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Abstract

Relation extraction (RE) is an important task001
for many natural language processing applica-002
tions. Document-level relation extraction aims003
to extract the relations within a document and004
poses many challenges to the RE tasks as it re-005
quires reasoning across sentences and handling006
multiple relations expressed in the same docu-007
ment. Existing state-of-the-art document-level008
RE models use the graph structure to better con-009
nect long-distance correlations. In this work,010
we propose SagDRE model, which further con-011
siders and captures the original sequential in-012
formation from the text. The proposed model013
learns sentence-level directional edges to cap-014
ture the information flow in the document and015
uses the token-level sequential information to016
encode the shortest path from one entity to the017
other. In addition, we propose an adaptive mar-018
gin loss to maximize the margins to separate019
positive and negative classes. The experimen-020
tal results on datasets from various domains021
demonstrate the effectiveness of our proposed022
methods.023

1 Introduction024

Relation extraction (RE) aims to extract the rela-025

tions among entities from text. It plays an im-026

portant role in various natural language process-027

ing (NLP) tasks such as knowledge graph construc-028

tion (Distiawan et al., 2019; Yu et al., 2020), ques-029

tion answering (Yu et al., 2017), and text summa-030

rization (Hachey, 2009). In the RE tasks, there031

are two specific sub-tasks: sentence-level rela-032

tion extraction and document-level relation extrac-033

tion (Pawar et al., 2017). Sentence-level relation ex-034

traction focuses on relationships expressed within035

sentences, while document-level relation extrac-036

tion aims to extract relationships across sentence037

boundaries.038

There are unique challenges for document-level039

RE compared to sentence-level RE. In a document,040

an entity can be mentioned multiple times, but only041

a few mentions may contribute to the targeted rela- 042

tion reasoning, making it harder for the RE model 043

to focus on the most relevant parts in the document. 044

The mentions of entities may also locate in dif- 045

ferent sentences, which requires the RE model to 046

effectively encode long-distance information (Sahu 047

et al., 2019). 048

To address these challenges, some methods pro- 049

pose to construct a graph to represent the document 050

and achieve the state-of-the-art performances (Nan 051

et al., 2020; Li et al., 2020; Sahu et al., 2019; Guo 052

et al., 2019). However, these graph-based meth- 053

ods use regular graph structures with bi-directional 054

edges for effective feature propagation, and neglect 055

the sequence features in the original text, an im- 056

portant characteristics of languages. These graphs 057

cannot encode the sequential information due to 058

its permutation invariance property (Ruiz et al., 059

2019), which can downgrade the performance for 060

document-level RE tasks. 061

Another challenge of document-level RE is that 062

the document may express multiple relations for 063

the same entity pair. This leads to the multi-label 064

problem. Intuitively, given a document, an entity 065

pair either has no relation expressed, or have one or 066

more relation expressed. Existing methods convert 067

the multi-label problem as multiple binary classi- 068

fication problems, and assign the corresponding 069

label if the predicted probability is higher than a 070

global threshold shared for all entity pairs. How- 071

ever, the threshold is mostly determined heuris- 072

tically or tuned on validation set. The resulting 073

threshold may not be optimal for all instances. 074

In this work, we propose a Sequence-Aware 075

Graph-based Document-level Relation Extraction 076

model (SagDRE) to consider original text sequen- 077

tial information for relation extraction tasks. Given 078

a document, we first construct a sequence-aware 079

document graph with directed edges, which can 080

capture sentence-level sequential information in the 081

document. In particular, forward edges from previ- 082
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ous sentence roots to later ones are added with edge083

