetNet22K ViT [39]) and other models
such as stable diffusion [112], segmentation models like SAM [68], and depth estimation models
like MiDaS [15]. To provide a clear understanding of the specific variant evaluated, we meticulously
detail their backbone architectures, resolution, number of tokens, and hidden dimension sizes in
Table 6. For models that output a large number of patches in the last layer (e.g., SAM and ConvNeXt)
we interpolate to the number of tokens specified in Table 6, and denote interpolation with I.

We extract features following the practice in [12]
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Supervision
Type

Method Architecture Patch
Size

Res. # Tok. Hidden
Size

Language-Supervised
Language OpenAI CLIP ViT-L 14 336 576 768

DFN-CLIP ViT-L 14 224 256 1024
DFN-CLIP ViT-H 14 378 729 1280
EVA-CLIP-02 ViT-L 14 336 576 1024
SigLIP ViT-L 16 384 576 1024
SigLIP ViT-SO400M 14 384 729 1152
OpenCLIP ConvNeXT-L - 512 I576 1536
OpenCLIP ConvNeXT-L - 1024 I576 1536
OpenCLIP ConvNeXT-XXL - 1024 I576 3072

Self-Supervised
Contrastive DINOv2 ViT-L 14 336 576 1024

DINOv2 ViT-L 14 518 I576 1024
MoCo v3 ViT-B 16 224 196 768
MoCo v3 ViT-L 16 224 196 1024

Masked MAE ViT-L 16 224 196 1024
MAE ViT-H 14 224 256 1280

JEPA I-JEPA ViT-H 14 224 256 1280
Other
Segmentation SAM ViT-L 16 1024 I576 1024

SAM ViT-L 16 1024 I576 1280
Depth MiDaS 3.0 ViT-L 16 384 576 1024

MiDaS 3.1 ViT-L 16 518 1024 1024
Diffusion Stable Diffusion

2.1
VAE+UNet 16 512 1024 3520

Class Labels SupViT ViT-L 16 224 196 1024
SupViT ViT-H 14 224 256 1280

Table 6: Catalog of all vision backbones tested. I denotes that the visual tokens have been interpolated
down to the specified length.

Method Architecture Patch Size Resolution # Tokens Linear Probing (%)

EVA-CLIP-02 ViT-L 14 336 576 85.0
DFN-CLIP ViT-L 14 224 256 83.6
DINOv2 ViT-L 14 336 576 83.1
OpenCLIP ConvNeXt-L - 512 576 82.9
OpenAI CLIP ViT-L 14 336 576 80.3
I-JEPA ViT-H 14 224 256 77.0
Supervised ViT-L 16 224 196 74.5
MoCo v3 ViT-B 16 224 196 71.9
MiDaS ViT-L 16 384 576 70.1
MAE ViT-L 16 224 196 68.3

Table 7: Linear Probing Results of Different Vision Backbones

F.2 Full Results of Different Vision Backbones

Here, we also show a ranking version of Fig. 5. We observe a clear advantage of CLIP models over
non-CLIP models. We also observe that within the family of CLIP models, each model perform
differently in different domains. This provide insight into both vision model development and data
curation in training large vision models.

For the above-listed vision models in Table 6, they are integrated as the vision encoder of the MLLMs.
These MLLMs are trained on various adapter adapter data splits (i.e., 0, 0.5 and 1.2 million), and
subsequently fine-tuned on a 737K instruction tuning dataset provided in LLaVA-1.5[80]. For the
adapter data splits, the 0M split indicates that no initial adapter pertaining phase is employed for the
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Language Supervised
Model Architecture All G K O V
SigLIP ViT-SO400M/14@384 1 1 1 2 1
OpenCLIP ConvNeXt-XXL@1024 2 6 8 1 3
DFN-CLIP ViT-H/14@378 3 4 2 5 4
OpenCLIP ConvNeXt-L@1024 4 8 7 3 8
SigLIP ViT-L/16@384 5 5 4 4 6
OpenAI CLIP ViT-L/14@336 6 3 6 6 7
EVA-CLIP-02 ViT-L/14@336 7 2 5 8 2
OpenCLIP ConvNeXt-L@512 8 7 3 7 9
DFN-CLIP ViT-L/14@224 9 9 9 9 10
DINOv2* ViT-L/14@518 10 10 10 10 5

Self-Supervised & Other
Model Architecture All G K O V
DINOv2 ViT-L/14@518 1 1 1 1 1
DINOv2 ViT-L/14@336 2 2 3 3 2
MAE ViT-L/16@224 3 5 2 2 4
I-JEPA ViT-H/14@224 4 3 6 8 3
SD2.1 VAE+UNet/16@512 5 7 9 9 5
MiDaS 3.0 ViT-L/16@384 6 6 8 5 6
SupViT ViT-L/16@224 7 4 9 4 8
MoCo v3 ViT-B/16@224 8 8 4 7 7
MoCo v3 ViT-L/16@224 9 9 5 6 9
SAM ViT-H/16@1024 10 10 10 10 10

Table 8: Benchmark performance rankings for MLLMs built upon language-supervised and self-supervised
vision encoders across all benchmarks (All), and across general (G), knowledge (K), OCR & chart (O), and
vision-centric (V) benchmark categories. Full results for all models on each benchmark are tabulated in Table 11.
*We add DINOv2 here to show its standing amongst the CLIP models.

MLLM. The 0.5M data split utilizes the 558K adapter data from LLaVA-1.5[80], while the 1.2M
variant uses ShareGPT4V-PT dataset [27].

0M Adapter Data + 737K Instruction Tuning Data As shown in Table 9, we provide 20 results
for different variants of the above-mentioned thirteen vision backbones. Among them, language-
supervised models show superior performance. Especially, OpenCLIP ConvNeXT-XXL@1024
model surpasses all other models on DocVQA with over 12%, indicating its potential to handle
OCR-related benchmarks.

Vision Backbone General Knowledge OCR & Chart Vision-Centric
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Language Supervised
OpenAI CLIP ViT-L/14@336 48.37 1,419.43 61.45 59.85 62.26 69.87 34.50 27.80 59.82 33.73 31.70 55.39 28.00 11.33 53.46 56.44 57.40
DFN-CLIP ViT-L/14@224 38.78 1,172.50 49.53 49.74 52.94 67.74 34.00 27.30 56.99 16.75 4.87 44.81 11.19 6.67 46.97 40.29 52.08
DFN-CLIP ViT-H/14@378 36.79 1,091.76 41.28 44.32 50.48 65.54 33.65 26.50 56.76 15.56 2.70 43.41 10.15 4.67 47.06 39.07 52.91
EVA-CLIP-02 ViT-L/14@336 45.84 1,325.17 58.21 62.99 62.03 68.67 35.00 27.50 58.26 19.40 22.50 51.08 16.36 24.67 52.68 52.98 54.83
SigLIP ViT-L/16@384 48.80 1,383.42 61.02 63.56 61.85 68.91 35.29 29.70 57.87 34.96 29.60 56.73 28.31 23.33 52.68 52.95 54.83
SigLIP ViT-SO400M/14@384 47.57 1,376.75 58.76 60.59 60.92 69.01 34.40 26.50 58.35 30.72 28.60 55.10 28.31 19.33 50.71 52.33 58.67
OpenCLIP ConvNeXt-L@512 47.38 1,404.01 57.62 61.90 60.34 69.06 33.90 29.10 58.39 28.04 25.20 55.45 28.41 24.00 54.12 53.46 48.91
OpenCLIP ConvNeXt-L@1024 39.02 1,139.60 14.64 49.59 37.91 65.71 34.30 27.30 54.13 32.97 12.05 52.61 38.36 9.67 47.45 52.68 38.04
OpenCLIP ConvNeXt-XXL@1024 41.83 1,219.47 48.00 49.88 55.09 66.14 35.69 27.60 56.67 16.92 5.00 46.90 40.98 16.00 47.32 43.40 52.75
Self Supervised
DINOv2 ViT-L/14@336 41.18 1,262.66 49.62 56.80 60.30 65.10 35.00 26.40 56.41 16.48 3.10 44.04 11.90 18.67 50.20 49.43 52.25
DINOv2 ViT-L/14@518 40.60 1,242.48 51.00 53.39 60.38 64.55 34.50 26.20 57.53 15.11 2.90 44.28 10.95 14.00 48.63 46.13 57.90
MoCo v3 ViT-B/16@224 34.94 966.45 36.77 33.00 47.35 62.96 32.80 26.20 55.05 16.04 2.60 43.81 10.31 6.67 45.36 39.03 52.83
MoCo v3 ViT-L/16@224 34.70 1010.18 34.64 41.71 47.46 64.70 33.70 26.30 55.05 16.24 2.70 42.60 10.39 4.00 45.36 44.67 35.16
MAE ViT-L/16@224 37.69 1,114.07 42.30 35.93 55.20 63.51 34.60 26.00 56.10 16.11 2.70 43.63 10.83 14.00 44.80 45.81 55.75
MAE ViT-H/14@224 38.58 1,083.35 41.15 50.99 55.30 64.90 34.10 26.00 56.49 15.63 3.20 43.98 11.00 12.00 46.30 47.18 54.90
I-JEPA ViT-H/14@224 38.88 1,132.07 44.68 51.74 55.37 66.04 34.20 26.40 56.09 15.84 3.00 43.66 11.48 10.67 46.01 46.74 53.50
Other
SAM ViT-L/16@1024 31.74 585.78 20.34 36.34 39.85 65.49 34.50 25.10 53.92 16.16 2.70 42.37 9.25 2.00 44.44 35.65 50.50
SAM ViT-H/16@1024 32.37 648.96 22.30 36.31 40.52 65.20 34.10 26.00 54.44 15.56 2.40 42.39 8.75 2.00 45.36 34.83 55.25
MiDaS 3.0 ViT-L/16@384 35.65 981.36 38.57 40.93 49.04 63.41 31.80 25.70 54.72 16.36 2.60 43.19 11.24 6.67 44.97 38.78 53.40
MiDaS 3.1 ViT-L/16@518 35.44 983.34 34.79 40.20 48.53 64.60 33.90 25.00 55.18 15.64 2.60 42.76 12.08 6.66 43.66 39.63 52.58
Diffusion SD2.1/16@512 36.59 1,044.28 37.71 42.00 48.38 64.55 33.40 25.70 56.99 15.56 3.10 43.14 10.40 9.33 45.88 44.68 52.40
SupViT ViT-L/16@224 40.13 1,197.39 46.55 54.72 57.27 65.94 34.00 28.00 56.22 16.44 3.10 43.52 11.82 16.67 46.67 48.49 52.75
SupViT ViT-H/14@224 37.45 1,082.43 42.61 48.45 52.98 63.51 35.29 26.50 55.78 15.16 3.30 44.16 11.49 4.66 43.79 44.55 52.91

