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Abstract

Relation extraction (RE) is an important task
for many natural language processing applica-
tions. Document-level relation extraction aims
to extract the relations within a document and
poses many challenges to the RE tasks as it re-
quires reasoning across sentences and handling
multiple relations expressed in the same docu-
ment. Existing state-of-the-art document-level
RE models use the graph structure to better con-
nect long-distance correlations. In this work,
we propose SagDRE model, which further con-
siders and captures the original sequential in-
formation from the text. The proposed model
learns sentence-level directional edges to cap-
ture the information flow in the document and
uses the token-level sequential information to
encode the shortest path from one entity to the
other. In addition, we propose an adaptive mar-
gin loss to maximize the margins to separate
positive and negative classes. The experimen-
tal results on datasets from various domains
demonstrate the effectiveness of our proposed
methods.

1 Introduction

Relation extraction (RE) aims to extract the rela-
tions among entities from text. It plays an im-
portant role in various natural language process-
ing (NLP) tasks such as knowledge graph construc-
tion (Distiawan et al., 2019; Yu et al., 2020), ques-
tion answering (Yu et al., 2017), and text summa-
rization (Hachey, 2009). In the RE tasks, there
are two specific sub-tasks: sentence-level rela-
tion extraction and document-level relation extrac-
tion (Pawar et al., 2017). Sentence-level relation ex-
traction focuses on relationships expressed within
sentences, while document-level relation extrac-
tion aims to extract relationships across sentence
boundaries.

There are unique challenges for document-level
RE compared to sentence-level RE. In a document,
an entity can be mentioned multiple times, but only

a few mentions may contribute to the targeted rela-
tion reasoning, making it harder for the RE model
to focus on the most relevant parts in the document.
The mentions of entities may also locate in dif-
ferent sentences, which requires the RE model to
effectively encode long-distance information (Sahu
et al., 2019).

To address these challenges, some methods pro-
pose to construct a graph to represent the document
and achieve the state-of-the-art performances (Nan
et al., 2020; Li et al., 2020; Sahu et al., 2019; Guo
et al., 2019). However, these graph-based meth-
ods use regular graph structures with bi-directional
edges for effective feature propagation, and neglect
the sequence features in the original text, an im-
portant characteristics of languages. These graphs
cannot encode the sequential information due to
its permutation invariance property (Ruiz et al.,
2019), which can downgrade the performance for
document-level RE tasks.

Another challenge of document-level RE is that
the document may express multiple relations for
the same entity pair. This leads to the multi-label
problem. Intuitively, given a document, an entity
pair either has no relation expressed, or have one or
more relation expressed. Existing methods convert
the multi-label problem as multiple binary classi-
fication problems, and assign the corresponding
label if the predicted probability is higher than a
global threshold shared for all entity pairs. How-
ever, the threshold is mostly determined heuris-
tically or tuned on validation set. The resulting
threshold may not be optimal for all instances.

In this work, we propose a Sequence-Aware
Graph-based Document-level Relation Extraction
model (SagDRE) to consider original text sequen-
tial information for relation extraction tasks. Given
a document, we first construct a sequence-aware
document graph with directed edges, which can
capture sentence-level sequential information in the
document. In particular, forward edges from previ-



ous sentence roots to later ones are added with edge
weights learned by an attention mechanism. Based
on the constructed document graph, we adopt GCN
and multi-head self attention to encode local and
global features. To capture the token-level sequen-
tial information, SagDRE finds the shortest path
from the head entity to the tail entity on the doc-
ument graph and then reconstruct the path with
the original token orders and auxiliary tokens. The
path is encoded using LSTM and concatenated with
other features for prediction.

Inspired by Hinge loss, we propose an adap-
tive margin loss for multi-class multi-label learning
tasks. In particular, we learn a threshold class for
each pair of entities between positive classes and
negative classes. The optimization based on this
loss will encourage the maximum separation be-
tween positive and negative classes via the thresh-
old class.

In empirical studies, we use three document-
level RE datasets from both general and biomedical
domains to evaluate the proposed method. The re-
sults show that the proposed SagDRE consistently
outperforms state-of-the-art models. The ablation
studies show that the adaptive margin loss and the
sequence components are the most important con-
tributors to the overall model performances.