weights learned by an attention mechanism. Based084

on the constructed document graph, we adopt GCN085

and multi-head self attention to encode local and086

global features. To capture the token-level sequen-087

tial information, SagDRE finds the shortest path088

from the head entity to the tail entity on the doc-089

ument graph and then reconstruct the path with090

the original token orders and auxiliary tokens. The091

path is encoded using LSTM and concatenated with092

other features for prediction.093

Inspired by Hinge loss, we propose an adap-094

tive margin loss for multi-class multi-label learning095

tasks. In particular, we learn a threshold class for096

each pair of entities between positive classes and097

negative classes. The optimization based on this098

loss will encourage the maximum separation be-099

tween positive and negative classes via the thresh-100

old class.101

In empirical studies, we use three document-102

level RE datasets from both general and biomedical103

domains to evaluate the proposed method. The re-104

sults show that the proposed SagDRE consistently105

outperforms state-of-the-art models. The ablation106

studies show that the adaptive margin loss and the107

sequence components are the most important con-108

tributors to the overall model performances.109

The main contributions are summarized as:110

• We propose SagDRE that considers and in-111

corporates the sentence-level and token-level112

sequential information from the text in the113

graph-based document RE model.114

• We propose adaptive margin loss for multi-115

label learning problems, which encourages116

the maximum separation between positive and117

negative classes via a threshold class.118

• Empirical studies on three document-level119

relation extraction datasets from various do-120

mains demonstrate the effectiveness of the121

proposed method.122

2 Related Work123

Relation extraction task has been studied in the124

past decades. The applications of deep learning125

methods have significantly advanced the devel-126

opment for the task (Kumar, 2017; Pawar et al.,127

2017). Recently the research on document-level128

relation extraction tasks has drawn more and129

more attention. Comparing with sentence-level130

RE tasks, document-level RE tasks have a wider 131

range of applications (Yao et al., 2019) but extract- 132

ing document-level relations is more challenging 133

since cross-sentence learning usually requires ef- 134

fective long-distance feature encoding and reason- 135

ing (Sahu et al., 2019). 136

To tackle this challenge, some methods (Eberts 137

and Ulges, 2021; Zhou et al., 2021; Xie et al., 2021; 138

Ye et al., 2020; Tang et al., 2020) apply BERT (De- 139

vlin et al., 2019) for more informative contextual 140

token encoding. Besides BERT, some methods pro- 141

pose to use the graph structure to shorten the dis- 142

tances between entities in the document (Li et al., 143

2020; Sahu et al., 2019; Guo et al., 2019; Nan et al., 144

2020). 145

Sahu et al. (2019) is the first work to adopt graph 146

structure in document-level RE tasks. It uses lin- 147

guistic tools to build various edges, such as co- 148

reference edges, which embed inter-sentence and 149

intra-sentence dependencies, and applies a graph 150

convolutional neural network for feature learning. 151

Unlike previous methods that use linguistic tools 152

for graph construction, Guo et al. (2019) and Sahu 153

et al. (2020) use attention mechanisms to construct 154

edges in the graph. Instead of constructing token- 155

level graphs, Zeng et al. (2020) proposes to build 156

two graphs, including mention-level and entity- 157

level graphs, to predict relations. Compared to 158

previous methods that use graph neural networks 159

to encode features, Zhou et al. (2020) proposes a 160

global context-enhanced graph convolutional net- 161

work to consider global context information for 162

relation reasoning. 163

However, most existing works use regular graph 164

structures, which cannot capture the sequential in- 165

formation in the original text. The permutation in- 166

variance property of graph structure (Ruiz et al., 167

2019) makes it hard to embed sequential infor- 168

mation naturally, which is critical in extracting 169

document-level relation information. This work 170

addresses this issue by encoding sequential infor- 171

mation in graphs and directional path information 172

for document-level relation reasoning. 173

3 Preliminary 174

In this section, we introduce graph neural networks 175

and formulate the document-level RE task. 176

3.1 Graph Convolutional Networks 177

Given a graph G = (V,E), V and E represent the 178

node set and edge set in the graph, respectively. 179
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Each node v has a feature vector xv. An adjacency180

matrix A is used to represent graph connections.181

Graph Neural Networks (GNNs) learn feature rep-182

resentations for nodes and the graph from the graph183

structure and node features. Most existing graph184

neural networks follow a neighborhood aggrega-185

tion learning strategy, where each node iteratively186

aggregates features from its neighborhood and up-187

dates its features (Kipf and Welling, 2017; Xu et al.,188

2018). Specifically to Graph Convolutional Net-189

works (GCN), the ℓth GCN layer is defined as190

H(ℓ+1) = σ
(
D− 1

2AD− 1
2H(ℓ)W (ℓ)