Table 9: All Benchmark Results for 0M Adapter Data + 737K Instruction Tuning Data

0.5M Adapter Data + 737K Instruction Finetune As shown in Table 10 and Table 9, the inclusion
of an alignment stage with 0.5M data split results in a notable increase in performance for DFN-CLIP
ViT-H/14@378, from 36.21 to 49.94. This substantial improvement highlights the value of the
alignment stage for enhancing certain vision backbones, suggesting its importance in harnessing the
full potential of vision models.

1.2M Adapter Data + 737K Instruction Finetune As we increase the amount of data in the align-
ment phase, we observe a consistent performance improvement for SigLIP ViT-SO400M/14@384
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Language-Supervised
OpenAI CLIP ViT-L/14@336 49.03 1,413.51 60.34 62.17 60.81 69.76 36.49 29.90 58.48 36.80 30.20 57.63 30.98 21.33 51.63 52.57 54.75
DFN-CLIP ViT-L/14@224 45.59 1,382.75 57.36 63.26 60.54 66.81 35.09 29.20 57.71 22.88 23.45 52.27 18.82 21.33 51.31 49.59 50.63
DFN-CLIP ViT-H/14@378 50.62 1,500.45 62.64 66.44 62.53 70.75 35.69 30.30 58.78 39.20 29.80 56.98 31.39 29.33 53.59 54.96 52.58
EVA-CLIP-02 ViT-L/14@336 47.13 1,362.07 62.64 63.96 61.66 69.46 35.89 27.90 56.96 20.96 26.10 53.93 19.07 20.00 53.07 56.28 58.16
SigLIP ViT-L/16@384 48.11 1,381.48 61.79 61.87 59.45 70.25 35.99 28.80 57.58 28.76 28.20 54.90 25.60 26.00 52.29 52.89 56.33
SigLIP ViT-SO400M/14@384 50.41 1,327.79 62.13 63.92 61.31 70.38 36.99 30.00 59.52 40.08 33.20 60.37 36.58 22.00 53.99 55.59 54.08
OpenCLIP ConvNeXt-L@512 48.01 1,366.85 59.66 62.89 61.31 68.77 36.99 28.50 59.29 27.88 28.50 57.57 29.48 16.00 53.20 53.81 55.91
OpenCLIP ConvNeXt-L@1024 40.29 1,084.62 12.94 51.02 49.78 65.47 34.20 27.60 56.36 29.92 13.25 50.37 43.67 13.33 49.08 51.85 41.58
OpenCLIP ConvNeXt-XXL@1024 50.45 1,405.65 57.96 63.58 62.41 68.02 34.30 29.40 59.62 42.96 26.20 61.82 42.67 28.67 55.16 49.92 54.16
Self-Supervised
DINOv2 ViT-L/14@336 42.64 1,283.95 54.64 59.03 60.19 66.39 35.29 25.70 58.03 16.00 3.20 45.39 11.79 20.00 50.59 53.51 58.33
MoCo v3 ViT-B/16@224 38.50 1,159.10 40.00 51.37 54.97 65.25 33.70 27.20 55.51 16.36 3.30 44.42 11.42 10.67 46.14 45.80 52.00
MoCo v3 ViT-L/16@224 37.71 1,074.13 41.19 49.46 53.61 63.66 33.70 27.40 55.83 17.04 3.40 43.84 11.98 8.00 46.27 48.69 45.59
MAE ViT-L/16@224 39.99 1,138.35 44.60 54.91 56.69 65.64 36.19 27.90 56.48 17.20 3.20 44.45 12.42 14.00 47.32 48.83 53.08
I-JEPA ViT-L/14@224 39.91 1,180.12 44.26 52.86 55.32 65.94 34.40 27.00 57.16 15.88 3.20 44.36 11.61 13.33 46.27 52.19 55.83
Other
SAM ViT-H/16@1024 32.18 649.99 22.47 36.37 40.46 64.60 32.50 25.80 54.66 15.80 2.70 42.40 8.89 0.00 45.62 37.02 53.08
MiDaS 3.0 ViT-L/16@384 40.07 1,183.95 47.40 53.00 56.15 66.19 32.90 27.60 56.61 17.00 3.00 44.34 11.55 19.33 47.32 45.01 54.58
Diffusion SD2.1/16@512 38.26 1,123.46 42.04 50.66 53.63 65.74 33.30 24.50 57.48 14.52 3.30 43.95 10.62 10.00 43.53 48.24 54.50
SupViT ViT-L/16@224 39.66 1,186.88 48.43 54.28 56.35 65.49 33.00 28.10 57.16 17.56 2.80 44.92 12.23 12.67 47.06 43.59 51.67

Table 10: All Benchmark Results for 0.5M Adapter Data + 737K Instruction Tuning Data

from 46.79 to 49.72 to 53.09 across 0M, 0.5M to 1.2M data splits as shown in Table 9, Table 10 and
Table 11.

Vision Backbone General Knowledge OCR & Chart Vision-Centric
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Language-Supervised
OpenAI CLIP ViT-L/14@336 50.49 1,476.65 61.96 65.45 62.78 69.06 35.00 29.50 58.94 37.84 30.90 58.21 32.11 28.66 54.90 54.14 54.60
DFN-CLIP ViT-L/14@224 46.01 1,341.14 56.68 63.74 60.75 66.96 33.80 28.65 57.04 23.32 23.20 52.85 18.97 26.67 51.44 52.91 52.08
DFN-CLIP ViT-H/14@378 51.17 1,426.32 62.38 67.29 62.89 69.01 35.89 30.00 60.01 41.08 30.60 57.53 31.69 32.67 55.95 55.46 55.00
EVA-CLIP-02 ViT-L/14@336 49.71 1,449.78 64.00 67.53 63.60 69.91 35.49 28.40 59.16 24.76 27.10 55.39 21.63 34.67 55.69 57.83 57.75
SigLIP ViT-L/16@384 50.87 1,424.20 59.40 65.48 62.56 68.67 35.99 29.70 59.29 40.52 33.50 59.59 35.20 28.00 53.33 55.42 56.08
SigLIP ViT-SO400M/14@384 53.91 1,455.64 63.66 67.62 63.70 72.10 36.09 29.30 61.59 43.76 37.20 61.82 40.19 36.60 56.99 59.61 59.58
OpenCLIP ConvNeXt-L@512 49.16 1,416.87 60.60 63.87 61.87 69.92 35.79 29.50 59.36 34.40 28.00 58.36 28.41 27.33 51.90 54.64 51.80
OpenCLIP ConvNeXt-L@1024 51.00 1,392.92 58.21 65.47 62.89 67.43 34.90 29.90 59.13 46.08 25.50 62.14 44.13 26.67 55.29 53.57 55.08
OpenCLIP ConvNeXt-XXL@1024 52.18 1,402.94 59.40 65.21 62.73 68.27 33.10 29.30 59.84 48.00 28.00 63.27 48.11 34.67 55.95 53.83 55.08
Self-Supervsied
DINOv2 ViT-L/14@336 41.85 1,190.81 51.83 56.90 60.38 66.04 34.20 27.40 56.41 16.44 3.30 45.12 11.79 21.33 49.67 53.91 55.33
MoCo v3 ViT-B/16@224 38.88 1,129.32 41.62 52.19 55.03 65.89 33.30 28.30 56.44 16.48 3.00 44.09 11.47 12.00 47.58 45.17 53.00
MoCo v3 ViT-L/16@224 37.07 1015.20 37.28 48.31 52.63 65.49 34.50 27.60 55.41 16.92 3.10 43.57 11.50 14.67 45.49 45.17 40.75
MAE ViT-L/16@224 40.39 1,132.80 43.40 55.67 57.42 66.04 35.59 27.80 56.48 17.36 3.30 44.53 12.30 16.00 47.71 49.24 56.75
I-JEPA ViT-H/14@224 40.27 1,207.88 45.79 54.51 56.15 65.29 34.40 27.10 56.19 16.20 3.20 43.45 11.58 18.00 45.88 49.57 56.58
Other
SAM ViT-H/16@1024 32.54 682.81 23.32 36.16 40.32 65.20 33.20 26.50 54.21 15.68 2.50 41.76 8.98 1.33 46.80 37.66 52.90
MiDaS 3.0 ViT-L/16@384 39.15 1,132.18 46.21 51.75 55.57 66.30 33.70 26.70 56.06 17.08 3.10 43.65 11.66 15.30 45.75 44.44 52.58
Diffusion SD2.1/16@512 39.51 1,168.52 40.00 53.80 55.33 64.60 35.00 26.10 57.16 15.36 3.10 44.23 11.06 18.67 47.32 48.04 53.90
Supervised ViT-L/16@224 39.12 1,216.11 45.28 51.46 55.88 64.15 34.70 26.80 55.76 16.80 2.80 44.42 11.61 11.33 47.97 44.62 51.60

Table 11: All Benchmark Results for 1.2M Adapter Data + 737K Instruction Tuning Data

1.2M Adapter Data + 737K Instruction Finetune with Unfrozen Vision Model Here, we present
the results of different vision models trained with 1.2m adapter data and 737K instruction tuning data
in Appendix F.2. Comparing to Appendix I.2, we observe nearly all the models see improvement on
most of the benchmarks, especially on the OCR & Chart and Vision-Centric benchmarks.