The main contributions are summarized as:

* We propose SagDRE that considers and in-
corporates the sentence-level and token-level
sequential information from the text in the
graph-based document RE model.

* We propose adaptive margin loss for multi-
label learning problems, which encourages
the maximum separation between positive and
negative classes via a threshold class.

* Empirical studies on three document-level
relation extraction datasets from various do-
mains demonstrate the effectiveness of the
proposed method.

2 Related Work

Relation extraction task has been studied in the
past decades. The applications of deep learning
methods have significantly advanced the devel-
opment for the task (Kumar, 2017; Pawar et al.,
2017). Recently the research on document-level
relation extraction tasks has drawn more and
more attention. Comparing with sentence-level

RE tasks, document-level RE tasks have a wider
range of applications (Yao et al., 2019) but extract-
ing document-level relations is more challenging
since cross-sentence learning usually requires ef-
fective long-distance feature encoding and reason-
ing (Sahu et al., 2019).

To tackle this challenge, some methods (Eberts
and Ulges, 2021; Zhou et al., 2021; Xie et al., 2021;
Ye et al., 2020; Tang et al., 2020) apply BERT (De-
vlin et al., 2019) for more informative contextual
token encoding. Besides BERT, some methods pro-
pose to use the graph structure to shorten the dis-
tances between entities in the document (Li et al.,
2020; Sahu et al., 2019; Guo et al., 2019; Nan et al.,
2020).

Sahu et al. (2019) is the first work to adopt graph
structure in document-level RE tasks. It uses lin-
guistic tools to build various edges, such as co-
reference edges, which embed inter-sentence and
intra-sentence dependencies, and applies a graph
convolutional neural network for feature learning.
Unlike previous methods that use linguistic tools
for graph construction, Guo et al. (2019) and Sahu
et al. (2020) use attention mechanisms to construct
edges in the graph. Instead of constructing token-
level graphs, Zeng et al. (2020) proposes to build
two graphs, including mention-level and entity-
level graphs, to predict relations. Compared to
previous methods that use graph neural networks
to encode features, Zhou et al. (2020) proposes a
global context-enhanced graph convolutional net-
work to consider global context information for
relation reasoning.

However, most existing works use regular graph
structures, which cannot capture the sequential in-
formation in the original text. The permutation in-
variance property of graph structure (Ruiz et al.,
2019) makes it hard to embed sequential infor-
mation naturally, which is critical in extracting
document-level relation information. This work
addresses this issue by encoding sequential infor-
mation in graphs and directional path information
for document-level relation reasoning.

3 Preliminary

In this section, we introduce graph neural networks
and formulate the document-level RE task.

3.1 Graph Convolutional Networks

Given a graph G = (V, E), V and E represent the
node set and edge set in the graph, respectively.



Each node v has a feature vector x,. An adjacency
matrix A is used to represent graph connections.
Graph Neural Networks (GNNs) learn feature rep-
resentations for nodes and the graph from the graph
structure and node features. Most existing graph
neural networks follow a neighborhood aggrega-
tion learning strategy, where each node iteratively
aggregates features from its neighborhood and up-
dates its features (Kipf and Welling, 2017; Xu et al.,
2018). Specifically to Graph Convolutional Net-
works (GCN), the ¢ GCN layer is defined as

HD — 5 (D—%AD—%H“)W(@) )

where A is the adjacency matrix, D is the degree
matrix, H® is the input feature matrix at layer ,
W is the trainable parameter matrix, and o(-)
represents an activation function.

3.2 Relation Extraction Task Formulation

We formally formulate the task of document-
level relation extraction as follows. A docu-
ment D contains N sentences {si, S2,...,Sn}.
s; is the " sentence, which includes P; tokens:
{w;1,wi2,...,w;p}. w;; represents the j
word in the i*" sentence. Each token w; ; is ini-
tially populated with an embedding feature vec-
tor x; ;. An entity e, can have (J; mentions
{mp1,mp2,- -, myq,} in this document, where
my,q refers to the ath span of tokens for entity e.