)
, (1)191

where A is the adjacency matrix, D is the degree192

matrix, H(ℓ) is the input feature matrix at layer ℓ,193

W (ℓ) is the trainable parameter matrix, and σ(·)194

represents an activation function.195

3.2 Relation Extraction Task Formulation196

We formally formulate the task of document-197

level relation extraction as follows. A docu-198

ment D contains N sentences {s1, s2, . . . , sN}.199

si is the ith sentence, which includes Pi tokens:200

{wi,1, wi,2, . . . , wi,Pi}. wi,j represents the jth201

word in the ith sentence. Each token wi,j is ini-202

tially populated with an embedding feature vec-203

tor xi,j . An entity ek can have Qk mentions204

{mk,1,mk,2, · · · ,mk,Qk
} in this document, where205

mk,a refers to the ath span of tokens for entity ek.206

Given a document D and a pair of entities (eh,207

et), where eh and et are head entity and tail en-208

tity, respectively, the RE task aims to predict the209

relations for this pair of entities based on the doc-210

ument. The pre-defined relations contain labels211

{R0, R1, · · · , RC}, where R0 represents “No rela-212

tion” while Ri (1 ≤ i ≤ C) represents the ith213

pre-defined relationships. A RE model should214

output either R0 or a subset of relations from215

{R1, · · · , RC} for each (eh, et) based on the doc-216

ument. The relations between two entities exist217

if any pair of their mentions expresses the corre-218

sponding relationships.219

4 SagDRE220

In this section, we introduce a sequence-aware221

graph-based document-level relation extraction net-222

work (SagDRE), which consists of four compo-223

nents: sequence-aware graph construction (Sec-224

tion 4.1), local and global feature encoding (Sec-225

tion 4.2), sequence-aware path encoding (Sec-226

tion 4.3), and relation prediction head (Section 4.4).227

Figure 1 illustrates the architecture of the pro- 228

posed network. In Section 4.5, we propose a novel 229

adaptive margin loss that is especially designed 230

for multi-label multi-class learning tasks such as 231

document-level RE. 232

4.1 Sequence-Aware Graph Construction 233

Many existing methods adopt graph structures 234

for document-level RE tasks using dependency 235

parsers (Cer et al., 2010; Schmitt et al., 2019) 236

to construct the document graph with undirected 237

edges. The undirected graph increases the connec- 238

tivity between the head-tail entity pairs, and thus 239

can better capture long-distance information for 240

document-level RE tasks. However, the language 241

sequence information cannot be explicitly reflected 242

in this type of constructed graphs. Moreover, the 243

permutation invariance property of a bi-directional 244

graph makes it more challenging to capture sequen- 245

tial information expressed in the text (Ruiz et al., 246

2019). 247

It is critical to encode the original sequential in- 248

formation from the text as changing the order of 249

words or the order of sentences can lead to seman- 250

tic changes of relations for a pair of entities. If the 251

sequential information in the text is neglected, it 252

can negatively impact the performance of graph- 253

based relation extraction models. To maintain high 254

connectivity between the head-tail entity pairs and 255

effectively encode original sequential information, 256

we propose to construct a sequence-aware docu- 257

ment graph that can capture the sentence-level se- 258

quential information. 259

Given a document, we first encode contextual 260

features of each token in the document: 261

H = [h1,1, · · · ,hN,PN
] 262

= Encoder([x1,1, · · · ,xN,PN
]), 263

where xi is the word embedding for the ith token 264

in the document and hi is the encoded feature rep- 265

resentation for the same token. This encoder can 266

be a pre-trained BERT model (Devlin et al., 2019) 267

or LSTM model. 268

Then, we construct a document graph. This 269

graph contains two types of nodes: token nodes and 270

