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Abstract

Noisy labels are inevitable in large real-world datasets. In this work, we explore an
area understudied by previous works — how the network’s architecture impacts
its robustness to noisy labels. We provide a formal framework connecting the
robustness of a network to the alignments between its architecture and target/noise
functions. Our framework measures a network’s robustness via the predictive
power in its representations — the test performance of a linear model trained on
the learned representations using a small set of clean labels. We hypothesize that
a network is more robust to noisy labels if its architecture is more aligned with
the target function than the noise. To support our hypothesis, we provide both
theoretical and empirical evidence across various neural network architectures
and different domains. We also find that when the network is well-aligned with
the target function, its predictive power in representations could improve upon
state-of-the-art (SOTA) noisy-label-training methods in terms of test accuracy and
even outperform sophisticated methods that use clean labels.

1 Introduction

Supervised learning starts with collecting labeled data. Yet, high-quality labels are often expensive.
To reduce annotation cost, we collect labels from non-experts [1–4] or online queries [5–7], which are
inevitably noisy. To learn from these noisy labels, previous works propose many techniques, including
modeling the label noise [8–10], designing robust losses [11–14], adjusting loss before gradient
updates [15–23], selecting trust-worthy samples [12, 22, 24–31], designing robust architectures [32–
39], applying robust regularization in training [40–45], using meta-learning to avoid over-fitting [46,
47], and applying semi-supervised learning [28, 48–51] to learn better representations.
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While these methods improve some networks’ robustness to noisy labels, we observe that their
effectiveness depends on how well the network’s architecture aligns with the target/noise functions,
and they are less effective when encountering more realistic label noise that is class-dependent
or instance-dependent. This motivates us to investigate an understudied topic: how the network’s
architecture impacts its robustness to noisy labels.

We formally answer this question by analyzing how a network’s architecture aligns with the target
function and the noise. To start, we measure the robustness of a network via the predictive power
in its learned representations (Definition 1), as models with large test errors may still learn useful
predictive hidden representations [52, 53]. Intuitively, the predictive power measures how well the
representations can predict the target function. In practice, we measure it by training a linear model
on top of the learned representations using a small set of clean labels and evaluate the linear model’s
test performance [54].

We find that a network having a more aligned architecture with the target function is more robust
to noisy labels due to its more predictive representations, whereas a network having an architecture
more aligned with the noise function is less robust. Intuitively, a good alignment between a network’s
architecture and a function exists if the architecture can be decomposed into several modules such
that each module can simulate one part of the function with a small sample complexity. The formal
definition of alignment is in Section 2.3, adapted from [55].

Our proposed framework provides initial theoretical support for our findings on a simplified noisy
setting (Theorem 2). Empirically, we validate our findings on synthetic graph algorithmic tasks
by designing several variants of Graph Neural Networks (GNNs), whose theoretical properties and
alignment with algorithmic functions have been well-studied [55–57]. Many noisy label training
methods are applied to image classification datasets, so we also validate our findings on image
domains using different architectures.

Most of our analysis and experiments use standard neural network training. Interestingly, we find
similar results when using DivideMix [49], a SOTA method for learning with noisy labels: for
networks less aligned with the target function, the SOTA method barely helps and sometimes even
hurts test accuracy; whereas for more aligned networks, it helps greatly.

For well-aligned networks, the predictive power of their learned representation could further improve
the test performance of SOTA methods, especially on class-dependent or instance-dependent label
noise where current methods on noisy label training are less effective. Moreover, on Clothing1M [58],
a large-scale dataset with real-world label noise, the predictive power of a well-aligned network’s
learned representations could even outperform some sophisticated methods that use clean labels.

In summary, we investigate how an architecture’s alignments with different (target and noise) functions
affect the network’s robustness to noisy labels, in which we discover that despite having large test
errors, networks well-aligned with the target function can still be robust to noisy labels when
evaluating their predictive power in learned representations. To formalize our finding, we provide a
theoretical framework to illustrate the above connections. At the same time, we conduct empirical
experiments on various datasets with various network architectures to validate this finding. Besides,
this finding further leads to improvements over SOTA noisy-label-training methods on various
datasets and under various kinds of noisy labels (Tables 5-10 in Appendix A).

