
AdaptiveStep: Automatically Dividing Reasoning Step through Model
Confidence

Yuliang Liu * 1 2 Junjie Lu * 3 Chaofeng Qu 4 Zhaoling Chen 1 Zefan Cai 5 Jason Klein Liu 4 Chonghan Liu 4

Yunhui Xia 4 Li Zhao 6 Jiang Bian 6 Chuheng Zhang 6 Wei Shen 4 Zhouhan Lin 2 7

Abstract
Current approaches for training Process Reward
Models (PRMs) often involve deconposing re-
sponses into multiple reasoning steps using rule-
based techniques, such as using predefined place-
holder tokens or setting the reasoning step’s
length to a fixed size. These approaches overlook
the fact that certain words don’t usually indicate
true decision points. To address this, we propose
AdaptiveStep, a method that divides reasoning
steps based on the model’s confidence in predict-
ing the next word, offering more information on
decision-making at each step, improving down-
stream tasks like reward model training. More-
over, our method requires no manual annotation.
Experiments with AdaptiveStep-trained PRMs in
mathematical reasoning and code generation show
that the outcome PRM achieves state-of-the-art
Best-of-N performance, surpassing greedy search
strategy with token-level value-guided decoding,
while also reducing construction costs by over
30% compared to existing open-source PRMs.
We also provide a thorough analysis and case
study on its performance, transferability, and gen-
eralization capabilities. We provide our code on
https://github.com/Lux0926/ASPRM.

1. Introduction
Large language models (LLMs) have demonstrated excep-
tional performance across various tasks. However, even
most advanced LLMs struggle to generate correct solutions
when facing complex reasoning problems, such as mathe-

*Equal contribution 1Nanjing University 2Shanghai Innovation
Institute 3University of Technology Sydney 4Independent
5UW-Madison 6MSRA 7Shanghai Jiaotong University. Corre-
spondence to: Chuheng Zhang <zhangchuheng123@live.com>,
Wei Shen <shenwei0917@126.com>, Zhouhan Lin
<lin.zhouhan@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Manually Divided Steps

Rule-based Divided Steps

AdaptiveStep

Automatic

Highly informative
Automatic
General

Highly informative
Automatic
General

Highly informative
Automatic
General

Informative

intro main

Figure 1: Rule-based reasoning step dividing (e.g., using
line breaks or a fixed number of tokens) is automated but
results in low informativeness at the end of the step and is
difficult to apply in domains that are hard to define rules. In
contrast, manual step division provides high informativeness
but is costly to scale and heavily reliant on the experts’ do-
main knowledge. AdaptiveStep, which divides steps based
on model confidence, addresses these challenges by offering
automation, efficiency, high informativeness, and applica-
bility across various domains.

matical reasoning and code generation tasks (Huang et al.,
2024; Tyen et al., 2024; Mirzadeh et al., 2024; Shen &
Zhang, 2024). To address these challenges using the step-
wise Chain of Thought (CoT) approach (Wei et al., 2023),
various strategies have been proposed by the research com-
munity (Qin et al., 2024; DeepSeek-AI et al., 2025; Team
et al., 2025). One promising method is training Process
Reward Models (PRMs), which offer more fine-grained
rewards at each reasoning step compared to Outcome Re-
ward Models (ORMs), guiding the LLM to generate higher-
quality responses than the original model output (Shao et al.,
2024; Sessa et al., 2024; Gao et al., 2024).

However, as illustrated in Figure 1, existing PRMs typically
divide a model’s response into multiple reasoning steps us-
ing rule-based methods, such as chopping with a pre-defined
symbol. This results in a series of coarse reasoning step divi-
sions that lack decision-making information at steps (Wang
et al., 2024a; Lightman et al., 2023). Moreover, rule-based
methods also face challenges when applied to tasks where

1

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

the steps are difficult to define. Some studies have explored
the application of PRMs at the level of individual tokens or
a fixed number of tokens (Lee et al., 2024; Luo et al., 2024);
nevertheless, balancing annotation costs with the granular-
ity of division remains a challenge. Although studies have
demonstrated the advantages of PRMs over ORMs, these
limitations, along with the high building costs, continue
to constrain the broader adoption of PRMs (DeepSeek-AI
et al., 2025).

To address these issues, we aim to find an automatic step-
dividing method to divide reasoning solutions into more
informative steps, in contrast to the coarse division by rule-
based methods. As suggested by Kahneman (2011), the
cognitive cost of reasoning varies depending on the dif-
ficulty of the decision or task. Additionally, a statistical
analysis of common errors in reasoning tasks conducted
by Roy & Roth (2016) revealed that many errors stem from
incorrect numerical calculations or the misapplication of
words, particularly verb misuse. This suggests that certain
types of words or positions in the reasoning process require
more attention.

Therefore, our goal is to divide the reasoning responses at
these key positions to ensure the valuable costs during infer-
ence and training. We find that by pivoting on the prediction
confidence, the model can automatically identify the critical
breaking points in the reasoning process. Accordingly, we
propose AdaptiveStep, a method that divides reasoning steps
based on model confidence (Hills & Anadkat, 2024). We
conduct experiments on the PRM scenario, with the result-
ing PRM named the AdaptiveStep Process Reward Model
(ASPRM). This dividing method yields highly informative
step divisions, enabling downstream tasks (e.g., processing
the reward model) to enhance performance.

In our experiments, we assess the effectiveness of ASPRM
in mathematical reasoning and code generation tasks using
the Best of N (BoN) evaluation. For the mathematical rea-
soning task, we evaluate on GSM8k (Cobbe et al., 2021) and
MATH500 (Lightman et al., 2023) dataset. For the code gen-
eration task, we collect a dataset named LeetCodeDataset
containing 1,940 problems from LeetCode, along with the
corresponding Python solutions and test cases, which in-
clude training and test splits to train and evaluate the PRM
and further assess it on the Livecodebench (Jain et al., 2024).

Additionally, the most widely used PRM step-dividing
method relies on fixed symbols, limiting the accuracy of the
more fine-grained judgment ability of PRMs. We find that
ASPRM can provide precise rewards to perform Token-level
Value-guided Decoding (TVD) for reasoning tasks, offering
another evaluation method by integrating PRM directly into
the model inference process.
In mathematical reasoning tasks, ASPRM outperforms pre-
vious open-source methods in BoN evaluation. In addition,

compared to greedy decoding, TVD further improves the
final performance by 3.15% and 14.4% on the GSM8k and
MATH500 datasets, respectively, while incurring less than
70% of the training data construction costs compared to the
open-source baselines. In code generation tasks, ASPRM
shows superior performance and robustness in BoN evalua-
tion compared to ORM. It outperforms greedy decoding by
6.54% and 3.70% on the two datasets in TVD evaluation.

Our main contributions are as follows:

1. We propose an automatic, efficient, general, and highly
informative reasoning step-dividing method, Adap-
tiveStep, along with its corresponding PRM imple-
mentation.

2. Our results show that ASPRM is currently the state-
of-the-art PRM, empirically simple and low-cost train-
ing data construction. Furthermore, the PRM built
using AdaptiveStep demonstrates stronger discrimina-
tive power at the token level compared to greedy search
and existing methods. Additionally, we analyze and
explore several properties of ASPRM, including trans-
ferability, domain generalization, and division features
of the training data.

