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Abstract

Carefully designed activation functions can improve the performance of neural
networks in many machine learning tasks. However, it is difficult for humans
to construct optimal activation functions, and current activation function search
algorithms are prohibitively expensive. This paper aims to improve the state
of the art through three steps: First, the benchmark datasets Act-Bench-CNN,
Act-Bench-ResNet, and Act-Bench-ViT were created by training convolutional,
residual, and vision transformer architectures from scratch with 2,913 systemati-
cally generated activation functions. Second, a characterization of the benchmark
space was developed, leading to a new surrogate-based method for optimization.
More specifically, the spectrum of the Fisher information matrix associated with
the model’s predictive distribution at initialization and the activation function’s
output distribution were found to be highly predictive of performance. Third, the
surrogate was used to discover improved activation functions in several real-world
tasks, with a surprising finding: a sigmoidal design that outperformed all other
activation functions was discovered, challenging the status quo of always using
rectifier nonlinearities in deep learning. Each of these steps is a contribution in its
own right; together they serve as a practical and theoretical foundation for further
research on activation function optimization.

1 Introduction

Activation functions are an important choice in neural network design [2, 46]. In order to realize the
benefits of good activation functions, researchers often design new functions based on characteristics
like smoothness, groundedness, monotonicity, and limit behavior. While these properties have proven
useful, humans are ultimately limited by design biases and by the relatively small number of functions
they can consider. On the other hand, automated search methods can evaluate thousands of unique
functions, and as a result, often discover better activation functions than those designed by humans.
However, such approaches do not usually have a theoretical justification, and instead focus only on
performance. This limitation results in computationally inefficient ad hoc algorithms that may miss
good solutions and may not scale to large models and datasets.

This paper addresses these drawbacks in a data-driven way through three steps. First, in order to
provide a foundation for theory and algorithm development, convolutional, residual, and vision
transformer based architectures were trained from scratch with 2,913 different activation functions,
resulting in three activation function benchmark datasets: Act-Bench-CNN, Act-Bench-ResNet,
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and Act-Bench-ViT. These datasets make it possible to analyze activation function properties at a
large scale in order to determine which are most predictive of performance.

The second step was to characterize the activation functions in these benchmark datasets analytically,
leading to a surrogate performance measure. Exploratory data analysis revealed two activation func-
tion properties that are highly indicative of performance: (1) the spectrum of the Fisher information
matrix associated with the model’s predictive distribution at initialization, and (2) the activation
function’s output distribution. Both sets of features contribute unique information. Both are predictive
of performance on their own, but they are most powerful when used in tandem. These features were
combined to create a metric space where a low-dimensional representation of the activation functions
was learned. This space was then used as a surrogate in the search for good activation functions.

In the third step, this surrogate was evaluated experimentally, first by verifying that it can discover
known good functions in the benchmark datasets efficiently and reliably, and second by demonstrating
that it can discover improved activation functions in new tasks involving different datasets, search
spaces, and architectures. The representation turned out to be so powerful that an out-of-the-box
regression algorithm was able to search it effectively. This algorithm improved performance on
various tasks, and also discovered a sigmoidal activation function that outperformed all baselines,
a surprising discovery that challenges the common practice of using ReLU and its variants. The
approach, called AQuaSurF (Activation Quality with a Surrogate Function), is orders of magnitude
more efficient than past work. Indeed, whereas previous approaches evaluated hundreds or thousands
of activation functions, AQuaSurF requires only tens of evaluations in order to discover functions
that outperform a wide range of baseline activation functions in each context. Code implementing the
AQuaSurF algorithm is available at https://github.com/cognizant-ai-labs/aquasurf.

Prior research on activation function optimization and Fisher information matrices is reviewed
in Section A. This work extends it in three ways. First, the benchmark collections are made
available at https://github.com/cognizant-ai-labs/act-bench, providing a foundation
for further research on activation function optimization. Second, the low-dimensional repre-
sentation of the Fisher information matrix makes it a practical surrogate measure, making it
possible to apply it to not only activation function design, but potentially also to other ap-
plications in the future. Third, the already-discovered functions can be used immediately to
improve performance in image processing tasks, and potentially in other tasks in the future.
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Figure 1: Distribution of validation accuracies with
2,913 unique activation functions from the three
benchmark datasets. Many activation functions
result in failed training (indicated by the chance ac-
curacy of 0.1), suggesting that searching for activa-
tion functions is a challenging problem. However,
most of these functions have invalid FIM eigenval-
ues, and can thus be filtered out effectively.

2 Activation Function Benchmarks

As the first step, three activation function bench-
mark datasets are introduced: Act-Bench-CNN,
Act-Bench-ResNet, and Act-Bench-ViT.
Each dataset contains training results for 2,913
unique activation functions when paired with
different architectures and tasks: All-CNN-C
on CIFAR-10, ResNet-56 on CIFAR-10, and
MobileViTv2-0.5 on Imagenette [22, 24, 31, 41,
51]. These functions were created using the
main three-node computation graph from PAN-
GAEA [5]. Details are in Appendix B.
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Figure 2: Distribution of validation accuracies
across the benchmark datasets. Each point rep-
resents a unique activation function’s performance
on two of the three datasets. Some functions per-
form well on all tasks, while others are specialized.

Figure 1 shows the distribution of validation ac-
curacies in these datasets. In all three datasets,
the distribution is highly skewed towards func-
tions that result in failed training. The plots sug-
gest that it is difficult to design good activation
functions, and explain why existing methods are
computationally expensive. Notwithstanding
this difficulty, the histograms show that many
unique functions do achieve good performance.
Thus, searching for new activation functions is a
worthwhile task that requires a smart approach.
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Figure 2 shows the same data as Figure 1, but with scatter plots that show how performance varies
across different tasks. All three plots contain linearly correlated clusters of points in the upper right
corner, suggesting that there are modifications to activation functions that make them more powerful
across tasks. However, the best results come from discovering functions specialized to individual
tasks, indicated by the clusters of points in the upper left and lower right corners.

The three benchmark datasets form a foundation for developing and evaluating methods for automated
activation function design. In the next two sections, they are used to develop a surrogate performance
metric, making it possible to scale up activation function optimization to large networks and datasets.

3 Features and Distance Metrics

To make efficient search for activation functions possible, the surrogate space needs to be low-
dimensional, represent informative features, and have an appropriate distance metric. In the second
step, an approach is developed based on (1) the eigenvalues of the Fisher information matrix and (2)
the outputs of the activation function. This section motivates each feature type and develops a metric
for computing distances between activation functions. They form a surrogate in the next section.

FIM Eigenvalues The Fisher information matrix (FIM) is an important concept in characterizing
neural network models. Viewed from various perspectives, the FIM determines a neural network’s
capacity for learning, ability to generalize, the robustness of the network to small perturbations of its
parameters, and the geometry of the loss function near the global minimum [16, 21, 27–29, 33, 34].

Consider a neural network f with weights θ. Given inputs x drawn from a training distribution Qx,
the network defines the conditional distribution Ry|f(x;θ). The FIM associated with this model is

F = E
x∼Qx

y∼Ry|f(x;θ)

[
∇θL(y, f(x;θ))∇θL(y, f(x;θ))⊤

]
, (1)

where L(y, z) is the loss function representing the negative log-likelihood associated with Ry|f(x;θ).

The FIM has |θ| eigenvalues. The distribution of eigenvalues can be represented by binning the
eigenvalues into an m-bucket histogram, and this m-dimensional vector serves as a computational
characterization of the network. To calculate the FIM and its eigenvalues, this paper uses the K-FAC
approach [20, 38]. Full details are in Appendix C.

Different activation functions induce different FIM eigenvalues for a given neural network. They can
be calculated at initialization without training; they can thus serve as a low-dimensional feature vector
representation of the activation function. The FIM eigenvalues are immediately useful for filtering
out poor activation functions; if they are invalid, the activation function is likely to fail in training
(Figure 1). However, in order to use them as a surrogate, a distance metric needs to be defined.

Given a neural network architecture f , let fϕ and fψ be two instantiations with different activation
functions ϕ and ψ. Let µl and νl represent the distributions of eigenvalues corresponding to the
weights in layer l of neural networks fϕ and fψ , respectively, and let wl be the number of weights in
layer l of the networks. The distance between fϕ and fψ is then computed as a weighted layer-wise
sum of 1-Wasserstein distances

d(fϕ, fψ) =
∑L
l=1W1(µl, νl)/wl. (2)

With this distance metric, the FIM eigenvalue vector representations encode a low-dimensional
embedding space for activation functions, making efficient search possible. Because the FIM
eigenvalues depend on several factors (Equation 1), including the activation function ϕ, network
architecture f , data distribution Q, and loss function L, they are susceptible to more potential sources
of noise. Fortunately, incorporating activation function outputs helps to compensate for this noise.

Activation Function Outputs The shape of an activation function ψ can be described by a vector of
n sample values ψ(x). If the network’s weights are appropriately initialized, the input activations to
its neurons are initially distributed as N (0, 1) [4]. Therefore, the sampling x ∼ N (0, 1) provides an
n-dimensional feature vector that represents the expected use of the activation function at initialization.
A distance metric in this feature vector space can be defined naturally as the Euclidean distance

d(fϕ, fψ) =
√∑n

i=1(ϕ(xi)− ψ(xi))2/n, x ∼ N (0, 1). (3)
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Functions with similar shapes will have a small distance between them, while those with different
shapes will have a large distance. Because these output feature vectors depend only on the activation
function, they are reliable and inexpensive to compute. Most importantly, together with the FIM
eigenvalues, they constitute a powerful surrogate search space, demonstrated in the next section.

4 Using the Features as a Surrogate relu(x) identity(x)

tanh(x) abs(x)

Figure 3: UMAP embedding of the 2,913 activa-
tion functions in the benchmark datasets. Each
point stands for a unique activation function, repre-
sented by an 80-dimensional output feature vector.
The embedding locations of four common activa-
tion functions are labeled. The black x’s mark
coordinates interpolating between these four func-
tions, and the grid of plots on the bottom shows
reconstructed activation functions at each of these
points. UMAP interpolates smoothly between dif-
ferent kinds of functions, suggesting that it is a
good approach for learning low-dimensional repre-
sentations of activation functions.

In this section, the UMAP dimensionality reduc-
tion technique is used to visualize the FIM and
output features across the benchmark datasets.
This visualization leads to a combined surrogate
space that can be used to accelerate the search
for good activation functions.

Visualization with UMAP The features de-
veloped above can be visualized using the
UMAP algorithm [40]. UMAP is a dimension
reduction approach similar to t-SNE, but is bet-
ter at scaling to large sample sizes and preserv-
ing global structure [55]. As a first demonstra-
tion, Figure 3 shows a 2D representation of
the 2,913 activation functions in the benchmark
datasets. Each function was represented as an
80-dimensional vector of output values. Interpo-
lating between embedded points confirms that
UMAP learns a good underlying representation.

UMAP was also used to project the activation
functions to nine two-dimensional spaces ac-
cording to the distance metrics in Equations 2
and 3. In Figure 4, each column represents a
different benchmark dataset (Act-Bench-CNN,
Act-Bench-ResNet, or Act-Bench-ViT) and
each row a different distance metric (FIM eigen-
values with m = ⌊|θ|/100⌋, activation function
outputs with n = 1,000, or both). The plots only
show activation functions that were not filtered
out. Each point represents a unique function,
colored according to its validation accuracy on
the benchmark task. Although the performance
of each activation function is already known,
this information was not given to UMAP; the
embeddings are entirely unsupervised.

Thus, Figure 4 illustrates how predictive each feature type is of activation function performance in
each dataset. The next subsections evaluate each feature type in this role in detail, and show that
utilizing both features provides better results than either feature alone. Details are in Appendix D.

FIM Eigenvalues The first row of Figure 4 shows the 2D UMAP embeddings of the FIM eigenvalue
vectors associated with each activation function. There are clusters in these plots where the points
share similar colors, indicating distinct activation functions with similar FIM eigenvalues. Such
functions induce similar training dynamics in the neural network and lead to similar performance. On
the other hand, some clusters contain activation functions with a wide range of performances, and
some points do not belong to any cluster at all. Overall, the plots suggest that FIM eigenvalues are a
useful predictor of performance, but that incorporating additional features could lead to better results.