1.1 Related Work

A commonly studied type of noisy label is the random label noise, where the noisy labels are drawn
i.i.d. from a uniform distribution. While neural networks trained with random labels easily overfit [59],
it has been observed that networks learn simple patterns first [52], converge faster on downstream
tasks [53], and benefit from memorizing atypical training samples [60].

Accordingly, many recent works on noisy label training are based on the assumption that when trained
with noisy labels, neural networks would first fit to clean labels [12, 25, 26, 49, 50] and learn useful
feature patterns [18, 61–63]. Yet, these methods are often more effective on random label noise than
on more realistic label noise (i.e., class-dependent and instance-dependent label noise).

Many works on representation learning have investigated the features preferred by a network during
training [52, 64–66], and how to interpret or control the learned representations on clean data [54,
64, 67–69]. Our paper focuses more on the predictive power rather than the explanatory power
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in the learned representations. We adapt the method in [54] to measure the predictive power in
representations, and we study learning from noisy labels rather than from a clean distribution.

On noiseless settings, prior works show that neural networks have the inductive bias to learn simple
patterns [52, 64–66]. Our work formalizes what is considered as a simple pattern for a given network
via architectural alignments, and we extend the definition of alignment in [55] to noisy settings.

2 Theoretical Framework

In this section, we introduce our problem settings, give formal definitions for “predictive power” and
“alignment,” and present our main hypothesis as well as our main theorem.

2.1 Problem Settings

Let X denote the input domain, which can be vectors, images, or graphs. The task is to learn an un-
derlying target function f : X → Y on a noisy training dataset S := {(xi, yi)}i∈I

⋃
{(xi, ŷi)}i∈I′ ,

where y := f(x) denotes the true label for an input x, and ŷ denotes the noisy label. Here, the set I
contains indices with clean labels, and I ′ contains indices with noisy labels. We denote |I

′|
|S| as the

noise ratio in the dataset S. We consider both regression and classification problems.

Regression settings. We consider a label space Y ⊆ R and two types of label noise: a) additive label
noise [70]: ŷ := y + ε, where ε is a random variable independent from x; b) instance-dependent
label noise: ŷ := g(x) where g : X → Y is a noise function dependent on the input.

Classification settings. We consider a discrete label space with C classes: Y = {1, 2, · · · , C},
and three types of label noise: a) uniform label noise: ŷ ∼ Unif(1, C), where the noisy label is
drawn from a discrete uniform distribution with values between 1 and C, and thus is independent
of the true label; b) flipped label noise: ŷ is generated based on the value of the true label y and
does not consider other input structures; c) instance-dependent label noise: ŷ := g(x) where
g : X → Y is a function dependent on the input x’s internal structures. Previous works on noisy
label learning commonly study uniform and flipped label noise. A few recent works [71, 72] explore
the instance-dependent label noise as it is more realistic.

2.2 Predictive Power in Representations

A network’s robustness is often measured by its test performance after trained with noisy labels. Yet,
since models with large test errors may still learn useful representations, we measure the robustness
of a network by how good the learned representations are at predicting the target function — the
predictive power in representations. To formalize this definition, we decompose a neural network N
into different modules N1,N2, · · · , where each module can be a single layer (e.g., a convolutional
layer) or a block of layers (e.g., a residual block).

Definition 1. (Predictive power). Let f : X → Y denote the underlying target function where the
input x ∈ X is drawn from a distribution D. Let C := {(xi, yi)}mi=1 denote a small set of clean data
(i.e., yi = f(xi)). Given a network N with n modules Nj , let h(j)(x) denote the representation
from module Nj on the input x (i.e., the output of Nj). Let L denote the linear model trained with
the clean set C where we use h(j)(x) as the input, and yi as the target value during training. Then the
predictive power of representations from the module Ni is defined as

Pj(f,N , C) = E
x∼D

[
l
(
f(x), L(h(j)(x))

)]
, (1)

where l is a loss function used to evaluate the test performance on the learning task.