Given a document D and a pair of entities (ep,
et), where e;, and e; are head entity and tail en-
tity, respectively, the RE task aims to predict the
relations for this pair of entities based on the doc-
ument. The pre-defined relations contain labels
{Ro, R1,- -, Rc}, where Ry represents “No rela-
tion” while R; (1 < i < O) represents the i
pre-defined relationships. A RE model should
output either Ry or a subset of relations from
{R1,- -, Rc} for each (e, ;) based on the doc-
ument. The relations between two entities exist
if any pair of their mentions expresses the corre-
sponding relationships.

4 SagDRE

In this section, we introduce a sequence-aware
graph-based document-level relation extraction net-
work (SagDRE), which consists of four compo-
nents: sequence-aware graph construction (Sec-
tion 4.1), local and global feature encoding (Sec-
tion 4.2), sequence-aware path encoding (Sec-
tion 4.3), and relation prediction head (Section 4.4).

Figure 1 illustrates the architecture of the pro-
posed network. In Section 4.5, we propose a novel
adaptive margin loss that is especially designed
for multi-label multi-class learning tasks such as
document-level RE.

4.1 Sequence-Aware Graph Construction

Many existing methods adopt graph structures
for document-level RE tasks using dependency
parsers (Cer et al., 2010; Schmitt et al., 2019)
to construct the document graph with undirected
edges. The undirected graph increases the connec-
tivity between the head-tail entity pairs, and thus
can better capture long-distance information for
document-level RE tasks. However, the language
sequence information cannot be explicitly reflected
in this type of constructed graphs. Moreover, the
permutation invariance property of a bi-directional
graph makes it more challenging to capture sequen-
tial information expressed in the text (Ruiz et al.,
2019).

It is critical to encode the original sequential in-
formation from the text as changing the order of
words or the order of sentences can lead to seman-
tic changes of relations for a pair of entities. If the
sequential information in the text is neglected, it
can negatively impact the performance of graph-
based relation extraction models. To maintain high
connectivity between the head-tail entity pairs and
effectively encode original sequential information,
we propose to construct a sequence-aware docu-
ment graph that can capture the sentence-level se-
quential information.

Given a document, we first encode contextual
features of each token in the document:

H - [h'L].)' te 7h'N,PN]
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where z; is the word embedding for the i*” token
in the document and h; is the encoded feature rep-
resentation for the same token. This encoder can
be a pre-trained BERT model (Devlin et al., 2019)
or LSTM model.

Then, we construct a document graph. This
graph contains two types of nodes: token nodes and
entity nodes. Each token in the document corre-
sponds to a token node and its encoded features are
used as node features. Each entity in the document
corresponds to an entity node. Its node features are
calculated by averaging the features of tokens in its
mentions.
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Figure 1: Illustration of the sequence-aware document-level relation extraction network. Given an input document,
each token obtains its initial feature embedding from the encoder. Then a document graph is constructed. The
directed cross-sentence edges are added (green edges) and their edge weights are computed using an attention
mechanism. We stack several GCN layers and attention layers to learn feature representations from both local and
global perspectives. Then, we extract the shortest path from the head entity to the tail entity from the graph and
encoded by LSTM, resulting in a path embedding. Finally, the entity embeddings and path embedding are fed into
an MLP for prediction. The adaptive margin loss is applied.

There are two types of edges in the graph: bi-
directed edges and directed edges. The bi-directed
edges are formed based on three sources: depen-
dency syntax tree, adjacent sentence roots, and
entity-token relation. Each sentence in the docu-
ment is fed into a dependency parser, which gener-
ates a dependency syntax tree. Bi-directed edges
are added between each pair of connected tokens
in the syntax tree. Then the dependency syntax
tree roots of adjacent sentences are connected by
bi-directed edges since there are close context re-
lationships between adjacent sentences. Final bi-
directed edges between each entity and tokens of
its mentions are added. In this graph, the weights
for bi-directed edges are 1, which indicates strong
connections among nodes.

The directed edges are added to capture the
sentence-level sequential information in the doc-
ument. In particular, we add forward edges from
previous sentence roots to later ones. These for-
ward edges indicate the order information in the
original text sequence and enforce the information
to propagate from earlier sentences to later ones.
Since not all sentences are closely related to each
other, we apply an attention mechanism to auto-
matically learn the closeness between each pair of
sentences for the given tasks and use the result-
ing similarity scores as weights for these directed
edges.