Activation Function Outputs The middle row of Figure 4 shows the 2D UMAP embeddings of
the output vectors associated with each activation function. Points are close to each other in this
space if the corresponding activation functions have similar shapes. These plots are demonstrably
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more informative than the plots based on the FIM eigenvalues in three ways. First, the purple points
are better separated from the others. This separation means that activation functions that fail (those
achieving 0.1 chance accuracy) are better separated from those that do well. Second, most points’
immediate neighbors have similar colors. This similarity means that activation functions with similar
shapes lead to similar accuracy, and analyzing activation function outputs on their own is more
informative than analyzing the FIM eigenvalues. Third, the plots include multiple regions where
there are one-dimensional manifolds that exhibit smooth transitions in accuracy, from purple to blue
to green to yellow. Thus, not only does UMAP successfully embed similar activation functions near
each other, but it also is able to organize the activation functions in a meaningful way.
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Figure 4: UMAP embeddings of activation func-
tions for each dataset (column) and feature type
(row). Each point represents a unique activation
function; the points are colored by validation ac-
curacy on the given dataset. The colored triangles
identify the locations of six well-known activation
functions. The areas of similar performance are
more continuous in the bottom row; that is, us-
ing both FIM eigenvalues and activation function
outputs provides a better low-dimensional repre-
sentation than either feature alone.

There is one drawback to this approach: the per-
formant activation functions (those represented
by yellow dots) are often in distinct clusters.
This dispersion means that a search algorithm
would have to explore multiple areas of the
search space in order to find all of the best func-
tions. As the next subsection suggests, this issue
can be alleviated by utilizing both FIM eigenval-
ues and activation function outputs.

Combining Eigenvalues & Outputs The
UMAP algorithm uses an intermediate fuzzy
topological representation to represent relation-
ships between data points, similar to a neigh-
borhood graph. This property makes it possible
to combine multiple sources of data by taking
intersections or unions of the representations in
order to yield new representations [40]. The
bottom row of Figure 4 utilizes both FIM eigen-
values and activation function outputs by taking
the union of the two representations. Thus, ac-
tivation functions are embedded close to each
other in this space if they have similar shapes, if
they induce similar FIM eigenvalues, or both.

The bottom row of Figure 4 shows the bene-
fits of combining the two features. Unlike the
activation function output plots, which contain
multiple clusters of high-performing activation
functions in different locations in the embedding space, the combined UMAP model embeds all of the
best activation functions in similar regions. The combined UMAP model also places poor activation
functions (purple points) in the edge of the embedding space, and brings good functions (yellow
points) to the center. Thus, the embedding space is more convex, and therefore easier to optimize.

In general, activation functions with similar shapes lead to similar performances, and those with
different shapes often produce different results. This property is why the middle row of Figure 4
appears locally smooth. However, in some cases the shape of the activation function does not tell the
whole story, and additional information is needed to ascertain its performance.

For example, the colored triangles in Figure 4 identify the location of six activation functions in the
low-dimensional space. In the activation function output space (middle row), all of these functions are
mapped to different regions of the space. The points are spread apart because an activation function
and its negative have very different shapes, i.e. their output will be different for every nonzero input
(Figure 5). In contrast, in the FIM eigenvalue space (top row), the points for these pairs of functions
overlap because the FIM eigenvalues are comparable (Figure 5). Indeed, assuming the weights are
initialized from a distribution symmetric about zero, negating an activation function does not change
the training dynamics of a neural network, and they are functionally equivalent.

This issue complicates the search process in two ways. First, good activation functions are mapped
to different regions of the embedding space, and so a search algorithm must explore multiple areas
in order to find the best function. Second, distinct regions of the space may contain redundant

5



information: if ELU(x) is known to be a good activation function, it is not helpful to spend compute
resources evaluating −ELU(x) only to discover that it achieves the same performance.

Negating an activation function is a clear example of a modification that changes the shape of the
activation function, but does not affect the training of a neural network. More broadly, it is likely
that there exist activation functions that differ in other ways (besides just negation), but that still
induce similar training dynamics in neural networks. Fortunately, utilizing FIM eigenvalues and
activation function outputs together provides enough information to tease out these relationships.
FIM eigenvalues take into account the activation function, the neural network architecture, the loss
function, and the data distribution. The eigenvalues are more meaningful features than activation
function outputs, which only depend on the shape of the function. However, as Figure 4 shows, the
FIM eigenvalues are noisier features, while the activation function outputs are quite reliable. Thus,
utilizing both features is a natural way to combine their strengths and address their weaknesses.
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Figure 5: FIM eigenvalue distributions for differ-
ent architectures and activation functions. The
legends show the activation function and the cor-
responding validation accuracy in different tasks.
Although negating an activation function changes
its shape, it does not substantially change its behav-
ior nor its performance. FIM eigenvalues capture
this relationship between activation functions. The
eigenvalues are thus useful for finding activation
functions that appear different but in fact behave
similarly, and these discoveries in turn improve the
efficiency of activation function search.

Constructing a Surrogate These observa-
tions suggest an opportunity for an effective sur-
rogate measure: The UMAP coordinates in the
bottom row of Figure 4 have the information
needed to predict how well an activation func-
tion will perform. They capture the essence of
the m and n dimensional feature vectors, and
distill it into a 2D representation that can be com-
puted efficiently and used to guide the search for
good functions. As the third step in this research,
the next two sections evaluate this process ex-
perimentally, demonstrating that it is efficient
and reliable, and that it scales to new and chal-
lenging datasets and search spaces.

5 Searching on the Benchmarks

Searching for activation functions typically re-
quires training a neural network from scratch in
order to evaluate each candidate function fully,
which is often computationally expensive. With
the benchmark datasets, the results are already
precomputed. This information makes it pos-
sible to experiment with different search algo-
rithms and conduct repeated trials to understand
the statistical significance of the results. These
results serve to inform both algorithm design
and feature selection, as shown in this section.

Setup Three algorithms were evaluated:
weighted k-nearest regression with k = 3
(KNR), random forest regression (RFR), and
support vector regression (SVR). Gaussian Process Regression (GPR) was also evaluated but found
to be inconsistent in preliminary experiments (Appendix E). Random search (RS) was included as
a baseline comparison; it did not utilize the FIM eigenvalue filtering mechanism. The algorithms
were used out of the box with default hyperparameters from the scikit-learn package [47]. They were
provided different activation function features in order to understand their potential to predict perfor-
mance. The features included FIM eigenvalues, activation function outputs, or both. The features
were preprocessed and embedded in a two-dimensional space by UMAP. These representations are
visualized in Figure 4; the coordinates of each point correspond exactly to the information given to
the regression algorithms.

The ReLU activation function is ubiquitous in machine learning. For many neural network archi-
tectures, the performance with ReLU is already known [2, 45, 46], which makes it a good starting
point for search. For this reason, the search algorithms began by evaluating ReLU and seven other
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randomly chosen activation functions. In general, such evaluation requires training from scratch, but
with the benchmark datasets, it requires only looking up the precomputed results. The algorithms
then used the validation accuracy of these eight functions to predict the performance of all unevalu-
ated functions in the dataset. The activation function with the highest predicted accuracy was then
evaluated. The performance of this new function was then added to the list of known results, and this
process continued until 100 activation functions had been evaluated. Each experiment comprising a
different search algorithm, activation function feature set, and benchmark dataset was repeated 100
times. Full details are in Appendix E.
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Figure 6: Search results on the three benchmark
datasets. Each curve represents a different search
algorithm (KNR, RFR, or SVR) utilizing a dif-
ferent UMAP feature (FIM eigenvalues, function
outputs, or both; these features are visualized in
Figure 4). The curves represent the validation ac-
curacy of the best activation function discovered
so far, averaged across 100 independent trials, and
the shaded areas show the 95% confidence inter-
val around the mean. In all cases, regression with
UMAP features outperforms random search, and
searching with both eigenvalues and outputs out-
performs searching with either feature alone. Of
the three regression algorithms, KNR performs
the best, rapidly surpassing ReLU and quickly dis-
covering near-optimal activation functions in all
benchmark tasks. Thus, the features make it possi-
ble to find good activation functions efficiently and
reliably even with off-the-shelf search methods;
the benchmark datasets make it possible to demon-
strate these conclusions with statistical reliability.

Results Figure 6 shows the results of the
searches. Importantly, the curves do not depict
just one search trial. Instead, they represent the
average performance aggregated from 100 in-
dependent runs, which is made possible by the
benchmark datasets. As indicated by the shaded
confidence intervals, the results are reliable and
are not simply due to chance.

A number of conclusions can be drawn from
Figure 6. First, all search algorithms, even ran-
dom search, reliably discover activation func-
tions that outperform ReLU. This finding is sup-
ported by previous work (reviewed in Section
A): Although ReLU is a good activation func-
tion that performs well in many different tasks,
better performance can be achieved with novel
activation functions. Therefore, continuing to
use ReLU in the future is unlikely to lead to best
results; The choice of the activation function
should be an important part of the design, sim-
ilar to the choice of the network architecture or
the selection of its hyperparameters.

Second, all regression algorithms outperform
random search. This finding holds across the
three types of activation function features and
across the three benchmark datasets. The FIM
eigenvalues and activation function outputs are
thus important in predicting performance of ac-
tivation functions.

Third, regression algorithms trained on both
FIM eigenvalues and activation function outputs
outperform algorithms trained on just eigenval-
ues or outputs alone. This result is consistent
across the regression algorithms and benchmark
datasets. It suggests that the FIM eigenvalues
and activation function outputs contribute com-
plimentary pieces of information. The finding
quantitatively reinforces the qualitative visual-
ization in Figure 4: FIM eigenvalues are useful for matching activation functions that induce similar
training dynamics in neural networks, activation function outputs enable a low-dimensional repre-
sentation where search is more practical, and combining the two features results in a problem that is
more convex and easier to optimize.

Fourth, the searches are efficient. Previous approaches require hundreds or thousands of evaluations
to discover good activation functions [5, 6, 49]. In contrast, this paper leverages FIM eigenvalues and
activation function outputs to reduce the problem to simple two-dimensional regression; the features
are powerful enough that out-of-the-box regression algorithms can discover good functions with only
tens of evaluations. This efficiency makes it possible to search for better functions directly on large
datasets such as ImageNet [11], demonstrated next.
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6 Searching with New Settings
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Figure 7: Progress of activation function searches.
Each point represents the validation accuracy with
a unique activation function, and the solid line
indicates the performance of the best activation
function found so far. AQuaSurF discovers new
activation functions that outperform all baseline
functions in every case.

The experiments in Section 5 used precomputed
datasets and search spaces to demonstrate that
UMAP embeddings are predictive of activation
function performance, and that KNR can find
good functions based on them. To verify that
these conclusions extend beyond the benchmark
tasks, this section contains three experiments
demonstrating that AQuaSurF scales up to more
challenging datasets and search spaces, that the
activation functions can be transferred to other
tasks, and that AQuaSurF extends to new archi-
tectures and baseline functions.

Scaling Up the Datasets and Search Space
In the first experiment, the tasks involve larger
and more challenging datasets: All-CNN-C on
CIFAR-100, ResNet-56 on CIFAR-100, and MobileViTv2-0.5 on ImageNet. Additionally, a larger
space with 425,896 unique activation functions was searched, based on four-node computation graphs
(Appendix B). This space is large, diverse, and not precomputed, putting the conclusions from the
benchmark experiments to test in a production setting.

Based on the benchmark results, KNR with k = 3 was used as the search algorithm. The searches
all began by evaluating the same eight existing activation functions: ELU, ReLU, SELU, sigmoid,
Softplus, Softsign, Swish, and tanh. From this starting point, eight workers operated in parallel
evaluating the functions with the highest predicted performance. Details are in Appendix E.

Figure 7 shows that all three searches find improved activation functions over time, and Figure 10 in
Appendix B shows how the searches navigate the search space. In every experiment, new activation
functions were discovered that outperform all baseline functions. Although the search space is large,
the searches are efficient, requiring only tens of evaluations to improve performance. Impressively,
the search with ResNet-56 on CIFAR-100 produced an activation function that outperformed all
baselines on just the second evaluation.

Table 1 shows the final results from AQuaSurF. The results reinforce the fact that substantial gains
can be obtained when using better activation functions than the default ReLU, and especially those
optimized specifically for the task.

Transferring to a New Task In the second experiment, the best activation functions from Table 1
were transferred to a new task: ResNet-50 on ImageNet. As demonstrated in Table 2, good functions
can be discovered efficiently in smaller tasks and then used to improve performance in larger ones.

New Architectures and Baseline Functions In the third experiment, the CoAtNet architecture was
trained on Imagenette [10]. As a hybrid convolution and attention architecture, CoAtNet presents a
new challenge for AQuaSurF. The activation functions ELiSH, GELU, HardSigmoid, Leaky ReLU,
and Mish [3, 23, 37, 43] were added to the original set of baseline functions (Table 1), as well as to
the set of unary operators, forming a new search space for AQuaSurF to explore (Appendix B).