3. We open-source a collection of competition-level cod-
ing problems from LeetCode, along with test cases,
and provide an easy-to-use sandbox. We also release
the dataset, models, and our code.

2. Related Works
Step-wise methods for LLMs reasoning: Chain-of-
Thought (CoT) (Wei et al., 2023) reasoning has become
a foundational approach in LLM reasoning. Scaling the
number of tokens and steps in test time to tackle complex
problems has become common practice (Team et al., 2025;
DeepSeek-AI et al., 2025). In this paradigm, the model gen-
erates an intermediate step-wise solution before providing
a final answer. As expectations for model performance on
more complex tasks increase, methods for step-wise ver-
ification and alignment have also advanced rapidly, like
PRM (Zhang et al., 2024; Wang et al., 2024a; Yuan et al.,
2024) and step-wise RLHF (Chen et al., 2024; Lai et al.,
2024; Wang et al., 2024b). Inference time step-wise meth-
ods also significantly enhance the model’s reasoning capa-
bilities, such as Monte Carlo methods (Feng et al., 2023),
step-wise self-consistent (Zhao et al., 2024), step-wise beam
search (Lee et al., 2024), and flexible divide-and-conquer
methods (Yao et al., 2023; Hao et al., 2023) for planning.

PRM for LLM reasoning and step-dividing methods:
The importance of intermediate reasoning steps in LLMs
for complex tasks was highlighted by Uesato et al. (2022),

2

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence
methodv23

predict confidence

generated token

Queries LLM Confidence distribution

Step1: Sample & Calculate threshold

Step2: Dividing step & Rollout

Sample

c < �

Step dividing

2% steps

Calculate threshold �

predict confidence

generated token

Threshold �

���1 �2 ⋯

Rollout

+ �2 ⋯�1 ��
+ -+

question

Janet pays $40/hour for 3 hours per
week of clarinet lessons and $28/hour
for 5 hours a week of piano lessons.
How much more does she spend on
piano lessons than clarinet lessons in
a year?
answer

First, we need to calculate her cost for
the music lessons.
……
She spends 28 * 5 (40.6) = 140 on
piano lessons per week.\n (65.7)
Ok, now we just need to compute the
cost. \n (83.3) Janet spends 120 + 140
= 260 on music (47.9) lessons per
week.
……
The answer is: 13520 (39.2).

Threshold τ = 55.7
Unnecessary step division

(b) Diff of Rule-based method
and AdaptiveStep

(a) ASPRM data construction pipeline

Figure 2: Method overview. a) ASPRM Training Data Construction Pipeline. Step 1: Sample from the dataset of a given
domain, collecting confidence scores and samples for the training data. Then, accumulate the confidence distribution of
all samples and determine the threshold. Step 2: Divide reasoning steps based on the threshold and label the steps using
rollout. b) The difference between Rule-based method and AdaptiveStep division. The Rule-based method divides
the reasoning process using predefined symbols or fixed token counts (e.g., line breaks, as shown in the figure), while
AdaptiveStep divides reasoning steps based on model confidence. We observe that the model tends to divide reasoning steps
at key decision points, such as within mathematical expressions, at noun selections, and when determining the final answer.
In contrast, we find that the confidence at line breaks is particularly high.

which led to the development of Process Reward Models
(PRMs) to enhance LLM reasoning by providing feedback
at each step. Lightman et al. (2023) showed that step-by-step
feedback improves reasoning reliability and reduces logical
errors. Similarly, the OmegaPRM (Luo et al., 2024), utiliz-
ing Monte Carlo Tree Search (MCTS), improves mathemat-
ical reasoning performance by efficiently gathering process
supervision data. Wang et al. (2024a) proposed a heuristic
annotation method, reducing PRM annotation costs. Step-
level reward models (Ma et al., 2023) have demonstrated
that feedback at each step helps guide LLMs to more optimal
solutions. Automated process verifiers (Setlur et al., 2024)
further enable large-scale deployment of PRMs, improving
LLM alignment. Several works have explored PRM appli-
cations in reasoning tasks (Xia et al., 2024; Ma et al., 2023;
Luo et al., 2023; Snell et al., 2024). However, the predomi-
nant step-dividing method used in PRMs or other step-wise
methods remains rule-based, such as using pre-defined sym-
bols, which results in sentence-level PRMs. Some works
have developed token-level PRMs by dividing at fixed token
intervals, but the high annotation cost remains a limita-
tion (Lee et al., 2024; Luo et al., 2024).

Guided decoding: Standard decoding in Large Language
Models (LLMs) typically involves sampling strategies to
select the next token. Guided decoding has been widely ex-
plored to improve performance and constrain text generation.

Chaffin et al. (2021) proposed incorporating a value model
into the LLM decoding process, using MCTS (Coulom,
2006) to constrain output without fine-tuning. Liu et al.
(2024) integrated the Proximal Policy Optimization (PPO)-
based value network with MCTS, enabling collaboration
with the policy network during inference. In the code gen-
eration domain, Planning-Guided Transformer Decoding
(PG-TD)(Zhang et al., 2023) uses planning algorithms for
lookahead search to guide the transformer in producing
more optimal code. Nie et al. (2024) employed a proxy
code LLM to build an offline token-scoring model that real-
locates token probabilities to guide decoding. Additionally,
several works have applied value functions to guide token-
level decoding (Dathathri et al., 2019; Choi et al., 2023; Xu
et al., 2024; Krause et al., 2020). In this paper, we use PRM
as a value function to directly guide the decoding process
of large language models, aiming to validate the effective-
ness of PRM and explore additional potential applications
of PRM.

3. Methods
In this section, we first introduce how AdaptiveStep divides
responses into reasoning steps, and then present how a PRM
can be trained on these data, as shown in Figure 2. At last,
we introduce Token-level Value-guided Decoding (TVD)
that can get better responses using the trained PRM.

3

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

22.3

67.7

91.2

85.6

50.3

37.773.282.477.360.4
1 + 1 = 3

5

4

2

7

PRM
88.365.559.771.1

\n , 3 *

22.3

87.7

44.5

71.1

63.2

46.1
1
3

2

6

9

PRM
72.966.8

= 6

Top-k candidates Top-k candidatesToken
confidence

PRM
score

threshold �=55.7

PGIv4

Figure 3: We illustrate Token-level Value-guided Decoding (TVD) with a simple example. The green token denotes the
selected tokens, while the gray token indicates the tokens that were not selected. The question is 3 * (1 + 1) = ?, and the
correct output is 6. In this case, the model exhibits low confidence (where cy < τ) when calculating the result of 1+1, and
subsequently determines which number to multiply by 3. The PRM should select the best token based on its judgment to
arrive at the correct final answer. As shown in the top-left corner, for each token, the middle box represents the token itself,
the bottom box shows the predicted confidence, and the box on the right displays the PRM score. The red confidence score
indicates that the confidence of the Top-1 predicted candidate is lower than the threshold.