Given two sentences roots 7 and j, we compute
the weight A; ; for the directed edge from i to j
based on their feature vectors:

hi - h;
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where h; and h; are the encodings of roots 7 and j.
Using these learned edges weights, our relation ex-
traction model can automatically identify important
logic flows from earlier sentences to later sentences.
Note that if ¢ and j are roots of adjacent sentences,
A; j and A;; are always 1 as there is a bi-directed
edge between them.

4.2 Local and Global Feature Encoding

Based on the constructed document graph with fea-
ture matrix H, and adjacency matrix A, we extract
graphical features locally and globally. We employ
graph convolutional network layers (GCN) (Kipf
and Welling, 2017) for feature aggregation and en-
coding. Since GCN layers only aggregates informa-
tion from neighboring nodes, the resulting features
can be considered as local feature encoding, pro-
viding information from a local context.

We also employ multi-head self attention lay-
ers (Vaswani et al., 2017) on contextual embed-
dings obtained from the GCN encode. Multi-head
self attention layer can attend over all nodes in the
input graph and thus can update the features from



the global view, extracting features over the entire
document graph. The local and global feature em-
bedding are combined to update features of each
node in the graph. We formulate this local and
global feature extraction process at layer ¢ as:

1 =GCN(HY, A),
L =Atn(WoHO W HO Wi H®Y),
H"Y) = H| + H),

where H® is the input feature matrix of layer £,
W, Wk, and Wy, are trainable weights. GCN
and Attn represent a GCN layer and an attention
layer, respectively.

4.3 Sequence-Aware Path Encoding

The document graphs can resolve the issue of long
distance between entities by increasing entity con-
nectives. However, the graph can also connect
less-related information and confuse the model. To
focus on the most relevant information and encode
original token-level sequential information, we pro-
pose to construct a sequence-aware path from the
head entity to the tail entity.

Given a graph and a pair of entities (ey, €;), the
shortest path from ej, to e; in the graph usually
contains the most relevant reasoning information
for their relationships. We denote the shortest path
as Pn; = [en,n1,- -+, nk, €], where n; represents
the 5" node on the path. This path may neglect
some important structural words for relation rea-
soning though such as “near” and “outside”. To
enrich the sequence-aware path and include more
informative nodes, we augment the extracted path
with adposition words attached to this path. That is,
given the shortest path, we add the neighboring ad-
position word nodes of each node n; in P, ;, which
leads to the augmented path P ,.

To encode the original token-level sequential
information, we order the nodes in the path by their
original sequential order in the text, which leads to
P},. We apply a directional LSTM layer to encode
features of this path, and a max-pooling layer to
obtain the feature representations. The proposed
sequence-aware path encoding is formulated as

—
) = LSTM(h;) 3)
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where u; represents the LSTM hidden representa-
tions of the j*" node in P/ ,.

R(eiaej) =Ry, R4

Figure 2: Illustration of our proposed adaptive margin
loss. Given an entity pair (e;, e;) in a document, their
relations are Ry and Ry,.

4.4 Relation Prediction Head

After obtain sequence-aware entity encoding and
path encoding, we use a relation prediction head
to predict relations for a pair of entities. The pre-
diction is based on both entities’ feature represen-
tations and their augmented shortest path encoding.
Following previous methods (Zeng et al., 2020),
we concatenate entity encoding of two entities, ey,
ey, the absolute values of subtraction of two entity
encoding, |e;, — e/, the element-wise feature mul-
tiplication, e;, ® e, and the sequence-aware path
encoding py, ;, which leads to an overall encoding
for this entity pair:

Iy = [enseslen —e;en © e pry. (5)

We compute the prediction values z € R¢*! for
all relation classes:

z=Wao(Wilp; + by) + b, (6)

where W1, W, by, by are trainable parameters,
and o is an element-wise activation function.