Remark. Notice that smaller Pj(f,N , C) indicates better predictive power; i.e., the representations
are better at predicting the target function. We empirically evaluate the predictive power using linear
regression to obtain a trained linear model L, which avoids the issue of local minima as we are
solving a convex problem; then we evaluate L on the test set.
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2.3 Formalization of Alignment

Our analysis stems from the intuition that a network would be more robust to noisy labels if it could
learn the target function more easily than the noise function. Thus, we use architectural alignment to
formalize what is easy to learn by a given network. Xu et al. [55] define the alignment between a
network and a deterministic function via a sample complexity measure (i.e., the number of samples
needed to ensure low test error with high probability) in a PAC learning framework (Definition 3.3
in Xu et al. [55]). Intuitively, a network aligns well with a function if each network module can easily
learn one part of the function with a small sample complexity.
Definition 2. (Alignment, simplified based on Xu et al. [55]). Let N denote a neural network with
n modules Nj . Given a function f : X → Y which can be decomposed into n functions fj (e.g.,
f(x) = f1(f2(...fn(x)))), the alignment between the network N and f is defined via

Alignment(N , f, ε, δ) := max
j
MAj (fj ,Nj , ε, δ), (2)

whereMAj
(fj ,Nj , ε, δ) denotes the sample complexity measure for Nj to learn fj with ε precision

at a failure probability δ under a learning algorithm Aj .

Remark. Notice that smaller Alignment(N , f, ε, δ) indicates better alignment between network N
and function f . If f is obtuse or does not have a structural decomposition, we can choose n = 1,
and the definition of alignment degenerates into the sample complexity measure for N to learn
f . Although it is sometimes non-trivial to compute the exact alignment for a task without clear
algorithmic structures, we could break this complicated task into sub-tasks, and it would be easier to
measure the sample complexity of learning each sub-task.

Xu et al. [55] further prove that better alignment implies better sample complexity and vice versa.
Theorem 1. (Informal; [55]) Fix ε and δ. Given a target function f : X → Y and a network
N , suppose {xi}Mi=1 are i.i.d. samples drawn from a distribution D, and let yi := f(xi). Then
Alignment(N , f, ε, δ) ≤M if and only if there exists a learning algorithm A such that

Px∼D [‖fN ,A(x)− f(x)‖ ≤ ε] ≥ 1− δ, (3)

where fN ,A is the function generated by A on the training data {xi, yi}Mi=1.

Remark. Intuitively, a function f (with a decomposition {fj}j) can be efficiently learned by a
network N (with modules {Nj}j) iff each fj can be efficiently learned by Nj .

We further extend Definition 2 to work with a random process F (i.e., a set of all possible sample
functions that describes the noisy label distribution).
Definition 3. (Alignment, extension to various noise functions). Given a neural network N
and a random process F , for each f ∈ F , the alignment between N and f is measured via
maxjMAj

(fj ,Nj , ε, δ) based on Definition 2. Then the alignment between N and F is defined as

Alignment∗(N ,F , ε, δ) := sup
f∈F

max
j
MAj

(fj ,Nj , ε, δ),

where N can be decomposed differently for various f .

2.4 Better Alignment Implies Better Robustness (Better Predictive Power)

Building on the definitions of predictive power and alignment, we hypothesize that a network
better-aligned with the target function (smaller Alignment(N , f, ε, δ)) would learn more predictive
representations (smaller Pj(f,N , C)) when trained on a given noisy dataset.
Hypothesis 1. (Main Hypothesis). Let f : X → Y denote the target function. Fix ε, δ, a learning
algorithm A, a noise ratio, and a noise function g : X → Y (which may be a drawn from a random
process). Let S denote a noisy training dataset and C denote a small set of clean data. Then for a
network N trained on S with the learning algorithm A,

Alignment(N , f, ε, δ) ↓ =⇒ Pj(f,N , C) ↓, (4)

where j is selected based on the network’s architectural alignment with the target function (for
simplicity, we consider j = n− 1 in this work).
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We prove this hypothesis for a simplified case where the target function shares some common struc-
tures with the noise function (e.g., class-dependent label noise). We refer the readers to Appendix C
for a full statement of our main theorem with detailed assumptions.
Theorem 2. (Main Theorem; informal) For a target function f : X → Y and a noise function
g : X → Y , consider a neural network N well-aligned with f such that Pj(f,N , C) is small when
trainingN on clean data (i.e., Pj(f,N , C) < c for some small constant c). If there exists a function h
on the input domain X such that f and g can be decomposed as follows: ∀x ∈ X , f(x) = fr(h(x))
with fr being a linear function, and g(x) = gr(h(x)) for some function gr, then the representations
learned by N on the noisy dataset still have a good predictive power with Pj(f,N , C) < c.