3.1. AdaptiveStep

Given a question q ∈ Q, we can generate N responses
with temperature-based random sampling using the lan-
guage model π. We denote generated responses as
{s1, s2, · · · , sN} with sn ∈ S. (For ease of notation, we
omit the dependence of the response sn on q.) In this way,
we obtain a set of question-response pairs (Q× S).

To divide the responses into reasoning steps, we use the
probability of the sampled token as the metric for model
confidence (Hills & Anadkat, 2024). Then we determine
a threshold τ , which is based on a certain proportion of
the token count, such that the tokens below this threshold
become a breaking point.

Specifically, the model confidence can be written as

csni = p(sni |π, q, sn<i) (1)

where we use sni and sn<i to denote the i-th token and the
tokens prior to the i-th token in the response, respectively.
Low model confidence at the i-th token indicates that the
model is hard to determine the token selection at the i-
th position, and therefore, this position may become the
starting point of a new reasoning step.

According to the above procedure, we divide the response
sn into K reasoning steps sn = {r1, r2, ..., rK} where the
last token within each reasoning step is associated with
below-the-threshold model confidence.

3.2. PRM Training

To train a PRM based on the question-response pairs with
divided reasoning steps, we first need to estimate the target
reward for each reasoning step and then train a PRM that
can predict the reward.

To estimate the target reward, we mainly follow the heuris-
tic rollout method proposed by Wang et al. (2024a). We
rollout the response generation process J times starting
from each reasoning step, resulting in rollouts denoted as
{p, r1, ..., rk, tj}k∈[K],j∈[J], where tj is the j-th trajectory
starting from a partial response.

Then, we estimate the target reward of this step based on
the correctness of any decoded solution. We use hard es-
timation (HE) to estimate the reward for the step rk. HE
indicates whether any of the responses starting from the
current partial response can reach a correct answer. For
our implementation, in the code generation tasks, we define
correctness as whether the solution can pass all test cases; in
the math reasoning tasks, we define correctness as whether
the answer matches the ground truth. Formally, the target
reward can be estimated as

rek =

{
1, ∃j ∈ [J], {r1, ..., rk, tj} is correct
0, otherwise

(2)

With the target rewards estimated based on the rollouts, we
can train PRM using the following loss:

Lθ
PRM = −

K∑
k=1

(rek log r
θ
k + (1− rek) log(1− rθk)), (3)

where rek is the target reward and rθk := Rθ(p, r1, · · · , rk)
denotes the reward predicted by the PRM Rθ.

3.3. Token-level Value-guided Decoding

The TVD strategy leverages the PRM to guide token selec-
tion during language model decoding. Specifically, when

4

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

Bo 1 Bo 4 Bo 8 Bo 16 Bo 32 Bo 64
Bo Values

82

84

86

88

90

92

Pe
rfo

rm
an

ce
 (%

)

MetaMath-Llama GSM8k

Bo 1 Bo 4 Bo 8 Bo 16 Bo 32 Bo 64
Bo Values

36

38

40

42

44

46

48

Pe
rfo

rm
an

ce
 (%

)

MetaMath-Llama MATH500

(a) (b) (c)

Bo 1 Bo 4 Bo 8 Bo 16 Bo 32
Bo Values

80

85

90

Pe
rfo

rm
an

ce
 (%

)

MetaMath-Mistral GSM8k

Bo 64 Bo 1 Bo 4 Bo 8 Bo 16 Bo 32
Bo Values

30

35

40

Pe
rfo

rm
an

ce
 (%

)

MetaMath-Mistral MATH500

Bo 64

(d)

Figure 4: BoN results for the math tasks. We evaluate all PRMs on: (a) MetaMath-Llama generated GSM8k candidate
solutions; (b) MetaMath-Mistral generated GSM8k candidates; (c) MetaMath-Llama generated MATH500 candidates; and
(d) MetaMath-Mistral generated MATH500 candidates. The ”-L” and ”-M” suffixes denote the base models (Llama and
Mistral, respectively). We report the evaluation results based on the released versions of other works.

the model encounters a low confidence score (Top-1 proba-
bility cp < τ) in decoding, it triggers the PRM to evaluate
the tokens associated with the highest M probability given
by the policy model π: s∗i = {s1i , s2i , . . . , sMi }.

Among these candidates, the PRM selects the token it con-
siders the best based on its learned reward estimation mech-
anism:

si = arg max
smi ∈s∗i

Rθ (p, s<i, s
m
i) , (4)

Where si is the token selected as the optimal choice for the
low-confidence decoding position, and Rθ(·) represents the
score given by the PRM.

4. Experiments and Analysis
In this section, we first show our experiment setup, including
the dataset usage, model selection, baselines, metrics, and
parameter setup. We then present the experimental results,
followed by an analysis of the transferability, generalization,
and features of the division.

4.1. Experiments Setup

Datasets and models: We use MetaMathQA (Yu et al.,
2023) to train Mistral-V0.1 (Jiang et al., 2023) (Mistral),
which is termed MetaMath-Mistral, to serve as π in math
domain, and use LeetCodeDataset1 training data to train
Deepseek-Coder-Base (Guo et al., 2024), which is called
LCD-DS to serve as π in the code domain. To get the math

1To train ASPRM for code tasks, we collected 1,745 prob-
lems from the LeetCode problems as our training set and
175 problems as the test set. The test cases for these data
are manually collected from the LeetCode website (exclud-
ing the test cases within the problem). The solutions are
gathered from GitHub open-sourced repositories, mainly from
https://github.com/doocs/leetcode, checked by GPT-4, and cross-
verified with the test cases.

PRM training data, we sample the MATH and GSM8k train-
ing datasets using MetaMath-Mistral and sample LeetCode-
Dataset training data using LCD-DS to generate code PRM
training data. For evaluation, we use MATH500, the GSM8k
test set, the LeetCodeDataset test set, and LiveCodeBench-
V4 (Jain et al., 2024). To align with previous work and
conduct further analysis, we train two math PRMs: ASPRM-
L (based on Meta-Llama-3.1-8B (Grattafiori et al., 2024),
which is called Llama in the following) and ASPRM-M
(based on Mistral-V0.1), both with MetaMath-Mistral gen-
erated training data. And one code PRM: ASPRM-D (based
on DeepSeek-Coder-Base) with LCD-DS generated data.

Baselines and metrics: There are several open-sourced
PRMs in the math domain, we select Math-Shepherd (Wang
et al., 2024a) and ER-PRM (Zhang et al., 2024) as our base-
lines. For the code domain, due to the limited availability
of open-source code PRMs with competitive construction
costs, we trained a code ORM as a baseline using the same
data, with only the final rating position considered.

For all tasks, we evaluate the PRMs’ performance using the
Best of N (BoN) metric and further assess model capabilities
with TVD. In math reasoning tasks, we evaluate whether
the model’s final answer matches the ground truth exactly.
In the code tasks, we test the generated code by running it
in a sandbox and checking if it passes all test cases. Follow-
ing Wang et al. (2024a), we use the minimum PRM score
across all scored steps as the PRM’s final judgment for a
given candidate in BoN.