4.5 Adaptive Margin Loss

Most existing relation extraction models output
P(R;|ep, er, G) for the probability of that relation
R; exists for the pair of entities (e, e;), which
requires a pre-determined global threshold to con-
vert probabilities into relation labels. Some meth-
ods (Peng et al., 2017; Liu and Lapata, 2018; Nan
et al., 2020) use heuristic threshold or learn a global
threshold with the highest F1 score on the valida-
tion set. However, the global threshold may not
be optimal for all instances and introduce errors.
To address this issue, Zhou et al. (2021) uses the
probability prediction on class Ry as a threshold
between positive classes and negative classes.
Inspired by Hinge loss (Gentile and Warmuth,
1998), we further develop an adaptive margin loss
function to encourage more separations between



positive classes and negative classes, thereby lead-
ing to better generalization. Given a pair of entities
(en, 1), we first split their relation labels into posi-
tive classes P and negative classes . The positive
classes P contains relations that exist between two
entities. Note that the positive classes set P can
be empty when there is no relation between these
two entities. The negative classes set N contains
relations that do not exist between two entities. An
illustrative example is shown in Figure 2.

The adaptive margin loss for an entity pair
(en, ;) includes the loss between positive classes
and the threshold class, and the loss between the
threshold class and negative classes. The loss for
the entity pair (e, e;) is formally computed as

Lp = Z max (0, — z; + 2p), @)

i€P
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where « is a hyper-parameter for margin in margin-
based loss. The prediction on class Ry (i.e., zp) is
used for the threshold. Since there are usually much
more negative classes than positive classes in multi-
class multi-label RE tasks, A € (0, 1) is introduced
as a hyper-parameter to balance the loss values
between positive classes and negative classes.

The optimization based on this loss will pull the
predictions of positive classes to be higher than
that of the threshold class Ry with margin . Sim-
ilarly, the prediction of negative classes will be
pushed lower than that of the threshold class Ry
with margin . Combining together, this loss func-
tion will try to maximize margins between positive
classes and negative classes via the threshold class
Ry. During the prediction, we output the classes
whose prediction values are larger than that of the
threshold z.

5 Experiments

In this section, we evaluate the proposed SagDRE
model on several document-level relation extrac-
tion benchmark datasets.

5.1 Experiments on General Domain Dataset

Datasets and Evaluation Metrics. We conduct
experiments to evaluate the proposed method on
DocRED dataset (Yao et al., 2019), a general do-
main dataset. The DocRED dataset is a large-
scale human-annotated dataset constructed from

Wikipedia and Wikidata. It contains 132,275 enti-
ties, 56,354 relational facts, and 96 relation classes.
More than 40.7% of the relation pairs are cross-
sentence relation facts. There are 3,053 documents,
1,000 documents, and 1,000 documents for training,
validation, and testing, respectively. The statistics
of this dataset is summarized in Table 1.

We use the evaluation metrics provided by Yao
et al. (2019), including Ign F1 and F1 scores, on
both validation and test sets. Ign F1s exclude those
relational facts shared by the training and dev/test
sets. For both metrics, the higher the better.

Baseline Models. We compare the proposed
SagDRE with the state-of-the-art models includ-
ing sequence-based models and graph-based mod-
els. For sequence-based models, we compare the
proposed method with two traditional neural net-
works: CNN-GloVe (Blunsom et al., 2014) and
BiLSTM-GloVe (Ma and Hovy, 2016), and BERT
enhanced models including BERT (Wang et al.,
2019), ATLOP-BERT (Zhou et al., 2021), Coref-
BERT (Ye et al., 2020), and HIN-BERT (Tang
et al., 2020). The graph-based baseline mod-
els include AGGCN-GloVe (Guo et al., 2019),
EoG-GloVe (Christopoulou et al., 2019), LSR-
GloVe/BERT (Nan et al., 2020), and GAIN-GloVe/-
BERT (Zeng et al., 2020).

SagDRE Setups. For the proposed methods, we
use Huggingface’s Transformers (Wolf et al., 2019)
to implement BERT model (Devlin et al., 2019).
A dropout (Srivastava et al., 2014) operation is ap-
plied in the final prediction layer with a keep rate of
0.6. We use AdamW (Loshchilov and Hutter, 2018)
to optimize the SagDRE model with the learning
rate of 1e-3. When training with the BERT encoder,
a linear warmup (Goyal et al., 2017) is used for the
first 6% steps then decay the linear rate to 0. When
using Glove embedding (Pennington et al., 2014),
we reduce the learning rate when the F1 value on
the validation set has stopped improving. All hyper-
parameters are tuned on the validation set. We train
all RE models using one Tesla V100 GPU.