1.2M Adapter Data + 5M Instruction Finetune We present the results of 5M instruction tuning
experiments in Fig. 6 here. In Table 12, we observe that after 5m instruction tuning, the gap between
DINOv2 and CLIP models continue to bridge on general, knowledge and vision-centric benchmarks.

F.3 Model Ensemble

Model Ensemble Details We introduce the implementation details of the model ensemble in
Section 2.5. For a given image, the image passes through each vision encoder to obtain the features
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Vision Backbone General Knowledge OCR & Chart Vision-Centric
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Other
OpenAI CLIP ViT-L/14@336 52.90 1,477.15 63.15 68.49 64.24 69.21 34.90 28.70 61.24 47.68 40.20 58.92 35.22 26.00 58.82 59.65 56.16
DFN-CLIP ViT-L/14@224 45.80 1,364.91 55.15 63.06 59.94 67.28 35.59 29.80 58.65 20.48 23.40 52.23 18.29 22.67 50.85 53.59 53.50
EVA-CLIP-02 ViT-L/14@336 51.30 1,492.35 65.53 69.75 65.18 68.62 35.00 29.50 60.78 29.32 29.90 56.87 21.59 44.67 58.95 54.66 55.91
SigLIP ViT-L/16@384 52.47 1,429.11 63.57 67.34 63.44 68.02 36.09 29.70 61.56 46.68 35.70 59.86 35.93 32.67 55.29 55.24 57.00
SigLIP ViT-SO400M/14@384 55.27 1,489.05 66.55 69.59 64.58 70.45 35.69 29.20 62.34 51.28 40.80 63.28 43.02 38.00 59.61 61.58 53.91
OpenCLIP ConvNeXt-L@512 52.76 1,467.38 63.40 66.92 63.17 69.16 34.90 29.70 58.45 52.04 35.40 61.87 38.79 30.67 56.21 54.24 55.91
Other
DINOv2 ViT-L/14@336 43.26 1,261.43 53.96 63.22 62.61 65.49 34.50 27.70 56.90 15.40 3.40 44.87 11.22 26.00 54.38 53.06 56.40
MoCo v3 ViT-B/16@224 39.51 1,175.34 41.70 53.31 56.15 65.25 33.40 28.30 55.76 15.48 3.20 44.42 11.10 18.00 46.67 45.38 55.25
MoCo v3 ViT-L/16@224 37.59 1075.39 39.15 50.14 53.65 65.49 34.60 27.30 55.44 17.28 3.00 44.21 11.70 14.67 44.58 45.38 41.12
MAE ViT-L/16@224 41.43 1,181.51 45.53 58.92 58.75 64.65 35.00 29.20 57.12 16.88 3.10 44.67 11.74 18.67 49.67 53.04 56.83
I-JEPA ViT-H/14@224 41.90 1,175.70 48.00 59.60 59.35 64.45 35.09 27.60 57.32 16.20 3.00 45.50 11.40 22.67 49.93 52.38 59.08
Other
MiDaS 3.0 ViT-L/16@384 38.28 1,065.26 42.64 50.95 56.10 65.39 35.00 27.20 52.98 15.96 2.80 43.49 11.23 12.00 46.14 43.41 53.90
Supervised ViT-L/16@224 40.01 1,222.41 47.40 54.15 57.26 64.35 34.40 26.40 56.09 16.20 3.20 44.73 11.74 14.00 46.41 49.33 53.40

Table 12: All Benchmark Results for 1.2M Adapter Data + 737K Instruction Tuning Data with
Unfrozen vision model.

Vision Backbone General Knowledge OCR & Chart Vision-Centric
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ve

ra
ge

M
M

E
P

M
M

B

SE
E

D
I

G
Q

A

SQ
A

I

M
M

M
U

V

M
at

hV
is

ta
M

A
I2

D

C
ha

rt
Q

A

O
C

R
B

en
ch

Te
xt

V
Q

A

D
oc

V
Q

A

M
M

V
P

R
ea

lW
or

ld
Q

A

C
V

-B
en

ch
2D

C
V

-B
en

ch
3D

OpenAI CLIP ViT-L/14@336 × 55.85 1,577.33 69.70 70.22 63.33 73.67 36.19 36.60 64.80 49.12 36.90 60.33 39.79 32.67 55.56 66.11 59.75
DINOv2 ViT-L/14@336 × 45.36 1,373.14 57.02 64.58 61.67 67.13 36.19 30.70 60.62 19.04 3.40 46.39 13.27 26.67 52.68 59.81 57.91
OpenAI CLIP ViT-L/14@336 ✓ 57.44 1,585.34 68.68 71.47 63.96 77.39 36.09 37.30 65.12 59.36 48.00 62.39 45.24 31.33 56.21 61.09 56.16
DINOv2 ViT-L/14@336 ✓ 47.40 1,366.65 61.62 69.72 63.68 68.72 36.29 35.50 60.88 18.64 4.40 47.92 14.66 34.67 54.64 60.98 57.83

Table 13: All Benchmark Results for 1.2M Adapter Data + 5M Instruction Tuning Data

from the last layer. The shape of each model’s output differs depending on the resolution and patch
size of each vision model. To resolve these differences, we interpolate the output of each model to a
fixed number of tokens, using 576 tokens in our implementation, as described in Section 2.5. Our
example code for interpolation can be seen below.

# Example code for interpolation
b, num_tokens, dim = image_features.shape
if num_tokens != self.image_token_len:

target_h = target_w = int(np.sqrt(self.image_token_len))
h = w = int(np.sqrt(num_tokens))
image_features = image_features.view(b, h, w, dim)
image_features = image_features.permute(0, 3, 1, 2).contiguous()
image_features = F.interpolate(image_features), size=(target_h, target_w), mode=’bilinear’, align_corners=False)
image_features = image_features.permute(0, 2, 3, 1).contiguous().flatten(1, 2)

We then concatenate the model outputs along the feature dimension and use a larger MLP to project
the concatenated visual tokens into the LLM token space.

Full results on Model Ensemble We present all the benchmarks from the model ensemble ex-
periment in Section 2.5 in Table 14. As discussed in Section 1 and Section 2.4, this comprehensive
view of benchmarks provides a better understanding of the model’s performance compared to simply
averaging across benchmarks. Adding a vision-only SSL model enhances the MLLM’s performance
in vision-centric benchmarks while maintaining strong capabilities in other categories.

G Data

G.1 Catalog of Visual Instruction Data

Here, we provide a comprehensive catalog of visual instruction datasets utilized in our study. The
datasets are categorized based on their primary focus, including general conversation and VQA
data, OCR-related data, counting data, knowledge-based data, and language-only data. Table 15
summarizes these datasets and their respective references.
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All Model Average

Language-Supervised Average

OpenAI CLIP ViT-L/14@336

SigLIP SO400M/14@384

SigLIP ViT-L/16@384

OpenCLIP ConvNeXt-L@512

EVA-CLIP-02 ViT-L/14@336

DFN-CLIP ViT-L/14@224

Self-Supervised Average

DINOv2 ViT-L/14@336

MAE ViT-L/16@224

MoCo v3 ViT-B/16@224

I-JEPA ViT-H/16@224

Other Average

MiDaS 3.0 ViT-L/16@384

SupViT ViT-L/16@224

2.79 2.50 2.13 1.43 2.40 4.13 0.17 -0.98 0.40 1.16 0.91 4.42 7.55 7.16 1.43 2.90 4.18 12.82 3.58 3.88 2.32

3.47 2.25 1.39 1.82 2.97 2.90 0.48 -0.91 0.05 0.92 2.16 9.67 19.32 13.99 1.92 8.59 3.05 6.21 0.63 4.74 1.56

4.62 2.16 2.33 0.03 1.92 4.64 0.81 0.22 -0.29 -2.71 3.90 14.43 26.00 30.10 1.22 9.69 3.68 -9.28 4.25 7.14 6.50

2.89 2.77 1.38 2.30 4.54 2.91 -0.70 -2.29 -1.11 -0.34 1.22 8.42 17.18 9.68 2.36 7.04 1.60 3.83 2.18 4.60 -3.10

3.28 2.77 1.41 0.34 7.02 2.84 0.89 -0.95 0.27 0.00 3.82 5.54 15.20 6.57 0.45 2.07 4.44 16.68 2.39 3.67 0.66

7.51 3.76 2.10 3.56 4.62 4.78 -1.21 -1.09 -2.49 0.68 -1.53 26.10 51.28 26.43 6.01 36.54 6.87 12.22 5.96 8.30 3.49

3.44 2.79 2.48 2.94 2.39 3.29 0.49 -1.85 -1.38 3.87 2.74 6.83 18.42 10.33 2.67 -0.18 4.98 28.84 -6.02 5.85 -0.20

-0.90 -0.74 -1.33 1.77 -2.70 -1.07 2.61 0.48 5.30 4.01 2.82 -3.33 -12.18 0.86 -1.17 -3.58 -3.26 -15.00 -4.99 -1.15 2.00