Parameter Settings: We sample 30 times per data point
and deduplicate the responses in Step 1. For labeling the
PRM training data, we perform 8 rollouts per step using the
same model π. This process generates 388k PRM training
samples. We use MetaMath-Mistral-generated data to train
the math PRM. And we get 49k PRM samples for the code
PRM. In our PRM training data, each sample includes a

5

https://github.com/doocs/leetcode

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

Table 1: Token-level Value-guided Decoding results. A/P@1 refers to the inference model’s greedy search performance, we
use Accuracy@1 for math tasks and Pass@1 for code tasks as the metrics. ↑ and ↓ represent the performance improvement
or decline compared to A/P@1.

Dataset Inference Model A/P@1 Math-Shepherd ER-PRM ASPRM-L / -M ASPRM-D

GSM8k MetaMath-M 77.10 75.66↓ 75.13↓ 79.53↑ / 77.33↑ /
MetaMath-L 81.80 81.73↓ 81.58↓ 83.47↑ / 82.56↑ /

MATH500 MetaMath-M 25.00 27.60↑ 27.80↑ 28.60↑ / 26.80↑ /
MetaMath-L 38.80 41.00↑ 38.60↓ 42.00↑ / 41.20↑ /

LeetCodeDataset LCD-DS 26.28 / / / 28.00↑
LiveCodeBench LCD-DS 19.21 / / / 19.92↑

labeling point at the end of the response. We divide the
responses by 2% The value is set according to Kahneman
(2011), which finds that deep thinking for humans accounts
for 2% of the total thinking.

4.2. Overall Results

BoN Results We report the BoN evaluation results for
the math dataset in Figure 4, and for the code dataset in
Figure 5, respectively.

In the math tasks, ASPRM-L performs best across Fig-
ure 4(a), 4(b) and 4(d) despite under more stringent con-
ditions: the training data sources, and the construction
costs and models. 1) For the training data sources, AS-
PRM only utilizes the GSM8k and MATH training sets
during training data construction, while both ER-PRM and
Math-Shepherd used the MATH test set (without using
MATH500), which results in our performance being in-
ferior to theirs on MATH500. 2) For the costs and models
used in construction, the data construction costs for AS-
PRM is less than 70% of that for the other two methods
and only used a single construct model. In addition to the
above problems that lead ASPRM-M to poor performance
in the MATH500 dataset, we attribute its performance in Fig-
ure 4(a) to the training dataset is constructed by a single
model, constraining its test-time transferability.

In the code tasks results shown in Figure 5, ASPRM-D
demonstrates superior judgment ability. As N increases, the
robustness of ASPRM-D outperforms that of ORM.

TVD Results We report TVD results in Table 1. In the
math reasoning task, ASPRM has consistently shown an
ability to enhance the reasoning capacity of the inference
models. While the performance guided by ER-PRM and
Math-Shepherd does not always demonstrate improvement,
we hypothesize this is due to that the inference models
already perform well with the greedy search on GSM8k,
needing a more precise score to provide better guidance.
The results further demonstrate the accuracy of the token-

Bo 1 Bo 4 Bo 8 Bo 16 Bo 32 Bo 64
Bo Values

20

25

30

35

Pe
rfo

rm
an

ce
 (%

)

LeetCodeDataset-DS LeetCodeDataset

Bo 1 Bo 4 Bo 8 Bo 16 Bo 32 Bo 64
Bo Values

18

20

22

24

26

Pe
rfo

rm
an

ce
 (%

)

LeetCodeDataset-DS LiveCodeBench

(a) (b)

Figure 5: BoN results for the code datasets, we test ASPRM-
D and a Code-ORM (ORM-D) on (a) LCD-DS generated
LeetCodeDataset BoN candidates; (b) LCD-DS generated
LiveCodeBench BoN candidates.

level judgment of ASPRM. In the code generation task,
ASPRM has also achieved results surpassing greedy search
by providing accurate judgment.

4.3. Transferability and Generalization Analysis

In this part, we investigate whether ASPRM demonstrates
model transferability and rating position, in-domain, and
cross-domain generalization capability, and the performance
of mixed-domain data-trained PRM. In our experiments,
unless otherwise specified, the BoN candidate generator and
TVD inference model is MetaMath-Mistral.

ASPRMexhibit model transferability: Since the quality
of training data generated by rollout depends on the policy π,
we explore the transferability of training data of our method.
We get 371k PRM training data generated by MetaMath-
Llama and conduct the same process as MetaMath-Mistral.
In Table 2, we find that training Mistral-V0.1 on data gen-
erated by MetaMath-Llama retains judgment ability, but its
performance is weaker than that trained on data generated
by the weak MetaMath-Mistral. This suggests that data
generated through rollout has reasonable but limited trans-

6

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

ferability. Using multiple models for data construction, as in
the Math-Shepherd, may be an effective strategy to enhance
transferability.

Table 2: Transferability of PRM training data: L to M in-
dicates training Mistral using PRM training data generated
by MetaMath-Llama. ↑ and ↓ denote performance improve-
ment or decline compared to ASPRM-M.

Setup Test Dataset Bo64 / TVD

L to M

M-MATH500 34.20↓ / 27.60↑
M-GSM8k 83.40↓ / 77.94↑

L-MATH500 41.80↓ / 41.40↑
L-GSM8k 87.87↓ / 82.49↓

ASPRMexhibit rating position generalization: We eval-
uate the rating position generalization of different PRMs
and show the results in Table 3. Three setups are employed
in our experiments: confidence, random, and hard, we ex-
plain the setting in the caption of Table 3. The performance
of ER-PRM-L shows a significant difference between the
hard and random setups, whereas the difference of ASPRM-
L between the two setups is relatively small. Additionally,
ASPRM-M performs better under the random setup than
under the confidence setup, demonstrating its superior gen-
eralization ability in the rating position. We attribute this
advantage to the diversity of rating point types in the AS-
PRM training data.

Table 3: Rating position generalization. In the confidence
setup, rating points are the positions where confidence falls
below the threshold. In the random setup, rating points are
selected at five random positions. In the hard setup, rating
points are line breaks.

Models Scoring Setup Bo64

ASPRM-L confidence 90.45
random 90.22

ASPRM-M confidence 85.82
random 86.96

MS-M hard 86.50
random 86.20

ER-PRM-L hard 88.70
random 87.71

ASPRMexhibit in-domain generalization: We use
GSM-Symbolic (Mirzadeh et al., 2024), which modifies
variables or sentences in the original GSM8k dataset, to test
whether PRM can achieve in-domain generalization. We
show our results in Table 4. We find that ASPRM exhibits
strong in-domain generalization as it achieves better results

in TVD than greedy search, and selects the right samples in
Bo64.

Table 4: In-domain generalization ability. The experiments
are conducted on the GSM-Symbolic p2 dataset. ↑ indicates
the performance improvement compared to greedy search.

PRM Model Base Bo64 / TVD

ASPRM-L 22.80 51.56 / 24.56↑
ASPRM-M 22.80 37.88 / 24.68↑

ASPRMexhibit cross-domain generalization: We as-
sess the cross-domain generalizability of PRMs using two
setups: evaluating the math PRM in the code datasets and
evaluating the code PRM in the math datasets. Our results
are shown in Figure 5. We find that the ASPRM-L provides
applicable guidance on code tasks and makes correct se-
lections in BoN. However, ASPRM-D performs better on
the more difficult MATH500 task but struggles on simple
GSM8k. We hypothesize this is due to the long training
data and long prompt in code PRM, as the GSM8k test data
has a total length similar to the length of the prompt part of
the code data on average, resulting in fewer low-confidence
points for the model to learn.