entity nodes. Each token in the document corre- 271

sponds to a token node and its encoded features are 272

used as node features. Each entity in the document 273

corresponds to an entity node. Its node features are 274

calculated by averaging the features of tokens in its 275

mentions. 276
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Figure 1: Illustration of the sequence-aware document-level relation extraction network. Given an input document,
each token obtains its initial feature embedding from the encoder. Then a document graph is constructed. The
directed cross-sentence edges are added (green edges) and their edge weights are computed using an attention
mechanism. We stack several GCN layers and attention layers to learn feature representations from both local and
global perspectives. Then, we extract the shortest path from the head entity to the tail entity from the graph and
encoded by LSTM, resulting in a path embedding. Finally, the entity embeddings and path embedding are fed into
an MLP for prediction. The adaptive margin loss is applied.

There are two types of edges in the graph: bi-277

directed edges and directed edges. The bi-directed278

edges are formed based on three sources: depen-279

dency syntax tree, adjacent sentence roots, and280

entity-token relation. Each sentence in the docu-281

ment is fed into a dependency parser, which gener-282

ates a dependency syntax tree. Bi-directed edges283

are added between each pair of connected tokens284

in the syntax tree. Then the dependency syntax285

tree roots of adjacent sentences are connected by286

bi-directed edges since there are close context re-287

lationships between adjacent sentences. Final bi-288

directed edges between each entity and tokens of289

its mentions are added. In this graph, the weights290

for bi-directed edges are 1, which indicates strong291

connections among nodes.292

The directed edges are added to capture the293

sentence-level sequential information in the doc-294

ument. In particular, we add forward edges from295

previous sentence roots to later ones. These for-296

ward edges indicate the order information in the297

original text sequence and enforce the information298

to propagate from earlier sentences to later ones.299

Since not all sentences are closely related to each300

other, we apply an attention mechanism to auto-301

matically learn the closeness between each pair of302

sentences for the given tasks and use the result-303

ing similarity scores as weights for these directed304

edges.305

Given two sentences roots i and j, we compute 306

the weight Ai,j for the directed edge from i to j 307

based on their feature vectors: 308

Ai,j =
hi · hj

||hi|| · ||hj ||
, (2) 309

where hi and hj are the encodings of roots i and j. 310

Using these learned edges weights, our relation ex- 311

traction model can automatically identify important 312

logic flows from earlier sentences to later sentences. 313

Note that if i and j are roots of adjacent sentences, 314

Ai,j and Aj,i are always 1 as there is a bi-directed 315

edge between them. 316

4.2 Local and Global Feature Encoding 317

Based on the constructed document graph with fea- 318

ture matrix H , and adjacency matrix A, we extract 319

graphical features locally and globally. We employ 320

graph convolutional network layers (GCN) (Kipf 321

and Welling, 2017) for feature aggregation and en- 322

coding. Since GCN layers only aggregates informa- 323

tion from neighboring nodes, the resulting features 324

can be considered as local feature encoding, pro- 325

viding information from a local context. 326

We also employ multi-head self attention lay- 327

ers (Vaswani et al., 2017) on contextual embed- 328

dings obtained from the GCN encode. Multi-head 329

self attention layer can attend over all nodes in the 330

input graph and thus can update the features from 331
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the global view, extracting features over the entire332