3.37 4.21 3.44 2.91 3.51 7.11 0.12 -1.30 0.38 1.99 0.70 -0.65 -3.79 -0.65 1.31 -3.54 7.97 28.63 10.82 5.13 2.84

4.88 6.22 3.69 5.93 4.11 11.11 0.29 -0.83 0.88 1.09 0.87 -2.30 -6.33 3.03 -0.55 -4.83 11.47 21.89 23.99 9.48 0.20

3.25 4.29 2.32 4.30 4.91 5.84 0.03 -2.10 -1.66 5.04 1.13 -1.42 -2.76 -6.06 0.31 -4.55 8.12 16.69 16.42 4.11 3.66

1.36 2.25 2.04 4.08 0.19 2.15 -0.66 -0.97 0.30 0.00 -1.20 -1.12 -6.07 6.67 0.75 -3.23 3.91 50.00 -1.31 -1.91 2.51

3.97 4.10 5.70 -2.66 4.83 9.34 0.81 -1.29 2.01 1.85 2.01 2.24 0.00 -6.25 4.72 -1.55 8.37 25.94 4.16 8.83 5.00

-0.39 -0.19 1.71 -2.70 -1.52 1.84 -0.65 -0.53 1.49 0.19 -2.45 -1.17 -5.06 2.30 0.16 -1.28 0.01 1.00 -2.05 -1.20 3.53

-2.39 -3.42 0.95 -5.91 -7.73 -1.55 -1.20 -1.37 3.86 1.87 -5.49 -2.66 -6.56 -9.68 -0.37 -3.69 -2.25 -21.57 -1.43 0.85 0.30

1.60 3.05 2.47 0.52 4.69 5.23 -0.09 0.32 -0.87 -1.49 0.59 0.31 -3.57 14.29 0.69 1.12 2.26 23.57 -2.67 -3.26 6.77 20
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Figure 13: Percentage (%) Change in Benchmark Performance (Frozen → Unfrozen)
Heatmap depicting the percentage change in performance across multiple benchmarks when visual
encoders are unfrozen compared to when they are kept frozen during fine-tuning. The color gradient
indicates the magnitude of the performance change after unfreezing visual encoders—white indicates
no change, red is a positive change, and blue is a negative change. Notably, unfreezing leads to
significant gains in OCR Chart tasks for most Language-Supervised Models, as reflected by the deep
red cells. ConvNeXt, in particular, shows substantial improvements, demonstrating the benefits of
updating this visual encoder during fine-tuning.
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SigLIP+DINOv2 51.61 1,432.02 61.28 65.99 63.30 68.82 35.69 29.40 60.01 43.00 35.70 60.40 37.54 30.00 53.99 55.52 53.58
SigLIP+DINOv2+ConvNext 54.52 1,503.51 63.83 67.97 63.95 70.40 35.99 29.30 60.69 48.20 36.90 64.97 45.53 34.67 58.69 55.74 60.33
SigLIP+DINOv2+ConvNext+CLIP 54.74 1,479.46 63.32 67.63 64.04 71.39 35.49 29.10 59.88 50.24 39.60 64.55 46.12 32.67 58.95 58.54 60.42
SigLIP+ConvNext 54.53 1,494.97 64.60 67.98 63.58 71.05 34.90 29.80 60.85 50.64 38.00 64.53 46.52 32.00 57.91 58.83 56.58
CLIP+ConvNext 54.45 1,511.08 63.83 67.41 63.63 70.80 35.09 30.40 59.91 51.32 35.00 64.45 47.88 33.33 57.25 56.32 59.08
SigLIP+DINOv2+ConvNext-L 53.78 1,450.64 63.57 67.79 63.63 71.34 34.80 30.20 61.04 49.32 37.70 64.05 45.83 30.00 56.21 58.08 54.33
SigLIP+CLIP+ConvNext-L 54.53 1,507.28 63.23 68.64 63.63 71.10 35.89 30.90 59.97 52.36 38.50 65.40 47.92 28.67 57.25 57.66 55.92

Table 14: All Benchmark Results for Model Ensemble with 1.2M Adapter Data + 737K Instruction Tuning
Data. Here, “SigLIP” = ViT-SO400M/14@384, “DINOv2” = ViT-L/14@518, “ConvNext” = OpenCLIP
ConvNeXt-XXL@1024, and “CLIP” = OpenAI CLIP ViT-L/14@336.

G.2 Additional System Prompts used in Cambrian Data

Here, we investigate a phenomenon we term the “answer machine phenomenon”. We observe that
a well-trained MLLM may excel at VQA benchmarks, but lack basic conversational abilities and
default to outputting short, curt responses (see examples in Fig. 14). This discrepancy arises because
benchmark questions typically require responses that are limited to a single option, choice, or word—
diverging from the more broad and realistic use cases of MLLMs. Similar phenomena have been
discussed in other LLM studies [114, 151, 155].
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Category Datasets

General Conversation
& VQA Data

LVIS-Instruct4V [131], SketchyVQA [129], OODVQA [129], VizWiz [51],
ALLaVA [25], IDK [22], Q-Instruct [135], LAION GPT-4V [70], Hateful-
Memes [66], Visual7W [159], Visualmrc [123], AlfWorld [117], LNQA [108],
LLaVA150K [82], ShareGPT [27], VQAv2 [50], GQA [57], OKVQA [95], A-
OKVQA [116], RefCOCO [140], VisualGenome [69], GPT-4V recorded chat

OCR Related Data LLAVAR [149], ChartQA [96], DocVQA [97], DVQA [61], ArxivQA [76],
AI2D [65], ScreenQA [56], SynthDog [67], IconQA [89], WTQ [106],
WikiSQL [153], FinQA [31], HiTab [32], TAT-QA [158], TabMWP [88],
Chart2Text [62], VisText [124], InfoVQA [16], ST-VQA [17], Rendered-
Text [134], OCRVQA [100], TextCaps [119], ShareGPTOCRData [27]

Counting Data TallyQA [1], CLEVR [59]

Knowledge-Based Data Code: Design2Code [118], WebSight [71], Datikz [14]
Math: MathVision [132], Geo170K [42], TQA [5], Inter-GPS [90],
RAVEN [148], GeomVerse [64]
Science: ScienceQA [91], PathVQA [53]

Language Only Data Dolly [36], MathInstruct [142], WizardCoder [93], OrcaMath [99], OpenCodeIn-
terpreter [152], OpenOrca [78]

Table 15: Visual Instruction-Tuning Data Catalog

We suspect that this issue stems from instruction tuning data containing an excessive number of
short-response VQA tasks, leading to catastrophic forgetting in LLMs. To address this, we incorporate
additional system prompts during training. We append prompts such as “Answer the question using
a single word or phrase.” before questions that generate a single word or phrase in the response.
Full details of the system prompts used are provided in Appendix G.2. After integrating these
system prompts, we observe that while the model’s benchmark performance remains unchanged, its
conversational ability improves dramatically. For example, in Fig. 14, models with system prompts
produce longer and more engaging responses while answering questions correctly. The system
prompts also enhance the model’s performance on reasoning-related tasks, such as math problems,
by encouraging a chain of thoughts [133] followed by the answer.

This underscores the necessity of developing evaluation protocols like the Chatbot Arena [34]
for MLLMs, despite the challenges in collecting large-scale, real-world interaction data. While
performing well on benchmarks is important, it is equally crucial to ensure the model can engage
in meaningful and natural interactions. The overall user experience and the model’s conversational
abilities are paramount, as a model that excels in benchmarks but fails to converse effectively cannot
meet the needs of practical applications.

As our Cambrian data includes instructions/questions and responses of different types and formats
(e.g., Short response with a single word or regular response as a complete sentence), it is important
to specify the required response format in the instruction prompt to avoid ambiguity and possible
conflicts. Some of the datasets already include such prompts and we add proper prompts for the
remaining datasets. The detailed response formatting prompts we additionally add are listed in
Table 16.

G.3 Data Engine

Comprehensive Implementation Details of the Data Engine

The data engine is designed to generate instruction tuning data for knowledge-based fields, where
previous works rarely covers and MLLMs are not reliable to distill for from. The data engine takes in
a given field, such as “Physics”, utilizing reliable web sources like Wikipedia. Below are the various
stages involved in the process. We also visualize this process in Fig. 15:

Stage 1 - Topic Generation: We start by compiling a list of fields and subfields and subsequently
generate topics for each field using a Large Language Model (LLM), such as GPT-4. In this stage,
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What city is this? If I want to tour around the landmark in this picture, where should I go?

Please solve this question step by step.

How many people are in this image? Based on this chart, what is the most popular tea?

What is unusual about this image? Please answer in details.

Describe this image please.

There are six people in the image.

There are six people in the image.

Based on the chart, black tea appears to be the most popular 
type of tea in the U.S. Bubble Tea Market, as it consistently 
has the highest sales volume across all years displayed.

Black Tea

This is New York City, and the prominent landmark in the image 
is the Washington Square Arch, which is located in the Greenwich 
Village neighborhood. To tour around this landmark, you should 
visit the nearby Washington Square Park, which is a popular spot 
for locals and tourists alike. The park offers a variety of 
activities, including walking paths, a fountain, and a statue of 
George Washington. Additionally, the surrounding area is rich 
with historical buildings, art galleries, and restaurants, 
making it a vibrant and culturally diverse place to explore.

New York City

The unusual aspect of this image is the anthropomorphic design of 
the church's bell tower, which is given human-like features. 
Specifically, the two windows on the tower are designed to 
resemble eyes, and the cross at the top of the tower is stylized 
to look like a nose. This creative design choice is not typical 
for church architecture, which usually favors more traditional 
and less whimsical features. The intention behind such a design 
could be to add a playful or artistic element to the building, 
possibly to attract attention or to reflect a unique character of 
the church or the community it serves.