Table 5: Cross-domain generalization ability of the PRMs:
Source represents the source domain and the corresponding
model. Target represents the target dataset domain and
the corresponding test data. ↑ and ↓ indicate performance
improvements or declines compared to the A/P@1 perfor-
mance in Table 1.

PRM Model Target Bo64 / TVD

ASPRM-L Code-LCD 34.29↑ / 28.00↑
Code-LCB 22.30↑ / 19.21-

ASPRM-D Math-GSM8k 75.13↓ / 75.28↓
Math-MATH500 30.00↑ / 26.00↑

Mixed data benefits downstream performance: Since
both tasks are reasoning tasks, we explore whether mixing
training data from different domains can enhance down-
stream performance. To this end, we conduct two experi-
ments: 1) training Mistral on a mixed math and code dataset,
and evaluating it on MATH500 and GSM8k; 2) training
DeepSeek on an equal amount of randomly sampled math
and code data, and evaluating it on LeetCodeDataset and
LiveCodeBench. The results are shown in Table 6. We
find that mixing data improves PRM performance on math
datasets, while on code datasets, performance improves only
in the TVD scenario on LiveCodeBench. We hypothesize
this outcome is due to the following reason: for the math
PRM, mixing long code domain training data improves the

7

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

PRM’s judging ability. For the code PRM, code domain
training data is more difficult to obtain. Adding new data
doubles the dataset size but introduces shorter data. This
results in decreasing the global rating ability relied upon by
BoN while enhancing the local rating ability used by TVD.

Table 6: The test results of the PRMs trained with a mixed
training dataset. When the base model is Mistral, the M+C
training data consists of the MetaMATH-Mistral generated
math dataset and full code training dataset. When the base
model is Deepseek, the C+M training data includes all of
the code dataset and an equal amount of randomly sampled
math training data. ↑ and ↓ represent the performance im-
provement or decline compared to the no mixed data trained
PRMs in the origin domain of test data.

Base Model Train Test Bo64 / TVD

Mistral M+C GSM8k 86.35↑ / 77.79↑
M+C MATH500 35.40↑ / 29.00↑

Deepseek C+M LCD 37.71- / 28.00-
C+M LCB 24.96↓ / 20.33↑

4.4. Threshold Analysis

In this part, we show the impact of different thresholds in
dividing steps of our PRM training data. We add the BoN re-
sults of ASPRM models trained with the threshold of 0.5%,
1%, and 1.5% and test them on the GSM8k dataset with
more task models, we show the results in Figure 6. How-
ever, larger thresholds (more than 3%) mean more rollouts
than the baselines, so we only do the experiments with a
threshold under 2%. We use multi-scale generators to test
these PRMs.

0 0.5 1.0 1.5 2.0
Threshold

78

80

82

84

86

88

90

Pe
rfo

rm
an

ce
 (%

)

Bo64 results on GSM8k

0 0.5 1.0 1.5 2.0
Threshold

75

80

85

90

95

Pe
rfo

rm
an

ce
 (%

)

MetaMATH-Llama-7b MetaMATH-Llama-13b MetaMATH-Llama-70b

Ours Baseline

(a) (b)

Figure 6: Threshold analysis of BoN results on GSM8k
dataset with multi-scale BoN candidates generators. (a)
Ours represents using Mistral as the PRM base model and
baseline represents Math-Shepherd; (b) Ours represents
using Llama as the PRM base model and baseline represents
ER-PRM.

We find that the PRM judgment ability is enhanced with
the increase of dividing points in Figure 6 (a), but it is not
significantly improved in Figure 6 (b). This shows that
for models with different abilities, the optimal threshold
choice may not be 2%, and more powerful models need less
training data. Additionally, we find that at nearly 50% of the
data points, ASPRM that using a single model to generate
training data performs better than the baselines that using
multiple training data generator.

4.5. Feature Analysis

In this part, we discuss the features of the AdaptiveStep
division used in ASPRM and its advantages.

Construction efficiency: The training data construction
of ASPRM demonstrates superior efficiency in both do-
mains. In the math domain, the training data for ASPRM
is generated using only a single MetaMath-Mistral model,
with 30 samples per data point and 8 times rollouts per step.
In contrast, ER-PRM performs fewer samples but conducts
16 times rollouts, while Math-Shepherd uses multiple mod-
els for sampling and rollouts. The average number of steps
per sample and sample counts for each method are presented
in Appendix A.2. As a result, the data construction costs for
ASPRM are less than 70% of those for the other two. In the
code domain, there are 14.4 lines on average per answer for
the LeetCodeDataset training set, whereas only 5.69 steps
are required for our method on average.

Statistical features of the division: There are several fea-
tures and findings in the AdaptiveStep division statistics.
For brevity, we refer to low-confidence tokens as ”deci-
sion tokens” throughout this section. Taking the math PRM
training data generated by Mistral as an example: 1) 3.85%
tokens in mathematical expressions contribute 21.03% de-
cision tokens; 2) only 2.7% decision tokens are newline
tokens; 3) the inference model exhibits low confidence at
semantic word points, particularly at Conjunction (29.00%),
suggesting that continuous or transitional thinking is partic-
ularly challenging for the model.

For the code PRM training data: 1) the majority of decision
points occur in the Code Comment type (80%), compared to
the Code type (20%), even though Code Comments tokens
account for only 19% of the total tokens; 2) a detailed
analysis reveals that the Code Comment samples primarily
fall into two subtypes: explaining what previous lines do and
planning what to do in the following lines. The first subtype
accounts for 9% of the samples, while the second accounts
for 91%. This indicates that the inference model triggers
more during the planning process than during the writing
process when generating code; 3) by further analyzing the
Code type, we find that Logical Operators, Block Begin
Keyword, Control Statements and Loop Statements occupy

8

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

a high proportion of low confidence proportion with a small
number of tokens. This suggests that, in addition to pre-
planning in Comment, the model still requires assistance at
certain logical decision points during the writing process.

The statistical information indicates that the inference model
is prone to performing low confidence in the calculation
process, semantic word selection in mathematics reasoning
tasks, and the planning process in code generation tasks.
The full statistical results are provided in Appendix A.1.

Our results in 4.3 indicate that PRM trained on mixed
datasets can enhance downstream performance, making it
possible to achieve better results in domains with hard-to-
obtain data, such as code generation, at a lower cost. Based
on the results and feature analysis in the code data, we hy-
pothesize that the mutual enhancement arises from both
tasks being reasoning problems. Similar to the text reason-
ing process in mathematics, the Code Comments contain
substantial content that outlines subsequent steps. There-
fore, training on a mixture of both datasets allows the model
to achieve improved results.