We further provide empirical support for our hypothesis via systematic experiments on various
architectures, target and noise functions across both regression and classification settings.

3 Experiments on Graph Neural Networks

We first validate our hypothesis on synthetic graph algorithmic tasks by designing GNNs with
different levels of alignments to the underlying target/noise functions. We consider regression tasks.
The theoretical properties of GNNs and their alignment with algorithmic regression tasks are well-
studied [55–57, 73]. To start, we conduct experiments on different types of additive label noise and
extend our experiments to instance-dependent label noise, which is closer to real-life noisy labels.

Common Experimental Settings. The training and validation sets always have the same noise ratio,
the percentage of data with noisy labels. We choose mean squared error (MSE) and Mean Absolute
Error (MAE) as our loss functions. Due to space limit, the results using MAE are in Appendix A.3.
All training details are in Appendix B.3. The test error is measured by mean absolute percentage
error (MAPE), a relative error metric.

3.1 Background: Graph Neural Networks

GNNs are structured networks operating on graphs with MLP modules [74–80]. The input is a graph
G = (V,E) where each node u ∈ V has a feature vector xu, and we use N (u) to denote the set of
neighbors of u. GNNs iteratively compute the node representations via message passing: (1) the
node representation hu is initialized as the node feature: h(0)

u = xu; (2) in iteration k = 1..K, the
node representations h(k)

u are updated by aggregating the neighboring nodes’ representations with
MLP modules [81]. We can optionally compute a graph representation hG by aggregating the final
node representations with another MLP module. Formally,

h(k)
u :=

∑
v∈N (u)

MLP(k)
(
h(k−1)
u ,h(k−1)

v

)
, (5)

hG := MLP(K+1)
(∑

u∈G
h(K)
u

)
. (6)

Depending on the task, the output is either the graph representation hG or the final node representa-
tions h(K)

u . We refer to the neighbor aggregation step for h(k)
u as aggregation and the pooling step

for hG as readout. Different tasks require different aggregation and readout functions.

3.2 Additive Label Noise

Hu et al. [70] prove that MLPs are robust to additive label noises with zero mean, if the labels are
drawn i.i.d. from a Sub-Gaussian distribution. Wu and Xu [82] also show that linear models are
robust to zero-mean additive label noise even in the absence of explicit regularization. In this section,
we show that a GNN well-aligned to the target function not only achieves low test errors on additive
label noise with zero-mean, but also learns predictive representations on noisy labels that are drawn
from non-zero-mean distributions despite having large test error.

Task and Architecture. The task is to compute the maximum node degree:

f(G) := maxu∈G
∑

v∈N (u)

1. (7)
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Figure 1: Max-sum GNN aligns well with the
task maximum degree. Max-sum GNN hG can
be decomposed into two modules: Module(1) and
Module(2), and the target function f(G) can be
similarly divided as f(G) = f2(f1(G)). As the
nonlinearities of the target function have been en-
coded in the GNN’s architecture, f(G) can be eas-
ily learned by hG : f1(·) can be easily learned by
Module(1), and f2(·) is the same as Module(2).
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Figure 2: PCA visualization of hidden represen-
tations from a max-sum GNN trained with addi-
tive label noise drawn from N (10, 15) at 100%
noise ratio. Each dot denotes a single training ex-
ample and is colored with its true label. The x-axis
and y-axis denote the projected values at the first
and second principal components. As the colors
change gradually from left to right, the largest prin-
cipal component of the representations have a clear
linear relationship with the true labels.

We choose this task as we know which GNN architecture aligns well with this target function—a
2-layer GNN with max-aggregation and sum-readout (max-sum GNN):

hG := MLP(2)
(

maxu∈G
∑

v∈N (u)

MLP(1)
(
hu,hv

))
, (8)

hu :=
∑

v∈N (u)

MLP(0)
(
xu,xv

)
. (9)

Figure 1 demonstrates how exactly the max-sum GNN aligns with f(G). Intuitively, they are well-
aligned as the MLP modules of max-sum GNN only need to learn simple constant functions to
simulate f(G). Based on Figure 1, we take the output of Module(2) as the learned representations for
max-sum GNNs when evaluating the predictive power.