The results show that AQuaSurF extends to architectures and baseline functions not considered in
the benchmark tasks (Table 3). AQuaSurF discovered multiple activation functions that substantially
outperform all baseline functions. Although the extended list of baseline functions presents a more
challenging task, it also provides the surrogate function more information that it uses for performance
prediction, resulting in the discovery of even better functions.

7 Understanding the Discoveries

Aside from the raw performance improvements afforded by AQuaSurF, the experiments on the
new settings are particularly interesting because they illustrate both the process of refining existing
activation functions and the process of discovering novel designs.
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Table 1: Accuracy with different activation functions. The CIFAR-100 results show the median test
accuracy from three runs, and the ImageNet results show the validation accuracy from a single run.
AQuaSurF discovers novel activation functions that outperform all baselines in every case. This result
demonstrates both that good functions matter, and the power of optimizing them to the task.

All-CNN-C on CIFAR-100

HardSigmoid(HardSigmoid(x)) · ELU(x) 0.6990
σ(Softsign(x)) · ELU(x) 0.6950
Swish(x)/SELU(1) 0.6931

ELU 0.6312
ReLU 0.6897
SELU 0.0100
sigmoid 0.0100
Softplus 0.6563
Softsign 0.2570
Swish 0.6913
tanh 0.3757

ResNet-56 on CIFAR-100

Swish(−2x) 0.7469
SELU(sinh(earctan(x) − 1)) 0.7458
x · erfc(ELU(x)) 0.7419

ELU 0.7411
ReLU 0.7348
SELU 0.6967
sigmoid 0.5766
Softplus 0.7397
Softsign 0.6624
Swish 0.7401
tanh 0.6754

MobileViTv2-0.5 on ImageNet

−x · σ(x) · HardSigmoid(x) 0.6396
ELU(Swish(−x)) 0.6394
Swish(x) · erfc(bessel_i0e(x)) 0.6336

ELU 0.6233
ReLU 0.6139
SELU 0.6096
sigmoid 0.5032
Softplus 0.5853
Softsign 0.5710
Swish 0.6383
tanh 0.6098

Table 2: ResNet-50 top-1 accuracy on ImageNet.
Results are the median of three runs. The best acti-
vation functions discovered in the searches (Table
1) successfully transfer to this new task, with eight
of the nine functions outperforming ReLU.

−x · σ(x) · HardSigmoid(x) 0.7776
Swish(x)/SELU(1) 0.7771
Swish(x) · erfc(bessel_i0e(x)) 0.7755
σ(Softsign(x)) · ELU(x) 0.7734
SELU(sinh(earctan(x) − 1)) 0.7719
HardSigmoid(HardSigmoid(x)) · ELU(x) 0.7718
ELU(Swish(−x)) 0.7679
Swish(−2x) 0.7664
x · erfc(ELU(x)) 0.7635

ReLU(x) 0.7660

Refinement and Novelty Figure 8 shows dif-
ferent activation functions discovered during the
searches. (Plots of all 100 functions evaluated
in each search are included in Figures 13–16 in
Appendix E.) Visually, many the best functions
(shown in 8a) are similar to existing functions
like ELU and Swish, with subtle changes in
their saturation value, the slope of the positive
segment, and the width and depth of the nega-
tive bump. This result is not surprising since
these functions formed the starting point for the
search. Indeed, after a few good functions were
found, much of the search process focused on
refining their design (Figure 10 in Appendix B).
Although these refinements appear small, they
were not known ahead of time and they are sig-
nificant, as evidenced by the final results (Tables 1–3).

Table 3: CoAtNet validation ac-
curacy on Imagenette. AQuaSurF
finds novel functions that outper-
form all baselines.

erfc(Softplus(x))2 0.8907
min{Softplus(x)2,−x} 0.8861
arcsinh(ELU(Swish(x))) 0.8828

ELiSH 0.1000
ELU 0.8629
GELU 0.8841
HardSigmoid 0.8487
Leaky ReLU 0.8815
Mish 0.8762
ReLU 0.8772
SELU 0.8194
sigmoid 0.8586
Softplus 0.8678
Softsign 0.8530
Swish 0.8736
tanh 0.8415

However, some of the best discovered activation functions, in-
cluding the top function for the CoAtNet experiment, employ
properties uncommon among the usual deep learning activa-
tion functions (Figure 8b): Some of them have discontinuous
derivatives at x = 0; some do not saturate, but diverge as
x → ±∞; some of them contain positive bumps (in contrast
to e.g. Swish, which features a negative bump). Many of these
functions performed comparably to the existing best functions,
and all of them outperformed ReLU. In the future, these designs
may provide a comprehensive foundation for discovering better
activation functions for specific new tasks.

Together, the plots show that AQuaSurF is capable of both
exploitation (Figure 8a) and exploration (Figure 8b). In the
future, it will be interesting to explore tradeoffs between these
concepts. A more comprehensive discussion of this and other
future research directions is included in Appendix F.

Discovering a Hybrid Rectifier-Sigmoidal Activation Func-
tion In the past, sigmoidal nonlinearities like sigmoid and
tanh were often used because they saturate and thus prevent exploding signals. However, currently
these functions are usually discarded in favor of rectifier nonlinearities like ReLU and its variants
as these functions give better performance on modern deep learning benchmarks [2]. Indeed, in
Tables 1 and 3, sigmoid, tanh, HardSigmoid, and Softsign all perform relatively poorly. It is therefore
surprising to see that the very best function discovered in the CoAtNet experiment, erfc(Softplus(x))2
(bottom left of Figure 8a), is sigmoidal in shape.
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Figure 8: Sample activation functions discovered with AQuaSurF in the
four searches in Section 6. “HS” stands for HardSigmoid. (a) The top
three functions (columns) discovered in each search (rows). Many of
these functions are refined versions of existing activation functions like
ELU and Swish. (b) Selected novel activation functions. All of these
functions outperformed ReLU and are distinct from existing activation
functions. Such designs may serve as a foundation for further improve-
ment and specialization in new settings.

Why does this function
perform so well? As
shown in Figure 9, the
function saturates to 1 as
x → −∞ and to 0 as
x → ∞, and has an ap-
proximately linear region
in between. The regions
of the function that the
neural network actually
utilizes in its feedforward
pass are superimposed as
histograms on this plot.
Interestingly, at initializa-
tion, the network does not
use the saturation regimes.
The inputs to the func-
tion are tightly concen-
trated around x = 0 for
all instances of the activa-
tion function throughout
the network. As training
progresses, the network
makes use of a larger do-
main of the activation function, and by the time training has concluded the network uses the saturation
regimes at approximately x < −4 and x > 1.

8 6 4 2 0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0
At Initialization
After Training
erfc(Softplus(x))2

Figure 9: The best discovered function in the CoAt-
Net experiment, erfc(Softplus(x))2, and its utiliza-
tion by the network. The red curve shows the acti-
vation function itself, and the two histograms show
the distributions of inputs to the activation func-
tion at initialization and after training, aggregated
across all instances of the activation function in the
entire network. The network uses the function like
a rectifier at initialization and like a sigmoidal acti-
vation function after training. This result suggests
that sigmoidal designs may be powerful after all,
thus challenging the conventional wisdom.

Thus, Figure 9 shows that erfc(Softplus(x))2
serves a dual purpose. At initialization, it per-
forms like a rectifier nonlinearity, but by the end
of training, it acts like a sigmoidal nonlinearity.
This discovery challenges conventional wisdom
about activation function design. It shows that
neural networks use activation functions in dif-
ferent ways in the different stages of training,
and suggests that sigmoidal designs may play
an important role after all.

8 Conclusion

This paper introduced three benchmark datasets,
Act-Bench-CNN, Act-Bench-ResNet, and
Act-Bench-ViT, to support research on acti-
vation function optimization. Experiments with
these datasets showed that FIM eigenvalues
and activation function outputs, and their low-
dimensional UMAP embeddings, predict ac-
tivation function performance accurately, and
can thus be used as a surrogate for finding bet-
ter functions, even with out-of-the-box regres-
sion algorithms. These conclusions extended
from the benchmark datasets to challenging real-
world tasks, where better functions were discov-
ered with a variety of datasets, search spaces,
and architectures. AQuaSurF also discovered a
highly performant sigmoidal activation function,
challenging the conventional wisdom of using ReLU-like functions exclusively in deep learning. The
study reinforces the idea that activation function design is an important part of deep learning, and
shows AQuaSurF is an efficient and flexible mechanism for doing it.
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A Related Work

The techniques in this paper were inspired by prior research in multiple areas, including neural
architecture and activation function search, as well as research on the FIM.

Neural Architecture Search In neural architecture search [NAS; 13, 57, 60], the goal is to design
a neural network architecture automatically. NAS approaches typically focus on optimizing the
type and location of the layers and the connections between them, but often use standard activation
functions like ReLU. This work in complimentary to NAS approaches, because it uses standard
architectures but optimizes the design of the activation function.

Zero-cost NAS Proxies Recently, zero-cost NAS proxies have received increased attention [42,
50, 56]. These approaches aim to accelerate neural architecture search by using cheap surrogate
calculations in place of expensive full training of architectures. This paper adopts a similar approach,
using FIM eigenvalues and activation function outputs to predict which activation functions are likely
to be most promising before dedicating resources to evaluating them.

Activation Function Search Methods for automatically discovering activation functions include
reinforcement learning [49], evolutionary computation [3, 5, 6, 35], and gradient-based methods
[1, 5, 19, 44, 54]. This paper builds upon existing work, focusing on efficient search and on
understanding the properties that make activation functions effective.

Other Uses of the FIM This paper used FIM eigenvalues to predict the performance of different
activation functions. The FIM is an important quantity in machine learning with several uses. One
important example is optimal experiment design [14], where experiments are designed to be optimal
with respect some criterion. The criteria vary, but are often functions of the eigenvalues of the FIM,
such as the maximum or minimum eigenvalue, or the trace of the FIM (sum of the eigenvalues) or
determinant of the FIM (product of the eigenvalues). Instead of choosing one optimality criterion and
only considering one summary statistic, this paper keeps all of the eigenvalues of the FIM and learns
an optimal distribution experimentally.

Past work has also used the eigenvalues of the FIM to determine suitable values of the batch size
or learning rate for neural networks [15, 16, 21, 29, 34]. The FIM provides insights to the learning
dynamics of SGD [27] and the dynamics of signal propagation at different layers in networks with
and without batch normalization layers [25]. The FIM has also been used to develop second-order
optimization algorithms for neural networks [20, 38, 39]. Applying it to activation function design is
thus a compelling further opportunity.

B Activation Function Search Spaces

The activation functions in this paper were implemented as computation graphs from the PANGAEA
search space [5]. The space includes unary and binary operators, in addition to existing activation
functions [7, 12, 30, 45, 49]. This approach allows specifying families of functions in a compact
manner. It is thus possible to focus the search on a space where good functions are likely to be
located, and also to search it comprehensively.

Benchmark Datasets The benchmark datasets introduced in Section 2 contain every activation
function of the three-node form binary(unary(x),unary(x)) using the operators in Table 4. The
result is 5,103 activation functions, of which 2,913 are unique. This space is visualized in Figure 4.

For Act-Bench-CNN and Act-Bench-ResNet, the accuracies are the median from three runs. For
Act-Bench-ViT, the results are from single runs due to computational costs.

New Settings The first experiment in Section 6 utilized a larger search space. Specifically, it was
based on the following four-node computation graphs: binary(unary(unary(x)),unary(x)),
binary(unary(x),unary(unary(x))), n-ary(unary(x),unary(x),unary(x)),
unary(binary(unary(x),unary(x))), and unary(unary(unary(unary(x)))). The
unary and binary nodes used the operators in Table 4, and the n-ary node used the sum, product,
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Table 4: Activation function search spaces were defined through computation graphs consisting of
basic unary and binary operators as well as existing activation functions [5].

Unary Binary
0 erf(x) ReLU(x) x1 + x2
1 erfc(x) ELU(x) x1 − x2
x sinh(x) SELU(x) x1 · x2
−x cosh(x) Swish(x) x1/x2
|x| tanh(x) Softplus(x) xx2

1

x−1 arcsinh(x) Softsign(x) max{x1, x2}
x2 arctan(x) HardSigmoid(x) min{x1, x2}
ex ex − 1 bessel_i0e(x)
σ(x) log(σ(x)) bessel_i1e(x)

maximum, and minimum operators. Together, these computation graphs create a search space with
1,023,516 functions, of which 425,896 are unique. This space is visualized in Figures 10 and 11.