5. Conclusion
In this paper, we propose a new reasoning step dividing
method, AdaptiveStep, along with a corresponding Process
Reward Model (PRM), ASPRM. We test the effectiveness
of the PRM on mathematical reasoning and code generation
tasks. To train the code PRM, we collect a function-level
LeetCode dataset. We effectively integrate the PRM into the
standard LLM inference process, achieving improvements
over greedy search without additional inference overhead
by token-level guidance. Our experiments on widely used
datasets demonstrate robust performance with reduced com-
putational costs. Furthermore, we analyze model transfer-
ability and generalization, showing that ASPRM exhibits
both rating position, in-domain, and cross-domain gener-
alization. We also find that combining data from different
domains further enhances PRM performance. Lastly, our
feature analysis of the AdaptiveStep division confirms its
effectiveness and informativeness.

Acknowledgement
We sincerely thank Zilin Zhu for providing valuable sugges-
tions on efficiency optimizations of our code and Di Yang,
Xiaochen Zhu, and the reviewers for their advice during
the completion and review of the work. This work is spon-
sored by the Shanghai Science and Technology Commission
Blockchain Special Project (No. 24BC3200100).

Impact Statement
AdaptiveStep is an automatic, highly informative, and effec-
tive method for dividing reasoning steps. It can be easily
applied to a wide range of complex tasks across various
domains, such as code generation (as demonstrated in our
paper) and AI-driven scientific reasoning. Furthermore, our
exploration of the properties of AdaptiveStep PRM and its
training data features will contribute to advancing process
reward assignment in LLMs, potentially shaping the devel-
opment of more general PRMs.

References
Chaffin, A., Claveau, V., and Kijak, E. PPL-

MCTS: Constrained Textual Generation
Through Discriminator-Guided Decoding. In
Proceedings of the CtrlGen workshop, Proceed-
ings of the CtrlGen workshop, pp. 1–19, vir-
tual, United States, December 2021. URL
https://hal.science/hal-03494695.

Chen, G., Liao, M., Li, C., and Fan, K. Step-
level value preference optimization for mathemati-
cal reasoning. In Al-Onaizan, Y., Bansal, M., and
Chen, Y.-N. (eds.), Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 7889–
7903, Miami, Florida, USA, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
findings-emnlp.463. URL https://aclanthology.
org/2024.findings-emnlp.463/.

Choi, S., Fang, T., Wang, Z., and Song, Y. Kcts: knowledge-
constrained tree search decoding with token-level hal-
lucination detection. arXiv preprint arXiv:2310.09044,
2023.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72–83. Springer, 2006.

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E.,
Molino, P., Yosinski, J., and Liu, R. Plug and play lan-
guage models: A simple approach to controlled text gen-
eration. arXiv preprint arXiv:1912.02164, 2019.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., and et.al. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

9

https://hal.science/hal-03494695
https://aclanthology.org/2024.findings-emnlp.463/
https://aclanthology.org/2024.findings-emnlp.463/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

Feng, X., Wan, Z., Wen, M., McAleer, S. M., Wen, Y.,
Zhang, W., and Wang, J. Alphazero-like tree-search can
guide large language model decoding and training. arXiv
preprint arXiv:2309.17179, 2023.

Gao, B., Cai, Z., Xu, R., Wang, P., Zheng, C., Lin, R.,
Lu, K., Liu, D., Zhou, C., Xiao, W., Hu, J., Liu, T., and
Chang, B. Llm critics help catch bugs in mathematics:
Towards a better mathematical verifier with natural lan-
guage feedback, 2024. URL https://arxiv.org/abs/
2406.14024.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., and et.al. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W.,
Chen, G., Bi, X., Wu, Y., Li, Y., Luo, F., Xiong, Y., and
Liang, W. Deepseek-coder: When the large language
model meets programming – the rise of code intelligence,
2024. URL https://arxiv.org/abs/2401.14196.

Hao, S., Gu, Y., Ma, H., Hong, J. J., Wang, Z., Wang, D. Z.,
and Hu, Z. Reasoning with language model is planning
with world model, 2023. URL https://arxiv.org/
abs/2305.14992.

Hills, J. and Anadkat, S. Using logprobs, 2024. URL https:
//cookbook.openai.com/examples/using logprobs.
Accessed: 2024-12-10.

Huang, J., Chen, X., Mishra, S., Zheng, H. S., Yu, A. W.,
Song, X., and Zhou, D. Large language models cannot
self-correct reasoning yet, 2024. URL https://arxiv.
org/abs/2310.01798.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I. Live-
codebench: Holistic and contamination free evaluation of
large language models for code. arXiv preprint, 2024.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Kahneman, D. Thinking, fast and slow. Farrar, Straus and
Giroux, 2011.

Krause, B., Gotmare, A. D., McCann, B., Keskar, N. S.,
Joty, S., Socher, R., and Rajani, N. F. Gedi: Generative
discriminator guided sequence generation. arXiv preprint
arXiv:2009.06367, 2020.

Lai, X., Tian, Z., Chen, Y., Yang, S., Peng, X., and Jia, J.
Step-dpo: Step-wise preference optimization for long-
chain reasoning of llms, 2024. URL https://arxiv.
org/abs/2406.18629.

Lee, J. H., Yang, J. Y., Heo, B., Han, D., and Yoo, K. M.
Token-supervised value models for enhancing mathemati-
cal reasoning capabilities of large language models, 2024.
URL https://arxiv.org/abs/2407.12863.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step, 2023. URL https:
//arxiv.org/abs/2305.20050.

Liu, J., Cohen, A., Pasunuru, R., Choi, Y., Hajishirzi, H.,
and Celikyilmaz, A. Don’t throw away your value model!
generating more preferable text with value-guided monte-
carlo tree search decoding, 2024. URL https://arxiv.
org/abs/2309.15028.

Luo, L., Lin, Z., Liu, Y., Shu, L., Zhu, Y., Shang, J., and
Meng, L. Critique ability of large language models, 2023.
URL https://arxiv.org/abs/2310.04815.

Luo, L., Liu, Y., Liu, R., Phatale, S., Lara, H., Li, Y., Shu,
L., Zhu, Y., Meng, L., Sun, J., and Rastogi, A. Improve
mathematical reasoning in language models by automated
process supervision, 2024. URL https://arxiv.org/
abs/2406.06592.

Ma, Q., Zhou, H., Liu, T., Yuan, J., Liu, P., You, Y., and
Yang, H. Let’s reward step by step: Step-level reward
model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Mirzadeh, I., Alizadeh, K., Shahrokhi, H., Tuzel, O., Ben-
gio, S., and Farajtabar, M. Gsm-symbolic: Understanding
the limitations of mathematical reasoning in large lan-
guage models, 2024. URL https://arxiv.org/abs/
2410.05229.

Nie, Y., Wang, C., Wang, K., Xu, G., Xu, G., and
Wang, H. Decoding secret memorization in code llms
through token-level characterization. arXiv preprint
arXiv:2410.08858, 2024.

Qin, Y., Li, X., Zou, H., Liu, Y., Xia, S., Huang, Z., Ye,
Y., Yuan, W., Liu, H., Li, Y., and Liu, P. O1 replication
journey: A strategic progress report – part 1, 2024. URL
https://arxiv.org/abs/2410.18982.

Roy, S. and Roth, D. Solving general arithmetic word
problems, 2016. URL https://arxiv.org/abs/1608.
01413.

