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ABSTRACT

Large web-crawled multimodal datasets have powered a slew of new methods
for learning general-purpose visual representations, advancing the state of the
art in computer vision and revolutionizing zero- and few-shot recognition. One
crucial decision facing practitioners is how, if at all, to curate these ever-larger
datasets. For example, the creators of the LAION-5B dataset chose to retain
only image-caption pairs whose CLIP similarity score exceeded a designated
threshold. In this paper, we propose a new state-of-the-art data filtering approach
motivated by our observation that nearly 40% of LAION’s images contain text that
overlaps significantly with the caption. Intuitively, such data could be wasteful as
it incentivizes models to perform optical character recognition rather than learning
visual features. However, naively removing all such data could also be wasteful,
as it throws away images that contain visual features (in addition to overlapping
text). Our simple and scalable approach, T-MARS (Text Masking and Re-Scoring),
filters out only those pairs where the text dominates the remaining visual features—
by first masking out the text and then filtering out those with a low CLIP similarity
score of the masked image with original captions. Experimentally, T-MARS is the
top ranked approach on Imagenet at “medium scale” of DataComp (a data filtering
benchmark), and outperforms CLIP filtering by a margin of 6.5% on ImageNet
and 4.7% on VTAB. Additionally, we show that the accuracy gains enjoyed by
T-MARS linearly increase as data and compute are scaled exponentially.

1 INTRODUCTION

The paradigm of machine learning has shifted from training on carefully crafted labeled datasets to
training on large crawls of the web (Bommasani et al., 2021). Vision-language models like CLIP (Rad-
ford et al., 2021) and BASIC (Pham et al., 2021) trained on web-scale datasets have demonstrated
exceptional zero-shot performance across a wide range of vision tasks, and the representations that
they learn have become the de facto standard across a variety of vision domains. Recently, the Open-
CLIP (Ilharco et al., 2021) effort has aimed to independently reproduce the performance of the original
CLIP model through the curation of a similarly sized LAION-400M (Schuhmann et al., 2021) dataset.
However, they are still unable to match the performance of CLIP, suggesting that data curation could
play an important role even at web-scale. Most recently, the launch of ‘DataComp’ (Gadre et al.,
2023), a data filtering competition at various web-scale, has further streamlined efforts in this field.

Data curation at web scale raises unique challenges compared to the standard classification regime.
In web-scale datasets, we typically make only a single (or few) pass(es) over each training exam-
ple (Hoffmann et al., 2022), as it is often beneficial to see a fresh batch of data from the virtually
unbounded web-scale data. However, prior data pruning approaches that characterize the hardness of
individual data points (Mindermann et al., 2022; Maini et al., 2022) were proposed for, and evaluated
on models trained to convergence in the standard setting. More importantly, any data curation method
has to be adaptable to the multimodal contrastive learning setting, and scalable to billions of samples,
rendering several prior methods simply infeasible (Sorscher et al., 2023).
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Figure 1: (a) Given an unfiltered pool of image-caption pairs, T-MARS first masks the text present in
each image, and calculates the similarity between the masked image and the corresponding caption,
retaining only those with high similarity scores. (b) Scaling curves depicting a linear increase
accuracy as data is increased exponentially when training ViT-B-32 models on filtered data versus
training on the LAION dataset. The training compute is scaled proportionally with the pool size.

In this work, we propose a new state-of-the-art data filtering approach for large-scale image-text
datasets. We start by looking at how the image and text modalities interact in these datasets. We find
that around 40% of examples in the LAION dataset have text in the image—for example book covers
(Figure 1). This text is often the only element correlated with the caption, necessitating that the model
learns to solve an “optical character recognition” (OCR) task in order to minimize the contrastive
loss. This is wasteful if we were only interested in purely visual features which are relevant for
downstream vision tasks. Conversely, however, naively removing all such images that contain text
(e.g., similar to Radenovic et al. (2023)), discards a substantial portion of images that contain both
visual and well as text features. For example, the “vintage wine” image from Figure 1 provides useful
visual cues about what a bottle of wine looks like, despite containing overlapping text with caption.

Our simple and scalable method, Text-Masking and Re-Scoring (T-MARS) filters out examples where
the text feature dominates the visual features in their contribution to matching the corresponding
caption. Specifically, we first mask the text inside the images and then calculate the cosine similarity
score of the masked image embedding with that of the caption. Finally, we filter out images with a low
similarity score (see Figure 1a). We establish T-MARS as a state-of-the-art data filtering technique,
by extensively evaluating on 6 different subsets of LAION at exponentially increasing scales (2M to
64M), where T-MARS outperforms the most competitive baseline by as much as 3.7% on ImageNet
zero-shot accuracy. On a recently released data-filtering benchmark DataComp (Gadre et al., 2023),
T-MARS is currently the top-ranked approach on Imagenet at ‘medium scale’ and outperforms CLIP
filtering by more than 6.5%. We additionally present scaling experiments for our approach: through
experiments on pool sizes ranging from 2M to 64M, we showcase a surprising linear increase in
accuracy gains as the pool size is scaled exponentially (Figure 1). Our scaling trends show that good-
quality data filtering holds even more significance at large scales.

To develop a fundamental understanding behind our gains, we plot utility curves for various image
types (based on the features present) by modifying the ImageNet-Captions dataset (Fang et al., 2022).
Our experiments show that (a) images with both visual and text features have nearly the same utility
as those with just visual features; and (b) images with only text have the same negative utility as
mislabeled samples (§ 6), hurting downstream performance. Finally, we also introduce and benchmark
two competitive data filtering baselines, C-RHO and C-SSFT, by drawing insights from the long
line of work in the supervised classification regime on hard example mining (§ 4.2). These baselines
themselves perform better than widely used CLIP score-based filtering and notably can boost T-MARS
performance when we take an intersection of the data retained by T-MARS and the proposed baselines.

With the ML community focused on scaling up dataset sizes, our experiments most notably show that
pruning off ‘bad data’ can have 3× more utility than adding more ‘good’ samples to the dataset.
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2 RELATED WORK

Data Curation for Web-Scale Datasets Following the curation of the LAION-5B (Schuhmann
et al., 2021; 2022) datasets, there has been a growing interest in exploring improved strategies for
selecting subsets of the common crawl that help learn better visual representations. Radenovic et al.
(2023) suggested using a mixture of three metrics, namely, complexity, action, and text-match (Does
the associated caption describe an action that contains a complex object relationship? Does the
text in the image match with a part of the caption?). Retaining examples based on complexity and
action metrics is seen to hurt zero-shot performance, whereas filtering out examples with text-match
helps. This work required text-recognition to match the text with caption, which requires an order of
magnitude more compute than text detection required for our proposed masking approach. Recently
similar to the use of synthetic captions in training image captioning models (Li et al., 2023), Nguyen
et al. (2023) proposed generating new captions for web-crawled images using an off-the-shelf image
captioning model. They filter data points based on CLIP score of the images and synthetic captions.

Abbas et al. (2023) noted that web-scale datasets have a large number of near and exact duplicates,
and removed such duplicates to speed up training. CiT (Xu et al., 2023) proposed to select relevant
samples based on the match between captions and metadata (ex. class names) of downstream tasks.
However, this method does not allow learning general-purpose vision representations. Recently,
DataComp (Gadre et al., 2023) was introduced as a benchmark challenge for subset selection from
the common crawl. Filtering data based on CLIP score was the best-performing baseline approach.