The third experiment in Section 6, i.e. CoAtNet on Imagenette, added ELiSH, GELU, HardSigmoid,
Leaky ReLU, and Mish as unary operators to the original benchmark search space. In this experiment,
the search space comprised functions of the form binary(unary(unary(x)),unary(x)) and
unary(unary(unary(x))). This search space contains 238,341 activation functions, of which
146,779 are unique.

C Fisher Information Matrix Details

In order to calculate the FIM, this paper uses the K-FAC approach [20, 38, 39]. This technique is
summarized in this Appendix, with notation similar to that of Grosse and Martens [20].

Preliminaries A feedforward neural network maps an input a0 = x to an output aL = f(x;θ)
through a series of L layers. Each layer l ∈ {1, . . . , L} is comprised of a weight matrix Wl, a bias
vector bl, and an element-wise activation function ϕl. With W̄l = (bl Wl) and āl =

(
1 a⊤l

)⊤
,

each layer implements the transformation

sl = W̄lāl−1, (4)
al = ϕl(sl). (5)

Let θ =
(
vec(W̄1)

⊤ · · · vec(W̄L)
⊤)⊤ represent the vector of all network parameters. Parameter-

ized by θ and given inputs x drawn from a training distribution Qx, the neural network defines the
conditional distribution Ry|f(x;θ). The Fisher information matrix associated with this model is

F = E
x∼Qx

y∼Ry|f(x;θ)

[
∇θL(y, f(x;θ))∇θL(y, f(x;θ))⊤

]
. (6)

As usual in deep learning, the loss function L(y, z) represents the negative log-likelihood associated
with Ry|f(x;θ) and quantifies the discrepancy between the model’s prediction z = f(x;θ) and the
true label y. The network is trained to minimize the loss by updating its parameters according to the
gradient ∇θL(y, f(x;θ)).

Approximations For ease of notation, write Dv = ∇vL(y, f(x;θ)). Recalling that θ =(
vec(W̄1)

⊤ · · · vec(W̄L)
⊤)⊤, the FIM can be expressed as an L× L block matrix:

F =

E
[
vec(DW̄1)vec(DW̄1)

⊤] · · · E
[
vec(DW̄1)vec(DW̄L)

⊤]
...

. . .
...

E
[
vec(DW̄L)vec(DW̄1)

⊤] · · · E
[
vec(DW̄L)vec(DW̄L)

⊤]
 . (7)

15



Figure 10: Low-dimensional UMAP representation of the 425,896 function search space. The
activation functions are embedded according to their outputs; each point represents a unique function.
The larger points represent activation functions that were evaluated during the searches; they are
colored according to their validation accuracy. Although the space is vast, the searches require only
tens of evaluations to discover good activation functions.
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Figure 11: A photograph of a three-dimensional scatter plot laser-engraved into a physical crystal
cube. Each point represents one of the unique 425,896 unique activation functions in the search space.
Points are arranged according to a 3D UMAP projection according to activation function outputs;
the points are the same as those shown in Figure 10. The cube shows the size and complexity of the
search space, and the 1D and 2D manifolds reveal the underlying structure.

Note that DW̄l = Dslā
⊤
l−1, and recall that vec(uv⊤) = v ⊗ u. Each block of the FIM can be

written as

Fi,j = E
[
vec(DW̄i)vec(DW̄j)

⊤] (8)

= E
[
vec(Dsiā

⊤
i−1)vec(Dsj ā

⊤
j−1)

⊤] (9)

= E
[
(āi−1 ⊗Dsi)(āj−1 ⊗Dsj)

⊤] (10)

= E
[
(āi−1 ⊗Dsi)(ā

⊤
j−1 ⊗Ds⊤j )

]
(11)

= E
[
āi−1ā

⊤
j−1 ⊗DsiDs⊤j

]
. (12)

Two approximations are necessary in order to make representation of the FIM practical. First, assume
that different layers have uncorrelated weight derivatives. The FIM can then be approximated as
a block diagonal matrix, with Fi,j = 0 if i ̸= j. Second, if one approximates the pre-activation
derivatives Dsl and activations ā⊤l−1 as independent, then the diagonal blocks of the FIM can be
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further decomposed into the Kronecker product of two smaller matrices:

Fl,l = E
[
āl−1ā

⊤
l−1 ⊗DslDs⊤l

]
≈ E

[
āl−1ā

⊤
l−1

]
⊗ E

[
DslDs⊤l

]
. (13)

Let Ωl = E
[
ālā

⊤
l

]
and Γl = E

[
DslDs⊤l

]
. The approximate empirical FIM is then written as

F̂ =

Ω0 ⊗ Γ1 0
. . .

0 ΩL−1 ⊗ ΓL

 . (14)

Layer-Specific Implementation The above example illustrates FIM approximation for a simple
feedforward network. However, most modern architectures contain several different kinds of layers.
Some layers like pooling, normalization, or dropout layers do not have trainable weights, and therefore
these layers are not included in the FIM [26, 52].

Each diagonal entry Ωl−1⊗Γl corresponds to one layer with weights. The calculation differs slightly
depending on the layer type, but otherwise the example above can be straightforwardly extended to
more complicated networks. Calculations for three common layer types are presented below.

Dense Layers For dense layers, the matrices Ωl−1 and Γl can be readily computed with one
forward and backward pass through the network using a mini-batch of data. The eigenvalues are then
computed using standard techniques.

Convolutional Layers Convolutional layers require special consideration to calculate Ωl−1 and
Γl. For a given layer, let M represent the batch size, T the set of spatial locations (typically a
two-dimensional grid), ∆ the set of spatial offsets from the center of the filter, and I and J the number
of output and input maps, respectively. The activations are represented by the M × |T | × J array
Al−1. The weights are represented by the I × |∆| × J array Wl which is interpreted as an I × |∆|J
matrix. The expansion operator J·K extracts patches around each spatial location and flattens them
into vectors that become the rows of a matrix: JAl−1K is a M |T | × J |∆| matrix.

Similar to the feedforward networks, the bias (if used) can be prepended to the weights matrix as
W̄l = (bl Wl) and a homogeneous column of ones to the expanded activations as JAl−1KH =
(1 JAl−1K). This constructions allows the forward pass to be written as

Sl = JAl−1KHW̄⊤
l , (15)

Al = ϕ (Sl) , (16)

from which the factors are computed as

Ωl = E
[
JAlK⊤HJAlKH

]
, (17)

Γl =
1

|T |
E
[
DS⊤

l DSl
]
. (18)

Depthwise Convolutional Layers Depthwise convolutional layers utilize separate kernels for each
channel. In this case, JAl−1K is a M |T |J × |∆| matrix. Otherwise, the factors Ωl−1 and Γl are
calculated in the same way as they are for standard convolutional layers.

Eigenvalue Calculation Because F̂ is a block-diagonal matrix, its eigenvalues are simply the
combined eigenvalues of each block: λ(F̂) = {λ(F̂l)}Ll=1. The eigenvalue calculation for one block
F̂l = Ωl−1 ⊗Γl is further simplified by first computing the eigenvalues λ(Ωl−1) and λ(Γl) for each
Kronecker factor separately and then returning all pairwise products from the two sets of eigenvalues.
For numerical stability, the eigenvalues can first be log-scaled and then all pairwise sums from the
two sets are returned. Calculating the eigenvalues requires one forward and backward pass through
the network with a mini-batch of data. The computational cost is therefore relatively cheap, especially
compared with the cost of fully training a network from scratch.

It is possible for the FIM eigenvalues to be invalid. For example, if the forward propagated activations
or backward propagated gradients explode or vanish, then the diagonal entries Ωl−1 ⊗ Γl may be
undefined. Such invalid values result from activation functions that are unstable. Therefore, invalid
FIM eigenvalues provide a good way to filter out bad activation functions.
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D Features and Surrogate Details

This section describes how the activation function features were implemented and how the surrogate
was constructed.

Calculating FIM Eigenvalues The FIM eigenvalues were calculated for each activation function
as discussed in Section 3. The eigenvalues were log-scaled for numerical stability. By definition, the
number of eigenvalues is the same as the number of weights in the neural network. To save space,
the eigenvalues were binned to histograms. For a layer l with |θl| weights, ⌊|θl|/100⌋ equally sized
bins from −100 to 100 were used. One histogram was computed for each layer in a network, and
all of the histograms were concatenated together into a single feature vector for a given activation
function. In this manner, the total dimensionality was 13,692 for All-CNN-C, 16,500 for ResNet-56,
and 11,013 for MobileViTv2-0.5.

Calculating Activation Function Outputs The activation function outputs y = f(x) were calcu-
lated for each activation function f by sampling n =1,000 values x ∼ N (0, 1) and truncating to the
range [−5, 5]. The same random inputs were used for all activation functions.

Per-Layer FIM Eigenvalues In Figure 5, the eigenvalues for the entire network are shown for
completeness. However, the UMAP representations shown in Figure 4 were produced by keeping the
eigenvalues at each layer separate and computing a weighted distance between them (according to
Equation 2). As pointed out in the main text, FIM eigenvalues are informative but noisy features. In
preliminary experiments, keeping the eigenvalues separate at each layer reduced some of this noise,
resulting in a more informative Figure 4 and consequently improving the performance of the search
algorithms.

FIM Eigenvalue Features Preliminary experiments aimed to predict activation function perfor-
mance using common features in the literature, including maximum eigenvalue, minimum eigenvalue,
sum of the eigenvalues, and product of the eigenvalues [14]. More recently proposed features, such
as (second moment) / (first moment)2, were also considered [48]. Ultimately, learning the relevant
features from the entire eigenvalue distribution was found to be the most flexible and powerful
approach.

UMAP Settings UMAP exposes a number of parameters that can be used to customize its be-
havior [40]. The metric parameter determines how distances are computed between points, the
n_neighbors parameter adjusts the tradeoff between the local and global structure of the data, and
the min_dist parameter controls the minimum distance between points in the embedding space.

The plots in Figure 4 were produced by computing the distances between FIM eigenvalues and acti-
vation function outputs. For the FIM eigenvalues UMAP(metric=‘manhattan’, n_neighbors=3,
min_dist=0.1) was used, and for the activation function outputs UMAP(metric=‘euclidean’,
n_neighbors=15, min_dist=0.1) was used. The distance metrics were chosen to implement
Equations 2 and 3.

In preliminary experiments, decreasing n_neighbors from the default of 15 down to 3 for the
FIM eigenvalues qualitatively improved the embedding for the combined features. The com-
bined features were visualized with a union model, i.e. umap_combined = umap_fim_eigs +
umap_fn_outputs [40].

E Experiment Details

This section specifies the details for the experiments in the main text of the paper. Several variations
to the approach presented in the main text were also evaluated in preliminary experiments. The
approach turned out to be robust to most of them, but the results also justify the choices used for the
main experiments.

Training Details For CIFAR-10 and CIFAR-100, balanced validation sets were created by sampling
5,000 images from the training set. Full training details and hyperparameters are listed in Tables 5
and 6.
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Table 5: Training details and hyperparameter values used in the CIFAR-10 and CIFAR-100 experi-
ments.

All-CNN-C on CIFAR-10 and CIFAR-100

Batch Size 128
Dropout 0.5
Epochs 25 for Act-Bench-CNN and search (Figure 7), 50 for full evaluation (Table 1)
Image Size 32× 32
Learning Rate Linear warmup to 0.1 for five epochs, then linear decay
Mean/Std. Normalization Yes
Momentum 0.9
Optimizer SGD
Random Crops 32× 32 crops of images padded with four pixels on all sides
Random Flips Yes
Weight Decay 1e−4

Weight Initialization AutoInit [4]

ResNet-56 on CIFAR-10 and CIFAR-100

Batch Size 128
Dropout 0.0
Epochs 25 for Act-Bench-ResNet and search (Figure 7), 50 for full evaluation (Table 1)
Image Size 32× 32
Learning Rate Linear warmup to 0.1 for five epochs, then linear decay
Mean/Std. Normalization No
Momentum 0.9
Optimizer SGD
Random Crops 32× 32 crops of images padded with five pixels on all sides
Random Flips Yes
Weight Decay 1e−4

Weight Initialization AutoInit [4]

CoAtNet A smaller variant of the CoAtNet architecture2 was used in order to fit the model and
data on the available GPU memory. The architecture has three convolutional blocks with 64 channels,
four convolutional blocks with 128 channels, six transformer blocks with 256 channels, and three
transformer blocks with 512 channels. This architecture is slightly deeper but thinner than the original
CoAtNet-0 architecture, which has two convolutional blocks with 96 channels, three convolutional
blocks with 192 channels, five transformer blocks with 384 channels, and two transformer blocks
with 768 channels [10]. The models are otherwise identical.