Sessa, P. G., Dadashi, R., Hussenot, L., Ferret, J., Vieil-
lard, N., Ramé, A., Shariari, B., Perrin, S., Friesen,

10

https://arxiv.org/abs/2406.14024
https://arxiv.org/abs/2406.14024
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2305.14992
https://arxiv.org/abs/2305.14992
https://cookbook.openai.com/examples/using_logprobs
https://cookbook.openai.com/examples/using_logprobs
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2407.12863
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2309.15028
https://arxiv.org/abs/2309.15028
https://arxiv.org/abs/2310.04815
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.05229
https://arxiv.org/abs/2410.18982
https://arxiv.org/abs/1608.01413
https://arxiv.org/abs/1608.01413

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

A., Cideron, G., Girgin, S., Stanczyk, P., Michi, A.,
Sinopalnikov, D., Ramos, S., Héliou, A., Severyn, A.,
Hoffman, M., Momchev, N., and Bachem, O. Bond:
Aligning llms with best-of-n distillation, 2024. URL
https://arxiv.org/abs/2407.14622.

Setlur, A., Nagpal, C., Fisch, A., Geng, X., Eisenstein, J.,
Agarwal, R., Agarwal, A., Berant, J., and Kumar, A. Re-
warding progress: Scaling automated process verifiers for
llm reasoning, 2024. URL https://arxiv.org/abs/
2410.08146.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X.,
Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and Guo,
D. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL
https://arxiv.org/abs/2402.03300.

Shen, W. and Zhang, C. Policy filtration in rlhf to
fine-tune llm for code generation. arXiv preprint
arXiv:2409.06957, 2024.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm
test-time compute optimally can be more effective than
scaling model parameters, 2024. URL https://arxiv.
org/abs/2408.03314.

Team, K., Du, A., Gao, B., Xing, B., Jiang, C., Chen, C., Li,
C., Xiao, C., Du, C., Liao, C., Tang, C., Wang, C., Zhang,
D., Yuan, E., Lu, E., Tang, F., Sung, F., Wei, G., Lai, G.,
Guo, H., Zhu, H., Ding, H., Hu, H., Yang, H., Zhang, H.,
Yao, H., Zhao, H., Lu, H., Li, H., Yu, H., Gao, H., Zheng,
H., Yuan, H., Chen, J., Guo, J., Su, J., Wang, J., Zhao, J.,
Zhang, J., Liu, J., Yan, J., Wu, J., Shi, L., Ye, L., Yu, L.,
Dong, M., Zhang, N., Ma, N., Pan, Q., Gong, Q., Liu, S.,
Ma, S., Wei, S., Cao, S., Huang, S., Jiang, T., Gao, W.,
Xiong, W., He, W., Huang, W., Wu, W., He, W., Wei, X.,
Jia, X., Wu, X., Xu, X., Zu, X., Zhou, X., Pan, X., Charles,
Y., Li, Y., Hu, Y., Liu, Y., Chen, Y., Wang, Y., Liu, Y.,
Qin, Y., Liu, Y., Yang, Y., Bao, Y., Du, Y., Wu, Y., Wang,
Y., Zhou, Z., Wang, Z., Li, Z., Zhu, Z., Zhang, Z., Wang,
Z., Yang, Z., Huang, Z., Huang, Z., Xu, Z., and Yang,
Z. Kimi k1.5: Scaling reinforcement learning with llms,
2025. URL https://arxiv.org/abs/2501.12599.

Tyen, G., Mansoor, H., Cărbune, V., Chen, P., and Mak, T.
Llms cannot find reasoning errors, but can correct them
given the error location, 2024. URL https://arxiv.
org/abs/2311.08516.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process- and outcome-
based feedback, 2022. URL https://arxiv.org/abs/
2211.14275.

Wang, P., Li, L., Shao, Z., Xu, R. X., Dai, D., Li, Y., Chen,
D., Wu, Y., and Sui, Z. Math-shepherd: Verify and
reinforce llms step-by-step without human annotations,
2024a. URL https://arxiv.org/abs/2312.08935.

Wang, T., Chen, J., Han, X., and Bai, J. Cpl: Critical plan
step learning boosts llm generalization in reasoning tasks,
2024b. URL https://arxiv.org/abs/2409.08642.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-thought
prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Xia, S., Li, X., Liu, Y., Wu, T., and Liu, P. Evaluating
mathematical reasoning beyond accuracy, 2024. URL
https://arxiv.org/abs/2404.05692.

Xu, Z., Jiang, F., Niu, L., Jia, J., Lin, B. Y., and Poovendran,
R. Safedecoding: Defending against jailbreak attacks via
safety-aware decoding. arXiv preprint arXiv:2402.08983,
2024.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. Tree of thoughts: Deliberate
problem solving with large language models, 2023. URL
https://arxiv.org/abs/2305.10601.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J. T., Li, Z., Weller, A., and Liu, W. Metamath: Boot-
strap your own mathematical questions for large language
models. arXiv preprint arXiv:2309.12284, 2023.

Yuan, L., Li, W., Chen, H., Cui, G., Ding, N., Zhang,
K., Zhou, B., Liu, Z., and Peng, H. Free process
rewards without process labels, 2024. URL https:
//arxiv.org/abs/2412.01981.

Zhang, H., Wang, P., Diao, S., Lin, Y., Pan, R., Dong,
H., Zhang, D., Molchanov, P., and Zhang, T. Entropy-
regularized process reward model, 2024.

Zhang, S., Chen, Z., Shen, Y., Ding, M., Tenenbaum, J. B.,
and Gan, C. Planning with large language models for
code generation. arXiv preprint arXiv:2303.05510, 2023.

Zhao, Z., Rong, Y., Guo, D., Gözlüklü, E., Gülboy, E.,
and Kasneci, E. Stepwise self-consistent mathematical
reasoning with large language models, 2024. URL https:
//arxiv.org/abs/2402.17786.

11

https://arxiv.org/abs/2407.14622
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2410.08146
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2311.08516
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2409.08642
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2404.05692
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2412.01981
https://arxiv.org/abs/2402.17786
https://arxiv.org/abs/2402.17786

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

A. Appendix
A.1. feature statistic

In this part, we present the statistics of the decision token types in our dataset. Table 7 and Table 8 shows the statistical
information of the math data, and Table 9 shows that of the code. We adopt en core web sm model from Spacy library as
tokenizer and POS tagger to make statistics. We show the cases for types of tokens in Appendix A.3.

A.2. Dataset Information Statistic

In Figure 7, we report the statistical information of math training data for our dataset and ER-PRM, Math-Shepherd,
PRM800K2. In Figure 8, we show the statistical information for our math BoN candidates.

A.3. Case Study

We show divided cases in Math (Table 11) and Code domain (Table 12).

A.4. Traning Data Distribution

Since the training data is generated and divided by the model, we will worry about whether there are a large number of
difficult questions divided into few steps. Therefore, we analyze the relationship between step division and correct answer
rate in our Mistral-generated GSM8k training data, we show the results in Figure 9. We find that only a few difficult
questions (1.62%) is hard to answer by the training data generator with a few divisions.