Hard Example Mining in Supervised Classification In the image classification paradigm, multiple
works have focused on finding and prioritizing training on hard examples, which are filtered using
memorization and influence scores (Feldman & Zhang, 2020; Feldman, 2020; Jiang et al., 2020),
or based on the learning dynamics of different samples (Chatterjee, 2020; Mangalam & Prabhu,
2019; Shah et al., 2020; Kaplun et al., 2022; Carlini et al., 2019). More recent works studying
realistic dataset settings such as those with noisy examples discovered that prioritizing so-called
‘hard’ examples may be a suboptimal approach because it also incentivizes prioritizing the training
on mislabeled examples. Mindermann et al. (2022) proposed the RHO (robust hold-out) loss and
Maini et al. (2022) proposed the SSFT (second-split forgetting time) towards identifying mislabeled
examples. In Section 4.2, we discuss our adaptations of these ideas in the contrastive loss setting.

Vision-language pre-training Image-language contrastive pre-training on web-scale datasets has
gathered significant interest from the research community, because of the impressive zero-shot
performance on the downstream tasks (Radford et al., 2021; Ilharco et al., 2021; Yao et al., 2021;
Goyal et al., 2022; Mu et al., 2021; Li et al., 2022). CLIP (Radford et al., 2021) released the first large-
scale vision-language model, obtaining around 75% zero-shot accuracy on ImageNet. BASIC (Pham
et al., 2021) scaled up the model size, compute, and data to further drive up performance gains. In this
work, we aim to improve the zero-shot performance by only modifying the subset of data we train on.

3 WHAT CONSTITUTES THE LAION DATASET? A PILOT STUDY

An analysis of image-caption pairs in web-crawled datasets is crucial to understanding the features
in the image that models may utilize to align image and caption embeddings. To address this, we
perform a small pilot study on 500 image-caption pairs from the LAION dataset (see Appendix D.2
for why 500 samples can be a representative subset). Our analysis yields an interesting observation—
approximately 40% of the images possess “text” features (i.e. text written on the image) that correlate
with the caption. In fact, nearly 20% times such text features constitute the sole element in the image
that is correlated with the caption (eg. Book Covers). However, at the same time, a substantial
fraction of these images exhibit both text features and general visual cues. For example, an image
of a wine bottle with the word "vintage" written on it, accompanied by the caption "vintage wine".
These observations lead us to classify the data into five categories based on the correlation between
image features (text or visual) and the caption (See Figure 2):

1. Un-correlated Image and Caption (Sr; 3.7%): These pairs are essentially mislabeled, with no
correlation between the image and caption. These typically exist due to missing image links.
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Figure 2: A representation of the various types of examples in the LAION dataset. ‘<>’ reads as ‘is
correlated with’. A significant proportion of examples have some form of text overlayed on the image.

2. Correlated Visual Feature and Caption (Si; 46.7%): This is the most common category, where
the image accurately corresponds to the caption and contains no text.

3. Correlated Visual Feature and Caption, Random OCR Text (Sirt; 9.8%): Some images include
unrelated random text, such as website names. The model would typically disregard such text as
it does not contribute to aligning the embedding with the caption.

4. Both Visual Feature and OCR Text correlated with Caption (Sit; 19.1%): These images contain
both text and visual features that are correlated with the caption. For instance, in category 4 of
Figure 2, the image of Superman includes the visual representation of Superman as well as the
text "I can read: Superman," which aligns with the caption. It remains unclear whether the model
would prioritize text or visual features in such cases.

5. Correlated OCR Text and Caption (St; 20.7%): These images lack visual information and solely
consist of text heavily correlated with the caption. Many book covers constitute this type. These
images would simply incentivize the model to learn the problem of optical character recognition.

The above classification is based on our manual judgement of the correlation between the various
features and caption. In the next section, we use these findings to motivate and propose our data
curation approach, T-MARS. Note that our experiments on text detection in § 5.3 further confirm that
the estimated proportions based on our pilot study hold even at 64M scale LAION data subsets.

4 METHOD

Our pilot study in the § 3 revealed that a significant portion of the dataset consists of images for
which text is the sole feature associated with the caption. Intuitively, these images encourage the
model to solve optical character recognition in order to align the image and caption representations.
Considering our downstream goal of learning better visual representations, it is natural to filter out
such images. However, simply removing images that contain text matching the caption, is not be
optimal due to the presence of images with both visual and text features as seen in our pilot study.

Task: Consider a pretraining image-caption dataset S = {(i, t)}n, used to train CLIP (Radford et al.,
2021) style models using contrastive learning. Given a fixed computation budget (number of training
iterations), our goal is to find a subset of the dataset Ŝ ⊂ S, such that models trained on Ŝ have
higher zero-shot accuracy on downstream tasks (such as image classification) than those trained on S .

CLIP similarity score: Given image-caption pair (i, t), the CLIP score refers to the cosine similarity
between the embeddings of the image and the caption, i.e., f(i)⊤g(t)/∥f(i)∥2∥g(t)∥2.

4.1 T-MARS : TEXT-MASKING AND RE-SCORING

Based on the above hypothesis, we propose a simple and scalable approach, T-MARS , which focuses
on evaluating the similarity of only the visual features in an image with its corresponding caption.
T-MARS first masks out the text in the image and then calculates the similarity score between the
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masked image and the caption using a pre-trained CLIP model. By filtering out images with low
masked similarity scores, we retain only those samples where visual features correlate with text.

1. Text Detection: We apply a text detection algorithm (FAST (Chen et al., 2021)) that identifies
the bounding boxes of text regions in the image (Figure 1). Notably, text detection focuses on
localizing text positions in the image rather than recognizing or reading the text itself. This key
distinction allows our approach to be an order of magnitude more scalable compared to text
recognition-based filtering methods (Radenovic et al., 2023).

2. Text Masking: Mask the text regions by replacing it with average color of the surrounding pixels.

3. Re-Scoring and Filtering: Using a pre-trained CLIP model, we calculate the cosine similarity
between the masked image and the original caption. Finally, we simply filter out 50 percent of
the datapoints that have the lowest similarity scores between the masked image and the caption.
One can also choose to filter the datapoints based on a threshold score on the cosine similarity
between the masked image and original caption.

Algorithm 1 T-MARS
Input: Dataset S = {i, t}n, score function
ℓ, image masking function m
Output: Filtered Pool S̃
// Step 1: Text-Masking
for k = 0 . . . n− 1 do
ĩk = m(ik)

end for
// Step 2: Re-Scoring
for k = 0 . . . n− 1 do
sk = ℓ(̃ik, tk)

end for
α = Median ({sk}nk=1)

return S̃ = {(ik, tk) | sk ≥ α}

We filter out 50% of the pool and use a simple
inpainting technique of neigbouring pixel col-
ors to simplify design choices and they indeed
serve us well. Note that we use the correspond-
ing original images for training on the filtered
subset, and not the masked images themselves.
Algorithm Box 1 details T-MARS .