The image is unusual because it features a church with a design 
that incorporates elements typically associated with a face. The 
two circular windows on the tower serve as eyes, and the cross 
on top of the tower is positioned to resemble a nose. This 
anthropomorphic design is not commonly found in church 
architecture, which often favors more traditional and 
conventional styles. The presence of the palm trees adds a 
tropical or subtropical feel to the scene, which may not be the 
usual setting for such a building. The overcast sky suggests a 
gloomy or somber mood, which contrasts with the whimsical nature 
of the church's design.

The image captures a serene moment in a bathroom 
setting. A fluffy, gray cat is comfortably seated 
on the edge of a white bathtub. The cat's gaze is 
directed upwards, possibly at something outside the 
frame, giving it a contemplative expression. The 
backdrop is a simple white tiled wall, which 
contrasts with the cat's fur, making it the focal 
point of the image. The overall scene suggests a 
quiet, peaceful moment in a domestic setting.

Cat in bathtub

To solve the equation (\sqrt{k+2} - x = 0), we need 
to isolate (k). Let's start by adding (x) to both 
sides of the equation to get rid of the subtraction:
(\sqrt{k+2} = x)
Now, to isolate (k), we square both sides of the 
equation:
((\sqrt{k+2})^2 = x^2)
This simplifies to:
(k+2 = x^2)
Now, we substitute (x = 9) into the equation:
(k+2 = 9^2)
(k+2 = 81)
Finally, we subtract 2 from both sides to solve for 
(k):
(k = 81 - 2)
(k = 79)
Therefore, the value of (k) when (x = 9) is 79. The 
correct answer to the question is D.

Answer is C.

w/o system prompt w/ system prompt

Figure 14: Incorporating System Prompt in Instruction Tuning Data alleviates the “Answer Machine
Phenomenon” By adding system prompts in Cambrian-7M, the model exhibits better chat ability while retaining
strong question answering abilities. The model without system prompts requires additional prompting to elicit
longer responses.

Fields Topics

Filtered 
Web Data

Relevant 
Text Q&A

Web 
Knowledge

LLM

Search 
Engine 

API Parser

Image

VQA Data

LLM

Figure 15: Targeted Internet Data Collection Engine. We build a targeted internet data engine to collect
high-quality and large-scale multimodal instruction tuning data for domains like knowledge.

we processed 30 fields, resulting in 3660 topics. We then post-process the output of LLMs into json
formats. For example, the topic data for Physics looks like below.

Physics
{

"Classical Mechanics": [
"Newton’s Laws of Motion",
"Conservation of Energy",
"Conservation of Momentum",
"Harmonic Motion",
"Rotational Dynamics",
"Gravitation and Orbits",
"Fluid Dynamics",
"Elasticity and Plasticity",
"Friction",
"Waves and Sound",
"Velocity and Acceleration",
"Angular Momentum",
"Statics and Equilibrium",
"Kinematics of Particles",
"Dynamics of Systems of Particles",
"Collisions",
"Centripetal Force and Acceleration",
"Lagrangian and Hamiltonian Mechanics",
"Chaos Theory",
"Equations of Motion"

],
"Electromagnetism": [

"Coulomb’s Law",
"Electric Field and Electric Potential",
"Gauss’s Law",
"Capacitance and Dielectrics",
"Current and Resistance",
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Index Response formatting prompts
1 Answer the question using a single word or phrase.
2 Answer the question using a single number or phrase.
3 Answer with the option’s letter from the given choices directly.
4 Give the short answer directly.
5 Answer the question using a single word or phrase.
6 When the provided information is insufficient, respond with <no answer>.
7 Directly provide the HTML code.
8 First show your reasoning process and then give the final answer.
9 When the provided information is insufficient, respond with ’Unanswerable’. Answer the

question using a single word or phrase.
10 Answer with the letter.

Dataset Prompts added
SketchyVQA 1
OODVQA 1
VizWiz 9
Q-Instruct 1, 3
ChartQA 2
DocVQA 4
DVQA 1
AI2D 1
ScreenQA 1, 6
CLEVR 1
TallyQA 1
PathVQA 1
MathInstruct 8
Design2Code 7
IconQA 1, 10
HiTab 1
WTQ 1
WikiSQL 1
Inter-GPS 10
Visual7W 3
TQA 10
RAVEN 1

Table 16: Response formatting prompts for Cambrian Data

"Direct Current Circuits",
"Magnetic Fields and Magnetic Forces",
"Ampere’s Law",
"Faraday’s Law of Induction",
"Inductance",
"Alternating Current Circuits",
"Electromagnetic Waves",
"Maxwell’s Equations",
"Electromagnetic Radiation",
"Optics and Light",
"Quantum Electrodynamics",
"Special Theory of Relativity Implication",
"Magnetostatics",
"Electrostatics",
"Bioelectromagnetism"

],
...

}

Stage 2 - Filtering Web Data: For each generated topic, we utilize search engine APIs to fetch
relevant high-quality web pages. For each topic, we query for 10 relevant links. Thus, we get 36,600
webpages post this stage. Here is an example of the data retrieved for the topic "Electric Field and
Electric Potential":

"Electric Field and Electric Potential": [
"https://en.wikipedia.org/wiki/Electric_potential",
"https://en.wikipedia.org/wiki/Electric_field",
"https://en.wikipedia.org/wiki/Electric_potential_energy",
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"https://en.wikipedia.org/wiki/Voltage",
"https://en.wikipedia.org/wiki/Electricity",
"https://en.wikipedia.org/wiki/Electrostatics",
"https://en.wikipedia.org/wiki/Electric_dipole_moment",
"https://en.wikipedia.org/wiki/Magnetic_vector_potential",
"https://en.wikipedia.org/wiki/Electric-field_screening",
"https://en.wikipedia.org/wiki/Electric_flux"

],

Stage 3 - Parsing: In this stage, we parse each web page to extract image-caption-text tuples. We
aim to identify the blocks containing an image, the image’s caption, and relevant textual content.
Below is an example of the parsed data for the same topic, "Electric Field and Electric Potential":

{
"Electric Field and Electric Potential",

[

{

"section": "Electrostatics",

"text": "An electric potential at a point r in a static electric field E is given by the line integral where C is an

arbitrary path from some fixed reference point to r; it is uniquely determined up to a constant... The generalization of

electric potential to this case is described in the section Generalization to electrodynamics.",

"images": [

{

"url": https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/VFPt_plus_thumb_potential+contour.svg/

142px-VFPt_plus_thumb_potential+contour.svg.png,

"caption": "Electric potential of separate positive and negative point charges shown as color range from magenta

(+), through yellow (0), to cyan (-). Circular contours are equipotential lines. Electric field lines leave the positive

charge and enter the negative charge."

},

{

"url": https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/VFPt_charges_plus_minus_potential+contour.svg/

288px-VFPt_charges_plus_minus_potential+contour.svg.png,

"caption": "Electric potential in the vicinity of two opposite point charges."

}

],

"link": https://en.wikipedia.org/wiki/Electric_potential,

"title": "Electric potential",

"field": "Physics",

"subfield": "Electromagnetism",

"topic": "Electric Field and Electric Potential"

},

...

]

}

Stage 4 - Data Generation: We generate dataset in this stage, ensuring high quality. We first filter
out data samples with fewer than 50 words in the text. Then, instead of downloading images directly
from the links retrieved during web parsing, we download high-resolution images from the original
sources. We then convert formats like SVG or GIF into a common standardized format, PNG.

Question-Answer pairs are generated by using LLM such as GPT-3.5 from the image metadata,
caption, and contextual text. These Q&A pairs and the image form our VQA dataset. We generated
165k data samples. Here is an example of the generated data:

{
"id": "96232.png",
"image_id": "450px-Magnetic_Vector_Potential_Circular_Toroid",
"image_url": "...",
"text": "...",
"caption": "Representing the Coulomb gauge magnetic vector potential A, magnetic

flux density B, and current density J fields around a toroidal inductor of circular
cross section. Thicker lines indicate field lines of higher average intensity.
Circles in the cross section of the core represent the B-field coming out of the
picture, plus signs represent B-field going into the picture. \u2207 \u22c5 A = 0
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Figure 16: Dataset Image Id: 96232.png
General Knowledge OCR & Chart Vision-Centric
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t = 150k 4015k 53.74 1,512.3 67.0 68.3 61.2 73.4 35.1 34.3 62.4 44.6 39.1 58.5 38.5 30.0 55.2 61.98 54.7
t = 250k 5218k 54.31 1,475.9 67.3 69.2 61.6 73.4 35.9 34.5 62.4 46.5 36.9 59.2 38.6 32.0 56.6 63.68 57.5
t = 350k 5883k 54.27 1,461.9 66.2 68.9 61.6 73.8 36.4 32.8 62.5 46.8 38.3 59.3 39.3 31.3 54.9 62.68 60.4
t = 450k 6383k 54.15 1,534.1 67.6 66.3 61.9 72.9 35.1 36.9 63.8 45.8 38.6 58.4 39.4 28.0 53.6 64.60 56.8

Table 17: All Benchmark Results for Data Balancing Experiments

has been assumed",
"section": "Depiction of the A-field",
"...",
"Question": "What do the thicker lines signify?",
"Answer": "The thicker lines in the image represent paths of higher average

intensity in the magnetic vector potential A field. Shorter paths have higher
intensity, ensuring that the path integral remains constant. These lines are drawn
to visually convey the general behavior and intensity distribution of the A-field
around the toroidal inductor"
}

This data engine is designed for scalability and efficiency and is capable of handling extensive data
generation tasks using multithreading techniques.