Search Implementation In order to predict performance for an unevaluated activation function, the
function outputs and FIM eigenvalues must first be computed. Thus, the searches in Section 6 were
implemented in three steps. First, activation function outputs for all 425,896 activation functions in
the search space were calculated. This computation is inexpensive and easily parallelizable. Second,
eight workers operated in parallel to sample activation functions uniformly at random from the search
space and calculate their FIM eigenvalues. Third, once the number of activation functions with
FIM eigenvalues calculated reached 5,000, seven of the workers began the search by evaluating the
functions with the highest predicted performance. The eighth worker continued calculating FIM
eigenvalues for new functions so that their performance could be predicted during the search. This
setup allowed taking best advantage of the available compute for the regression-type search methods.

The experiments on ImageNet required substantially more compute than the experiments on CIFAR-
100. For this reason, all eight workers evaluated activation functions once the number of functions
with FIM eigenvalues reached 7,000.

Computing FIM eigenvalues took approximately 26 seconds, 84 seconds, and 37 seconds per
activation function for All-CNN-C, ResNet-56, and MobileViTv2-0.5, respectively. This cost is not
trivial, but it is well worth it, as the experiments in the main paper show.

2https://github.com/leondgarse/keras_cv_attention_models/blob/v1.3.0/keras_cv_
attention_models/coatnet/coatnet.py#L199
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Table 6: Training details and hyperparameter values used in the Imagenette and ImageNet experi-
ments.

MobileViTv2-0.5 on Imagenette and ImageNet

Batch Size 256
CutMix Alpha [58] 1.0
Epochs 105
Evaluation Center Crop 95%
Image Size 160× 160
Learning Rate Linear warmup from 1e−4 to 4e−3 for five epochs, then cosine decay to 1e−6

Mixup Alpha [59] 0.1
Optimizer AdamW [36]
RandAugment [9] Magnitude six, applied twice
Random Resized Crop [53] Minimum 8% of the original image
Weight Decay 0.02× current learning rate

ResNet-50 on ImageNet

Batch Size 256
CutMix Alpha [58] 1.0
Epochs 105
Evaluation Center Crop 95%
Image Size 160× 160
Learning Rate Linear warmup from 1e−4 to 2e−3 for five epochs, then cosine decay to 1e−6

Mixup Alpha [59] 0.1
Optimizer AdamW [36]
RandAugment [9] Magnitude six, applied twice
Random Resized Crop [53] Minimum 8% of the original image
Weight Decay 0.02× current learning rate
Weight Initialization AutoInit [4]

CoAtNet on Imagenette

Batch Size 256
CutMix Alpha [58] 1.0
Epochs 105
Evaluation Center Crop 95%
Image Size 160× 160
Learning Rate Linear warmup from 1e−4 to 4e−4 for five epochs, then cosine decay to 1.6e−7

Mixup Alpha [59] 0.1
Optimizer AdamW [36]
RandAugment [9] Magnitude six, applied twice
Random Resized Crop [53] Minimum 8% of the original image
Weight Decay 0.02× current learning rate

Act-Bench-CNN Act-Bench-ResNet Act-Bench-ViT
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Figure 12: UMAP projections of FIM eigenvalues using the default hyperparameter of
n_neighbors=15. The embedding is informative but also noisy. Using n_neighbors=3, as shown
in the main text, improved performance.
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Unique Activation Functions Different computation graphs can result in the same activation
function (e.g. max{x, 0} and max{0, x}). In the benchmark dataset and in the larger search space
of Section 6, repeated activation functions were filtered out. 1,000 inputs were sampled N (0, 1)
and truncated to [−5, 5]. Two activation functions were considered the same if their outputs were
identical.

Improving the Combined UMAP Projection Figure 12 displays a projection of FIM eigenvalues
using default UMAP hyperparameters. The plots show the eigenvalues organized in multiple distinct
one-dimensional manifolds. Again, FIM eigenvalues are noisy features; there are some clusters of
activation functions achieving similar performance, but there are also regions where performance
varies widely. As mentioned in the main text, this issue was addressed by reducing the UMAP
parameter n_neighbors to 3. This change reduced the connectivity of the low-dimensional FIM
eigenvalue representation, resulting in a space with many distinct clusters (as seen in Figure 4).

On its own, this setting did not improve the search on the benchmark datasets. However, it did
improve performance when the FIM eigenvalues were combined with activation function outputs
(as was discussed in Section 4). The reason is that the UMAP model for the activation function
outputs did not decrease n_neighbors, and so the combined UMAP model relied more on the
activation function outputs than it did on the FIM eigenvalues. As Figure 4 shows, the activation
function outputs are reliable but sometimes project good activation functions to distinct regions in
the search space. Introducing extra connectivity into the fuzzy topological representation via the
FIM eigenvalues was sufficient to address this issue, bringing good activation functions to common
regions of the space.

Increasing the Dimension of the UMAP Projections The UMAP plots show two-dimensional
projections of FIM eigenvalues and activation function outputs. Regression algorithms were also
trained on five and 10-dimensional projections. These runs resulted in comparable or worse perfor-
mance. Therefore, the two-dimensional projections were selected in the paper for simplicity and for
consistency between the algorithm implementation and figure visualizations.

Gaussian Process Regression As an alternative search method, Gaussian process regression (GPR)
was evaluated in activation function search. Several different acquisition mechanisms were used,
including expected improvement, probability of improvement, maximum predicted value, and upper
confidence bound. The approach worked well, but the results were inconsistent across the different
acquisition mechanisms. GPR was also more expensive to run compared to the algorithms in the
main text (KNR, RFR, SVR), and so those algorithms were used instead for simplicity and efficiency.

Adjusting k in KNR The initial experiments with the KNR algorithm used k = 3. Experimenting
with k = {1, 5, 8} did not reliably improve performance, so k = 3 was kept.

Uniformly Spaced Inputs for Activation Function Outputs In an alternative implementation,
equally spaced inputs from −5 to 5 were given to the activation functions instead of normally
distributed inputs. This variation did not noticeably change the quality of the embeddings nor the
performance of the search algorithms. Therefore, normal inputs were used for consistency with
Equation 3. Figure 3 is the only exception; it used 80 inputs equally spaced from −5 to 5 and increased
the UMAP parameter min_dist to 0.5. These settings improved the quality of the reconstructed
activation functions in the plot.

Evaluated Functions Figures 13, 14, 15, and 16 show plots and the validation accuracy of every
candidate activation function evaluated in the searches for All-CNN-C on CIFAR-100, ResNet-56 on
CIFAR-100, MobileViTv2-0.5 on ImageNet, and CoAtNet on Imagenette, respectively.

F Future Work

This paper demonstrated that FIM eigenvalues and activation function outputs are efficient and
reliable features that can predict performance of activation functions accurately. This finding enabled
discovering better activation functions for various tasks, improving the state of the art in machine
learning. Because the technique is efficient, it was possible to scale it up to large datasets such as
ImageNet. These discoveries inspire several avenues for future research, discussed below.
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mul(hard_sigmoid(hard_sigmoid(x)),elu(x))
Val Acc: 0.6628
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div(swish(x),selu(one(x)))
Val Acc: 0.6510
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mul(sigmoid(softsign(x)),elu(x))
Val Acc: 0.6510
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mul(identity(x),erf(softplus(x)))
Val Acc: 0.6500
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Val Acc: 0.6464
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mul(tanh(softplus(x)),selu(x))
Val Acc: 0.6456
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max(negative(x),log_sigmoid(reciprocal(x)))
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Val Acc: 0.6396
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Val Acc: 0.6298
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Val Acc: 0.6298
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max(erf(tanh(x)),elu(x))
Val Acc: 0.6112
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0.5

1.0

1.5

2.0

2.5

arcsinh(selu(elu(negative(x))))
Val Acc: 0.4138

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

2.5

min(swish(x),exp(softsign(x)))
Val Acc: 0.4132

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

2.5

div(sigmoid(x),reciprocal(arcsinh(x)))
Val Acc: 0.4008

5.0 2.5 0.0 2.5 5.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

min(tanh(swish(x)),arcsinh(x))
Val Acc: 0.3896

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

max(sinh(tanh(x)),arcsinh(x))
Val Acc: 0.3826

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

max(arctan(arcsinh(x)),arcsinh(x))
Val Acc: 0.3798

5.0 2.5 0.0 2.5 5.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

min(arctan(softplus(x)),arcsinh(x))
Val Acc: 0.3734

5.0 2.5 0.0 2.5 5.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

min(swish(x),cosh(hard_sigmoid(x)))
Val Acc: 0.3730

5.0 2.5 0.0 2.5 5.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

min(cosh(softsign(x)),arcsinh(x))
Val Acc: 0.3718

5.0 2.5 0.0 2.5 5.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

sub(erf(softplus(x)),erfc(x))
Val Acc: 0.3550

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

add(square(sigmoid(x)),erf(x))
Val Acc: 0.3544

5.0 2.5 0.0 2.5 5.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

arcsinh(add(log_sigmoid(x),arctan(x)))
Val Acc: 0.3512

5.0 2.5 0.0 2.5 5.0

0.5

0.0

0.5

1.0

1.5

expm1(min(sigmoid(x),selu(x)))
Val Acc: 0.3482

5.0 2.5 0.0 2.5 5.0
1.0

0.5

0.0

0.5

1.0

1.5

arctan(add(swish(x),erf(x)))
Val Acc: 0.3422

5.0 2.5 0.0 2.5 5.0

2

1

0

1

2

reciprocal(reciprocal(negative(arcsinh(x))))
Val Acc: 0.3402

5.0 2.5 0.0 2.5 5.0

1

0

1

2

arcsinh(add(selu(x),erf(x)))
Val Acc: 0.3288

5.0 2.5 0.0 2.5 5.0

2

1

0

1

2

arcsinh(sub(bessel_i0e(x),negative(x)))
Val Acc: 0.3270

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

sinh(selu(sinh(tanh(x))))
Val Acc: 0.3270

5.0 2.5 0.0 2.5 5.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

sub(swish(hard_sigmoid(x)),erf(x))
Val Acc: 0.3270

5.0 2.5 0.0 2.5 5.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

sinh(sinh(arcsinh(arctan(x))))
Val Acc: 0.3248

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

selu(negative(selu(tanh(x))))
Val Acc: 0.3198

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

arcsinh(add(hard_sigmoid(x),arctan(x)))
Val Acc: 0.3006

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

arctan(sub(sigmoid(x),negative(x)))
Val Acc: 0.2990

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

erf(add(swish(x),arctan(x)))
Val Acc: 0.2948

5.0 2.5 0.0 2.5 5.0

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

add(hard_sigmoid(bessel_i0e(x)),erf(x))
Val Acc: 0.2912

5.0 2.5 0.0 2.5 5.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

arctan(sub(erfc(x),sigmoid(x)))
Val Acc: 0.2894

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

1

div(bessel_i0e(softplus(x)),reciprocal(x))
Val Acc: 0.2782

5.0 2.5 0.0 2.5 5.0

0.5

0.0

0.5

1.0

sub(softsign(bessel_i0e(x)),tanh(x))
Val Acc: 0.2740

5.0 2.5 0.0 2.5 5.0

0.5

0.0

0.5

1.0

1.5

sub(swish(hard_sigmoid(x)),arctan(x))
Val Acc: 0.2700

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

erf(sub(erfc(x),arctan(x)))
Val Acc: 0.2540

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

erf(add(selu(x),erf(x)))
Val Acc: 0.2380

5.0 2.5 0.0 2.5 5.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

arcsinh(erfc(erfc(erf(x))))
Val Acc: 0.1160

5.0 2.5 0.0 2.5 5.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

arctan(max(swish(x),sinh(x)))
Val Acc: 0.0886

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

1

sub(softsign(one(x)),swish(x))
Val Acc: 0.0648

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

max(tanh(sinh(x)),arcsinh(x))
Val Acc: 0.0616

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

div(selu(x),arctan(cosh(x)))
Val Acc: 0.0614

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

add(log_sigmoid(expm1(x)),hard_sigmoid(x))
Val Acc: 0.0442

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

7

max(selu(x),erf(expm1(x)))
Val Acc: 0.0422

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

tanh(add(sinh(x),exp(x)))
Val Acc: 0.0388

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

arctan(div(selu(x),softplus(x)))
Val Acc: 0.0148

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

expm1(add(tanh(x),arctan(x)))
Val Acc: 0.0140

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

expm1(arcsinh(swish(negative(x))))
Val Acc: 0.0130

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

min(square(x),expm1(arcsinh(x)))
Val Acc: 0.0120

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

max(selu(x),bessel_i1e(selu(x)))
Val Acc: 0.0114

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

2.5

max(selu(arcsinh(x)),bessel_i1e(x))
Val Acc: 0.0114

5.0 2.5 0.0 2.5 5.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

expm1(max(tanh(x),bessel_i1e(x)))
Val Acc: 0.0112

5.0 2.5 0.0 2.5 5.0

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

selu(min(sinh(x),bessel_i1e(x)))
Val Acc: 0.0106

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

sub(square(bessel_i1e(x)),swish(x))
Val Acc: 0.0106

5.0 2.5 0.0 2.5 5.0

0

50

100

150

200

250

300

sub(cosh(swish(x)),hard_sigmoid(x))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