We first highlight the empirical effectiveness of
T-MARS in Section 5.3. Later, in Section 6, we
(1) show that T-MARS indeed works as intended,
filtering out the images with only text features,
while retaining those with both visual and text
features, and (2) verify that all inputs with visual
features have high positive utility and must be
retained. On the other hand, images with only
text features hurt as much as mislabeled ones.

4.2 CONTRIBUTED BASELINES

Here we briefly describe two baseline filtering approaches, which we propose by drawing insights
from hard example mining literature in the supervised training setup (a more detailed description can
be found in Appendix A). As we show later in § 5.3, our proposed baselines themselves outperform
the exisiting data curation approaches for training visual language models.

C-SSFT Maini et al. (2022) proposed the SSFT (Second-Split Forgetting Time) to identify mislabeled
examples in a dataset by fine-tuning a converged model on validation data, and observing which
examples change their predicted label the earliest. Given the absence of a converged model in
webscale learning, we use a pre-trained model from OpenCLIP (Ilharco et al., 2021) and finetune for
n = 5 epochs on the Conceptual-Captions dataset with a learning rate of 1e−5. We then calculate the
average cosine similarity for all examples during the fine-tuning (forgetting) phase and rank examples
based on the average similarity score, retaining only the highest-scoring ones.

C-RHO Mindermann et al. (2022) proposed RHO loss to prioritize the training on examples that
are worth learning, but not yet learned. In classification, at every epoch, the method calculates the
difference between the model’s training loss on a given data point and a validation model’s loss on it.
Examples with low validation loss, but high training loss are prioritized. We propose C-RHO adapted
for web-scale. (1) Rather than using the training loss, we utilize the model’s image-caption similarity
score; (2) We train our model for one epoch on the entire dataset to calculate the training loss and use a
model trained on CC3M dataset as the validation model. Then, we calculate the difference in training
and validation similarity scores to rank examples and only keep the top 50% of examples for training.
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Table 1: Zero-shot accuracies for models trained on filtered subsets of the original LAION dataset
when evaluated on a suite of 23 benchmark datasets (§ 5.2). Rows in ‘orange’ depict previous
baselines (§ 4.3), those in ‘white’ depict our contributed baselines (§ 4.2), and those in ‘green’ depict
our state-of-the-art method T-MARS (§ 4). ∩ denotes the intersection between two filtering strategies.

ResNet-50 ViT-B-32

Dataset ImageNet ImageNetScale Filtering
size

ImageNet
dist. shifts

VTAB Retrieval ImageNet
dist. shifts

VTAB Retrieval

LAION 100% 16.63 15.04 24.20 16.79 09.39 08.46 19.83 12.58
CLIP Score (@ 50%) 50.0% 15.58 14.28 23.67 16.28 09.02 08.42 20.13 12.60
Text-Match 86.4% 17.83 15.83 24.63 17.11 10.16 08.89 20.63 12.84
C-SSFT 90.0% 17.49 15.61 24.90 17.31 10.10 08.94 19.67 13.26
C-RHO 50.0% 19.46 17.39 26.45 18.60 10.87 09.34 21.22 13.93
T-MARS 50.0% 20.25 17.71 26.50 18.45 12.09 10.35 22.64 14.15
T-MARS ∩ C-SSFT 45.2% 20.81 18.28 26.49 18.96 12.56 10.60 21.96 14.36

16M

T-MARS ∩ C-RHO 27.5% 21.63 18.62 26.70 19.53 12.61 10.94 23.48 14.58

LAION 100% 21.90 18.90 27.30 20.18 14.98 12.38 23.21 16.03
CLIP Score (@ 50%) 50.0% 20.84 18.79 25.71 19.54 14.69 12.86 22.81 15.32
Text-Match 86.4% 23.80 20.70 28.74 21.41 15.96 13.26 24.45 16.44
C-SSFT 90.0% 22.87 19.85 26.10 21.00 15.55 13.34 22.95 16.40
C-RHO 50.0% 25.44 21.81 27.65 22.61 16.76 13.98 25.60 17.48
T-MARS 50.0% 26.73 22.79 29.88 22.62 18.75 15.30 26.71 16.82
T-MARS ∩ C-SSFT 45.2% 26.89 22.83 28.81 22.99 19.18 15.86 27.13 17.82

32M

T-MARS ∩ C-RHO 27.5% 27.20 23.30 30.30 22.77 19.15 15.86 26.93 18.04

LAION 100% 26.34 23.24 29.09 23.91 20.37 17.97 27.85 18.83
CLIP Score (@ 50%) 50.0% 25.66 22.83 29.05 23.36 20.07 17.27 27.55 18.33
Text-Match 86.4% 29.11 24.94 30.35 25.75 23.11 19.04 28.82 19.37
C-SSFT 90.0% 28.15 24.13 29.73 25.58 21.80 18.20 27.69 19.54
C-RHO 50.0% 28.66 24.83 30.13 19.79 23.27 19.23 27.94 21.10
T-MARS 50.0% 32.47 27.52 33.05 24.99 25.78 21.05 31.69 20.52
T-MARS ∩ C-SSFT 45.2% 32.77 27.68 33.13 26.35 25.63 21.01 30.02 21.27

64M

T-MARS ∩ C-RHO 27.5% 32.63 27.23 32.77 25.57 25.62 20.73 31.57 20.63

4.3 EXISTING BASELINES

LAION filtering The initial curation of the LAION-400M (Schuhmann et al., 2021) was based
on filtering common-crawl samples with a CLIP similarity lower than 0.281 (using OpenAI’s CLIP
ViT-B/32). Samples with non-English captions are also filtered out.

CLIP Score We also investigate the use of stronger CLIP score thresholding by retaining image-
caption pairs with high similarity to further reduce the size of the training pool by 50%. This would
mean training multiple epochs on high CLIP-scored data, as opposed to a single epoch on all the data.

Text Match Radenovic et al. (2023) proposed removing all the images that contain text overlapping
with the caption (5 continuous characters) to ensure that the model only focuses on visual features in
the dataset. We skip the caption complexity and caption action filtering part, since it is shown to have
a negative impact on accuracy in the original paper. Importantly, note that Text Match is 10× more
costly than just text masking, and the quality of text recognition in web images is so low that state-of-
art recognition algorithms are unable to identify all text in the image correctly. On the other hand,
text masking used in our work only requires detection, which is fast and accurate (Appendix D).

5 EXPERIMENTS

We evaluate various baselines (including those laid by this work) as well as our proposed approach
T-MARS across 7 different data pools ranging from 2 million to 128 million. Our results showcase a
linear scaling trend in the zero-shot accuracy gains over no data curation, highlighting the importance
of incorporating data curation in practice as the data and compute are scaled.

5.1 DATA POOLS AND TRAINING CONFIGURATION

We first experiment on six different data pools ranging from 2M to 64M samples chosen from the
LAION-400M dataset. Note that the compute budget (total training samples seen i.e. epochs ×
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Table 2: Zero-shot accuracies for various filtering strategies on the small and medium pools of
the DataComp benchmark. ∩ denotes the intersection between two filtering strategies. T-MARS
outperforms the state-of-art on DataComp by a margin of 5% on the medium scale (ImageNet).

small (12.8M) medium (128M)

Dataset ImageNet Dataset ImageNetFiltering
size

ImageNet
dist. shifts

VTAB Retrieval Avg.
size

ImageNet
dist. shifts

VTAB Retrieval Avg.