document graph. The local and global feature em-333

bedding are combined to update features of each334

node in the graph. We formulate this local and335

global feature extraction process at layer ℓ as:336

H ′
1 = GCN(H(ℓ),A),337

H ′
2 = Attn(WQH

(ℓ),WKH(ℓ),W V H
(ℓ)),338

H(ℓ+1) = H ′
1 +H ′

2,339

where H(ℓ) is the input feature matrix of layer ℓ,340

WQ, WK , and W V are trainable weights. GCN341

and Attn represent a GCN layer and an attention342

layer, respectively.343

4.3 Sequence-Aware Path Encoding344

The document graphs can resolve the issue of long345

distance between entities by increasing entity con-346

nectives. However, the graph can also connect347

less-related information and confuse the model. To348

focus on the most relevant information and encode349

original token-level sequential information, we pro-350

pose to construct a sequence-aware path from the351

head entity to the tail entity.352

Given a graph and a pair of entities (eh, et), the353

shortest path from eh to et in the graph usually354

contains the most relevant reasoning information355

for their relationships. We denote the shortest path356

as Ph,t = [eh, n1, · · · , nk, et], where nj represents357

the jth node on the path. This path may neglect358

some important structural words for relation rea-359

soning though such as “near” and “outside”. To360

enrich the sequence-aware path and include more361

informative nodes, we augment the extracted path362

with adposition words attached to this path. That is,363

given the shortest path, we add the neighboring ad-364

position word nodes of each node ni in Ph,t, which365

leads to the augmented path P ′
h,t.366

To encode the original token-level sequential367

information, we order the nodes in the path by their368

original sequential order in the text, which leads to369

P ′′
h,t. We apply a directional LSTM layer to encode370

features of this path, and a max-pooling layer to371

obtain the feature representations. The proposed372

sequence-aware path encoding is formulated as373

−→uj = LSTM(
−→
hj) (3)374

ph,t = max(−→uh,
−→u1, · · · ,−→uk,

−→ut), (4)375

where uj represents the LSTM hidden representa-376

tions of the jth node in P ′′
h,t.377
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Figure 2: Illustration of our proposed adaptive margin
loss. Given an entity pair (ei, ej) in a document, their
relations are R1 and R4.

4.4 Relation Prediction Head 378

After obtain sequence-aware entity encoding and 379

path encoding, we use a relation prediction head 380

to predict relations for a pair of entities. The pre- 381

diction is based on both entities’ feature represen- 382

tations and their augmented shortest path encoding. 383

Following previous methods (Zeng et al., 2020), 384

we concatenate entity encoding of two entities, eh, 385

et, the absolute values of subtraction of two entity 386

encoding, |eh − et|, the element-wise feature mul- 387

tiplication, eh ⊙ et, and the sequence-aware path 388

encoding ph,t, which leads to an overall encoding 389

for this entity pair: 390

Ih,t = [eh; et; |eh − et|; eh ⊙ et;ph,t]. (5) 391

We compute the prediction values z ∈ RC+1 for 392

all relation classes: 393

z = W 2σ(W 1Ih,t + b1) + b2, (6) 394

where W 1, W 2, b1, b2 are trainable parameters, 395

and σ is an element-wise activation function. 396

4.5 Adaptive Margin Loss 397

Most existing relation extraction models output 398

P (Ri|eh, et,G) for the probability of that relation 399

Ri exists for the pair of entities (eh, et), which 400

requires a pre-determined global threshold to con- 401

vert probabilities into relation labels. Some meth- 402

ods (Peng et al., 2017; Liu and Lapata, 2018; Nan 403

et al., 2020) use heuristic threshold or learn a global 404

threshold with the highest F1 score on the valida- 405

tion set. However, the global threshold may not 406

be optimal for all instances and introduce errors. 407

To address this issue, Zhou et al. (2021) uses the 408

probability prediction on class R0 as a threshold 409

between positive classes and negative classes. 410

Inspired by Hinge loss (Gentile and Warmuth, 411

1998), we further develop an adaptive margin loss 412

function to encourage more separations between 413
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positive classes and negative classes, thereby lead-414