80

60

40

20

0

20

40

60

80

reciprocal(add(expm1(x),elu(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

elu(sub(abs(x),erfc(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

1

2

3

4

5

6

7

8

softplus(add(arctan(x),abs(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0

100000

200000

300000

400000

500000

600000

700000

cosh(pow(abs(x),arctan(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

expm1(sub(one(x),expm1(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

arcsinh(div(swish(x),bessel_i0e(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0.0

0.2

0.4

0.6

0.8

1.0

softsign(pow(square(x),elu(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

50

0

50

100

150

200

250

reciprocal(add(sinh(x),one(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

350

300

250

200

150

100

50

0

sub(log_sigmoid(sinh(x)),square(x))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0

5

10

15

20

25

30

35

relu(mul(square(x),softsign(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

add(tanh(exp(x)),erf(x))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0

500

1000

1500

2000

prod_n(sinh(x),selu(x),hard_sigmoid(x))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

softsign(add(swish(x),sinh(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

selu(div(arcsinh(x),softplus(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

swish(add(swish(x),swish(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0

100

200

300

400

500

600

700

selu(max(expm1(x),erfc(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

erf(div(exp(x),expm1(x)))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

arcsinh(elu(swish(sinh(x))))
Val Acc: 0.0100

5.0 2.5 0.0 2.5 5.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

expm1(sigmoid(arcsinh(reciprocal(x))))
Val Acc: 0.0098

5.0 2.5 0.0 2.5 5.0

0.0

0.2

0.4

0.6

0.8

1.0

erf(sub(square(x),bessel_i1e(x)))
Val Acc: 0.0094

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

mul(erfc(erf(x)),abs(x))
Val Acc: 0.0088

5.0 2.5 0.0 2.5 5.0

6

4

2

0

2

4

6

sub(erf(bessel_i1e(x)),identity(x))
Val Acc: 0.0074
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Figure 13: Activation functions evaluated in the search for All-CNN-C on CIFAR-100.

23



5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

selu(sinh(expm1(arctan(x))))
Val Acc: 0.7270

5.0 2.5 0.0 2.5 5.0

12

10

8

6

4

2

0

mul(identity(x),erfc(elu(x)))
Val Acc: 0.7232

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

swish(sub(negative(x),identity(x)))
Val Acc: 0.7224

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

add(swish(x),log_sigmoid(hard_sigmoid(x)))
Val Acc: 0.7222

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

14

add(swish(x),elu(selu(x)))
Val Acc: 0.7220

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

add(tanh(swish(x)),swish(x))
Val Acc: 0.7218

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

identity(expm1(arcsinh(selu(x))))
Val Acc: 0.7204

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

14

expm1(arcsinh(selu(selu(x))))
Val Acc: 0.7198

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

mul(softplus(x),arcsinh(arcsinh(x)))
Val Acc: 0.7192

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

max(softsign(swish(x)),selu(x))
Val Acc: 0.7178

5.0 2.5 0.0 2.5 5.0

7

6

5

4

3

2

1

0

negative(mul(selu(x),hard_sigmoid(x)))
Val Acc: 0.7174

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

sinh(arcsinh(expm1(arcsinh(x))))
Val Acc: 0.7172

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

14

sum_n(softsign(x),selu(x),abs(x))
Val Acc: 0.7168

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

relu(expm1(negative(arcsinh(x))))
Val Acc: 0.7164

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

negative(swish(sinh(arcsinh(x))))
Val Acc: 0.7152

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

negative(elu(elu(elu(x))))
Val Acc: 0.7142

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

add(tanh(relu(x)),swish(x))
Val Acc: 0.7128

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

mul(softplus(x),selu(erf(x)))
Val Acc: 0.7124

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

add(swish(x),expm1(arctan(x)))
Val Acc: 0.7116

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

mul(log_sigmoid(x),elu(selu(x)))
Val Acc: 0.7112

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

8

swish(add(tanh(x),selu(x)))
Val Acc: 0.7108

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

swish(mul(softplus(x),arctan(x)))
Val Acc: 0.7082

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

add(tanh(swish(x)),relu(x))
Val Acc: 0.7078

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

mul(softplus(x),erf(tanh(x)))
Val Acc: 0.7074

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

1

sub(erfc(sigmoid(x)),relu(x))
Val Acc: 0.7068

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

elu(elu(elu(selu(x))))
Val Acc: 0.7056

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

mul(sigmoid(arctan(x)),elu(x))
Val Acc: 0.7038

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

mul(swish(x),sigmoid(hard_sigmoid(x)))
Val Acc: 0.7024

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

min(identity(x),bessel_i0e(softplus(x)))
Val Acc: 0.7014

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

min(negative(x),arctan(hard_sigmoid(x)))
Val Acc: 0.6998

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

swish(selu(swish(selu(x))))
Val Acc: 0.6960

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

8

swish(add(arctan(x),abs(x)))
Val Acc: 0.6954

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

prod_n(hard_sigmoid(x),erf(x),abs(x))
Val Acc: 0.6946

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

div(erf(x),erfc(sigmoid(x)))
Val Acc: 0.6946

5.0 2.5 0.0 2.5 5.0
1

0

1

2

3

4

5

6

7

add(softsign(selu(x)),relu(x))
Val Acc: 0.6928

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

mul(identity(x),erfc(erfc(x)))
Val Acc: 0.6916

5.0 2.5 0.0 2.5 5.0

5

4

3

2

1

0

sum_n(negative(x),log_sigmoid(x),sigmoid(x))
Val Acc: 0.6898

5.0 2.5 0.0 2.5 5.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

expm1(erf(swish(arcsinh(x))))
Val Acc: 0.6860

5.0 2.5 0.0 2.5 5.0

0

2

4

6

elu(sub(tanh(x),negative(x)))
Val Acc: 0.6836

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

sum_n(zero(x),relu(x),arctan(x))
Val Acc: 0.6820
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7

6

5

4

3

2

1

0

1

div(erf(x),sigmoid(selu(x)))
Val Acc: 0.6808

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

expm1(swish(arctan(swish(x))))
Val Acc: 0.6802

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8
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sum_n(tanh(x),relu(x),abs(x))
Val Acc: 0.6770

5.0 2.5 0.0 2.5 5.0

0

2

4

6

add(selu(tanh(x)),relu(x))
Val Acc: 0.6768

5.0 2.5 0.0 2.5 5.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

identity(elu(arctan(swish(x))))
Val Acc: 0.6756

5.0 2.5 0.0 2.5 5.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

expm1(arctan(arcsinh(expm1(x))))
Val Acc: 0.6742

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

add(sinh(erf(x)),relu(x))
Val Acc: 0.6736

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

prod_n(sigmoid(x),hard_sigmoid(x),abs(x))
Val Acc: 0.6706

5.0 2.5 0.0 2.5 5.0

0.5

0.0

0.5

1.0

1.5

2.0

expm1(sinh(erf(selu(x))))
Val Acc: 0.6688

5.0 2.5 0.0 2.5 5.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

sinh(negative(arctan(expm1(x))))
Val Acc: 0.6686
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1.50

1.25
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negative(arctan(elu(swish(x))))
Val Acc: 0.6680
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mul(exp(arctan(x)),elu(x))
Val Acc: 0.6650
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6

8

sub(arctan(abs(x)),negative(x))
Val Acc: 0.6644
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0

1

2

3

4

5

6

7

selu(square(arcsinh(swish(x))))
Val Acc: 0.6640
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5

0

5

10

div(identity(x),sigmoid(erf(x)))
Val Acc: 0.6598

5.0 2.5 0.0 2.5 5.0
3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

div(tanh(x),log_sigmoid(softsign(x)))
Val Acc: 0.6590

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

1

sub(erf(softsign(x)),selu(x))
Val Acc: 0.6588

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8
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12

sum_n(relu(x),abs(x),log_sigmoid(x))
Val Acc: 0.6574

5.0 2.5 0.0 2.5 5.0
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3

4

5

expm1(square(expm1(softsign(x))))
Val Acc: 0.6570

5.0 2.5 0.0 2.5 5.0
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

sub(square(erfc(x)),one(x))
Val Acc: 0.6568

5.0 2.5 0.0 2.5 5.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

swish(expm1(negative(erf(x))))
Val Acc: 0.6518

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50
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0.00

0.25

0.50
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1.00

tanh(sub(sinh(x),hard_sigmoid(x)))
Val Acc: 0.6482
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4

5

6

mul(hard_sigmoid(selu(x)),abs(x))
Val Acc: 0.6472
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5

4

3

2

1

0

1

2

sub(tanh(square(x)),elu(x))
Val Acc: 0.6384

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

sub(tanh(abs(x)),arcsinh(x))
Val Acc: 0.6364

5.0 2.5 0.0 2.5 5.0

0
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2

3

4

5

6

7

square(arcsinh(elu(selu(x))))
Val Acc: 0.6274
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1.0

0.5

0.0

0.5

1.0

1.5

2.0

expm1(negative(selu(elu(x))))
Val Acc: 0.6230
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3

4

5

sub(swish(relu(x)),sigmoid(x))
Val Acc: 0.6204
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2
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4

6

sub(identity(elu(x)),erfc(x))
Val Acc: 0.6034
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7

abs(sub(erf(x),abs(x)))
Val Acc: 0.5904
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sum_n(negative(x),elu(x),abs(x))
Val Acc: 0.5902
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div(selu(x),sigmoid(erf(x)))
Val Acc: 0.5878
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2
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2

4

6

add(selu(x),log_sigmoid(bessel_i0e(x)))
Val Acc: 0.5714

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

div(erf(exp(x)),reciprocal(x))
Val Acc: 0.5684
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8

6

4

2

0

2

4

sum_n(arctan(x),arcsinh(x),log_sigmoid(x))
Val Acc: 0.5624

5.0 2.5 0.0 2.5 5.0

3

2

1

0

1

2

3

4

sum_n(tanh(x),arcsinh(x),hard_sigmoid(x))
Val Acc: 0.5526
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6

4

2

0

2

4

6

prod_n(softsign(x),one(x),abs(x))
Val Acc: 0.5162
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1
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1

2

3

4

5

6

div(swish(x),hard_sigmoid(expm1(x)))
Val Acc: 0.4854
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1
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1

2

3

4
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6

7

add(selu(x),bessel_i0e(expm1(x)))
Val Acc: 0.4080
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sum_n(swish(x),relu(x),bessel_i1e(x))
Val Acc: 0.0124
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0

1

2

3

4

5

6

div(elu(x),reciprocal(sigmoid(x)))
Val Acc: 0.0122

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

div(hard_sigmoid(x),arcsinh(reciprocal(x)))
Val Acc: 0.0120
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mul(arctan(expm1(x)),abs(x))
Val Acc: 0.0110
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1.5

2.0
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3.0

3.5

relu(expm1(arctan(square(x))))
Val Acc: 0.0110
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0

1
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4

5

6

7

add(erf(erf(x)),abs(x))
Val Acc: 0.0110
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0.10

identity(bessel_i1e(selu(bessel_i1e(x))))
Val Acc: 0.0106
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0.08

0.10

0.12

0.14

0.16

erfc(cosh(softsign(exp(x))))
Val Acc: 0.0100
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3
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5

6

sub(abs(x),softplus(arcsinh(x)))
Val Acc: 0.0100
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1

0

prod_n(exp(x),elu(x),log_sigmoid(x))
Val Acc: 0.0100
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4