No filtering 12.8M 02.5 03.3 14.5 11.4 13.2 128M 17.6 15.2 25.9 25.8 25.8
Basic Filtering 3.0M 03.0 04.0 14.9 11.8 14.2 30M 22.6 19.3 28.4 28.5 28.5
LAION filtering 1.3M 03.1 04.0 13.6 09.2 13.3 13M 23.0 19.8 30.7 29.2 29.2
CLIP score (L/14 30%) 3.8M 05.1 05.5 19.0 11.9 16.4 38M 27.3 23.0 33.8 32.8 32.8
Text-Match 3.5M 05.7 06.2 18.9 12.0 17.3 34M 29.4 24.7 34.4 26.0 34.3
T-MARS 2.5M 06.4 06.7 20.1 13.4 17.9 25M 33.0 27.0 36.3 29.4 36.1
T-MARS ∩ C-RHO 1.5M 05.6 05.9 17.8 11.5 17.7 15M 30.3 24.9 34.9 25.3 35.7
T-MARS ∩ C-SSFT 2.3M 06.5 06.7 19.4 13.1 18.0 23M 33.8 27.4 37.1 28.5 36.2

number of batches × batch size) is kept the same as the pool size. For example, for a 32M pool
size, the total samples which can be seen during training is kept at 32M (i.e. 1 epoch over the whole
dataset). In cases where filtering methods retain a smaller subset (say 16M samples) of the data pool,
they get the advantage of running more iterations (2 epochs over 16M subset i.e. total 32M samples
seen) over the chosen subset. Finally, we also experiment on the 12.8M (small scale) and 128M
(medium scale) data pool of the recently released DataComp. We use the implementation of the
Datacomp library to standardize the training process. We train both ResNet 50 and ViT-B-32 models
with a batch size of 1024, using cosine learning rate with 200 steps of warmup at 5e−4. We use
AdamW as the optimizer for training. All the experiments were performed on NVIDIA A6000 GPUs.

5.2 EVALUATION DATASETS

We extensively evaluate zero-shot accuracies on a suite of benchmarks considered in prior work (Rad-
ford et al., 2021; Wortsman et al., 2021): (a) ImageNet: a 1000-class image classification chal-
lenge (Russakovsky et al., 2015); (b) ImageNet-OOD: Six associated imagenet distribution shifts—
ImageNetV2 (Recht et al., 2019), ImageNet-R (Hendrycks et al., 2020), ImageNet-A (Hendrycks
et al., 2019), ImageNet-Sketch (Wang et al., 2019), ImageNet-O (Hendrycks et al., 2019), and Object-
Net (Barbu et al., 2019); (c) VTAB: 12 datasets from the Visual Task Adaptation Benchmark (Zhai
et al., 2020), including Caltech101, CIFAR100, DTD, Flowers102, Pets, SVHN, Resisc45, EuroSAT,
Patch Camelyon, Clevr Counts, Clevr Distance, KITTI and Sun397; and (d) Retrieval: 3 retrieval tasks
of MSCOCO (Chen et al., 2015), Flickr (Young et al., 2014) and WinoGAViL (Bitton et al., 2022).

5.3 RESULTS

T-MARS gives impressive gains in accuracy over 23 downstream tasks of various types. Table 1
compares zeroshot accuracies of various data curation strategies under pool sizes of 16M, 32M and
64M. First, note that T-MARS consistently outperforms the baselines across the data pools. For
example, on the 64M subset, T-MARS observes 6.4% gains on ImageNet zeroshot accuracy over no
filtering and 3.7% gains over text matching. Similarly, T-MARS outperforms text-matching by 2.7%
in average accuracy over 6 ImageNet dist. shift datasets and by 2.78% in accuracy over 13 vision
tasks of the VTAB benchmark (Table 1). Results on 2M, 4M and 8M pool sizes are in Appendix E.

Complementary data subsets A very important observation from our work is that the data subsets
filtered out by the three approaches proposed in our work have large fractions of exclusive subsets
(see column data size). This observation translates into the fact that taking the intersection of data
retained by different algorithms (T-MARS , C-SSFT, C-RHO) has additive benefits.

Scaling Trends An important consideration when proposing and evaluating any data filtering
approach is whether or not the gains observed will continue to stay as the scale of data or compute
grows. We present scaling trends for various techniques in Figure 3a, 1b which show that the gains in
the zero-shot accuracy has a near linear slope as the data and compute are scaled exponentially (on
the x-axis). This is extremely promising as it suggests that rather than gains saturating, gains offered
by our method will grow logarithmically with the scale of the total data pool and compute.

Higher accuracy using half the compute and half the data We observe that selecting a better
subset of data can be of higher utility compared to adding new unfiltered samples. For example,
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Figure 3: (a) Scaling curves depicting the increase in accuracy by training ResNet-50 models on
filtered data versus training on the LAION dataset at different pool sizes. (b,c) We inspect the change
in zero-shot accuracy on the Imagenette dataset when augmenting the training pool with new samples
of various types. Images that contain visual features have similar utility, independent of the presence
of text features; whereas those with only text features hurt as much as adding mislabeled examples.

T-MARS ∩ C-RHO filtered subset from the 32M pool gives an Imagenet accuracy of 27.20% at a
compute of 32M, which is around 1% more than that of the LAION 64M data pool even at double
the compute of 64M. This highlights the importance of incorporating data curation in practice, rather
than expending additional compute on new unfiltered samples. In Section 6, we show a similar
observation—there is higher utility in filtering out bad samples in comparison to adding new samples.

State of Art on DataComp We also evaluate T-MARS on the recently released data filtering
benchmark DataComp (Table 2). For DataComp, we filter out the samples with a similarity score
(between the masked image and original caption) below 0.281. Since the first release of T-MARS
, there have been 10+ new methods on the Datacomp benchmark on the ‘medium scale’. Notably,
T-MARS and T-MARS ∩ C-SSFT are 2 of the top 3 entries on the leaderboard. Other top-performing
entries require a mixture of multiple rules to achieve comparable or worse results than T-MARS . On
the ‘medium’ scale, our proposed approach outperforms CLIP filtering by a large margin of 6.5%
and text-filtering by 4.4%. Datacomp leaderboard has another track ‘bring your own dataset’. In
this category, Nguyen et al. (2023) use the synthetic captions from BLIP (Li et al., 2023) to replace
noisy web captions. Despite the expensive process of creating new data, rather than filtering existing
subsets, T-MARS performs comparably on average, and even outperforms it by over 2% on Imagenet.
This highlights the importance of filtering out the images without visual features. Based on the
aforementioned scaling trends, our results portray an optimistic picture for practitioners with more
compute budgets to implement T-MARS at the largest scale.

5.4 T-MARS EFFECTIVELY FILTERS TARGETED IMAGES

Recall the pilot study in Section 3. T-MARS filtered out a total of 250 images (out of 500 datapoints)
and indeed works as expected by filtering out 95 of the 103 "text dominated" images, while also
successfully retaining 46 out of 96 images that exhibit both visual and text features (in contrast, text
match-based filtering retained only 21). CLIP score can be a noisy metric that is not well-calibrated
across various images. Consequently, we also observe that in addition to removing text-dominated
images, T-MARS also filtered out 76 of the 234 images with visual features only, because of their
low alignment with the caption. That said, we do note that simply filtering based on CLIP score
without masking (CLIP Score row, Table 1) performs even worse than no filtering, highlighting the
significance of incorporating masking in T-MARS . We discuss further details in Appendix D.