ing to better generalization. Given a pair of entities415

(eh, et), we first split their relation labels into posi-416

tive classes P and negative classes N . The positive417

classes P contains relations that exist between two418

entities. Note that the positive classes set P can419

be empty when there is no relation between these420

two entities. The negative classes set N contains421

relations that do not exist between two entities. An422

illustrative example is shown in Figure 2.423

The adaptive margin loss for an entity pair424

(eh, et) includes the loss between positive classes425

and the threshold class, and the loss between the426

threshold class and negative classes. The loss for427

the entity pair (eh, et) is formally computed as428

LP =
∑
i∈P

max(0, α− zi + z0), (7)429

LN =
∑
j∈N

max(0, α− z0 + zj), (8)430

L = LP + λLN , (9)431

where α is a hyper-parameter for margin in margin-432

based loss. The prediction on class R0 (i.e., z0) is433

used for the threshold. Since there are usually much434

more negative classes than positive classes in multi-435

class multi-label RE tasks, λ ∈ (0, 1) is introduced436

as a hyper-parameter to balance the loss values437

between positive classes and negative classes.438

The optimization based on this loss will pull the439

predictions of positive classes to be higher than440

that of the threshold class R0 with margin α. Sim-441

ilarly, the prediction of negative classes will be442

pushed lower than that of the threshold class R0443

with margin α. Combining together, this loss func-444

tion will try to maximize margins between positive445

classes and negative classes via the threshold class446

R0. During the prediction, we output the classes447

whose prediction values are larger than that of the448

threshold z0.449

5 Experiments450

In this section, we evaluate the proposed SagDRE451

model on several document-level relation extrac-452

tion benchmark datasets.453

5.1 Experiments on General Domain Dataset454

Datasets and Evaluation Metrics. We conduct455

experiments to evaluate the proposed method on456

DocRED dataset (Yao et al., 2019), a general do-457

main dataset. The DocRED dataset is a large-458

scale human-annotated dataset constructed from459

Wikipedia and Wikidata. It contains 132,275 enti- 460

ties, 56,354 relational facts, and 96 relation classes. 461

More than 40.7% of the relation pairs are cross- 462

sentence relation facts. There are 3,053 documents, 463

1,000 documents, and 1,000 documents for training, 464

validation, and testing, respectively. The statistics 465

of this dataset is summarized in Table 1. 466

We use the evaluation metrics provided by Yao 467

et al. (2019), including Ign F1 and F1 scores, on 468

both validation and test sets. Ign F1s exclude those 469

relational facts shared by the training and dev/test 470

sets. For both metrics, the higher the better. 471

Baseline Models. We compare the proposed 472

SagDRE with the state-of-the-art models includ- 473

ing sequence-based models and graph-based mod- 474

els. For sequence-based models, we compare the 475

proposed method with two traditional neural net- 476

works: CNN-GloVe (Blunsom et al., 2014) and 477

BiLSTM-GloVe (Ma and Hovy, 2016), and BERT 478

enhanced models including BERT (Wang et al., 479

2019), ATLOP-BERT (Zhou et al., 2021), Coref- 480

BERT (Ye et al., 2020), and HIN-BERT (Tang 481

et al., 2020). The graph-based baseline mod- 482

els include AGGCN-GloVe (Guo et al., 2019), 483

EoG-GloVe (Christopoulou et al., 2019), LSR- 484

GloVe/BERT (Nan et al., 2020), and GAIN-GloVe/- 485

BERT (Zeng et al., 2020). 486

SagDRE Setups. For the proposed methods, we 487

use Huggingface’s Transformers (Wolf et al., 2019) 488

to implement BERT model (Devlin et al., 2019). 489

A dropout (Srivastava et al., 2014) operation is ap- 490

plied in the final prediction layer with a keep rate of 491

0.6. We use AdamW (Loshchilov and Hutter, 2018) 492

to optimize the SagDRE model with the learning 493

rate of 1e-3. When training with the BERT encoder, 494

a linear warmup (Goyal et al., 2017) is used for the 495

first 6% steps then decay the linear rate to 0. When 496

using Glove embedding (Pennington et al., 2014), 497

we reduce the learning rate when the F1 value on 498

the validation set has stopped improving. All hyper- 499

parameters are tuned on the validation set. We train 500

all RE models using one Tesla V100 GPU. 501

Main Results. We summarize the comparison 502

results in Table 2. The results clearly show that 503

the proposed SagDRE model consistently outper- 504

form previous state-of-the-art models. Comparing 505

with models without using pre-trained Bert models, 506

GAIN-GloVe achieves the best performance among 507

the baseline methods. The proposed SagDRE- 508

GloVe outperforms GAIN-GloVe by margins of 509

0.64% and 1.4% on the validation set, and by 1.19% 510
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DocRED CDR CHR
Train Dev Test Train Dev Test Train Dev Test