G.4 Full results on data curation experiment

Data Balance via Fitlering t As discussed in Section 4.2, if left unfiltered, the data pool is dominated
by noisy, unbalanced data sources such as CLEVR and DVQA, leading to pronounced exponential
tails. However, as we apply different t values to filter data from each source, the exponential tails
become less pronounced, resulting in a more balanced dataset. We also present all the results in
Table 17. t value 250k has the highest average across all benchmarks; 250k and 350k also have the
highest performance across many individual benchmarks.

Here, we plot the cumulative sum of counts for entries sorted by counts from tail to head. From
Fig. 17, we see this intermediate threshold prevents explosive heavy tail.

Data Ratio Studies We present the full results of our data ratio study in Table 18. The table highlights
the importance of finding an optimal data ratio that balances different aspects of MLLM. Experiment
5 achieves well-rounded performance with its selected data ratio.
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Figure 17: Data Balancing via Applying Thresholds on Data Sources. Applying threshold t alleviates the
exponential tail of Cambrian-10M.
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exp1 47.49 1,309.10 58.00 60.10 54.00 72.40 34.80 31.20 59.10 34.20 34.50 54.20 33.00 13.30 47.60 57.40 50.58
exp2 47.78 1,351.70 60.30 61.20 55.40 72.80 35.20 29.50 59.10 31.20 33.40 54.20 30.50 15.30 48.20 58.40 52.25
exp3 48.28 1,299.53 60.56 61.79 55.74 72.04 34.90 32.10 59.40 33.20 33.90 54.15 31.90 21.30 48.60 58.52 49.41
exp4 47.47 1,288.98 58.16 61.47 55.00 71.05 37.10 28.20 58.50 33.72 34.50 55.07 31.69 20.66 47.06 56.30 46.58
exp5 48.96 1,363.26 60.48 63.18 55.92 70.35 35.70 31.40 57.19 32.88 34.60 54.74 32.10 22.70 47.30 58.83 57.75

Table 18: All Benchmark Results for Data Ratio Experiments with fixed 1350k data

G.5 737K and 5M Mixes

0.7M For the 0.7M data we used in Section 2.4, We add a small number of OCR and chart data to
LLaVA 665K, specifically 15,501 AI2D, 14,999 DocVQA, and 13,000 DVQA data points. This
results in a 737K mix, which covers all categories in training MLLMs. This data mix allows us to
study visual representations efficiently.

5.0M For the 5M data mixes we use in Section 2.4, we apply data filtering discussed in Section 4.2
and apply t=150k on all multimodal instruction data in Cambrian-10M.

G.6 Test Image Leakage in Visual Instruction Training Data

One potential concern with our targeted data engine (Section 4.1) is that instruction-tuning data
collected from the open web could introduce data leakage. To address this, we systematically analyze
the extent of direct image matches between our training data and our test sets. Using difference
hashing (dHash) [19], we compute hashes for all images in the training data and test sets. We then
compare these hash sets to determine how many test images overlap with our training data, reporting
the number of collisions in Table 19.

Across all fifteen datasets, our targeted data engine finds only 32 test images in total, amounting
to just 0.06% of the test data. This low overlap percentage dispels concerns that our data engine
inadvertently targets specific test sets. When analyzing the full Cambrian10M dataset—which is 15x
larger than LLaVA-665k—we observe only 6x more matching test images (7,244 compared to 1,034
in LLaVA-665k). This discrepancy suggests that Cambrian10M’s scale does not inherently result in
excessive overlap with test sets. Instead, any overlap likely arises from the natural reuse of training
images across benchmark datasets rather than targeted duplication.
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Category Test Set # Images Data Eng. Cambrian10M LLaVA-665k

General MMEP 2,374 0 (0.00%) 332 (13.98%) 82 (3.45%)
MMB 4,377 7 (0.16%) 1,122 (25.63%) 533 (12.18%)
SEEDI 17,990 6 (0.03%) 26 (0.14%) 0 (0.00%)
GQA 398 0 (0.00%) 1 (0.25%) 0 (0.00%)

Knowledge SQAI 2,017 0 (0.00%) 1,263 (62.62%) 0 (0.00%)
MMMUV 900 1 (0.11%) 3 (0.33%) 0 (0.00%)
MathVistaM 1,000 2 (0.20%) 259 (25.90%) 15 (1.50%)
AI2D 3,088 0 (0.00%) 1,458 (47.22%) 0 (0.00%)

OCR & Chart ChartQA 2,500 14 (0.56%) 670 (26.80%) 0 (0.00%)
OCRBench 1,000 0 (0.00%) 177 (17.70%) 59 (5.90%)
TextVQA 5,000 2 (0.04%) 1,122 (22.44%) 9 (0.18%)
DocVQA 5,188 0 (0.00%) 53 (1.02%) 0 (0.00%)

Vision-Centric MMVP 300 0 (0.00%) 0 (0.00%) 0 (0.00%)
RealWorldQA 765 0 (0.00%) 0 (0.00%) 0 (0.00%)
CV-Bench 2,638 0 (0.00%) 758 (28.73%) 336 (12.74%)

Total 49,535 32 (0.06%) 7,244 (14.62%) 1,034 (2.07%)

Table 19: Number of leaked test set images. Using image hashing, we assess the overlap of
test images across three training datasets: Cambrian10M Data Engine 161k subset (“Data Eng.”),
Cambrian10M, and LLaVA-665k. We list the number of images in each test set, as well as the number
of matching images and percentage of overlap for each training set in blue. Our Data Engine finds
a neglible 0.06% of test images, dispelling any concerns that it is targeting the test sets. The full
Cambrian10M training set contains 7,244 test set images, whereas LLaVA-665k contains 1,034.
Despite being a 15x larger dataset, Cambrian10M only has 6x more overlapping images. Such overlap
is inevitable since many test sets use validation images from standard benchmarks (like COCO). It
is worth highlighting: although exact image matches are found, this does not mean that exact
image-question pairs have been found. Unlike in prior unimodal paradigms of computer vision
research, in the multimodal setting, a single data point is composed of an image-text (question) pair,
not just the image itself. Thus, seeing a test image during training is not equivalent to “training on the
test set” so long as the training image does not have the same text pair as the test data point.

It is important to emphasize that while some exact image matches are found, this does not imply that
the exact image-question pairs have been encountered during training. Unlike in traditional unimodal
computer vision research, where an image alone constitutes a data point, the multimodal paradigm
treats each image-text (question-answer) pair as unique. Consequently, seeing a test image during
training is not equivalent to “training on the test set” as long as the associated text (question-answer)
pairs differ. This distinction ensures that Cambrian10M respects the integrity of test evaluations, even
in cases where images might appear in both training and test sets.

We encourage future research exploring the impact of image-only leakage on the performance of
MLLMs. Understanding this influence may yield insights into the boundaries of model generalization
and guide future best practices for dataset construction in multimodal learning.

G.7 Broader Impacts

We conducted a preliminary analysis of the Cambrian dataset, focusing on the distribution of male,
female, and neutral pronouns. Our findings show the following distribution: 38.35% male pronouns,
17.99% female pronouns, and 43.66% neutral pronouns.

We recognize that training models on biased data can perpetuate these biases. Addressing bias
by artificially modifying data distributions—such as through rebalancing or applying fairness con-
straints—can help mitigate this issue, but it also presents challenges. These include the potential loss
of generalization and the risk of introducing new biases. Additionally, identifying and mitigating
bias in Multimodal Large Language Models (MLLMs) is particularly complex, given the interaction
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between different data modalities. We believe that openness in model development and data curation
will accelerate research aimed at understanding and mitigating these potential harms.

H Implementation Details

Cambrian Models For our final Cambrian models, we use 2.5M adapter data which is comprised of
1.2M captioning data from shareGPT4V [27] and 1.2M captioning data used in MiniGemini [77].

SVA We provide here ablation studies of SVA module.

D OCR & Chart

2 52.1
3 52.4
4 52.8

(a) # layers

G OCR & Chart

1 52.4
2 52.6
3 53.1

(b) # groups

Multi-agg OCR & Chart

No 52.4
Yes 53.3

(c) Multi-layer aggregation

Table 20: Ablations on hyperparameter choices for SVA. Enlarging the model capacity of the SVA
module can further improve the performance.

We further conduct ablation experiments using OpenAI CLIP ViT-L/14@336 + OpenCLIP ConvNeXt-
L@1024 as our base model combination. We focus on the OCR & chart categories to assess the
impact on high-resolution visual understanding. The results show that increasing capacity via D
or G improves performance and that allowing vision aggregation across multiple layers by adding
cross-attention layers within the LLM also enhances performance.

Compared with other spatial-based connectors like C/D-Abstractor [21] which are designed for single
vision feature maps, our SVA module can dynamically combine visual features from multiple vision
models with varying resolutions. Besides, our spatial inductive bias in SVA can better compress spatial
information compared with such methods. To isolate the effect of spatial inductive bias, we consider
the case of token reduction using a single vision encoder. Specifically, we use OpenAI CLIP ViT-L as
the vision model and compress its original 576 tokens to 36 tokens using our SVA module and other
connectors. We compare our SVA module with three baselines: 1) Direct interpolation + MLP, 2)
C-Abstractor [21], and 3)LDPv2 Projector [35] (similar to C-Abstractor but more lightweight). For
fair comparisons, we do not include multi-layer aggregation inside the LLM for our SVA baseline,
and the results are shown in Table 21. Compared with the simple MLP baseline, C-Abstractor
performs better on General and Vision-Centric tasks but inferior on Knowledge and OCR & Chart
tasks. LDPv2 performs similarly to the MLP baseline. Our SVA consistently demonstrates superior
performance across all categories, especially in OCR & Chart and Vision-Centric tasks, demonstrating
its effectiveness in information compression.