6 WHAT TYPE OF DATA CONFERS GOOD VISUAL REPRESENTATION?

In this section, we utilize the characterization of data types in the LAION dataset from § 3 to simulate
a similar data composition in a controlled experiment and evaluate the utility of each data type for
improving visual features.
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Figure 4: A representation of the various pools of data created for the synthetic experiments that
evaluate example utility. (a) Positive Pool: Samples in category Si are original image-caption pairs
from the Imagenet-Captions dataset. Samples in Sirt, are created by overlaying a random caption
from the LAION dataset over the original image. Samples in Sit are created by overlaying the original
caption onto the original image. (b) Negative Pool: To create a new sample for the category Sr, we
replace the image with a random image from the PACS dataset. Finally, samples in St are created by
overlaying the original caption onto a random image from the PACS dataset.

Experiment Protocol We first create a synthetic dataset of image-caption pairs similar to the
characterization of the LAION dataset in § 3. We detail the same in Figure 4 and Appendix C. Starting
with a fixed base pool of 180k samples from the imagenet-captions dataset, we add new samples
belonging to a particular data type and evaluate the accuracy of the trained model on the same. The
number of training steps is the same across all training runs, and all results are averaged across 3
seeds. Evaluation is performed on the Imagenette dataset (a 10-class subset of Imagenet) (Howard).

Results In the local neighborhood of a fixed compute and data budget, we observe that different data
types exhibit a linear relationship between the model’s zero-shot accuracy and the number of samples
from that type that are added. We define the utility of a data type at a given base configuration as
Utype = ∆acc/∆samples(in millions). Our main observations from Figure 3b and Figure 3c are:

1. Samples with only OCR feature (Ut = −0.89) are as harmful as mislabeled ones (Ur = −0.8).

2. If an image has useful visual features, then independent of the presence of useful (Uit = +0.27),
random (Uirt = +0.24), or no OCR features (Ui = +0.23), they have similar utility.

3. Removing bad examples has 3× more utility than adding new good examples. This directly
follows from the utility analysis of the OCR-only images, and those with visual features.

Overall, the above inferences further support the choices made in order to propose T-MARS. The
utility of different data types confirms that we should retain samples that have both visual and
text features in them, and naively removing all samples with text in them (such as in recent work
by Radenovic et al. (2023)) is a sub-optimal strategy. Secondly, our results suggest that while
scaling up data sizes has been a useful recipe for improving the quality of visual representation, the
community should also focus on pruning off so-called ‘bad examples’ from the datasets, because
pruning bad examples is significantly more useful than adding more examples.

7 LIMITATIONS AND CONCLUSION

We present a state-of-the-art data filtering approach, Text-Masking and Re-Scoring (T-MARS ), for
web-scale datasets. T-MARS filters out examples where text dominates visual features in images,
improving visual representation learning. Extensive evaluations on LAION and DataComp benchmark
demonstrate that T-MARS outperforms competitive baselines by accuracy gains as high as 3.3% and
6.5% respectively. Data filtering can potentially introduce bias in the filtered subset. However, our
text filtering approach is generic and does not incorporate any sort of group bias. Developing further
nuanced metrics to rank the masked images beyond the CLIP score is an interesting direction for
future work. While in this work, we create a static subset of the original corpus and perform multiple
epoch training over the same, future work may benefit by assessing the utility of different data points
in a dynamic fashion and refreshing the data pool with samples worth learning.
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A CONTRIBUTED BASELINES

In this work, apart from T-MARS , we also propose two competitive baselines C-SSFT and C-RHO
which we described briefly in § 4.2. Here, we describe both the approaches in further detail.

A.1 CONTRASTIVE SSFT (C-SSFT )

Maini et al. (2022) proposed the SSFT (Second-Split Forgetting Time) to identify mislabeled examples
in a dataset by fine-tuning a (converged) model on a validation data, and observing which examples
change their predicted label (to some other wrong label) the earliest. They show that mislabeled
examples are forgotten the first i.e. change their predicted label to a wrong one during finetuning on
some held-out validation set.

However, in the context of contrastive learning, two important differences arise—(1) there is no
notion of convergence due to training for a limited number of epochs; (2) the concept of flipping of
prediction is absent since contrastive loss only involves batch-specific loss.

To adapt the principle of forgetting to curation for web-datasets, in a scalable fashion, we propose
Contrastive-SSFT (C-SSFT ).

1. Given the absence of a converged model in webscale learning, we use a pre-trained model from
OpenCLIP (Ilharco et al., 2021) and finetune for 5 epochs on some validation dataset.

2. For each training example in the pretraining dataset, we calculate it’s average cosine similarity
in the finetuning (forgetting phase) after every epoch. Finally, we rank the examples based on
the average similarity score, retaining only the highest-scoring ones. Intuitively, examples with
the low average cosine similarity score correspond to those which are forgotten (image and
caption embedding misaligned) the earliest.

The following equation explains the procedure of estimating the forgetting scores for data points.

C-SSFT =

n∑
i=1

Mi
CC3(i, t),

where C-SSFT(i, t,S) is the score for an image-caption pair (i, t) in a dataset S, and Mn
S is the

similarity score based on a model trained for n epochs on second-split validation dataset S. P
indicates the use of a pretrained model for initialization.

Choice of validation dataset: A critical question in C-SSFT is the choice of validation dataset, on
which we finetune in the forgetting phase, as it directly influences the samples forgotten. Pretraining
samples closer to the validation set will be inherently ranked higher by the design of our approach.
For example, one can chose ImageNet as the validation set which will end up in C-SSFT ranking
samples closer to the ImageNet distribution higher, consequently giving higher ImageNet accuracy
(Table 3). However, this corresponds to leaking the downstream evaluation set distribution into the
pretraining corpus (if not the exact evaluation samples), with which we disagree philosphically. Thus,
in this work, for all the experiments on C-SSFT , we use a neutral Conceptual Captions (CC3M) as
the validation set.

Second-split Validation Data
LAION Pool Size Conceptual Captions (CC-3M) ImageNet

4M 18.5 19.45
8M 22.32 25.26

Table 3: Choice of finetuning data for the forgetting phase is a critical question. Using ImageNet
as the finetuning data can rank pretraining samples closer to ImageNet distribution higher and thus
giving higher downstream accuracy. However, this corresponds to leaking evaluation set information
in the pretraining corpus, even if not the exact samples. Thus, we use Conceptual Caption as the
finetuning dataset in this work.
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A.2 CONTRASTIVE RHO (C-RHO )

Mindermann et al. (2022) proposed RHO loss to prioritize the training on examples that are worth
learning, but not yet learned. In classification, at every epoch, the method calculates the difference
between the model’s training loss on a given data point and a validation model’s loss on it. Examples
with low validation loss, but high training loss are prioritized.