Table 7: MetaMath-Mistral generated data statistic results: percentage of tokens types and percentage of decision tokens
types for math domain. Natural Sentence stands for a piece of text separated by a New line break or Punctuation like
Period and Question Mark. Reasoning represents symbolic reasoning or Math Formula; Entity represents Noun like apple
or personal name; Semantics represents Conjunction, Verb and Determiner. We also find that there are few word level splits
represented by Split Word; we retained these segmentation points to enhance the model’s generalization at these points
during PRM training.

Categories Subtypes
Position

Token type proportion (78m) Decision token proportion (1517k)

Natural Sentence
New line break 3.85% 2.70%

Punctuation 26.92% 4.61%

Reasoning
Symbolic Reasoning 15.39% 6.79%

Math Formula 3.85% 21.03%
Entity Noun 15.38% 11.01%

Semantics
Conjunction 20.51% 29.00%

Verb 6.41% 5.34%
Determiner 7.69% 2.64%

2Same to (Wang et al., 2024a), We counted the number of samples for PRM800K and is a quarter of that of Math-Shepherd.

12

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

Table 8: Proportion of decision tokens in the original data of the same type for math domain generated by MetaMath-Llama.

Categories Subtypes
Position

Token type proportion (81m) Decision token proportion (1413k)

Natural Sentence
New line break 2.47% 6.69%

Punctuation 28.40% 14.91%

Reasoning
Symbolic Reasoning 16.05% 5.66%

Math Formula 3.7% 20.24%
Entity Noun 14.82% 7.35%

Semantics
Conjunction 20.99% 23.48%

Verb 6.17% 5.24%
Determiner 7.4% 2.99%

Table 9: Proportion of decision tokens in the original data of the same type for code domain

Categories Subtypes
Position

Token type proportion (17m) Decision token proportion (47k)

Syntax Symbol
New line break 6.99% 11.79%
Space Character 77.58% 1.60%

Numbers Number 4.21% 0.84%

Logical Operators
Boolean Operators 0.26% 3.21%

Arithmetic Operators 2.04% 3.54%
Definition Def / Class 0.53% 1.82%

Import Statement From / Import 0.58% 0.76%

Function
Type Defination 0.16% 0.48%
Build-in Function 0.49% 0.77%
Instance Method 0.09% 0.26%

Control Statements If / Else / Elif 0.64% 3.51%
Loop Statements For / While 0.62% 1.73%

Others
Return 0.68% 0.58%

Punctuation Mark 4.99% 6.52%

13

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

Table 10: Proportion of decision tokens in Code and Code Comment

Categories Trigger type(234k) Token type (17m) Line number(1599k)
Code 47k (19.95%) 4m (26.15%) 1280k(80.02%)

Code comment 187k (80.05%) 13m (73.85%) 319k(19.98%)

Table 11: Samples of decision tokens for math domain.

Categories Subtypes Sample

Sentence
New line break works on 4 of them each day.\nAfter 5 days,

Punctuation If Billie has 18 crayons, and Bobbie has three times

Reasoning
Text reasoning gives them 3 points. So in total, Joe’s team has 3 + 3 = 6
Math formula so x + 4x - 10 = 25

Entity Noun Ron gets to pick a new book 1 out of 13

Semantics
Conjunction their ages is 34, so we can write the equation L + (L + 4) = 34.

Verb In 14 days, each dog will eat 250 grams/day
Determiner we can round this to the nearest whole number.

Table 12: Samples of decision tokens for code domain

Categories Subtypes Sample

Syntax Symbol
New line break \n i += num bytes
Space Character dp[i][j] += dp[i - 1][j] * (j - k) \s

Numbers Number j = (target - x * 2) // 2

Logical Operators
Boolean Operators if c in count and c != a:

Arithmetic Operators dp = [[0] * (n+1) for in range(n+1)]

Definition
Def def is valid(r, c):

Class class Solution:

Import Statement
From from collections import defaultdict

Import import collections

Function
Type Defination for size in list(dp[curr sum]):
Build-in Function if abs(next count + 1) ¿ 0:
Instance Method self.count = 0

Control Statements
If if len(tokens) ¡ 4:

Else else:
Elif elif level == 0 and expression[i] == ’ ’:

Loop Statements
For for i in range(len(fronts)):

While while x != self.parent[x]:

Others
Return return (merged[n // 2 - 1] + merged[n // 2]) / 2.0

Punctuation Mark digit sum = (l1.val if l1 else 0) + (l2.val if l2 else 0)

14

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

4.90
4.31

5.17

6.23

7.22

Ours-M
Ours-L

ER-PRM M-S

PRM800K

Dataset

0

2

4

6

8

A
ve

ra
g

e
st

ep

(a)

388403371583

273226

444655

98731

Ours-M
Ours-L

ER-PRM M-S

PRM800K

Dataset

0

1

2

3

4

5

S
am

p
le

 n
u

m
b

er
s

10 5

(b)

36.11

46.53

38.16 37.49
33.57

Ours-M
Ours-L

ER-PRM M-S

PRM800K

Dataset

0

10

20

30

40

50

T
o

ke
n

s
p

er
 s

te
p

(c)

249.87
273.01 270.10

306.19 303.34

Ours-M
Ours-L

ER-PRM M-S

PRM800K

Dataset

0

50

100

150

200

250

300

350

T
o

ke
n

s
p

er
 s

am
p

le

(d)

Figure 7: Statistic Information of our math dataset, Ours-M represents data constructed by Mistral, and Ours-L represents
data constructed by Llama. ER-PRM, Math-Shepherd (M-S), PRM800K. (a): Average step; (b): Sample number; (c):
Average tokens per reasoning step; (d): Sample length. We use a Mistral tokenizer for statistics.

15

AdaptiveStep: Automatically Dividing Reasoning Step through Model Confidence

M-MATH500 M-GSM8K L-MATH500 L-GSM8K

Datasets

0

70

140

210

280

350

420

L
en

g
th

338

412

175

239

269

343

160

224

Total length
Answer length

(a)

M-MATH500 M-GSM8K L-MATH500 L-GSM8K

Datasets

70

140

210

280

350

420

L
en

g
th

321

379

147

205

250

318

136

194

Total length
Answer length

(b)

Figure 8: Statistic Information of our BoN dataset (a): Statistic with Mistral tokenizer; (b): Statistic with Llama tokenizer.

0.0 0.2 0.4 0.6 0.8 1.0
Accuracy

0

5

10

15

20

St
ep

s

Low Acc & Low Step Ratio: 1.62%
Rollout 64 Train Dataset

Regression line
90th Percentile Line
80th Percentile Line
70th Percentile Line
Low Acc & Low Step

500

1000

1500

2000

2500

De
ns

ity
 o

f p
oi

nt
s

Figure 9: Training data distribution (division numbers and rollout accuracy).

16

	Introduction
	Related Works
	Methods
	AdaptiveStep
	PRM Training
	Token-level Value-guided Decoding

	Experiments and Analysis
	Experiments Setup
	Overall Results
	Transferability and Generalization Analysis
	Threshold Analysis
	Feature Analysis

	Conclusion
	Appendix
	feature statistic
	Dataset Information Statistic
	Case Study
	Traning Data Distribution