Label Noise. We corrupt labels by adding independent noise ε drawn from three distributions:
Gaussian distributions with zero mean N (0, 40) and non-zero mean N (10, 15), and a long-tailed
Gamma distribution with zero-mean Γ(2, 1/15) − 30. We also consider more distributions with
non-zero mean in Appendix A.2.

Findings. In Figure 3, while the max-sum GNN is robust to zero-mean additive label noise (dotted
yellow and purple lines), its test error is much higher under non-zero-mean noise N (10, 15) (dotted
red line) as the learned signal may be “shifted” by the non-centered label noise. Yet, max-sum GNNs’
learned representations under these three types of label noise all predict the target function well when
evaluating their predictive powers with 10% clean labels (solid lines in Figure 3).

Moreover, when we plot the representations (using PCA) from a max-sum GNN trained under 100%
noise ratio with ε ∼ N (10, 15), the representations indeed correlate well with true labels (Figure 2).
This explains why the representation learned under noisy labels can recover surprisingly good test
performance despite that the original model has large test errors.

The predictive power of randomly-initialized max-sum GNNs is in Table 3 (Appendix A.1).

3.3 Instance-Dependent Label Noise

Realistic label noise is often instance-dependent. For example, an option is often incorrectly priced in
the market, but its incorrect price (i.e., the noisy label) should depend on properties of the underlying
stock. Such instance-dependent label noise is more challenging, as it may contain spurious signals
that are easy to learn by certain architectures. In this section, we evaluate the representation’ predictive
power for three different GNNs trained with instance-dependent label noise.
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Figure 3: Representations are very predictive
for a GNN well-aligned with the target function
under additive label noise. On the maximum de-
gree task, the representations’ predictive power
(solid lines) achieves low test MAPE (< 5%)
across all three types of noise for the max-sum
GNN, despite that the model’s test MAPE (dot-
ted lines) may be quite large (for non-zero-mean
noise). We average the statistics over 3 runs using
different random seeds.
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Figure 4: Representations are more predictive
for GNNs more aligned with the target func-
tion, and less predictive for GNNs more aligned
with the noise function. On the maximum node
feature task, while all three GNNs have large test
errors under high noise ratios (dotted lines), the
predictive power (solid lines) in representations
from Deepset (yellow) and max-max GNN (red)
greatly reduces the test MAPE. In contrast, the rep-
resentation’s predictive power for max-sum GNN
barely reduces the model’s test MAPE (tiny gap
between dotted and solid purple lines).

Task and Label Noise. We experiment with a new task—computing the maximum node feature:

f(G) := maxu∈G ||xu||∞. (10)

To create a instance-dependent noise, we randomly replace the label with the maximum degree:

g(G) := maxu∈G
∑

v∈N (u)

1. (11)

Architecture. We consider three GNNs: DeepSet [83], max-max GNN, and max-sum GNN. DeepSet
can be interpreted as a special GNN that does not use neighborhood information:

hG = MLP(1)
(

maxu∈GMLP(0)
(
xu

))
. (12)

Max-max GNN is a 2-layer GNN with max-aggregation and max-readout. Max-sum GNN is the
same as the one in the previous section.

DeepSet and max-max GNN are well-aligned with the target function f(G), as their MLP modules
only need to learn simple linear functions. In contrast, max-sum GNN is more aligned with g(G)
than f(G) since neither its MLP modules or sum-aggregation module can efficiently learn the
max-operation in f(G) [55, 57].

Moreover, DeepSet cannot learn g(G) as the model ignores edge information. We take the hidden
representations before the last MLP modules in all three GNNs and compare their predictive power.

Findings. While all three GNNs have large test errors under high noise ratios (dotted lines in
Figure 4), the predictive power in representations from GNNs more aligned with the target function —
DeepSet (solid yellow line) and max-max GNN (solid red line) — significantly reduces the original
models’ test errors by 10 and 1000 times respectively. Yet, for the max-sum GNN, which is more
aligned with the noise function, training with noisy labels indeed destroy the internal representations
such that they are no longer to predict the target function — its representations’ predictive power
(solid purple line) barely decreases test error. We also evaluate the predictive power of these three
types of randomly-initialized GNNs, and the results are in Table 4 (Appendix A.1).