We propose C-RHO adapted for web-scale. (1) Rather than using the training loss, we utilize the
model’s image-caption similarity score; (2) We train our model for one epoch on the entire unfiltered
pool and calculate the training loss (image-caption cosine similarity) in the end. (3) We use a model
trained on Conceptual Captions (CC3M) dataset as the validation model.

Finally, we calculate the difference in training and validation similarity scores to rank examples and
only keep the top 50% of examples for training.

C-RHO(i, t,S) = M32
CC3(i, t)−M1

S(i, t), (1)

where C-RHO(i, t,S) is the score for an image-caption pair (i, t) in a dataset S, and Mn
S is the

similarity score based on a model trained for n epochs on dataset S.

B ADDITIONAL RELATED WORK

Visual Language Pre-training The field of vision-language pre-training has seen a surge of recent
methods that attempt to pre-train CLIP-style models (Chen et al., 2022; Jia et al., 2021; Li et al.,
2021; 2020; Pham et al., 2021; Wang et al., 2021).

Neural Scaling Laws Recent works have shown a power law relation of test error with model size,
compute, and training samples in the standard classification regime (Hestness et al., 2017; Zhai et al.,
2022; Hernandez et al., 2021). Others have explored neural scaling laws for large language models and
try to answer how the model size and training tokens should be scaled with compute (Hoffmann et al.,
2022; Clark et al., 2022; Kaplan et al., 2020). Recently, Sorscher et al. (2023) explored the use of data
curation in the classification settings to achieve accuracies beyond those predicted by these power laws.
In this work, we consider data curation in the multimodal vision-language model training regime.

C SYNTHETIC EXPERIMENT SETUP DETAILS

For each example j, the dataset contains image (xj), title (yj), and metadata (mj). We create
image-caption pairs, (ij , tj) = (xj ,"Title: {yj} | Metadata: {mj}" for each exam-
ple. Then, depending on the category of data that a particular example should belong to, we modify
the input in the following way:

1. Sr: (ij , tj) is replaced with (̃ij , tj) by sampling ĩ from the PACS dataset.

2. Si: (ij , tj) is used as it is.

3. Sirt: (ij , tj) is replaced with (̃ij , tj) by overlaying the first four words of a random caption
from the LAION dataset over ij .

4. Sit: (ij , tj) is replaced with (̃ij , tj) by overlaying the title corresponding to tj on ij .

5. St: (ij , tj) is replaced with (̃ij , tj) by overlaying the title corresponding to tj on a random
image sampled from the PACS dataset.

Creating Dataset Pool An important consideration for any controlled experiment is to make sure
that the effect of adding different types of examples is compared by generating variants of the same
example across different types. That is, when adding new samples from Si,Sirt,Sit, we want to
ensure that they are variants of the same source example (ij , tj). Similarly, we want to ensure the
same when we remove examples from Sr,St as well.

1. Base Data Pool: This is a sample of 40% of the Imagenet-Captions Dataset, and only contains
samples belonging to Si. An illustration of the same is presented in panel 1 of Figure 4.
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Table 4: Analysis of the fraction of image-caption pairs from different types that were retained by
each filtering algorithm studied in our paper, assessed based on a 500-example pilot study. The first
column presents the total number of images from each category in the subset of the LAION dataset.

Total Text- T-MARS T-MARSImage-Caption Category Images Match C-SSFT C-RHO T-MARS ∩ C-SSFT ∩ C-RHO

Random (Sr) 18 1.00 0.59 0.41 0.29 0.24 0.12
Visual only (Si) 234 0.99 0.89 0.60 0.67 0.60 0.37
Visual, Random OCR (Sirt) 49 0.89 0.80 0.62 0.71 0.51 0.42
Visual & OCR (Sit) 96 0.22 0.93 0.65 0.48 0.45 0.30
OCR only (St) 103 0.08 0.91 0.46 0.07 0.07 0.04

2. Negative Pool: This is a sample of 20% of the Imagenet-Captions Dataset. For each example
(ij , tj) we create two copies of the sample for the types that do not contain any visual
features—Sr,St. An illustration of the same is presented in panel 2 of Figure 4. The caption
is preserved, but the images are either substituted with a random image (as in the case of
Sr), or with a random image with the title overlayed (as in the case of St).

3. Positive Pool: This is a sample of the remaining 40% image-caption pairs from the Imagenet-
Captions Dataset. For each example (ij , tj) we create three copies of the sample for the
types containing visual features—Si,Sirt,Sit. An illustration of the same is presented in
panel 3 of Figure 4. The caption is preserved, but the images are either overlayed with a
random text (as in the case of Sirt), or with the caption title (as in the case of Sit).

Experiment Configuration The base data pool is used for all experiments. For results in Figure 3b
(experiments that evaluate the utility of images that contain visual features), we start with a base
configuration of 180k samples from Si, and 90k samples from St, and add varying sized subsets
of new samples from Si,Sirt,Sit. For results in Figure 3c (experiments that evaluate the utility of
random, and text-only images), we start with a base configuration of 180k samples from Si, and add
varying-sized subsets of new samples from Sr,St. Note that the final configuration for St is the same
as the initial configuration for the graphs in Figure 3b. This is done in order to ensure that the model
has the incentive to learn text features in order to perform well on the pre-training task. Only then
can we evaluate if adding images with text features is hurtful to the model’s learning or not? In the
absence of text-only images, we find that the model is able to easily treat the text features as random
features, defeating the purpose of the experiment. Finally, we add varying fractions of image-caption
pairs from the positive pool to evaluate the utility of each data type. We train a randomly initialized
ViT-B-32 vision encoder with a pre-trained RoBERTa text encoder for 120 steps of warmup followed
by a cosine schedule with a maximum learning rate of 1e−3. The number of training steps is the
same across all training runs (fixed at 600 steps at a batch size of 1024). Results for the same are
presented in the main paper in Figure 3.

D DATA REMOVED BY VARIOUS CURATION APPROCHES

D.1 HYPER-PARAMETER SEARCH FOR BASELINES

An important question that arises when using score-based filtering metrics like C-RHO , C-SSFT and
T-MARS is how to select the score threshold above which a sample is retained, which consequently
dictates the filtered subset size. In our experiments, for the 3 data filtering metrics above, we did a
hyper-parameter search over filtered subset size in the grid {90%, 75%, 60%, 50%} of the original
unfiltered pool size. For C-SSFT , retaining 90% samples i.e. removing only 10% of the data worked
the best, which is in line with the observations in Maini et al. (2022). For C-RHO and T-MARS , we
observe that filtering out 50% of the data worked the best. For Text-Matching, we used the criteria of
Radenovic et al. (2023), where a sample is filtered out if 5 characters in OCR match with the caption.

D.2 VALIDITY OF THE SAMPLE SIZE

Recall that our pilot study constituted only 500 samples. One may be concerned about the validity
of the estimated proportions given the small sample size. We assess the error rate of the estimated
proportions below.
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1. If the sampling was done in a random and unbiased way, 500 samples is enough to estimate
the proportions (with 95% confidence) to lie within a 5% margin of error. This can be
understood as a problem of estimating the probability of an event occurring when a random
variable is sampled from a binomial distribution. In particular, if n is the required sample size
for each category. Z is the Z-score corresponding to the desired confidence level (for 95%
confidence, Z ∼ 1.96). p is the estimated proportion of the category in the population, and E
is the margin of error (set to 5%) then n = Z2·p·(1−p)

E2 where p is the estimated proportion.
This would mean that the maximum value of n would be less than 400 (when p = 0.5).