Main Results. We summarize the comparison
results in Table 2. The results clearly show that
the proposed SagDRE model consistently outper-
form previous state-of-the-art models. Comparing
with models without using pre-trained Bert models,
GAIN-GloVe achieves the best performance among
the baseline methods. The proposed SagDRE-
GloVe outperforms GAIN-GloVe by margins of
0.64% and 1.4% on the validation set, and by 1.19%



DocRED CDR CHR
Train Dev Test Train Dev Test Train Dev Test
#Documents 3053 1000 1000 500 500 500 7,298 1,182 3,614
#Pos pairs 38,180 12,323 - 1,038 1,012 1,066 | 19,643 3,185 9,578
#Neg pairs 1,198,650 396,790 - 4,198 4,069 4,119 | 69,843 11,466 33,339

Table 1: Statistics of the DocRED, CDR, and CHR datasets. On the DocRED dataset, we do not have access to the

numbers of positive and negative pairs in the test dataset

Dev Test

Model Ign F1 F1 Ign F1 F1

CNN-GloVe* 41.58 43.45 40.33 42.26
BiLSTM-GloVe* 48.87 50.94 48.78 51.06
AGGCN-GloVe' 46.29 52.47 48.89 51.45
EoG-GloVe' 45.94 52.15 49.48 51.82
LSR-GloVe* 48.82 55.17 52.15 54.18
GAIN-GloVe* 53.05 55.29 52.66 55.08
SagDRE-GloVe (ours) 53.69 56.69 53.85 56.19
BERTgASE™ - 54.16 - 53.20
LSR-BERTgAsg* 52.43 59.00 56.97 59.05
HIN-BERTgAsg™ 54.29 56.31 53.70 55.60
CorefBERTgAsE™ 55.32 57.51 54.54 56.96
GAIN-BERTEAsg™ 59.14 61.22 59.00 61.24
ATLOP-BERTgAsg™ 59.22 61.09 59.31 61.30
SagDRE-BERTgASE (ours) 60.32 62.11 60.11 62.32

Table 2: Results on document-level RE tasks using the DocRED dataset from general domain. We report the Ign F1
(%) and F1 (%) scores on both the validation set and the test set. For performances on the test set, we report the
official test score by using the best model on the validation set. Results with t are reported from (Nan et al., 2020).

Results with * are reported from their original papers.

and 1.11% on the test set, in terms of Ign F1 and
F1, respectively. All methods improve significantly
after applying pre-trained Bert model. Comparing
with the baseline models, the proposed SagDRE-
BERTgasE achieves better performances on both
validation and test sets as well. In particular, the
proposed SagDRE-BERTgAsE improves the perfor-
mances by 1.1% and 1.12% on the validation set,
and by 0.8% and 1.02% on test set, in terms of
Ign F1 and F1, respectively, compared to ATLOP-
BERTgASE.

5.2 Experiments on Biomedical Datasets

Datasets and Evaluation Metrics. We use two
datasets from biomedical domains: CDR and CHR.
The CDR dataset (Li et al., 2016) is a human-
annotated relation extraction dataset with detailed
annotation guidelines on text corpus of PubMed.
The chemicals, diseases, and their relations are
annotated by four MeSH indexers with a medical

training background and curation experience. The
dataset includes 1,500 PubMed articles, 5,818 dis-
eases, 4,409 chemicals, and 3,119 chemical-disease
relation pairs. The task is to predict the binary rela-
tion between Chemicals and Diseases.

The CHR dataset is a distantly annotated
document-level RE dataset (Sahu et al., 2019) with
chemical relations. The annotation is a two-step
process. In the first step, the semantic faceted
search engine Thalia (Soto et al., 2019) is used
to annotate biomedical name entities on abstracts
from PubMed. Then each pair of annotated Chem-
ical entities are aligned with the graph dataset
Biochem4j (Swainston et al., 2017). Two chem-
ical entities are considered to have a relation if they
appear in Biochem4j. The task is to predict the
binary relation between Chemicals.

The statistics of these datasets are summarized in
table 1. We use F1 scores to evaluate the proposed
model.