Method General Knowledge OCR & Chart Vision-Centric

Interpolate + MLP 63.4 43.8 28.1 43.7
C-Abstractor [21] 64.4 42.8 26.1 44.3
LDPv2 [35] 62.5 43.9 28.7 43.9
SVA 65.5 44.5 31.4 46.9

Table 21: Comparison between SVA and other spatial-based connectors vision token compres-
sion. The SVA module with spatial inductive bias more effectively compresses the vision information.

We introduce learnable km × km positional encodings in the vision features when km > 1. Besides,
during cross-attention, the query is augmented with a global feature obtained by global pooling
over the vision features, which is concatenated with qi,j to better guide the aggregation process. In
our experiments, the feature maps of all vision encoders except for ConvNext are interpolated to
576×576 (mk = 1 for L = 24). For ConvNext, we first interpolate the feature maps from its 4 stages
to 96 × 96 (mk = 4 for L = 24) and then channel-wise concatenate them to form its final vision
feature map similar to [77].
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For experiments in Section 3, we set D = 3, G = 1 and add cross-attention layers between the layers
of LLM with a stride equal to 3. For our final Cambrian models, we set D = 3, G = 1 and insert
multiple cross-attention layers in LLM considering the tradeoff between performance and efficiency.
For Cambrian-8B, Cambrian-13B, and Cambrian-34B, the strides of cross-attention layers inside the
LLM are 3, 4, and 9 respectively.

To study the importance of visual features from different vision models to different image categories,
we further investigate the attention score distribution in our SVA module. We evaluate our Cambrian-
8b model on GQA, DocVQA, and ScienceQA (representing three different benchmark categories),
and the attention distribution results are shown in Table 22. We can see that on real-world images
(GQA), the contribution of different vision models is relatively uniform, in part due to the similar
characteristics of SigLIP and CLIP. On document-type images (DocVQA) which are text-heavy
and often high-resolution, the influence of SigLIP increases and that of ConvNext greatly increases
to aid in high-resolution information processing. For scientific images (ScienceQA) composed of
illustrations and diagrams about different science categories, the contribution of SigLIP is further
increased while the portion of DINOv2 decreases compared to GQA.

Model GQA DocVQA ScienceQA

SigLIP 29.7% 31.1% 35.2%
CLIP 18.5% 13.4% 16.3%
DINOV2 24.1% 11.0% 17.6%
ConvNext 27.7% 44.5% 30.9%

Table 22: Attention distribution studies. The attention distribution among different vision encoders
varies with different image categories.

Unfreezing While unfreezing is largely beneficial (Section 2.3 and Fig. 13), it has a significant
speed drawback. Given fixed computational resources, unfreezing visual encoders slows down
the fine-tuning process by approximately 50–55%. For initial explorations or when computational
overhead is a concern, leaving the visual encoders frozen can be a practical strategy. This allows for
quicker iterations and tuning, especially during early research phases, while still providing valuable
insights. Ultimately, unfreezing is recommended for achieving the best performance once the setup
has been optimized.

I Evaluation Details

I.1 System Prompts Used in Evaluation

To ensure the reproduction of our results, we also include the system prompts we used in this work.
The system prompts for our models can be found in Table 25. Additionally, we release the prompts
we used while evaluating our models on the various benchmarks in Table 26. We hope this sets a
precedent for future research to improve the reproducibility of benchmark results.

I.2 Ablation Study on Fuzzy Matching Vs LLM Judgement

We use fuzzy matching to evaluate responses in some benchmarks, since MLLMs can answer
questions with auxillary phrases. To study the effectiveness of our fuzzy matching, we compare our
model accuracy through fuzzy matching with the model accuracy obtained when we use LLM as a
grader.

The LLM grader is sensitive to the prompt given to it while grading, and we prompt the LLM (we
use OpenAI GPT-3.5-turbo and GPT-4-turbo as our graders) with few shot grading examples, which
we notice significantly improves grading accuracy. An example of such a prompt is given below.

LLM Grader Prompt

You are a reliable grader. Reply with only either of the following
2 words: CORRECT or INCORRECT.
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Backbone Data Adapter Instruction Tuning
Experiment LLM Vision Adapter Instruction Tuning lr wd bs lr wd bs vision lr
0M Adapter+737K IT Vicuna-1.5-7B OpenAI CLIP ViT-L/14@336 0 737k - - - 2e-5 0 512 -
0.5M Adapter+737K IT Vicuna-1.5-7B OpenAI CLIP ViT-L/14@336 0.5M 737k 1e-3 0 512 2e-5 0 512 -
1.2M Adapter+737K IT Vicuna-1.5-7B OpenAI CLIP ViT-L/14@336 1.2M 737k 1e-3 0 512 2e-5 0 512 -
Unfreeze Vision Vicuna-1.5-7B OpenAI CLIP ViT-L/14@336 1.2M 737k 1e-3 0 512 2e-5 0 512 1e-5
Model Ensemble Vicuna-1.5-7B Chosen Combination 1.2M 737k 1e-3 0 512 2e-5 0 512
Data Balance Vicuna-1.5-7B OpenAI CLIP ViT-L/14@336 0 Mix Based on three t - - - 2e-5 0 512 -
Data Ratio Vicuna-1.5-7B OpenAI CLIP ViT-L/14@336 0 1350k Based on Ratio - - - 2e-5 0 512 -
LLaVA 665K Vicuna-1.5-7B OpenAI CLIP ViT-L/14@336 0 LLaVA 665K - - - 2e-5 0 512 -
Cambrian-10M (Data) Vicuna-1.5-7B OpenAI CLIP ViT-L/14@336 0 Cambrian-10M - - - 2e-5 0 512 -
Cambrian-7M (Data) Vicuna-1.5-7B OpenAI CLIP ViT-L/14@336 0 Cambrian-7M - - - 2e-5 0 512 -
Cambrian-1-8B Llama-3-Ins-8B SVA with 4 encoders∗ 2.5M Cambrian-7M 1e-4 0 512 2e-5 0 512 -
Cambrian-1-13B Vicuna-1.5-13B SVA with 4 encoders∗ 2.5M Cambrian-7M 1e-4 0 512 2e-5 0 512 -
Cambrian-1-34B Hermes-2-Yi-34B SVA with 4 encoders∗ 2.5M Cambrian-7M 1e-4 0 512 2e-5 0 1024 -

Table 23: Implementation details and hyperparameters for all experiments. ∗4 encoders are:
OpenAI CLIP ViT-L/14@336, SigLIP ViT-SO400M/14@384, DINOv2 ViT-L/14@518, Open-
CLIP ConvNeXt-XXL@1024

You will be given an ’answer’ and a ’gt_answer’ (ground truth answer)
,and you must reply with either CORRECT or INCORRECT based on the
response. Tolerate a 0.05 relative error for numerical answers.
answer: 25
gt_answer: 29
evaluation: INCORRECT
answer: Yes
gt_answer: Yes
evaluation: CORRECT
answer: 80
gt_answer: 80
evaluation: CORRECT
answer: Ireland
gt_answer: Italy
evaluation: INCORRECT
answer: UK
gt_answer: UK
evaluation: CORRECT
answer: 2019
gt_answer: 2011
evaluation: INCORRECT
answer: {answer}
gt_answer: {gt_answer}
evaluation:

We conduct an ablation study on the benchmarks that require fuzzy matching and present the results
in Table 24. We discover that fuzzy matching provides reliable results compared to an LLM grader.
We recommend using a more capable model (such as GPT-4-turbo) for grading benchmarks that have
more subjective responses (such as numbers and words).
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Cambrian-1 8B Fuzzy Matching 74.7 64.6 80.4 42.7 73.0 73.3 62.4 71.7 51.3 64.2
Cambrian-1 8B GPT3.5 Grading 78.4 65.8 82.0 38.9 78.1 71.2 67.0 69.2 49.3 63.5

∆ +3.7 +1.2 +1.6 -3.8 +5.1 -2.1 +4.6 -2.5 -2.0 -0.7
Cambrian-1 13B Fuzzy Matching 74.7 64.6 80.4 40.4 73.0 73.3 62.4 71.7 51.3 64.2
Cambrian-1 13B GPT3.5 Grading 77.3 64.7 81.3 37.2 78.2 71.4 67.1 75.6 46.0 64.3

∆ +2.9 +0.4 +2.0 -3.2 +4.6 -2.4 +5.2 +2.8 +4.7 +1.3

Table 24: Comparison between Fuzzy Matching Accuracy and LLM Judged Accuracy. Fuzzy
matching and LLM referee yield similar accuracies for the benchmarks that require matching.

LLM
Backbone System Prompt
Vicuna 1.5 7B A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful,

detailed, and polite answers to the user’s questions.
LLAMA-3 8B You are Cambrian, a highly intelligent multimodal AI trained by NYU Vision X. As a multimodal

AI, you have the ability to process and analyze images. Whenever an image is present in
the conversation, very carefully examine it and consider its content when formulating your
response.You should give concise responses to very simple questions, but provide thorough
responses to more complex and open-ended questions.

Nous-Yi 34B You are Cambrian, a highly intelligent multimodal AI trained by NYU Vision X. As a multimodal
AI, you have the ability to process and analyze images. Whenever an image is present in the
conversation, very carefully examine it and consider its content when formulating your response.
You should give concise responses to very simple questions, but provide thorough responses to
more complex and open-ended questions.

Table 25: LLM Backbone System Prompts
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Table 26: Listing the prompts used in the evaluation of each benchmark

Benchmark Prompt Example
AI2D \nAnswer with the

option’s letter from
the given choices di-
rectly.

USER: <image>\nwhich of these define dairy item\n(A) c\n(B)
D\n(C) b\n(D) a\nAnswer with the option’s letter from the given
choices directly. ASSISTANT:

ChartQA \nAnswer the ques-
tion using a single
number or phrase.