2. Second, is the sample itself representative of the population? To make the sampling unbiased,
we take 500 random samples from the entire LAION dataset. However, this may still have a
high variance. We performed an additional study on two more randomly sampled subsets
(of 100 examples) of the LAION, and find that the estimated proportions lie within 2-3% of
the population proportion.

3. Finally, and most convincingly, we have empirical evidence to support that the estimated
proportions actually hold up for the entire dataset. For instance, the number of inputs found
by text-match algorithm for the 500 samples we chose, and the entire LAION dataset are
approximately of the same proportion (see Table 4).

D.3 VISUALIZING THE DATA REMOVED

Recall in Section 5.4, we discussed the number of samples removed by various filtering metrics from
each category in our 500 image pilot study. Table 4 lists the fraction of samples from each category
retained by various metrics. Figure 5 shows the images that were filtered out by text matching metric
but retained by T-MARS . Recall that these would correspond to the cases where both the visual and
text features are correlated with the caption. Figure 6 shows the images that were filtered out by both
metrics. Finally, in Figure 7, Figure 8, Figure 9 and Figure 10 we share some of the samples removed
by C-SSFT and C-RHO metrics.

D.4 FAILURE CASES FOR TEXT-MATCHING

Recall that text-matching requires recognizing the text, which is up to an order of magnitude more
computationally expensive than text-detection. However, additionally, we observe that text recognition
has a lot of failure cases as well, where although the text is detected correctly, the recognition process
fails to read correctly, as shown in Figure 11. In line with the previous works Radenovic et al. (2023),
we used the MMOCR library for text recognition. These failure modes may be addressed with the use
of much more expensive transformer-based text-recognition models like Text Spotting Transformers1,
albeit at a prohibitively high cost for webscales considered in this work.

E ADDITIONAL RESULTS ON LAION

Recall that in Section 5.3, we observed a linear scaling trend of zero-shot accuracies as we varied the
pool size (LAION subset) from 2M to 64M. In Table 5, we share the detailed zero-shot accuracies for
models trained on various subsets.

1https://github.com/mlpc-ucsd/TESTR
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Figure 5: Samples removed by Text-Matching but retained by our proposed approach T-MARS .
These correspond to the images where both the visual and text features are correlated with the caption

.
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Figure 6: Samples removed by both text-matching and T-MARS . Here only the text features are
correlated with the caption

.
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Figure 7: Samples with the lowest score (and filtered out) based on the C-SSFT metric
.
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Figure 8: Additional (random) samples filtered out by the C-SSFT metric
.
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Figure 9: Samples with the lowest score (and filtered out) based on the C-RHO metric
.
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Figure 10: Additional (random) samples filtered out by the C-RHO metric
.
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Figure 11: Some failure cases of text-matching, due to failure of the text recognition process. All
these images have text overlapping with the caption and should have been filtered out ideally, but end
up being retained as the text recognition fails to read the text correctly.

.
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Table 5: Zero-shot accuracies for models trained on filtered subsets of the original LAION dataset
when evaluated on a suite of 17 benchmark datasets (§ 5.2). Rows in ‘orange’ depict previous
baselines (§ 4.3), those in ‘white’ depict our contributed baselines (§ 4.2), and those in ‘green’ depict
our state-of-the-art method T-MARS (§ 4). ∩ denotes the intersection between two filtering strategies.

ResNet-50 ViT-B-32

Dataset ImageNet ImageNetScale Filtering
size

ImageNet
dist. shifts

VTAB Retrieval ImageNet
dist. shifts

VTAB Retrieval

LAION 100% 02.57 03.50 14.82 09.27 01.21 02.04 13.42 08.23
CLIP Score (@ 50%) 50.0% 02.46 03.62 14.61 10.09 01.26 02.40 13.75 07.92
Text-Match 86.4% 03.05 03.78 15.97 09.28 01.35 02.45 13.05 08.90
C-SSFT 90.0% 02.85 03.65 15.41 09.64 01.38 02.38 14.96 08.76
C-RHO 50.0% 03.70 04.41 15.67 10.84 01.46 02.54 14.85 09.25
T-MARS 50.0% 03.51 04.18 14.86 10.87 01.40 02.41 12.98 09.77
T-MARS ∩ C-SSFT 45.2% 03.62 04.48 16.59 09.98 01.60 02.61 14.72 09.59

2M

T-MARS ∩ C-RHO 27.5% 03.70 04.58 16.80 10.20 01.72 02.77 14.79 09.63

LAION 100% 07.06 07.06 17.79 11.72 03.05 03.79 16.18 10.00
CLIP Score (@ 50%) 50.0% 06.86 07.40 18.07 11.95 03.20 04.00 15.71 09.36
Text-Match 86.4% 07.66 07.39 18.42 12.28 03.51 04.30 16.70 09.60
C-SSFT 90.0% 07.64 07.44 18.94 12.22 03.42 04.19 16.66 09.73
C-RHO 50.0% 09.12 08.67 20.73 13.73 03.60 04.34 16.38 10.63
T-MARS 50.0% 08.77 08.69 20.94 13.67 04.04 04.64 17.10 11.59
T-MARS ∩ C-SSFT 45.2% 09.30 08.80 19.12 13.45 04.22 04.63 17.04 11.27

4M

T-MARS ∩ C-RHO 27.5% 09.75 09.20 21.41 14.17 04.28 05.05 16.20 11.69

LAION 100% 11.62 10.77 21.74 14.02 05.57 05.81 17.32 10.95
CLIP Score (@ 50%) 50.0% 11.13 10.60 21.87 13.88 05.80 05.92 17.45 10.90
Text-Match 86.4% 12.38 11.35 22.64 14.03 06.16 06.19 17.89 10.94
C-SSFT 90.0% 12.19 11.36 20.88 14.54 05.92 06.22 17.60 11.21
C-RHO 50.0% 13.86 12.94 22.12 15.90 06.55 06.43 18.55 11.77
T-MARS 50.0% 14.10 12.97 22.20 16.05 07.20 07.28 19.02 12.83
T-MARS ∩ C-SSFT 45.2% 14.65 13.01 22.35 16.10 07.54 07.22 19.18 12.66

8M

T-MARS ∩ C-RHO 27.5% 15.60 13.09 22.85 16.33 07.65 07.39 18.63 13.17

LAION 100% 16.63 15.04 24.20 16.79 09.39 08.46 19.83 12.58
CLIP Score (@ 50%) 50.0% 15.58 14.28 23.67 16.28 09.02 08.42 20.13 12.60
Text-Match 86.4% 17.83 15.83 24.63 17.11 10.16 08.89 20.63 12.84
C-SSFT 90.0% 17.49 15.61 24.90 17.31 10.10 08.94 19.67 13.26
C-RHO 50.0% 19.46 17.39 26.45 18.60 10.87 09.34 21.22 13.93
T-MARS 50.0% 20.25 17.71 26.50 18.45 12.09 10.35 22.64 14.15
T-MARS ∩ C-SSFT 45.2% 20.81 18.28 26.49 18.96 12.56 10.60 21.96 14.36