#Documents 3053 1000 1000 500 500 500 7,298 1,182 3,614
#Pos pairs 38,180 12,323 - 1,038 1,012 1,066 19,643 3,185 9,578
#Neg pairs 1,198,650 396,790 - 4,198 4,069 4,119 69,843 11,466 33,339

Table 1: Statistics of the DocRED, CDR, and CHR datasets. On the DocRED dataset, we do not have access to the
numbers of positive and negative pairs in the test dataset

Dev Test
Model Ign F1 F1 Ign F1 F1
CNN-GloVe* 41.58 43.45 40.33 42.26
BiLSTM-GloVe* 48.87 50.94 48.78 51.06
AGGCN-GloVe† 46.29 52.47 48.89 51.45
EoG-GloVe† 45.94 52.15 49.48 51.82
LSR-GloVe* 48.82 55.17 52.15 54.18
GAIN-GloVe* 53.05 55.29 52.66 55.08
SagDRE-GloVe (ours) 53.69 56.69 53.85 56.19
BERTBASE* - 54.16 - 53.20
LSR-BERTBASE* 52.43 59.00 56.97 59.05
HIN-BERTBASE* 54.29 56.31 53.70 55.60
CorefBERTBASE* 55.32 57.51 54.54 56.96
GAIN-BERTBASE* 59.14 61.22 59.00 61.24
ATLOP-BERTBASE* 59.22 61.09 59.31 61.30
SagDRE-BERTBASE (ours) 60.32 62.11 60.11 62.32

Table 2: Results on document-level RE tasks using the DocRED dataset from general domain. We report the Ign F1
(%) and F1 (%) scores on both the validation set and the test set. For performances on the test set, we report the
official test score by using the best model on the validation set. Results with † are reported from (Nan et al., 2020).
Results with * are reported from their original papers.

and 1.11% on the test set, in terms of Ign F1 and511

F1, respectively. All methods improve significantly512

after applying pre-trained Bert model. Comparing513

with the baseline models, the proposed SagDRE-514

BERTBASE achieves better performances on both515

validation and test sets as well. In particular, the516

proposed SagDRE-BERTBASE improves the perfor-517

mances by 1.1% and 1.12% on the validation set,518

and by 0.8% and 1.02% on test set, in terms of519

Ign F1 and F1, respectively, compared to ATLOP-520

BERTBASE.521

5.2 Experiments on Biomedical Datasets522

Datasets and Evaluation Metrics. We use two523

datasets from biomedical domains: CDR and CHR.524

The CDR dataset (Li et al., 2016) is a human-525

annotated relation extraction dataset with detailed526

annotation guidelines on text corpus of PubMed.527

The chemicals, diseases, and their relations are528

annotated by four MeSH indexers with a medical529

training background and curation experience. The 530

dataset includes 1,500 PubMed articles, 5,818 dis- 531

eases, 4,409 chemicals, and 3,119 chemical-disease 532

relation pairs. The task is to predict the binary rela- 533

tion between Chemicals and Diseases. 534

The CHR dataset is a distantly annotated 535

document-level RE dataset (Sahu et al., 2019) with 536

chemical relations. The annotation is a two-step 537

process. In the first step, the semantic faceted 538

search engine Thalia (Soto et al., 2019) is used 539

to annotate biomedical name entities on abstracts 540

from PubMed. Then each pair of annotated Chem- 541

ical entities are aligned with the graph dataset 542

Biochem4j (Swainston et al., 2017). Two chem- 543

ical entities are considered to have a relation if they 544

appear in Biochem4j. The task is to predict the 545

binary relation between Chemicals. 546

The statistics of these datasets are summarized in 547

table 1. We use F1 scores to evaluate the proposed 548

model. 549
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Model CDR CHR
CNN-BioGloVe 62.3* 84.1*
BiLSTM-BioGloVe 59.1* 86.4*
GCNN-BioGloVe 58.6* 87.5*
EoG-BioGloVe 63.6* -
SciBERT 65.1* 88.9‡

ATLOP-SciBERT 69.4* 90.1‡

SagDRE-SciBERT(ours) 71.8 92.9

Table 3: Results on document-level RE tasks using the
CDR and CHR datasets from Biomedical domain. Re-
sults with ‡ are obtained using their official released
code. Results with * are reported from their original
papers. We report the F1 (%) scores on the test sets.