Model CDR CHR Model | R F1

CNN-BioGloVe 62.3% 84.1*% SagDRE-GloVe 57.24 56.16 56.69
BiLSTM-BioGloVe 59.1% 86.4* (-) GCN layers 53.44 56.75 55.04
GCNN-BioGloVe 58.6%* 87.5% (-) Directed edges 49.88 60.59 54.72
EoG-BioGloVe 63.6%* - (-) path LSTM 50.56 59.68 54.74
SciBERT 65.1% 88.9% (-) Path augmentation 51.20 61.61 55.92
ATLOP-SciBERT 69.4* 90.1* (-) Adapt margin loss 50.60 58.51 54.26
SagDRE-SciBERT (ours) 71.8 92.9 (-) sequence components 50.48 58.76 54.30

Table 3: Results on document-level RE tasks using the
CDR and CHR datasets from Biomedical domain. Re-
sults with I are obtained using their official released
code. Results with * are reported from their original
papers. We report the F1 (%) scores on the test sets.

Baseline Models. We compare the proposed
model with sequential models including CNN-
BioGloVe and BiLSTM-BioGloVe (Sahu et al.,
2019), and state-of-the-art models including
GCNN-BioGloVe (Sahu et al., 2019), EoG-
BioGloVe (Christopoulou et al., 2019), GAIN-
GloVe (Zeng et al., 2020), SciBERT (Zhou et al.,
2021), and ATLOP-SciBERT (Zhou et al., 2021).
SagDRE Setups. We follow similar setups as
Section 5.1 with several changes. We use SciB-
ERT (Beltagy et al., 2019) as the encoder, which
is a pre-trained language model trained on large-
scale labeled scientific corpora. We use AdamW to
optimize the SagDRE model with the learning rate
of 1e-3. A linear warmup is used for the first 6%
steps then decay the linear rate to 0.

Main Results. The results are summarized in Ta-
ble 3. SagDRE achieves consistently better perfor-
mances than previous state-of-the-art models on
both biomedical RE datasets. Compare to the pre-
viously best model ATLOP-SciBERT, the proposed
SagDRE outperforms it by margins of 2.4% and
2.8% on CDR and CHR, respectively.

5.3 Ablation Study of SagDRE

We conduct ablation studies to investigate the con-
tributions of each component to the overall model
performances. Based on SagDRE model, we re-
move one component (GNN encoders, directed
edges, path LSTM, path augmentation, and adap-
tive margin loss) at a time and evaluate the resulting
model using the validation set of DocRED. To ex-
amine the importance of the sequence information,
We also tested SagDRE model removing all se-
quence components including both directed edges
and path LSTM. The ablation study on SagDRE-

Table 4: Ablation study results on DocRED dataset with
GloVe embedding. We report the precision (P) (%),
recall (R) (%), and F1 (%) scores on the validation set.

GloVe model is shown in Table 4, while SagDRE-
BERTgAsg shows similar trends.

From Table 4, we can observe that every pro-
posed component contributes to the overall model
performance. The most important contributors are
the adaptive margin loss and the sequence compo-
nents. When removing the adaptive margin loss,
F1 score drops by 2.43%, which indicates the pro-
posed loss function can help RE model achieve
better generalization ability. When removing se-
quence components, the performance drops by
2.39%, which shows that the sequential informa-
tion in text is critical for document-level RE task.

6 Conclusion

In this work, we propose the SagDRE model
for document-level relation extraction, which en-
codes the sequential information in the original
text. SagDRE considers both the sentence-level
and the token-level sequential information in the
documents. To capture sentence-level sequential
information, directed edges are added in the con-
structed document graph and their weights are
learned through an attention mechanism. These
directed weighted edges can capture the logic flows
of the sentences in a document. For token-level se-
quential information, SagDRE extracts and recon-
structs an augmented shortest path from the head
entity to the tail entity with the original sequential
ordering, and encodes it with LSTM. To address
the limitation of the regular loss function for RE
model optimization, we propose the adaptive mar-
gin loss. This loss function employs a threshold
class and maximizes the margins between the pos-
itive classes and the negative classes. The experi-
mental results on document-level RE datasets from
both general and biomedical domains demonstrate
the effectiveness of the proposed methods.
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