4 Experiments on Vision Datasets

Many noisy label training methods are benchmarked on image classification; thus, we also validate
our hypothesis on image domains. We compare the representations’ predictive power between MLPs
and CNN-based networks using 10% clean labels (all models are trained until they could perfectly fit
the noisy labels, a.k.a., achieving close to 100% training accuracy). We further evaluate the predictive
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Figure 5: Synthetic Labels on CIFAR-Easy. For
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with pink color. Then the synthetic label for this
image is the location of the pink pixel/mask (i.e.,
the cat image in the above example has label 4).
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Figure 6: Sample complexity of MLPs and
CNNs on CIFAR-Easy. Both MLPs and CNNs
can achieve 100% test accuracy given sufficient
training examples, but MLPs need far fewer exam-
ples than CNNs and thus are more sample-efficient
on CIFAR-Easy.

power in representations learned with SOTA methods. Predictive power on networks that aligned
well with the target function could further improve SOTA method’s test performance (Section 4.2).
The final model also outperforms some sophisticated methods on noisy label training which also use
clean labels (Appendix A.4). All our experiment details are in Appendix B.4.

4.1 MLPs vs. CNN-based networks

To validate our hypothesis, we consider several target functions with different levels of alignments
to MLPs and CNN-based networks. All models in this section are trained with standard procedures
without any robust training methods or robust losses.

Datasets and Label Noise. We consider two types of target functions: one aligns better with
CNN-based models than MLPs, and the other aligns better with MLPs than CNN-based networks.

1). CIFAR-10 and CIFAR-100 [84] come with clean labels. Therefore, we generate two types of
noisy labels following existing works: (1) uniform label noise randomly replaces the true labels
with all possible labels, and (2) flipped label noise swaps the labels between similar classes (e.g.,
deer↔horse, dog↔cat) on CIFAR-10 [49], or flips the labels to the next class on CIFAR-100 [8].

2). CIFAR-Easy is a dataset modified on CIFAR-10 with labels generated by procedures in Figure 5
— the class/label of each image depends on the location of a special pixel. We consider three types
of noisy labels on CIFAR-Easy: (1) uniform label noise and (2) flipped label noise (described as
above); and (3) instance-dependent label noise which takes the original image classification label
as the noisy label.
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) Uniform Noise (CIFAR-10)
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Figure 7: CIFAR-10/100 with uniform and flipped label noise. Each line indicates the raw test accuracy
(dotted) and the predictive power in representations (solid) learned by a model trained across various noise ratios.
As CNN-based networks align better with image classification tasks than MLPs, their representations’ predictive
power (solid yellow and red lines) are higher than that of MLPs (solid purple lines) on most noise ratios.

Architectures. On CIFAR-10/100, we evaluate the predictive power in representations for three
architectures: 4-layer MLPs, 9-layer CNNs, and 18-layer PreAct ResNets [85]. On CIFAR-Easy, we
compare between MLPs and CNNs. We take the representations before the penultimate layer when
evaluating the predictive power for these networks.

As the designs of CNN-based networks (e.g., CNNs and ResNets) are similar to human perception
system because of the receptive fields in convolutional layers and a hierarchical extraction of more
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Figure 8: CIFAR-Easy with uniform, flipped, and instance-dependent label noise. Each line indicates the
raw test accuracy (dotted) and the predictive power in representations (solid) learned by a model trained across
various noise ratios. As MLPs align better with the target function than CNN-based networks on CIFAR-Easy,
their representations’ predictive power on MLPs (solid purple lines) are consistently better than that of CNNs
(solid yellow lines) across various noise ratios and noise types.

Table 1: Comparison of different networks’ test accuracies (%) on CIFAR-10/100. We color a test accuracy
in red if it is lower than the test accuracy from vanilla training, and we color it in green if it is higher.