3

2

1

0

max(negative(square(x)),log_sigmoid(x))
Val Acc: 0.0100
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6

max(erf(expm1(x)),abs(x))
Val Acc: 0.0100
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Val Acc: 0.0100
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Val Acc: 0.0100
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expm1(arctan(square(sinh(x))))
Val Acc: 0.0100
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reciprocal(tanh(exp(negative(x))))
Val Acc: 0.0100
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selu(arcsinh(square(relu(x))))
Val Acc: 0.0100
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7

add(relu(erf(x)),abs(x))
Val Acc: 0.0094
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Val Acc: 0.0088
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Figure 14: Activation functions evaluated in the search for ResNet-56 on CIFAR-100.
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5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

prod_n(sigmoid(x),negative(x),hard_sigmoid(x))
Val Acc: 0.6396

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

identity(elu(swish(negative(x))))
Val Acc: 0.6394

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

mul(swish(x),erfc(bessel_i0e(x)))
Val Acc: 0.6336

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

mul(mul(relu(x),sigmoid(x)),sigmoid(x))
Val Acc: 0.6316

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

mul(erf(x),elu(swish(x)))
Val Acc: 0.6292

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

max(elu(x),arctan(erf(x)))
Val Acc: 0.6290

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

mul(relu(x),arcsinh(hard_sigmoid(x)))
Val Acc: 0.6278

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

prod_n(softplus(x),hard_sigmoid(x),sigmoid(x))
Val Acc: 0.6278

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

mul(mul(softplus(x),hard_sigmoid(x)),sigmoid(x))
Val Acc: 0.6278

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

max(tanh(erf(x)),identity(x))
Val Acc: 0.6251

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

abs(swish(selu(swish(x))))
Val Acc: 0.6245

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

sub(softplus(x),bessel_i0e(relu(x)))
Val Acc: 0.6214

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

sub(swish(x),softsign(softsign(x)))
Val Acc: 0.6205

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

mul(expm1(log_sigmoid(x)),abs(x))
Val Acc: 0.6204

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

sub(softplus(x),arcsinh(erfc(x)))
Val Acc: 0.6200

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

2.5

min(swish(x),exp(sigmoid(x)))
Val Acc: 0.6179

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

selu(add(swish(x),softsign(x)))
Val Acc: 0.6169

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

7

sub(selu(elu(x)),zero(x))
Val Acc: 0.6157
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2

3

4

5

mul(softsign(softplus(x)),abs(x))
Val Acc: 0.6140
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5

4

3

2

1

0

1

sub(arcsinh(one(x)),softplus(x))
Val Acc: 0.6139
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4

3

2

1

0

1

sub(softsign(x),selu(identity(x)))
Val Acc: 0.6133
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2

3

4

5

6

7

max(selu(x),log_sigmoid(bessel_i0e(x)))
Val Acc: 0.6121

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

2.5

min(swish(x),softplus(arcsinh(x)))
Val Acc: 0.6119

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

sinh(selu(sinh(tanh(x))))
Val Acc: 0.6107

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

mul(tanh(x),cosh(erf(x)))
Val Acc: 0.6093

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

add(tanh(x),relu(erf(x)))
Val Acc: 0.6083

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

add(softsign(relu(x)),erf(x))
Val Acc: 0.6081

5.0 2.5 0.0 2.5 5.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

arcsinh(sinh(expm1(arctan(x))))
Val Acc: 0.6065

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

add(square(hard_sigmoid(x)),erf(x))
Val Acc: 0.6056

5.0 2.5 0.0 2.5 5.0

5

4

3

2

1

0

1

sub(tanh(abs(x)),relu(x))
Val Acc: 0.6053

5.0 2.5 0.0 2.5 5.0

5

4

3

2

1

0

add(log_sigmoid(x),bessel_i0e(hard_sigmoid(x)))
Val Acc: 0.6050

5.0 2.5 0.0 2.5 5.0
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4
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1

0

sub(hard_sigmoid(log_sigmoid(x)),softplus(x))
Val Acc: 0.6048
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0.4
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1.0

1.2

mul(log_sigmoid(erf(x)),erf(x))
Val Acc: 0.6045
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0.00
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0.50
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add(log_sigmoid(one(x)),erf(x))
Val Acc: 0.6036

5.0 2.5 0.0 2.5 5.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

negative(max(tanh(x),arcsinh(x)))
Val Acc: 0.6031
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1

2
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5

6

sub(abs(x),sigmoid(swish(x)))
Val Acc: 0.6024
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sub(sigmoid(relu(x)),abs(x))
Val Acc: 0.6022
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4

5

mul(softsign(x),softplus(relu(x)))
Val Acc: 0.6009
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1.50

1.75

negative(mul(softsign(x),erfc(x)))
Val Acc: 0.5978
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1.0

0.5
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0.5

1.0

1.5

arctan(sub(negative(x),elu(x)))
Val Acc: 0.5965
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1

0

1

2

arcsinh(add(selu(x),erf(x)))
Val Acc: 0.5949

5.0 2.5 0.0 2.5 5.0
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0.2

0.4

0.6

0.8

1.0

erfc(sub(erfc(x),log_sigmoid(x)))
Val Acc: 0.5935
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1
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5

6

max(identity(x),erf(reciprocal(x)))
Val Acc: 0.5890
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0.5
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1.0

1.5

div(arctan(x),arctan(one(x)))
Val Acc: 0.5880
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1.00

tanh(add(softplus(x),erf(x)))
Val Acc: 0.5879

5.0 2.5 0.0 2.5 5.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

tanh(add(swish(x),relu(x)))
Val Acc: 0.5853

5.0 2.5 0.0 2.5 5.0

0.5

0.0

0.5

1.0

1.5

arctan(add(sigmoid(x),elu(x)))
Val Acc: 0.5851

5.0 2.5 0.0 2.5 5.0

0.0

0.2

0.4

0.6

0.8

1.0

erf(square(relu(negative(x))))
Val Acc: 0.5847

5.0 2.5 0.0 2.5 5.0
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1
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1

div(softsign(x),sigmoid(softsign(x)))
Val Acc: 0.5843

5.0 2.5 0.0 2.5 5.0

3

2

1
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3
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add(selu(arcsinh(x)),arctan(x))
Val Acc: 0.5835

5.0 2.5 0.0 2.5 5.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

mul(sigmoid(relu(x)),arcsinh(x))
Val Acc: 0.5771

5.0 2.5 0.0 2.5 5.0

0.2

0.1

0.0

0.1

0.2

bessel_i1e(sub(erfc(x),hard_sigmoid(x)))
Val Acc: 0.5594

5.0 2.5 0.0 2.5 5.0

8

6

4

2

0

2

4

6

8

sub(sinh(erf(x)),negative(x))
Val Acc: 0.5393

5.0 2.5 0.0 2.5 5.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

erf(add(softsign(x),softplus(x)))
Val Acc: 0.5340

5.0 2.5 0.0 2.5 5.0

6

4

2

0

2

4

6

8

sub(elu(erf(x)),negative(x))
Val Acc: 0.5319

5.0 2.5 0.0 2.5 5.0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

softsign(sub(sigmoid(x),square(x)))
Val Acc: 0.5230

5.0 2.5 0.0 2.5 5.0
6

4

2

0

2

4

6

mul(identity(x),bessel_i0e(bessel_i0e(x)))
Val Acc: 0.4652

5.0 2.5 0.0 2.5 5.0

0.10

0.05

0.00

0.05

0.10

0.15

0.20

bessel_i1e(sub(erfc(x),bessel_i0e(x)))
Val Acc: 0.2227

5.0 2.5 0.0 2.5 5.0

0.2

0.1

0.0

0.1

0.2

bessel_i1e(sub(erfc(x),erf(x)))
Val Acc: 0.2214

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

tanh(sub(expm1(x),abs(x)))
Val Acc: 0.0015

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

tanh(max(sinh(x),log_sigmoid(x)))
Val Acc: 0.0013

5.0 2.5 0.0 2.5 5.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

sub(erf(x),erfc(exp(x)))
Val Acc: 0.0012

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

add(square(bessel_i1e(x)),elu(x))
Val Acc: 0.0011

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

min(swish(x),swish(expm1(x)))
Val Acc: 0.0011

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

1.0

min(selu(sinh(x)),erf(x))
Val Acc: 0.0011

5.0 2.5 0.0 2.5 5.0

0.00

0.05

0.10

0.15

0.20

bessel_i1e(sub(abs(x),negative(x)))
Val Acc: 0.0011

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

1.0

add(log_sigmoid(exp(x)),erf(x))
Val Acc: 0.0011

5.0 2.5 0.0 2.5 5.0

0.0

0.2

0.4

0.6

0.8

1.0

erf(add(abs(x),abs(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

arctan(add(sinh(x),bessel_i0e(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

relu(sub(bessel_i1e(x),identity(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

2

1

0

1

2

mul(erf(square(x)),arcsinh(x))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

reciprocal(reciprocal(expm1(arctan(x))))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

6

4

2

0

2

4

6

negative(div(abs(x),erf(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

2

0

2

4

6

prod_n(reciprocal(x),identity(x),selu(x))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

elu(reciprocal(elu(reciprocal(x))))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

1.0

0.8

0.6

0.4

0.2

0.0

0.2

elu(mul(sinh(x),erfc(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

2.5

2.0

1.5

1.0

0.5

0.0

sub(arcsinh(x),relu(arcsinh(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

elu(swish(arcsinh(sinh(x))))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

swish(arcsinh(elu(sinh(x))))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0
0.5

0.0

0.5

1.0

1.5

2.0

2.5

sinh(sub(swish(x),selu(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

expm1(softsign(expm1(negative(x))))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

expm1(elu(softsign(expm1(x))))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

prod_n(relu(x),log_sigmoid(x),expm1(x))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

relu(div(hard_sigmoid(x),reciprocal(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

8

6

4

2

0

2

4

6

8

add(reciprocal(reciprocal(x)),arctan(x))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

arcsinh(sub(expm1(x),erf(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

min(sigmoid(cosh(x)),elu(x))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

swish(add(selu(x),bessel_i1e(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

pow(relu(x),erf(one(x)))
Val Acc: 0.0010

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

1

min(sigmoid(expm1(x)),identity(x))
Val Acc: 0.0009

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

add(swish(x),arctan(bessel_i1e(x)))
Val Acc: 0.0009

5.0 2.5 0.0 2.5 5.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

tanh(add(expm1(x),exp(x)))
Val Acc: 0.0009

5.0 2.5 0.0 2.5 5.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

tanh(add(erf(x),bessel_i1e(x)))
Val Acc: 0.0009

5.0 2.5 0.0 2.5 5.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

erfc(add(expm1(x),exp(x)))
Val Acc: 0.0008

5.0 2.5 0.0 2.5 5.0

2

0

2

4

6

add(selu(x),expm1(bessel_i1e(x)))
Val Acc: 0.0008

5.0 2.5 0.0 2.5 5.0

0.10

0.05

0.00

0.05

0.10

0.15

0.20

bessel_i1e(sub(swish(x),identity(x)))
Val Acc: 0.0008

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

abs(sub(selu(x),bessel_i1e(x)))
Val Acc: 0.0008

5.0 2.5 0.0 2.5 5.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

tanh(div(arctan(x),erfc(x)))
Val Acc: 0.0008

5.0 2.5 0.0 2.5 5.0
0.10

0.05

0.00

0.05

0.10

0.15

0.20

bessel_i1e(sub(square(x),tanh(x)))
Val Acc: 0.0008

5.0 2.5 0.0 2.5 5.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

min(selu(x),arctan(exp(x)))
Val Acc: 0.0008
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Figure 15: Activation functions evaluated in the search for MobileViTv2-0.5 on ImageNet.
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5.0 2.5 0.0 2.5 5.0