16M

T-MARS ∩ C-RHO 27.5% 21.63 18.62 26.70 19.53 12.61 10.94 23.48 14.58

LAION 100% 21.90 18.90 27.30 20.18 14.98 12.38 23.21 16.03
CLIP Score (@ 50%) 50.0% 20.84 18.79 25.71 19.54 14.69 12.86 22.81 15.32
Text-Match 86.4% 23.80 20.70 28.74 21.41 15.96 13.26 24.45 16.44
C-SSFT 90.0% 22.87 19.85 26.10 21.00 15.55 13.34 22.95 16.40
C-RHO 50.0% 25.44 21.81 27.65 22.61 16.76 13.98 25.60 17.48
T-MARS 50.0% 26.73 22.79 29.88 22.62 18.75 15.30 26.71 16.82
T-MARS ∩ C-SSFT 45.2% 26.89 22.83 28.81 22.99 19.18 15.86 27.13 17.82

32M

T-MARS ∩ C-RHO 27.5% 27.20 23.30 30.30 22.77 19.15 15.86 26.93 18.04

LAION 100% 26.34 23.24 29.09 23.91 20.37 17.97 27.85 18.83
CLIP Score (@ 50%) 50.0% 25.66 22.83 29.05 23.36 20.07 17.27 27.55 18.33
Text-Match 86.4% 29.11 24.94 30.35 25.75 23.11 19.04 28.82 19.37
C-SSFT 90.0% 28.15 24.13 29.73 25.58 21.80 18.20 27.69 19.54
C-RHO 50.0% 28.66 24.83 30.13 19.79 23.27 19.23 27.94 21.10
T-MARS 50.0% 32.47 27.52 33.05 24.99 25.78 21.05 31.69 20.52
T-MARS ∩ C-SSFT 45.2% 32.77 27.68 33.13 26.35 25.63 21.01 30.02 21.27

64M

T-MARS ∩ C-RHO 27.5% 32.63 27.23 32.77 25.57 25.62 20.73 31.57 20.63
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Original Image Masked Image

Figure 12: Comparing the original and the masked image. Text detection and masking in general
doesn’t seem to cause major aberrations in the patches that have useful visual features.

.

F SOME EXAMPLES OF ORIGINAL V/S MASKED IMAGE

In Figure 12, we give some examples of original and masked image. The text-detection algorithm in
general gives tight bounding boxes around the area with text. This ensures that image patches with
useful visual features do not suffer a major aberration. However, developing better ways of masking
the text is an interesting (orthogonal) direction of future work.
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Figure 13: Change in the distribution of CLIP similarity scores, before and after masking the text
(OCR) over the images. (a) Distribution of scores of images with visual features only (Category 2,
§ 3); (b) Distribution of scores of images with text features only (Category 5, § 3)

G DISTRIBUTION OF SIMILARITY SCORES AFTER MASKING

T-MARS calculates the CLIP similarity score of data points after masking the text (OCR) over the
images, and filters out image-caption pairs that no longer have high similarity. The goal of this
masked-evaluation is to remove images that have only text features in them. But does the proposed
masking strategy actually lower the CLIP score of the examples as intended? Recall our 500 example
pilot study where we hand-labeled examples into various categories, like those with only visual
features or those with only text features (§ 3). We calculated the CLIP similarity score of these image-
caption pairs, before and after masking the text in the respective images. Figure 13a and Figure 13b
show the histogram for the distribution of scores, before and after masking for images with visual
features only (Category 2, § 3) and images with text features only (Category 5, § 3).

Our observations indicate that after masking, the CLIP score of images with just text features (OCR)
drops significantly (indicating the will be filtered out by T-MARS). At the same time, CLIP scores of
images with only visual features stays nearly the same. This demonstrates the efficacy of the filtering
method for removing samples with only text features.

H DISCUSSION: CIRCUMVENTING TEXT FEATURE LEARNING

In this work, we consider a straightforward strategy of circumventing text feature learning by
removing samples where the image-caption alignment was dominated by the text feature in the image
(T-MARS ). Identifying other ways to circumvent text features remains an open problem for future
work, and we briefly discuss some other strategies in this section.

Removing all inputs with text features Previous work by Radenovic et al. (2023) considers the
simple idea of removing any image-caption pair where the image contains any text features that are
correlated with the caption. This is a natural way to avoid learning of text features (OCR), however,
removing all such image-caption pairs is suboptimal to model training as it also removes samples
from the category that contains both image and text features as discussed in Section 5.3 under the
TextMatch algorithm.

Re-captioning Web-datasets Another alternate way to be able to utilize the knowledge contained
in image-caption datasets, yet not learn text features is to re-caption the input text such that it does not
utilize the OCR in the text in the image. This can be operationalized in a variety of ways—(i) identify-
ing text OCR and modifying the input text to not contain text overlap with the identified text by using
a paraphrase, (ii) using an off-the-shelf image-captioning model to provide captions for inputs on
the web. The latter approach was, in fact, used in follow-up work of Nguyen et al. (2023) where the
authors use a BLIP Li et al. (2023) model to provide synthetic captions for the web data, and subse-
quently pre-train their model on a mixture of synthetic and real captions. One reason why this method
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works is that the original BLIP model was trained on datasets such as MS-COCO and NoCaps where
the input images typically do not contain OCR text features. When analyzing the captions generated
by the BLIP model as provided by the authors at https://huggingface.co/datasets/
thaottn/DataComp_medium_pool_BLIP2_captions, we found that the BLIP model gen-
erated captions do not contain the OCR text in the images. This can be a useful strategy for circum-
venting text feature learning, however, as discussed in Section 5.3 we observe T-MARS performs 2%
better than this approach on zero-shot evaluation on the Imagenet Dataset.

Inpainting text features in image Just like modifying the text component of an image-caption pair,
we may also alternately modify the input images to not contain the OCR. For the purposes of our
work (T-MARS ), we only wanted to calculate the CLIP score post-masking and hence used a basic
in-painting algorithm of in-filling the text region with the average score of the neighboring pixels.
However, rather than throwing away the input samples, we may use generative models to in-paint
the OCR regions and train on these image-caption pairs. This remains an avenue for future work
to explore. However, we also have a few reservations about this approach. In particular, we chose
not to train on masked images to avoid distribution shifts and loss in performance potentially due
to the aberrations introduced by masking. Moreover, there is no reason to train on masked images
from Category 5 (samples with only text features) because they will be data points where the text
and the (now inpainted) input are uncorrelated. As far as Category 3 is concerned (samples with
random text features, but correlated vision features), the uncorrelated texts are already ignored by the
model (as also seen in Section 6). Finally, let us come to the most important category in question
(Category 4 with both correlated text and visual features). Currently, we retain the unmasked input
in such categories (that have both text and visual features). One proposal would be to only retain
the visual features in these. On the flip side, keeping the text features can be helpful for retaining
an understanding of certain visual features as well, such as brands and trademark logos (such as the
Superman logo) which can be in-part textual, but also have a distinct visual pattern. An infilling
algorithm will mask these patterns and potentially hinder the model’s knowledge.

Overall, there remain various exciting avenues for alternatively circumventing text feature learning in
vision-language models. Our work on T-MARS proposes one strong baseline for the same, and we
hope that future work can build on our work and the insights provided in this discussion.
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