Model Setting

CIFAR10 CIFAR100

Uniform noise Flipped noise Uniform noise Flipped noise

20% 50% 80% 90% 20% 40% 80% 20% 50% 80% 90% 20% 40% 80%

4-layer
FC

(MLP)

Vanilla training 51.8 41.0 32.5 25.6 56.4 52.5 43.0 20.1 12.7 7.0 4.9 20.8 15.1 4.5
DivideMix [49] 62.2 55.2 34.4 28.1 60.2 56.8 44.0 32.8 28.0 13.9 7.2 31.5 22.3 1.3

DivideMix’s Predictive Power 38.6 38.6 38.8 38.2 38.5 39.0 38.8 11.1 11.8 12.4 11.6 11.1 12.0 11.9

PreAct
ResNet18

Vanilla training 84.4 58.5 27.3 17.2 86.1 76.9 54.7 63.2 40.2 11.5 3.9 63.6 45.2 7.4
DivideMix [49] 95.7 94.4 92.9 75.4 94.0 92.1 56.2 76.9 74.2 59.6 31.0 77.0 55.2 0.2

DivideMix’s Predictive Power 96.0 94.8 93.5 83.8 94.9 94.0 93.6 76.6 73.9 60.9 39.3 76.8 74.8 76.1

9-layer
CNN

Vanilla training 80.9 55.7 27.5 17.1 85.5 74.9 54.4 55.8 33.1 8.8 3.7 59.0 42.8 8.3
DivideMix [49] 94.5 93.4 91.2 78.2 92.9 89.8 55.3 71.4 69.0 51.8 22.9 71.3 53.0 0.3

DivideMix’s Predictive Power 94.5 93.6 91.4 81.8 93.6 92.1 90.1 69.9 67.1 50.4 26.3 70.2 69.0 68.8

and more abstracted features [86, 87], CNN-based networks are expected to align better with the
target functions than MLPs on image classification datasets (e.g., CIFAR-10/100).

On the other hand, on CIFAR-Easy, while both CNNs and MLPs can generalize perfectly given
sufficient training examples, MLPs have a much smaller sample complexity than CNNs (Figure 6).
Thus, both MLP and CNN are well-aligned with the target function on CIFAR-Easy, but MLP is
better-aligned than CNN according to Theorem 2. Moreover, since the instance-dependent label
on CIFAR-Easy is the original image classification label, CNN is also aligned with this instance-
dependent noise function on CIFAR-Easy.

Experimental Results. First, we empirically verify our hypothesis that networks better-aligned
with the target function have more predictive representations. As expected, across most noise ratios
on CIFAR-10/100, the representations in CNN-based networks (i.e., CNN and ResNet) are more
predictive than those in MLPs (Figure 7) under both types of label noise. Moreover, the predictive
power in representations learned by less aligned networks (i.e., MLPs) sometimes are even worse
than the vanilla-trained models’ test performance, suggesting that the noisy representations on less
aligned networks may be more corrupted and less linearly separable. On the other hand, across all
three types of label noise on CIFAR-Easy, MLPs, which align better with the target function, have
more predictive representations than CNNs (Figure 8).

Table 2: Comparison of different networks’ test accuracies (%) on CIFAR-Easy. We color a test accuracy
in red if it is lower than the test accuracy from vanilla training, and we color it in green if it is higher.

Model Setting Uniform noise Flipped noise Spurious noise

0% 50% 80% 90% 40% 50% 80% 25% 50% 75% 90% 100%

4-layer
FC

(MLP)

Vanilla training 100.00 99.88 97.57 86.29 87.52 75.01 51.94 98.55 90.46 60.16 31.08 10.25
DivideMix [49] 98.35 10.00∗ 99.99 16.22 100.00 88.36 50.04 100.00 100.00 45.59 14.16 10.10

DivideMix’s Predictive Power 100.00 100.00 100.00 99.94 100.00 100.00 100.00 100.00 100.00 100.00 98.66 99.65

9-layer
CNN

Vanilla training 100.00 81.08 10.15 10.36 84.80 74.50 52.24 96.84 68.07 26.97 13.24 10.07
DivideMix [49] 100.00 100.00 100.00 10.00 92.75 86.33 50.60 99.96 99.82 10.45 10.09 10.14