Baseline Models. We compare the proposed550

model with sequential models including CNN-551

BioGloVe and BiLSTM-BioGloVe (Sahu et al.,552

2019), and state-of-the-art models including553

GCNN-BioGloVe (Sahu et al., 2019), EoG-554

BioGloVe (Christopoulou et al., 2019), GAIN-555

GloVe (Zeng et al., 2020), SciBERT (Zhou et al.,556

2021), and ATLOP-SciBERT (Zhou et al., 2021).557

SagDRE Setups. We follow similar setups as558

Section 5.1 with several changes. We use SciB-559

ERT (Beltagy et al., 2019) as the encoder, which560

is a pre-trained language model trained on large-561

scale labeled scientific corpora. We use AdamW to562

optimize the SagDRE model with the learning rate563

of 1e-3. A linear warmup is used for the first 6%564

steps then decay the linear rate to 0.565

Main Results. The results are summarized in Ta-566

ble 3. SagDRE achieves consistently better perfor-567

mances than previous state-of-the-art models on568

both biomedical RE datasets. Compare to the pre-569

viously best model ATLOP-SciBERT, the proposed570

SagDRE outperforms it by margins of 2.4% and571

2.8% on CDR and CHR, respectively.572

5.3 Ablation Study of SagDRE573

We conduct ablation studies to investigate the con-574

tributions of each component to the overall model575

performances. Based on SagDRE model, we re-576

move one component (GNN encoders, directed577

edges, path LSTM, path augmentation, and adap-578

tive margin loss) at a time and evaluate the resulting579

model using the validation set of DocRED. To ex-580

amine the importance of the sequence information,581

We also tested SagDRE model removing all se-582

quence components including both directed edges583

and path LSTM. The ablation study on SagDRE-584

Model P R F1
SagDRE-GloVe 57.24 56.16 56.69
(-) GCN layers 53.44 56.75 55.04
(-) Directed edges 49.88 60.59 54.72
(-) path LSTM 50.56 59.68 54.74
(-) Path augmentation 51.20 61.61 55.92
(-) Adapt margin loss 50.60 58.51 54.26
(-) sequence components 50.48 58.76 54.30

Table 4: Ablation study results on DocRED dataset with
GloVe embedding. We report the precision (P) (%),
recall (R) (%), and F1 (%) scores on the validation set.

GloVe model is shown in Table 4, while SagDRE- 585

BERTBASE shows similar trends. 586

From Table 4, we can observe that every pro- 587

posed component contributes to the overall model 588

performance. The most important contributors are 589

the adaptive margin loss and the sequence compo- 590

nents. When removing the adaptive margin loss, 591

F1 score drops by 2.43%, which indicates the pro- 592

posed loss function can help RE model achieve 593

better generalization ability. When removing se- 594

quence components, the performance drops by 595

2.39%, which shows that the sequential informa- 596

tion in text is critical for document-level RE task. 597

6 Conclusion 598

In this work, we propose the SagDRE model 599

for document-level relation extraction, which en- 600

codes the sequential information in the original 601

text. SagDRE considers both the sentence-level 602

and the token-level sequential information in the 603

documents. To capture sentence-level sequential 604

information, directed edges are added in the con- 605

structed document graph and their weights are 606

learned through an attention mechanism. These 607

directed weighted edges can capture the logic flows 608

of the sentences in a document. For token-level se- 609

quential information, SagDRE extracts and recon- 610

structs an augmented shortest path from the head 611

entity to the tail entity with the original sequential 612

ordering, and encodes it with LSTM. To address 613

the limitation of the regular loss function for RE 614

model optimization, we propose the adaptive mar- 615

gin loss. This loss function employs a threshold 616

class and maximizes the margins between the pos- 617

itive classes and the negative classes. The experi- 618

mental results on document-level RE datasets from 619

both general and biomedical domains demonstrate 620

the effectiveness of the proposed methods. 621
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