USER: <image>\nHow many food item is shown in the bar
graph?\nAnswer the question using a single number or phrase.
ASSISTANT:

DocVQA \nGive the short an-
swer directly.

USER: <image>\nWhat is the dividend payout in 2012?\nGive
the short answer directly. ASSISTANT:

GQA \nAnswer the ques-
tion using single
word or phrase.

USER: <image>\nIs it overcast?\nAnswer the question using
single word or phrase. ASSISTANT:

MathVista \nFirst show your rea-
soning process and
then give the final an-
swer.

USER: <image>\nwhat is the total volume of the measuring
cup?\nFirst show your reasoning process and then give the final
answer. ASSISTANT:

MM-Bench
EN

\nAnswer with the
option’s letter from
the given choices di-
rectly.

USER: <image>\nWhich of the following was a dependent
variable in this experiment?\n(A) cocoon\n(B) chrysalis\n(C)
nan\n(D) nan\nAnswer with the option’s letter from the given
choices directly. ASSISTANT:

MME \nPlease answer the
question using a sin-
gle word or phrase.

USER: <image>\nIs a python code shown in the picture? Please
answer yes or no.\nAnswer the question using a single word or
phrase. ASSISTANT:

MMMU \nAnswer with the
option’s letter from
the given choices di-
rectly.

USER: <image>\nWhat causes these unusual formations on
Mountain papaya? Options:\nA. Abiotic\nB. Confused\nC. Bi-
otic\nD. Normal\nAnswer with the option’s letter from the given
choices directly. ASSISTANT:

MMVP \nAnswer with the
option’s letter from
the given choices di-
rectly.

USER: <image>\nAre the butterfly’s wings closer to being open
or closed? Options:\n(a) Open\n(b) Closed\nAnswer with the
option’s letter from the given choices directly. ASSISTANT:

OCR Bench \nGive the short an-
swer directly.

USER: <image>\nwhat is written in the image?\nGive the short
answer directly. ASSISTANT:

RealWorld
QA

\nAnswer the ques-
tion using a single
word or phrase.

USER: <image>\nIn which direction is the front wheel of
the car on the right side facing?\n\nA. Left\nB. Straight\nC.
Right\nAnswer the question using a single word or phrase. AS-
SISTANT:

SQA-I \nAnswer with the
option’s letter from
the given choices di-
rectly.

USER: <image>\nWhat is the name of the colony shown?\nA.
Maryland\nB. New Hampshire\nC. Rhode Island\nD. Ver-
mont\nAnswer with the option’s letter from the given choices
directly. ASSISTANT:

SEED-I \nAnswer with the
option’s letter from
the given choices di-
rectly.

USER: <image>\nHow many towels are in the image? Op-
tions:\nA. One\nB. Two\nC. Three\nD. Four\nAnswer with the
option’s letter from the given choices directly. ASSISTANT:

Text-VQA \nAnswer the ques-
tion using a single
word or phrase.

USER: <image>\nwhat is the time?\nReference OCR tokens:
N, u, g0\nAnswer the question using a single word or phrase.
ASSISTANT:

ADE \nAnswer with the
option’s letter from
the given choices di-
rectly.

USER: <image>\nConsidering the relative positions of the cush-
ion and the sofa in the image provided, where is the cushion lo-
cated with respect to the sofa? Select from the following choices.
\n(A) right\n(B) left\nAnswer with the option’s letter from the
given choices directly. ASSISTANT:
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Figure 18: Comparison of model average performances on each category. Cambrian-1 outperforms other
open-source models across all sizes. The lead is especially large on OCR & Chart and Vision-Centric benchmarks,
highlighting the advantage of our vision-centric design.

Benchmark Prompt Example
COCO \nAnswer with the op-

tion’s letter from the
given choices directly.

USER: <image>\nHow many trains are in the image? Select from the
following choices. \n(A) 3\n(B) 0 \n(C) 1 \n(D) 2 \n(E) 4\nAnswer with
the option’s letter from the given choices directly. ASSISTANT:

Omni3D \nAnswer with the
option’s letter from
the given choices di-
rectly.

USER: <image>\nEstimate the real-world distances between ob-
jects in this image. Which object is closer to the traffic cone
(highlighted by a red box), the motorcycle (highlighted by a
blue box) or the bus (highlighted by a green box)?\n(A) motor-
cycle\n(B) bus\nAnswer with the option’s letter from the given
choices directly. ASSISTANT:

J More results of Cambrian-1 Model

In Fig. 18, we also plot our Cambrian-1 performance as well as GPT-4 performances. In the plot,
it is clear that Cambrian-1 offers competitive performance compared to proprietary models in most
categories. We also showcase some examples in Fig. 19, demonstrating that the model effectively
attends to details in images despite using only 576 tokens.

K Potential Misuse & Mitigation Strategies

We recognize that there are ethical concerns regarding the potential misuse of multimodal large
language models like Cambrian-1, particularly in generating misleading content or spreading misin-
formation. Below, we outline the main risks and provide strategies to address them:

1. Misinformation Cambrian-1 could be used to create misleading text descriptions of images,
leading to false narratives or misrepresentations. For instance, such models might be
leveraged by social media bots to manipulate public opinion during elections or other critical
events.

2. Hallucination Similar to any large language model, Cambrian-1 may produce information
that is not based on facts or actual input data. This phenomenon, often called "hallucination,"
can be dangerous if users assume the model’s output is entirely accurate without verification.

To mitigate these risks, users should exercise caution and critical thinking when interpreting outputs
generated by Cambrian-1. It is important to verify the information produced by the model, particularly
if the results are intended for sensitive or high-stakes applications. Users must be aware of the potential
for hallucinations, where the model produces information not grounded in facts, and take steps to
cross-check and validate any critical outputs. Additionally, implementing content filtering as a
safeguard can help flag potentially harmful or misleading content before it is disseminated.
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Why is this image funny?

The humor in this image comes from the 
unexpected twist on the classic poem 
'Roses are red, violets are blue.' Instead 
of a romantic or sweet sentiment, the poem 
is humorously altered to a more mundane 
and slightly unsettling scenario, which is 
a bug in the bed. This juxtaposition of a 
traditional romantic poem with a common, 
albeit slightly unpleasant, household 
occurrence creates a comedic effect.

Which character is this?

The character in the image is Homer Simpson, 
a central character from the animated 
television series 'The Simpsons.' Homer is 
known for his distinctive yellow skin, 
casual attire, and often humorous or 
oblivious behavior.

What does this image remind you of?

The image might remind you of a playful 
and creative culinary presentation, 
possibly inspired by a world map, where 
each piece of food represents a different 
continent. It could also evoke thoughts of 
a fun cooking challenge or a themed meal 
where the food is arranged to mimic the 
shape of the Earth.

Please solve the problem step by step:

To solve this problem, we need to 
determine which option correctly completes 
the sentence in a way that adheres to the 
conventions of Standard English. The 
sentence is:
"In 1937, Chinese American screen actor 
Anna May Wong, who had portrayed numerous 
villains and secondary characters but 
never a heroine, finally got a starring 
role in Paramount Pictures' Daughter of 
Shanghai, a film that _____ "expanded the 
range of possibilities for Asian images on 
screen."
The correct option should be the one that 
maintains the subject-verb agreement and 
the appropriate punctuation.
Option A: "critic, Stina Chyn, claims" -
This option is incorrect because it uses a 
comma after the name, which is not 
standard in English.
Option B: "critic, Stina Chyn, claims," -
This option is also incorrect because it 
uses a comma after the name and an extra 
comma at the end of the sentence, which is 
not standard in English.
Option C: "critic Stina Chyn claims" -
This option is correct because it 
maintains the subject-verb agreement and 
does not use any unnecessary commas.
Option D: "critic Stina Chyn, claims," -
This option is incorrect because it uses a 
comma after the name and an extra comma at 
the end of the sentence, which is not 
standard in English.
Therefore, the correct answer is Option C: 
"critic Stina Chyn claims."

List all the countries in this image in 
the format of a json {1: 2:, etc}. Why 
are the flags here?

{
"1": "Austria",
"2": "Belgium",
"3": "France",
"4": "Germany",
"5": "Portugal",
"6": "Scotland",
"7": "Spain",
"8": "Turkey"
}
The flags are here to represent the 
participating countries in the UEFA EURO 
2024 tournament, which is hosted by 
Germany. Each flag corresponds to a 
country that is either a host or a 
participant in the event, as indicated by 
the tickets below the flags. The tickets 
suggest that these countries are either 
hosting matches or have qualified to play 
in the tournament.

Figure 19: Examples of Cambrian-1-34B. Cambrian-1 showcases impressive abilities in visual intersection.
The model demonstrates instruction-following ability such as output in json format, as illustrated in the bottom-
left example. Cambrian-1 also demonstrates remarkable OCR ability (See model handles different Comma “,” in
the right down example).
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L Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have detailed all claims mentioned in the abstract and introduction in the
remaining part of the paper and Appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: We have discussed the limitations of our work in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not include any theoretical assumptions and proofs in our paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will publicly release all code, hyperparameters, model checkpoints, and
datasets for reproducing our experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Yes, as highlighted in the abstract, we will release our model weights, code,
tools, dataset, and all recipes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes. We include all training and evaluation recipes in the main paper and
Appendix, and will additionally include them in the code release.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We do report error bars and other statistical results for our experiments. Part
of these results are included in Fig. 3, Fig. 4 and Fig. 6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: We will include these in our code release.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work has no societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We used pre-trained LLM, which already has safeguards. As for datasets, we
have conducted filtering to avoid safety risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have credited and mentioned the assets we used.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have explained the data engine and new benchmark in our paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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