DivideMix’s Predictive Power 100.00 100.00 100.00 10.09 99.33 98.42 96.76 100.00 99.99 14.99 10.70 10.15

∗ The phenomenon that DivideMix fails under 50% uniform noise but succeeds under 80% uniform noise is due
to the unstable behaviors of DivideMix’s division process, indicating that the predictive power in representations
could be a more stable measure of a model’s robustness, as the model can fail miserably (a.k.a., performance
close to random guessing), but its learned representation can still predict the target function well.
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We also observe that models with similar test performance could have various levels of predictive
powers in their learned representations. For example, in Figure 8, while the test accuracies of MLPs
and CNNs are very similar on CIFAR-Easy under flipped label noise (i.e., dotted purple and yellow
lines overlap), the predictive power in representations from MLPs is much stronger than the one
from CNNs (i.e., solid purple lines are much higher than yellow lines). This also suggests that when
trained with noisy labels, if we do not know which architecture is more aligned with the underlying
target function, we can evaluate the predictive power in their representations to test alignment.

We further discover that for networks well-aligned with the target function, its learned representations
are more predictive when the noise function shares more mutual information with the target function.
We compute the empirical mutual information between the noisy training labels and the original
clean labels across different noise ratios on various types of label noise. The predictive power
in representations improves as the mutual information increases (Figure 11 in Appendix A). This
explains why the predictive power for a network is often higher under flipped noise than uniform
noise: at the same noise ratio, flipped noise has higher mutual information than uniform noise.
Moreover, comparing across the three datasets in Figure 11, we observe the growth rate of a network’s
predictive power w.r.t. the mutual information depends on both the intrinsic difficulties of the learning
task and the alignment between the network and the target function.

4.2 Predictive Power in Representations for Models Trained with SOTA Methods

As previous experiments are on standard training procedures, we also validate our hypothesis on
models learned with SOTA methods on noisy label training. We evaluate the representations’
predictive power for models trained with the SOTA method, DivideMix [49], which leverages
techniques from semi-supervised learning to treat examples with unreliable labels as unlabeled data.

We compare (1) the test performance for models trained with standard procedures on noisy labels
(denoted as Vanilla training), (2) the SOTA method’s test performance (denoted as DivideMix), and
(3) the predictive power in representations from models trained with DivideMix in (2) (denoted as
DivideMix’s Predictive Power).

We discover that the effectiveness of DivideMix also depends on the alignment between the network
and the target/noise functions. DivideMix only slightly improves the test accuracy of MLPs on
CIFAR-10/100 (Table 1), and DivideMix’s predictive power does not improve the test performance
of MLPs, either. In Table 2, DivideMix also barely helps CNNs as they are well-aligned with the
instance-dependent noise, where the noisy label is the original image classification label.

Moreover, we observe that even for networks well-aligned with the target function, DivideMix may
only slightly improve or do not improve its test performance at all (e.g., red entries of DivideMix
on MLPs in Table 2). Yet, the representations learned with DivideMix can still be very predictive:
the predictive power can achieve over 50% improvements over DivideMix for CNN-based models
on CIFAR-10/100 (e.g., 80% flipped noise), and the improvements can be over 80% for MLPs on
CIFAR-Easy (e.g., 90% uniform noise).

Tables 1 and 2 shows that the representations’ predictive power on networks well aligned with the
target function could further improve SOTA test performance. Appendix A.4 further demonstrates
that on large-scale datasets with real-world noisy labels, the predictive power in well-aligned networks
could outperform sophisticated methods that also use clean labels (Table 9 and Table 10).

5 Concluding Remarks

This paper is an initial step towards formally understanding how a network’s architectures impacts its
robustness to noisy labels. We formalize our intuitions and hypothesize that a network better-aligned
with the target function would learn more predictive representations under noisy label training. We
prove our hypothesis on a simplified noisy setting and conduct systematic experiments across various
noisy settings to further validate our hypothesis.

Our empirical results along with Theorem 2 suggest that knowing more structures of the target function
can help design more robust architectures. In practice, although an exact mathematical formula for a
decomposition of a given target function is often hard to obtain, a high-level decomposition of the
target function often exists for real-world tasks and will be helpful in designing robust architectures —
a direction undervalued by existing works on learning with noisy labels.
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