0.0

0.2

0.4

0.6

0.8

1.0

square(erfc(softplus(x)))
Val Acc: 0.8907

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

min(square(softplus(x)),negative(x))
Val Acc: 0.8861

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

2.5

arcsinh(elu(swish(x)))
Val Acc: 0.8828

5.0 2.5 0.0 2.5 5.0

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

mul(erfc(relu(x)),selu(x))
Val Acc: 0.8825

5.0 2.5 0.0 2.5 5.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

sub(arctan(swish(x)),tanh(x))
Val Acc: 0.8823

5.0 2.5 0.0 2.5 5.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

sub(arctan(swish(x)),erf(x))
Val Acc: 0.8820

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

min(negative(elu(x)),hard_sigmoid(x))
Val Acc: 0.8815

5.0 2.5 0.0 2.5 5.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

mul(erf(elu(x)),sigmoid(x))
Val Acc: 0.8815

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

min(leakyrelu(selu(x)),negative(x))
Val Acc: 0.8813

5.0 2.5 0.0 2.5 5.0
2.5

2.0

1.5

1.0

0.5

0.0

negative(swish(arcsinh(x)))
Val Acc: 0.8805

5.0 2.5 0.0 2.5 5.0

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

min(arctan(swish(x)),square(x))
Val Acc: 0.8797

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

add(bessel_i1e(sigmoid(x)),leakyrelu(x))
Val Acc: 0.8795

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

max(swish(erf(x)),identity(x))
Val Acc: 0.8792

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

max(negative(leakyrelu(x)),selu(x))
Val Acc: 0.8785

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

mul(gelu(one(x)),swish(x))
Val Acc: 0.8785

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

2.5

arcsinh(swish(softplus(x)))
Val Acc: 0.8782

5.0 2.5 0.0 2.5 5.0
1

0

1

2

3

4

5

6

add(log_sigmoid(sigmoid(x)),relu(x))
Val Acc: 0.8780

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

min(swish(relu(x)),leakyrelu(x))
Val Acc: 0.8772

5.0 2.5 0.0 2.5 5.0
1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

min(hard_sigmoid(negative(x)),arctan(x))
Val Acc: 0.8769

5.0 2.5 0.0 2.5 5.0
1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

min(sigmoid(negative(x)),arctan(x))
Val Acc: 0.8769

5.0 2.5 0.0 2.5 5.0

5

4

3

2

1

0

sub(softsign(leakyrelu(x)),leakyrelu(x))
Val Acc: 0.8762

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

min(hard_sigmoid(arcsinh(x)),negative(x))
Val Acc: 0.8759

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

min(tanh(sigmoid(x)),negative(x))
Val Acc: 0.8754

5.0 2.5 0.0 2.5 5.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

min(elu(swish(x)),one(x))
Val Acc: 0.8752

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

swish(swish(relu(x)))
Val Acc: 0.8739

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

abs(swish(elu(x)))
Val Acc: 0.8736

5.0 2.5 0.0 2.5 5.0

1

0

1

2

sub(leakyrelu(tanh(x)),arcsinh(x))
Val Acc: 0.8736

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

add(square(erf(x)),tanh(x))
Val Acc: 0.8734

5.0 2.5 0.0 2.5 5.0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

max(log_sigmoid(square(x)),erf(x))
Val Acc: 0.8726

5.0 2.5 0.0 2.5 5.0

0.2

0.0

0.2

0.4

0.6

arctan(softsign(swish(x)))
Val Acc: 0.8716

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

max(expm1(tanh(x)),swish(x))
Val Acc: 0.8703

5.0 2.5 0.0 2.5 5.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

sub(softsign(swish(x)),erf(x))
Val Acc: 0.8703

5.0 2.5 0.0 2.5 5.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

expm1(elu(arctan(x)))
Val Acc: 0.8698

5.0 2.5 0.0 2.5 5.0

5

4

3

2

1

0

sub(arctan(arcsinh(x)),swish(x))
Val Acc: 0.8696

5.0 2.5 0.0 2.5 5.0

0.2

0.0

0.2

0.4

0.6

min(softplus(zero(x)),swish(x))
Val Acc: 0.8688

5.0 2.5 0.0 2.5 5.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

max(negative(erf(x)),log_sigmoid(x))
Val Acc: 0.8685

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

add(leakyrelu(softsign(x)),leakyrelu(x))
Val Acc: 0.8683

5.0 2.5 0.0 2.5 5.0

6

5

4

3

2

1

0

1

min(swish(tanh(x)),identity(x))
Val Acc: 0.8680

5.0 2.5 0.0 2.5 5.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

max(swish(erf(x)),erf(x))
Val Acc: 0.8670

5.0 2.5 0.0 2.5 5.0

0.0

0.2

0.4

0.6

0.8

1.0

tanh(square(softplus(x)))
Val Acc: 0.8670

5.0 2.5 0.0 2.5 5.0

0.0

0.2

0.4

0.6

0.8

1.0

tanh(square(log_sigmoid(x)))
Val Acc: 0.8662

5.0 2.5 0.0 2.5 5.0

0.2

0.0

0.2

0.4

0.6

swish(erf(erf(x)))
Val Acc: 0.8662

5.0 2.5 0.0 2.5 5.0

0.0

0.2

0.4

0.6

0.8

1.0

sub(hard_sigmoid(arctan(x)),softsign(x))
Val Acc: 0.8650

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

sub(erfc(softplus(x)),sigmoid(x))
Val Acc: 0.8642

5.0 2.5 0.0 2.5 5.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

add(erfc(one(x)),softsign(x))
Val Acc: 0.8639

5.0 2.5 0.0 2.5 5.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

tanh(negative(elu(x)))
Val Acc: 0.8639

5.0 2.5 0.0 2.5 5.0

0.0

0.1

0.2

0.3

0.4

mul(arcsinh(erfc(x)),sigmoid(x))
Val Acc: 0.8634

5.0 2.5 0.0 2.5 5.0

8

6

4

2

0

mul(relu(negative(x)),arctan(x))
Val Acc: 0.8632

5.0 2.5 0.0 2.5 5.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

mul(sigmoid(identity(x)),erfc(x))
Val Acc: 0.8609

5.0 2.5 0.0 2.5 5.0
1

0

1

2

3

4

5

6

add(log_sigmoid(swish(x)),softplus(x))
Val Acc: 0.8606

5.0 2.5 0.0 2.5 5.0

1

0

1

2

3

4

5

6

7

max(erf(tanh(x)),selu(x))
Val Acc: 0.8594

5.0 2.5 0.0 2.5 5.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

expm1(softsign(square(x)))
Val Acc: 0.8589

5.0 2.5 0.0 2.5 5.0

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

mul(negative(erf(x)),bessel_i0e(x))
Val Acc: 0.8589

5.0 2.5 0.0 2.5 5.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

arctan(square(arcsinh(x)))
Val Acc: 0.8571

5.0 2.5 0.0 2.5 5.0
0.3

0.2

0.1

0.0

0.1

0.2

0.3

min(swish(arctan(x)),erfc(x))
Val Acc: 0.8568

5.0 2.5 0.0 2.5 5.0

0

2

4

6

8

10

12

expm1(leakyrelu(arcsinh(x)))
Val Acc: 0.8568

5.0 2.5 0.0 2.5 5.0

0

1

2

3

4

5

6

7

add(selu(negative(x)),leakyrelu(x))
Val Acc: 0.8563

5.0 2.5 0.0 2.5 5.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

div(softsign(sigmoid(x)),reciprocal(x))
Val Acc: 0.8563

5.0 2.5 0.0 2.5 5.0

0.4

0.2

0.0

0.2

0.4

erf(softsign(softsign(x)))
Val Acc: 0.8548
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Figure 16: Activation functions evaluated in the search for CoAtNet on Imagenette.
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New Search Spaces The PANGAEA search space was used in this paper because it is known to
work well for deep architectures [5]. In the future it will be interesting to explore search spaces with
different unary, binary, and n-ary operators. Beyond computation graphs, it may also be possible to
apply techniques in this paper to optimize continuous vector representations of activation functions
[1, 44].

Exploration vs. Exploitation The KNR approach was utilized to search for new activation
functions because it performed well on the benchmark datasets (Section 5). In the future, it will
be interesting to consider other algorithms and analyze their tradeoffs between exploration and
exploitation. For example, in a resource-constrained environment where improvement is needed
quickly, a more exploitative approach could be used to find an improved activation function in a short
time. On the other hand, if substantial compute is available, an approach that focuses on exploration
could be used to discover activation functions that perform well but are maximally different from
functions used in modern architectures (Figure 8b). Novelty search [32] could serve as a suitable
approach, and such discoveries could further understanding of how neural networks utilize different
kinds of activation functions to learn.

Optimizing Multiple Activation Functions In a typical neural network design, the same activation
function is used throughout the network. However, recent work has shown that it may be beneficial
to have different activation functions at different locations, and further, that it may be useful to
have different activation functions in the early and late stages of training [5]. Indeed, many hybrid
architectures use Swish in convolutional layers and ReLU in attention layers [41]. Unfortunately, it is
difficult to design these strategies manually, and so practitioners often use a single activation function
for simplicity.

The techniques proposed in this paper may provide an avenue toward optimizing multiple activation
functions in tandem. For example, the features for multiple candidate activation functions could
be concatenated into a single feature vector, and this vector could be projected with UMAP to a
low-dimensional space where performance prediction is more straightforward.

Optimizing Parametric Activation Functions Parametric activation functions have learnable
parameters that allow them to refine their shape via gradient descent. In some tasks, this extra
flexibility results in better performance over fixed activation functions [5]. The techniques introduced
in this paper can be readily extended to optimizing the design of parametric activation functions as
well. Because the surrogate considers the state of the network and activation function at initialization,
it is possible to predict the performance by treating the activation function parameters as fixed to their
initial values.

However, it may be possible to extend this idea further. Because the activation function parameters are
implemented as neural network weights, each parameter will have a corresponding FIM eigenvalue.
These extra eigenvalues will provide the surrogate with additional information that may help predict
the performance more accurately.

For simplicity, current parametric activation functions usually initialize their parameters either to be
1.0 or to approximate some existing activation function, and the initialization is usually the same
throughout the network. This method is likely suboptimal; the surrogate introduced in this paper
could provide a smarter approach. By adjusting the initial parameter values and observing the change
in predicted performance, the surrogate can be used to find better initializations, including different
ones at different layers in the network. This contribution could make parametric activation functions
even more powerful.

Optimizing Other Aspects of Neural Network Design By fixing the neural network architecture
and varying the activation function, this paper showed that it is possible to use FIM eigenvalues
to infer future performance. As the FIM is a fundamental quantity in machine learning, it may
be possible to apply a similar strategy to optimize other aspects of neural network design, such as
normalization layers, loss functions, or data augmentation strategies [8, 17, 18, 35]. If a meaningful
distance metric between such objects can be defined, then UMAP could be used to map them to a
low-dimensional space where performance prediction is much simpler.

Similarly, one could use the FIM eigenvalues to optimize alternate objectives beyond accuracy.
Robustness is a particularly interesting objective, because the FIM can be used to describe a neural

27



network’s robustness to small parameter perturbations. Other objectives, such as interpretability, fair-
ness, or inference cost, could also be considered. For example, one could consider a multidimensional
regression approach where instead of just predicting accuracy, the surrogate would predict each of
these quantities separately. Such a method could present the user with a Pareto front of activation
functions involving tradeoffs between these quantities.

Reverse Engineering Activation Functions UMAP was used to project activation functions to a
low-dimensional space, and regression algorithms to predict the performance of activation functions
in this space, i.e. to serve as a fitness function for the search. However, it is possible that there is no
activation function that maps to the optimum of this fitness landscape. Indeed, because such search
spaces are finite, the activation functions do not completely fill them. For example, there are empty
regions in Figure 4, corresponding to activation functions outside of the predefined search space.

What should be done if an empty region of the embedding space has a higher predicted fitness
than any of the candidate activation functions? In the paper, these regions were simply ignored,
and the activation function with the highest predicted fitness was used. However, in the future,
it may be possible to create activation functions that map to these empty spaces, an in so doing
improve performance. One approach could be based on inverse transforms: Given a coordinate in the
low-dimensional embedding space, UMAP can apply an inverse transform and return an object that
would have mapped to those coordinates. This technique was already used for visualization in Figure
3. Using this approach, UMAP could generate a hypothetical desired FIM eigenvalue distribution, or
a list of activation function outputs.

There are two challenges to this approach. First, because UMAP is a dimensionality-reduction
algorithm, different activation functions can map to the same location in the embedding space. Thus,
the mapping from embedding space back to activation functions is not well defined. Second, even if
UMAP prescribes a FIM eigenvalue distribution that is predicted to result in good performance, it
may be difficult to manually design an activation function to satisfy that distribution.

However, a generated list of prescribed activation function outputs is already a good start. From this
list, it is possible to construct an activation function that interpolates through these points, either in
a piecewise linear fashion, with splines, or using some other standard technique. Even without the
corresponding FIM eigenvalues, such an approach could potentially improve the efficiency of novel
activation function discovery, and lead to better designs for activation functions in the future.

G Compute Infrastructure

The experiments in this paper were implemented using an AWS g5.48xlarge instance with eight
NVIDIA A10G GPUs. The total compute cost for the search experiments in Section 6 was 14.49
GPU-hours for All-CNN-C on CIFAR-100, 21.67 GPU-hours for ResNet-56 on CIFAR-100, and
196.25 GPU-days for MobileViTv2-0.5 on ImageNet. This cost includes the time to train the eight
baseline activation functions and then to evaluate 100 additional functions. The instance ran in Oregon
(us-west-2) and was powered by renewable energy, so the experiments for this paper contributed
no carbon emissions.
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